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Abstract Wearable devices generate different types of physiological data about the individuals. These data can provide
valuable insights for medical researchers and clinicians that cannot be availed through traditional measures. Researchers
have historically relied on survey responses or observed behavior. Interestingly, physiological data can provide a richer
amount of user cognition than that obtained from any other sources, including the user himself. Therefore, the inexpensive
consumer-grade wearable devices have become a point of interest for the health researchers. In addition, they are also used
in continuous remote health monitoring and sometimes by the insurance companies. However, the biggest concern for such
kind of use cases is the privacy of the individuals. There are a few privacy mechanisms, such as abstraction and k-anonymity,
are widely used in information systems. Recently, Differential Privacy (DP) has emerged as a proficient technique to publish
privacy sensitive data, including data from wearable devices. In this paper, we have conducted a Systematic Literature Review
(SLR) to identify, select and critically appraise researches in DP as well as to understand different techniques and exiting use
of DP in wearable data publishing. Based on our study we have identified the limitations of proposed solutions and provided
future directions.
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1 Introduction

Recent advances in wearable and smart technology, and the
rapid adoption of wearable devices and smartphones makes
them an important source of information for healthcare and
medical research. The availability of these devices and the
types of parameters they can measure is rapidly increasing.
Real-time participant-generated physiological data can en-
able large scale observational studies of health conditions,
provide better insights into the medical conditions of indi-
viduals, and help streamline clinical trial processes in medi-
cal research.

The researchers at IBM Watson stated than an average
person possibly generates more than one million gigabytes
of health-related data across his or her lifetime [1]. These
data are mostly physiological and personally identifiable data
such as heart rate, blood pressure, respiratory rate, disease
symptoms etc. These data generated from smart wearable
healthcare devices have become a blessing for the modern
healthcare. Whether remotely monitoring patients or keep-
ing track of physical condition and fitness, these data have

the potential to transform the healthcare sector. The main
difference between traditional healthcare data and the wear-
able device generated data is that data from wearables are of
continuous nature which are updated dynamically and often
can be temporally correlated. These data are used by medi-
cal professionals for continuous monitoring, researchers, an-
alysts, insurance companies or sometimes even in health sur-
veys [2].

However, data privacy is a major concern for health data
[3]. The need to ensure privacy and trust when sharing an
individual’s health data is particularly critical given the sen-
sitive nature of health data and its protection by legislation
(e.g. [4] [5]). Breaches of such privacy are not uncommon
[6]. The level of trust between participants in an open health
data marketplace will be lower than, say, a hospital’s clinical
practice where the doctors and patients are known to each
other. Therefore, appropriate mechanisms need to be estab-
lished to ensure data security and integrity, and to build trust
among the participants.

For preserving the privacy of sensitive data, many solu-
tions have been proposed such as cryptography [7, 8], blockchain
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[9–13], anonymization [14–18], privacy policy [19], and ac-
cess control [20, 21]. All of these techniques and mech-
anisms have limitations, specially for publishing real-time
dynamic data. A recent privacy technique, called Differen-
tial Privacy by Dwork [22] has revolutionized researches in
the privacy domain. DP ensures the privacy of the individu-
als in a way that the presence or absence of any individual in
the published dataset cannot be discovered. This reduces the
risk of privacy leakage of sensitive real-time data to a great
extent [23]. Therefore, it is used by different technology gi-
ants like Facebook, Google and Uber to protect the privacy
of their user [24–26].

One of the biggest challenges in real-time data is the
high dimensional temporal correlation between data. Many
researchers have found differential privacy suitable for pre-
serving privacy in real-time health data and claimed that
these solutions have advantages over existing methods. This
proves that differential privacy is a fruitful mechanism and
provides a more practical way for preserving privacy of real-
time health data. To the best of our knowledge, there is no
dedicated survey, traditional literature review, or a System-
atic Literature Review (SLR) for privacy-preserving wear-
able physiological data publishing using DP. This motivates
our work in this paper.

We have performed an SLR on wearable data publishing
(which generates data in a continuous manner) under dif-
ferential privacy in the period from 2007 to April 31, 2020.
We have come up with a holistic view of preserving pri-
vacy of wearable physiological data according to the ex-
isting literature. By performing a systematic mapping, we
have analyzed the techniques, their use cases, datasets, ex-
periment scenario and limitations of the existing solutions.
We have categorized the research papers mainly into three
major parts: Physiological, Real-time, and Others. We have
explored and analyzed how the research community have
addressed them, how they have contributed by approach-
ing different types of techniques, what experimental proce-
dure they have considered and what limitations they have
summed up.

We have illustrated the structure of this paper in Fig. 1.
In Section 2, we have narrated necessary mathematical con-
cepts of differential privacy, and their basic mechanisms.
In Section 3, we have discussed about wearable devices,
types of data they generate and difference between wear-
able health data and traditional health data. We have ex-
plained the systematic literature review process in Section
4 and provided analysis in Section 5. Section 6 has provided
a brief discussion. Finally, we have concluded with future
directions in Section 8.

2 Background
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In this section, we have provided the definition of dif-

ferential privacy and its different variants. We have also dis-
cussed about different relevant concepts related to differen-
tial privacy.

2.1 Differential Privacy

Differential privacy is the process of providing privacy of
database in such a way that it should not reveal any Personal
Identifiable Information (PII) about any individual for any
query. In other words, nobody can ascertain the participation
or non-participation of any individual in any dataset. The fi-
nal result will not be affected by the presence or absence of
any individual. Fig. 2 shows a simple visualization of dif-
ferential privacy. In the upper database, Munshi, Tajkia, and
Bob have contributed their respiratory data. Eve (adversary)
wants to find out Bob’s respiratory rate. If we delete Bob’s
respiratory data, the probability of finding Bob’s data in the
database before and after deletion will be identical. Which
means that, Eve can not ascertain whether or not Bob is
included in the dataset, let alone the contents of his data.
Hence, Bob’s privacy is preserved.
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Fig. 2: Differential privacy

2.1.1 Definition

A randomized mechanism M gives (ε,δ )-DP for every set
of outputs S, and for any neighbouring datasets (datasets that
differ in only one value) of D, D′ if M satisfies Eq. 1 [27]:

Pr[M(D) ∈ S]
Pr [M (D′) ∈ S]

≤ eε +
δ

Pr [M (D′) ∈ S]
(1)

This is known as approximate differential privacy. If δ =

0, then Eq. (1) shows the ratio between the probability of
the output being into dataset D and D′ becomes less than or
equal to eε . This is known as pure differential privacy. If two
datasets differ with c values then the ratio becomes less than
or equal to eεc. This is known as group privacy.

The mechanism ε and M are the main actors here. ε is
the balance between privacy loss and maximizing utility.

1. ε = 0 leads to complete privacy but lack of utility.
2. ε <= 1 leads to less privacy but higher utility.

M decides how much noise (i.e. a calibrated value used to
anonymize data) will be added and what type of query is
being served.

2.1.2 Illustration of Differential Privacy

Let us consider a child named John. There is a large amount
of data of John which has been generated during John’s life-
time. This data is managed by John’s parents. One example
of such data is John’s preference: which veggies John dis-
likes? However, he is a bit ashamed about his preference and
hence, may not wish for everyone to know this. The ability
to keep this type of secret is referred to as privacy. How-
ever, the man who prepares John’s lunch at his daycare may
wish to know that some of the children in the group dislike
carrots! He is not required to know whether or not John is
one of these children. It is sufficient if he is aware that there
are perhaps four or five children who dislike carrots. This
is referred to as differential privacy. Now, if the cook asks
John whether he likes carrots or not, instead of giving a di-
rect answer, he could utilize an approach which simulates
differential privacy. In this approach, John will provide an
indirect answer. More specifically, he will answer it through
an outcome of some random process, e.g. a coin flip. The

cook cannot see the result of this random process, this is
essential. John flips the coin. The process is shown Fig. 3.

1. If it is head, John will provide the true answer.
2. If it is tail, John will flip the coin again.

– If it is head, John will say yes, regardless of what the
true answer is.

– If it is tail, John will say no, regardless of what the
true answer is.

This is an example of plausible deniability which refers
to an individual’s ability to deny anything since there is no
concrete proof to show him right or wrong. Continuing with
the example, the randomness of flipping a coin allows John
to be protected with plausible deniability as it is plausible for
him to deny the answer based on the outcome of coin flip-
ping. This randomized response process is actually differen-
tially private process. Although the algorithms for differen-
tial privacy are much more complex, the principle remains
the same. By making it unclear whether or not each response
is legitimate, or even by altering replies arbitrarily, these al-
gorithms can assure that regardless of how many queries are
sent to the database, no one can be identified concretely.

Does John eat
carrots?

Flip a
coin

Head? Return the truth

Tail?

Return "No"

Flip a
coin

Head? Return "Yes"

Tail?

Fig. 3: Flow diagram of the Differential privacy algorithm

2.1.3 Local Differential Privacy (LDP)

LDP [28, 29] is a slightly different method to achieve dif-
ferential privacy. In other words, it is used to provide differ-
ential privacy locally. Differential privacy was designed for
the purpose of sharing data, whereas LDP protects the pro-
cess of data collection by maintaining individual privacy. In
this case, a user instead of giving true data directly to the
aggregator (an entity that collects as well as aggregates data
from different sources and anonymize them), they add noise
to their individual data first, then send the noisy data to the
aggregator. This ensures individual privacy. Fig. 4 shows the
differences between DP and LDP.
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2.1.4 Sensitivity

Sensitivity is the maximum difference on query results be-
tween neighbouring datasets and defined as ∆ f [30]. Sup-
pose there is a query "How many people in the database have
the property P?". In this scenario, the presence or absence of
an individual will change the result to a maximum value of
only 1. So the sensitivity of this dataset is just 1. There are
two types of sensitivity in differential privacy, namely Local
sensitivity and Global sensitivity.

2.1.5 Privacy Budget

ε is known as the privacy budget which controls the privacy
guarantee level of any mechanism M [27]. The main respon-
sibility of the privacy budget is to maintain the balance be-
tween privacy loss and utility maximization. Smaller ε (i.e
more noise) ensures stronger privacy. But due to smaller ep-
silon the data can lose its utility and vice-versa. So, it is
important to find and maintain the balance between privacy
loss and utility maximization. Fig. 5 shows a visual repre-
sentation of this problem. As shown in figure, the more noise
is added to the face image, the more anonymous it gets. But
at the same time, with more anonymization the image be-
comes less useful. Similarly, less noise preserves utility of
the image but does not provide any considerable privacy.

Higher epsilon
High utility
No privacy

Smaller epsilon
No utility

Strong privacy

Fig. 5: Effect of privacy budget

2.2 Mechanisms of Differential Privacy

Differential privacy can be achieved in two different ways,
namely interactive and non-interactive. In interactive way,
the system response to each query individually until total
privacy budget is consumed. Whereas in non-interactive way,
the data curator (who maintains and manages metadata) ei-
ther evaluates and brings out statistics or discloses raw data
anonymously. All the query responses are given at a time. In
addition, DP uses different types of mathematical and statis-
tical model for data perturbation based on the types of data
such as numeric data and non-numeric data [27].

1. For numeric queries, Laplace and Gaussian mechanisms
are more suitable.

2. For non-numeric queries, Exponential mechanism is
more suitable.

2.2.1 Laplace Mechanism

The laplace mechanism is the procedure of adding laplace
noise to the query result [30]. The noise is sampled from the
laplace distribution [27]. Eq. 2 shows the probability density
function for laplace distribution which is centered at 0 with
scale b:

Lap(x|b) = 1
2b

exp
(
−|x|

b

)
(2)

The laplace mechanism uses l1-sensitivity (magnitude
by which a single individual’s data can change) and the vari-
ance of this distribution is σ2 = 2b2.

2.2.2 Gaussian Mechanism

In gaussian mechanism, gaussian noise is added to the func-
tion [27]. Rather than scaling to `1-sensitivity, curator scales
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it to the `2-sensitivity. Eq. 3 shows the mechanism of adding
gaussian noise to the results.

M(D) = f (D)+N
(
0,σ2) (3)

Where σ =∆2 f
√

2ln(2/δ )/ε . And N
(
0,σ2

)
is the added

Gaussian noise.

2.2.3 Exponential Mechanism

The exponential mechanism [27] is used in case of non-
numeric attributes because both the laplace mechanism and
gaussian mechanism cannot deal with non-numeric attributes.
In this case, the quality of an outcome is measured using a
score function. The score function q(D,φ) represents how
good an output φ is for the dataset D. Eq. 4 represents the
equation of exponential mechanism.

M(D) = { return φ with the probability }

∝ exp
(

εq(D,φ)
2∆q

) (4)

Where ∆q represents the sensitivity of score function q.

3 Wearables

Wearable devices can collect real-time data such as spatio-
temporal data, trajectory data, location data but most impor-
tantly physiological data. These can track activities and re-
motely monitor a patient’s condition. Consumer grade wear-
able trackers can track fitness and biosensors can collect bio-
logical data. Example of other wearables are smart footwear
which includes smart shoes, socks, insoles and gloves [31],
smart jewellery that includes smart ring, smart bracelet even
smart band, smart eye wear, glucose monitoring device, blood
pressure monitor, body mounted sensor and biosensor.

3.1 Wearable Device Architecture

The architecture of wearable devices’ data exchange con-
sists of three major components: 1) Wearable device 2) Smart-
phone and 3) Server/cloud server. Fig. 6 illustrates the wear-
able scenario, demonstrating the data generation and sharing
process.

The wearable device collects data using sensors attached
to it and transmits that data to the user’s smartphone. Blue-
tooth is used to transmit data between the wearable device
and the smartphone. These sensors data are transmitted to
the smartphone continuously and in real time. User appli-
cations on the smartphone enable the user to monitor the
data collected by the wearable. After that, the data stored in
the smartphone are transmitted to the remote server/cloud
server via mobile network or WiFi. These server-stored data
are shared with healthcare providers, health researchers, or
immediate family members based on the user’s preferences.

Wearable
Device

Internet

Server/Cloud
Server

Immediate
Family

Researcher

Healthcare
Professional

Smart phone

Wearable User

Fig. 6: Architecture of a wearable device

3.2 Types of Physiological Data

Wearable device technology has become a crucial tool in the
world of healthcare. These devices collect real-time physio-
logical data continuously. Individuals can track their health
condition and physical activities. Doctors can also monitor
their patients remotely without having the patient to visit
him/her in person or they can take necessary steps in case of
emergency.

Some of the wearable devices are medical grade and
some are customer grade devices such as Apple watch or
Fitbit [32]. In recent times, the customer grade devices are
becoming so sophisticated that they are now used in clin-
ical trails or medical research. These devices are made of
sensors and they use this sensing capability to identify dif-
ferent activities or physiological information. Several types
of physiological data is collected by wearable devices. Some
of them are listed below.

1. Heart rate: Wearable devices like smart watch, fitness
trackers, ECG monitors and body mounted sensors col-
lect heart rate continuously. Some of the devices send
notifications in case of any unusual response in heart
rate.

2. Respiratory rate: Smart eye wear and remote monitor-
ing sensors collect users respiratory rate.

3. Activity: There are different wearable devices that track
a user’s movements and activities, calculate active min-
utes and sedentary minutes. Devices like smart band (usu-
ally tracks fitness), smart health watch and biosensors
collect physical activity and movement data.

4. Glucose level: A glucose monitoring system continu-
ously collects the glucose level and notifies the user in
case of any unwanted situation.

5. Steps taken: Different devices work as personalized sys-
tems and count the step taken by users and help them in
maintaining their health.

6. Blood pressure: Blood pressure is collected by devices
like fitness trackers and remote monitoring systems.

7. Stress level: Stress level data collected by different type
of wearable devices such as smart jewellery.
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Fig. 7: Physiological data collected by wearable devices

8. Distance travelled: Devices like fitness trackers and smart
health watches collect the data of distance and elevation.

9. Calories burned: Smart bands and smart watches col-
lect the data of how much calories are burned and help
the user in keeping track of their daily activities.

In addition to the above mentioned data, wearable de-
vices also collect other physiological data such as oxygen
level, menstrual cycle timing, body temperature and many
more. Fig. 7 represents types of the physiological data gen-
erated and collected by different wearable devices.

3.3 Difference between Traditional Health Data and
Wearable Health Data

Wearable data possesses some characteristics that differen-
tiate them from traditional health data.

– Continuous data: Wearable devices continuously gen-
erate data. Different sensors continuously capture dif-
ferent physiological data. The devices capture data even
when we are sleeping. On the other hand, traditional
health data are generated mainly by the health profes-
sionals when we visit them.

– Numerical Data: generated by the wearable devices are
mainly numerical, such as blood pressure measurement,
heart rate and number of steps walked. On the contrary,
traditional health record keeps record of our health con-

dition as diagnostic result or doctor’s interpretation of
the diagnostics.

– Time-series data: Wearable devices data are stored as
the time series data where as traditional health data are
stored as textual format in the database.

– Real time data: Wearable devices provide the oppor-
tunity to capture the physiological data in real time. On
the other hand, traditional data are static and are not real-
time.

– Highly correlated: Data points in wearable data are highly
correlated.

– More suitable for data analytic: Wearable devices col-
lect real-time data such as spatio-temporal data, trajec-
tory data, location data but most importantly physiologi-
cal data continuously (24/7) and in a format that is more
consumable by the machine learning algorithms and can
produce more accurate and effective data analytic.

4 Research

Through the SLR, we have investigated the existing research
which have attempted to apply differential privacy in wear-
able data and tried to overcome the challenges identified in
the previous section. A SLR is methodologically rigorous in
contrast to ad-hoc reviews [33]. Our main focus is to iden-
tify relevant papers and review applications of differential
privacy in wearable device generated physiological data, as
well as to understand the conditions important for applying
DP.

4.1 Research Questions

We have created five Research Questions (RQs), showed in
Table 1 to guide our review.

Table 1: Research questions

ID Research Questions

RQ1
What are the DP techniques that have been used
in wearable data publishing?

RQ2
What are the major contributions of the
proposed solutions in wearable data publishing?

RQ3
What types of datasets and programming languages
are being considered for evaluation and
implementation?

RQ4
What are the privacy criteria used in data
publishing?

RQ5 What are the limitations of the proposed solutions?
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4.2 Search Strategy

The overall search strategy is to find a body of relevant stud-
ies. Two search strategies, primary and secondary, have been
used, as recommended by some studies [34, 35] to ensure
that relevant studies have not been missed. In terms of record
keeping, inclusion and exclusion strategies, we have followed
PRISMA framework [36] (detail numbers are in the Ap-
pendix Appendix A). For the primary search, we have used
search strings on several electronic databases. Following the
primary screening, we have conducted a secondary search
(paper selection) by means of backwards and forward trac-
ing. The primary screening strategy involves search terms,
literature resources and search process. These are described
briefly as follows.

4.2.1 Search Terms

Throughout our searching process, we have considered jour-
nals and papers written in English. Besides this language
factor, a date filter also has been applied. We have conducted
our searches in several digital libraries. We have maintained
a conceptual research string containing the main keywords
of the theme. The search keywords are given in Table 2.

Table 2: Search terms / keywords

Number Keywords

1 Review, survey, SLR, literature review
2 Wearable, medical, health data
3 Wearable devices generated data
4 Data publishing
5 Privacy preserving
6 Differential privacy
7 Temporal data

4.2.2 Literature Sources

In literature resources, we have conducted the searching pro-
cess for papers on seven different electronic databases. Dur-
ing the paper collection process, we also have considered
published journal names, published year, Computer Science
Bibliographies, the title of the paper, the number of citations
as well as the link of the paper.

After building conceptual search terms, we have used
these keywords for finding journal papers, conference pa-
pers, and review papers in our considered electronic databases.
Since different databases use different syntax for the search
string, we have adjusted our search terms to accommodate
with different databases. The search has been conducted on
all the seven databases covering title, abstract, and keywords.
The results of the search strings are given in Table 3.

Table 3: Number of papers retrieved from each digital li-
brary

Digital Library No of Returned Papers

Google Scholar 14,435
IEEE 93
Springer 1,210
ACM DL 2,359
ScienceDirect 666
JAMIA 39
PubMed 17

Total 18,819

4.2.3 Search Process

SLR needs to comprehensively search all relevant sources;
therefore, we have defined the search process by dividing it
into the following two phases.

1. Initial Searching Phase: Searched in the seven elec-
tronic databases separately, and then gathered the re-
turned papers together with those from a set of candi-
date papers. With the given search strings in Table 2, we
have used appropriate logical operators (i.e., ’AND’ and
’OR’) along with parenthesis and quotation mark to re-
fine our search and hence retrieved all the papers (details
are in appendix Appendix A).

2. Reference Searching Phase: Scanned the reference lists
of the relevant papers to find other relevant papers and
then, if any, added them into the set.

We have used Microsoft Excel to store and manage the
search results. We have gathered 18,819 papers from our ini-
tial searching phase and 13 papers from reference searching
phase. Fig. 8 shows the search process in details including
the number of papers.

4.3 Study Selection

We have found 18,819 candidate papers through Initial Search-
ing Phase (see Fig. 8). Since many of our candidate papers
will not provide useful information to address the research
questions raised by this review, we have conducted further
filtering to identify the relevant papers. More specifically,
the study selection procedure has the following two phases:

1. Initial Selection Phase: We have applied the inclusion
and exclusion criteria (defined below) to the candidate
papers for filtering the relevant papers. These relevant
papers can provide potential data for answering the RQs.

2. Final Selection Phase: In this phase, we have applied
the quality assessment criteria (defined in Section 4.4)
to the relevant papers for selecting the papers with ac-
ceptable quality, which are eventually used for data ex-
traction.
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Our inclusion criteria are presented below:

– Abstract of papers written in English.
– Papers publish from 2007 onward.
– Papers publish until April 31, 2020.
– Academic papers published in conferences or journals.
– Papers that describe wearable or real-time data publish-

ing other than trajectory or location data.
– For duplicate publications of the same study, only the

most complete and newest one is included.
– For study that has both conference version and journal

version, only the journal version is included.
– Review or Survey papers on real-time data publishing.
– Articles, Books related to wearable data publishing un-

der differential privacy.

Next, the exclusion criteria are presented:

– Abstract of papers written in other languages.
– Duplicated papers found on the digital libraries.
– Papers worked on static or traditional health data.
– Editorials, prefaces, summaries, interviews, news, corre-

spondences, discussions, comments, reader’s letters, and
summaries of tutorials, workshops, panels, and poster
sessions.

We have extracted 62 papers through our inclusion and
exclusion criteria. With that we have scanned the citation
and references of these relevant papers and found 13 addi-
tional relevant papers which have been missed in the initial
search process. Therefore, we have been able to identify 75
relevant papers. In the last step, we have applied a few qual-
ity assessment criteria for identifying the final selected stud-
ies, which are then used for data extraction.

Table 4: Quality assessment questions

ID Quality Assessment Questions

QAQ1
Is the paper related to real-time or wearable data
publishing under differential privacy?

QAQ2
Is the dataset used in the experiment real
dataset or synthetic dataset?

QAQ3
Is the validation of the proposed method
done using a dataset or not?

QAQ4
Does the study add value to a digital library of
the industry community?

QAQ5 Are the limitations of study analyzed explicitly?

QAQ6
Is the proposed publishing method compared with
other existing methods?

4.4 Study Quality Assessment

We have created some Quality Assessment Questions (QAQs)
in order to validate the quality of the papers. These questions
are showed in Table 4.

The questions presented in 4 are used for the quality
assessment of the research papers that we have collected.
QAQ1 evaluates if the paper we are evaluating relates to
wearable data publishing or real-time publishing or not. We
have observed that researchers have evaluated their proposed
DP-method using synthetic data rather than real wearable
data; QAQ2 assesses this. If the dataset is a real wearable
dataset, we keep them in our list otherwise, we discord them.
In addition, some research works either do not have any
validation or validation without a dataset; QAQ3 assesses
that. QAQ4 evaluates if the research works adds any ad-
vance to the existing knowledge in terms of academic or
industry practice. QAQ5 evaluates if the researchers have
analyzed their own limitations or not. Finally, in QAQ6,
we have checked whether the research paper has done any
benchmarking with the existing work or not.

We have selected each paper based on the total number
of QAQs they satisfy. We have read all 75 papers and eval-
uated them according to the Quality Assessment Questions.
We have put a paper into final selected studies if the paper
satisfies at least half of the QAQs. Finally, we have selected
31 papers. All the collected papers are listed in Table 5.

5 Analysis

Before jumping into analyzing the RQs, we have organized
the papers into following three categories. All the papers in
these categories have used differential privacy to preserve
the privacy of the health data.

1. Physiological represents papers that have covered wear-
able physiological data. Physiological data include, but
are not limited to, EEG, ECG, EMG, blood pressure, and
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Table 5: List of selected papers

Category Selected Papers

Physiological

Lin et al. [37], Lin et al. [38], Mohammad et al.
[39], Prema et al. [40], Zhang et al. [41], Song
et al. [42], Guan et al. [43], Kim et al. [44],
Kim et al. [45], Lin et al. [46], Hao et al. [47],
Kim et al. [48], Zhang et al. [49], Julian et al.
[50], Zhang et al. [51], Nazir et al. [52], Bozkir
et al. [53] Arijit et al. [54].

Real-time

Liyue et al. [55], Wang et al. [56], Rastogi et al.
[57], Shi et al. [58], Yang et al. [59], Wang et al.
[60], Gao et al. [61], Fan et al. [62], Kellaris
et al. [63].

Others
Nguyên et al. [64], Yang et al. [65], Thomas et al.
[66], Luo et al. [67].

activity. These papers have mainly discussed how to col-
lect these types of data using wearables and publish them
in a privacy preserving way.

2. Real-time represents papers that have discussed real-
time and dynamic health data. This category only in-
cludes those papers which have discussed about real-
time data collection or publishing. In terms of types of
data, it is wearable heath data. However, it is exclusively
for real-time health data collection and publishing. So,
if a paper discusses about historical physiological data
then we have placed it in the previous (physiological)
category, however, if it discusses real-time physiologi-
cal data then we have placed it under this category.

3. Others represents papers that are not directly related to
wearables, rather they are related to Medical Internet of
Things (MIoT) and smart devices, such as mobile phone
based healthcare.

5.1 RQ1: What are the DP techniques that have been used
in wearable data publishing?

Wearable data has some characteristics which make them
different from traditional health data, such as real time, dy-
namic, numerical and highly correlated data(details in 3.3).
We have discussed different types of differential privacy tech-
niques in 2.2. In this research question, we will explore which
of these techniques and other DP techniques have been used
by the researchers to protect the privacy of wearable data.
Here, we have reviewed the proposed techniques and meth-
ods to publish wearable physiological data under differential
privacy.

Applying DP is challenging for real-time or transaction
data, because differential privacy was built for providing
(ε,δ ) privacy guarantee for statistical data only. Different
researchers have addressed these issues and thus proposed
different techniques for publishing real-time data while main-

taining differential privacy. In traditional differential privacy
mechanisms, it is assumed that the data are independent, i.e.
they are not correlated and the adversary does not have any
knowledge of the data correlations. But real-time generated
data can be correlated or we can acquire correlations among
data.

Fig. 9 represents different types of DP techniques used
for different types of wearable data (e.g., physiological, real-
time, and others). It is evident from the figure that among all
the techniques Laplace Distribution is the most popular for
adding noise to the data. Other techniques are Geometric
Distribution and Fourier Perturbation Algorithm (FPA). For
eye data, researchers have preferred Gaussian noise for per-
turbation [50, 53]. For ensuring privacy guarantee of real-
time and physiological data in health, techniques such as
adaptive sampling [41, 55, 60, 62], filtering [41, 55, 60, 62],
adaptive budget allocation [41, 60], filtering with Laplace
distribution [60] have been used.

Researchers have extended Laplace distribution to pro-
vide better privacy guarantee. Shi et al. [58] used Symmet-
ric Geometric Distribution (SGD) with Laplace distribution
to provide discrete approximation to the Laplace distribu-
tion. Haar Wavelet technique [38], Bucket partition algo-
rithm for partitioning dataset [39], Geometric technique [42]
have also been adopted by different researchers. Despite the
temporal correlation, researchers such as Rastogi et al. [57]
and Bozkir et al. [53] have tried to achieve differential pri-
vacy using FPA.

In general, Laplace mechanism provides better accuracy
compared to Gaussian mechanism. Therefore wearable data
being mostly numerical, the Laplace mechanism may be an
appropriate choice for perturbation.
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Table 6: Research work related to physiological data publishing using DP

Paper Name Used technique (For RQ1) Major Contribution (For RQ2)

Lin et al. [37] - DP-based Dynamic Noise threshold A DP-based new scheme for large data from body sensor networks
Lin et al. [38] - DP (Laplace noise) with Haar

Wavelet technique
Differentially private scheme for sensitive big data in BSNs with re-
duced errors.

Mohammad et al.
[39] - Bucket algorithm and Laplace distri-

bution
An efficient differentially private mechanism for releasing health data

Prema et al. [40] - Selective Gaussian mechanism with
DP

A DP-based scheme for big data BAN which is more available and re-
liable

Zhang et al. [41] RE-
DPocpor Laplace noise with adaptive sam-

pling, filtering and budget allocation
techniques

Dataset privacy where data that has been collected from w-consecutive
days

Song et al. [42] PPM-
HDA Geometric Distribution A more diverse and secure mechanism resisting differential attacks and

supporting additive and non-additive aggregation
Guan et al. [43] EDPDCS K-means clustering and Laplace

noise based DP
Proposed an efficient privacy-preserving clustering scheme over Map-
reduce Framework for IoMT

Kim et al. [44] - Laplace distribution Presented method is capable of preserving privacy of individuals sensi-
tive data generated from smartwatches

Kim et al. [45] - Laplace distribution by leveraging
LDP

Developed method can collect sensitive health lifelogs from smartwatch
under DP

Lim et al. [46] - LDP with Laplace noise Developed technology is capable of collecting health data from smart-
watches by maintaining LDP

Hao et al. [47] PMHA-
DP Laplace noise with a hierarchical

method
Proposed multi-functional health data aggregation scheme under DP

Kim et al. [48] - LDP with Laplace Proposed mechanism can collect individual temporal health data at fixed
intervals by leveraging LDP

Zhang et al. [49] WSV-
MDAV Laplace noise with micro aggrega-

tion algorithm
Proposed a privacy protection model based on aggregation algorithm
for wearable devices using DP

Julian et al. [50] - Exponential Mechanism Designed interface for VR to prevent user re-identification and protect
gender information using DP

Zhang et al. [51] APDP Modified Laplace Mechanism A fog computing based secured smart-home model with a personalized
DP scheme

Arijit et al. [54] - Data driven technique & Laplacian
noise for data obfuscation

On-demand obfuscation of sensitive data by satisfying DP

Nazir et al. [52] mSieve Laplace Distribution Defined a new behavioral privacy metric under differential privacy
Bozkir et al. [53] - Fourier Perturbation Algorithm A chunk based privacy-preserving method for eye movement features

by considering different factors

5.2 RQ2: What are the major contributions of the proposed
solutions in wearable data publishing?

In this section, we have explored the major contributions of
DP-based techniques by different researchers in terms of re-
liability, utility, accuracy and risk minimization. We have
divided the research works in three different categories.

Physiological category:
In [37], authors have introduced a new DP-based con-

cept called Dynamic noise threshold which is suitable for
large amount of data from Body Sensor network (BSN).
Similarly, in [38], authors have used differential privacy
(Laplace noise) along with the Haar wavelet technique [68]
for histogram to binary tree conversion to be used for sensi-

tive big data in BSNs. Using this approach, they have been
able to reduce errors and provide long-range queries using a
tree structure. Prema et al. [40] have introduced another DP-
based Gaussian scheme for BSNs in which Gaussian noise
is applied to only important features if DP does not produce
a satisfactory protection. They have claimed their approach
is more reliable.

In terms of improving the utility, Mohammad et al. [39]
have proposed an efficient differentially private mechanism
which adopts the bucket partition algorithm and Laplace dis-
tribution for preserving privacy. The effectiveness of their
proposed technique is demonstrated by the overall improve-
ment in the accuracy of perturbed data. In a similar domain,
Zhang et al. [41] have adopted Laplace noise as the data
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Table 7: Research work related to real-time data publishing using DP

Paper Name Used technique (For RQ1) Major Contribution (For RQ2)

Rastogi et al. [57] PASTE Fourier Perturbation Algorithm (FPA) &
Distributed Laplace Perturbation Algo-
rithm (DLPA)

Combining FPA and DLPA to achieve the accuracy benefits of the
former and the scalability of the latter

Shi et al. [58] PSA Symmetric Geometric Distribution
(SGD) with Laplace distribution

Combining differential privacy and cryptography to calculate the
approximate aggregate statistics for a time interval over encrypted
data

Liyue et al. [55] FAST Laplace noise (using a white Gaussian
error with variance)

Improved data accuracy using Kalman filter and privacy cost min-
imization using adaptive sampling

Fan et al. [62] FAST Laplace noise with filtering and adaptive
sampling

Differential private real-time aggregate statistics based on filtering
and adaptive sampling

Kellaris et al. [63] BA, BD Laplace noise with sampling and dy-
namic privacy budget allocation

Proposal of two novel mechanisms along with several optimiza-
tions

Wang et al. [56] UKFDP Laplace noise with unscented Kalman
Filter

Kalman filter based DP for nonlinear systems enabling differen-
tially private streaming data share

Yang et al. [59] ConTPL Laplace mechanism A system to automatically convert an existing differentially pri-
vate streaming data within a specific level

Wang et al. [60] RescueDP Laplace noise with adaptive sampling,
budget allocation, dynamic grouping
and filtering

Monitoring online aggregations of infinite streams with privacy
guarantee

Gao et al. [61] - Laplace mechanism with GGA algo-
rithm and Kullback Leibler (KL) diver-
gence

Proposed approach can publish histogram for differentially pri-
vate dynamic data based on Kullback-Leibler (KL) divergence

perturbation method along with adaptive sampling, filtering
and budget allocation techniques. Their method allows the
release of real-time health data with w-day differential pri-
vacy where the health data is collected for any consecutive
w days. They have compared their technique to state-of-the-
art methods for performance comparison and have proved
that their method outperforms others in terms of utility and
privacy guarantee.

To improve the accuracy of DP-based techniques, the
authors in [44–46] have adopted the Laplace distribution
noise as their base perturbation technique. According to [44],
authors have asserted that their proposed approach can be
used to efficiently compute population data while maintain-
ing privacy through the use of a wristwatch. However, the

authors in [45, 46] have additionally leveraged LDP for col-
lecting health data from smartwatches. Both the research
works have conclusively contributed to successfully preserv-
ing the usefulness while properly gathering data from smart-
watches with privacy preservation in place. Finally, Kim et
al. [48] have proposed a novel mechanism to collect indi-
vidual temporal health data at fixed intervals by leveraging
(by using max advantage) Laplace Differential Privacy. As a
result, their proposed technique have outperformed straight-
forward methods by delivering a significant improvement in
accuracy.

Risk of privacy attack is major concern for any privacy
preserving technique. Some researchers have worked to im-
prove DP-based technique to avoid the attack. For instance,

Table 8: Research work related to others categories

Paper Name Used technique (For RQ1) Major Contribution (For RQ2)

Nguyên et al. [64] Harmony Local Differential Privacy (LDP) An efficient solution for smart device data using LDP
Yang et al. [65] MLDP Machine learning with Laplace

noise(noise added in training set)
A ML based differentially private aggregation method in IoT within
a fog computing architecture to reduce communication overhead
and release cloud burdens

Thomas et al. [66] - Laplace distribution and Sine poly-
onym

Utility maximization with adjustable privacy settings for calculat-
ing aggregations over private sensor data

Luo et al. [67] Salus, P3 Dynamic Noise by leveraging Laplace
Distribution

An input perturbation algorithm to preserve DP by providing strong
resilience against data reconstruction attacks and predictable utili-
ties
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an aggregation scheme named PPM-HDA have been pro-
posed in [42] which supports both multi-functional additive
(average, variance) and non-additive aggregation (min/max,
median, sigma-percentile, and histogram). It is claimed that
the proposed mechanism is more diverse and secure for cloud
servers, resisting differential attacks. Authors in [43] have
proposed a clustering scheme which introduces a privacy-
preserving clustering scheme for the Map-reduce framework
with improved accuracy by optimizing privacy budgets. To
achieve this, they have used K-means clustering and Laplace
noise for DP. Zhang et al. [51] have proposed a fog com-
puting based smart-home model and explored collision at-
tacks under personalized protection scenarios using DP. In
their proposed model, noise is generated under a Markov
process and the privacy protection is achieved using a mod-
ified Laplace distribution. Their experiment have resulted
in successful privacy enhancement while minimizing over-
all privacy budget and eliminating background knowledge
attack. Authors in [49] have identified and solved the is-
sues of V-MDAV algorithm and then, have proposed a pri-
vacy protection model, based on an aggregation algorithm,
named WSV-MDAV for wearable devices using DP. Accord-
ing to their experimental assessment, their technique have
improved privacy protection performance and reduced data
loss when compared to the traditional method. In [54], Ar-
ijit et al. have proposed a solution that can obfuscate any
sensitive data on-demand by satisfying differential privacy.
This work is of practical importance that have improved the
performance by minimizing the privacy breaching risk.

Reduction of computational overhead is also an active
research direction. In [50], authors have designed a Virtual
Reality (VR) interface which prevents user re-identification
as well as protects gender information by using DP. Their
experiment is effective in reducing overhead, resulting in
a low-cost solution for preserving users’ privacy while pre-
serving utility. In [53], Bozkir et al. have put forward a chunk
based privacy-preserving method for eye movement features
by considering the factors reduction of query sensitivity, com-
plexity and temporal correlations. Their transform coding
based solution is claimed to be more adaptive than various
existing low-complexity methods. Both these papers are re-
lated to eye movement data.

A summary of the used techniques and major contribu-
tions in the research papers under the physiological category
is presented in Table 6.

Real-time category:
In [57], authors have proposed a scheme for real-time

health data named PASTE where both the Fourier pertur-
bation algorithm and Laplace distribution are used. By per-
turbing Discrete Fourier Transform (DFT) of query answers,
the proposed FPA algorithm can answer multiple queries
over time-series data and ensure DP despite the presence
of a temporal correlation. On the other hand, the proposed

DLPA (Distributed Laplace perturbation Algorithm) can be
used for adding noise in a distributed way, a useful feature in
the absence of a trusted third party. By combining FPA and
DLPA, PASTE gets the accuracy benefits of the former and
the scalability of the latter. In [58], authors have proposed a
solution by combining differential privacy and cryptography
enabling a user to upload a stream of encrypted data to an
aggregator (can be untrusted) and the aggregator can calcu-
late the approximate aggregate statistics for a time interval
through the proposed algorithm. Combining these methods
have helped them achieving strong privacy guarantee.

Some researchers have used adaptive sampling and fil-
tering to preserve the privacy of real-time data to improve
utility and performance. For example, in [55], the proposed
approach enables to release time-series data under differen-
tial privacy by improving data accuracy (using Kalman fil-
ter [69]) and minimizing overall privacy cost (adaptive sam-
pling algorithm with PID control). Similarly, Fan et al. [62]
have proposed a framework to release real-time aggregate
statistics by satisfying differential privacy based on filtering
and adaptive sampling. Their adaptive methods improves the
utility and demonstrates excellent performance even under
small privacy cost.

In [63], authors have considered sliding window method-
ology using Laplace noise with sophisticated sampling and
dynamic privacy budget allocation techniques. This will im-
prove the scalability in terms of real time data publishing.
They have also proposed three benchmark methods named
FASTw, Uniform, and Sample. The solution is based on Kalman
filter based differential privacy to facilitate streaming data
sharing. It takes advantages of sigma points [56] for non-
linear systems. This method increases the accuracy of the
published data [55].

To overcome the temporal correlation problem in real-
time data, Yang et al. [59] have designed system that can au-
tomatically convert an existing differentially private stream-
ing data into one bounding Temporal Privacy Leakage (TPL).
On demand sensitive data obfuscation is also used for real-
time streaming data. Furthermore, authors in [60] have pro-
posed a framework named RescueDP which can monitor the
online aggregation of an infinite stream with privacy guar-
antee. Using adaptive and dynamic methods RescueDP out-
performs existing methods and preserves utility with proper
privacy guarantee.

Finally, the proposed algorithm by Gao et al. [61] can
publish histograms for differentially private dynamic data
based on Kullback-Leibler (KL) divergence [70]. Using this
methods have resulted in overall accuracy improvement and
utility enhancement.

A summary of the used techniques and major contribu-
tions in the research papers under the real-time category is
presented in Table 7.
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Others category: Thomas et al. [66] have proposed to select
the proper privacy settings to calculate an aggregation func-
tion over private sensor data. It can also help to maximize the
utility for different level of privacy. This makes the method
secure and reliable. In [65], authors have considered a fog
architecture instead of cloud architecture, where their pro-
posed multi-functional aggregation method reduces commu-
nication overheads as well as releases cloud burdens. Con-
sidering data reconstruction attacks, Luo et al. [67] proposed
an input perturbation algorithm Salus. This light-weight al-
gorithm provides strong resilience against data reconstruc-
tion attacks while preserving differential privacy. Later Salus
was extended in P3 framework for supporting privacy-preserved
Mobile Crowdsensing Services (MCS) applications [65]. Au-
thors in [64] have proposed a system that is practical, accu-
rate, and efficient for gathering and examine data from smart
device users under LDP.

If we review the key contributions of researchers to dif-
ferentially private health data publication discussed in this
article, we can demonstrate that the most important aspect
that have been considered by researchers are privacy and
utility enhancement. Due to the fact that differential privacy
involves a trade-off between privacy and utility, it is critical
to address privacy preservation in a way that does not jeop-
ardize the utility of data. Additionally, researchers have con-
centrated on improving the overall performance of their pro-
posed mechanism in order to outperform existing works. Im-
proving mechanism accuracy have also been a center of fo-
cus of the researchers. Additionally, the researchers have fo-
cused on overhead reduction and secure and reliable model
building. Although It has been noticed that researchers have
placed a greater emphasis on utility, privacy and performance
enhancement compared to the model’s security and reliabil-
ity.

A summary of the used techniques and major contribu-
tions in the research papers under the physiological category
is presented in Table 8.

5.3 RQ3: What types of datasets and programming
languages are being considered for evaluation and
implementation?

Validating any research proposal is a very important part of
the research. Researchers employ different types of meth-
ods to validate their proposed methods, systems, protocols,
or techniques. In a data-driven scenario, the quality of vali-
dation heavily depends on the quality of the dataset. In this
section, we have reviewed the types of dataset the researcher
have considered to evaluate their research proposal. We have
divided the dataset into two categories based on their avail-
ability, such as

1. Public datasets: Datasets that are publicly available.

2. Private datasets: Datasets that are self made or self col-
lected by the researcher. We have considered synthetic
datasets also a private datasets.

Physiological category: In the physiological category, a large
variation of datasets have been utilised. In terms of heart re-
lated dataset, Zhang et al. [41] have collected heart rates data
for three months from hospital patient. Nazir et al. [52] have
also used a private dataset containing 660 hours of ECG data
collected from 43 participants. Lin et al. [37] used a private
dataset from wearable sensors where they have collected
ECG data of 2.2 millions data points. Heart disease dataset
is also used in the research [40]. Mohammad et al. [39] have
generated a private dataset of heart rates from wearable de-
vices which were attached to a user for two weeks. On the
other hand Guan et al. [43] have utilised blood record dataset
in their research.The blood dataset contains individual infor-
mation of blood donation and the other dataset contains the
identity of the individuals and other general information.

In addition, many researchers have worked with activity
type data such as walking, running, sleeping. Kim et al. [44]
have prepared a dataset for daily step counts collected using
Gear S3 smartwatch between a limited time period and then
replicated 10, 100 & 1000 times. In another work, Kim et
al. [45] have utilised a private data set consisting of daily
cumulative step-count data of 247 days where each cumu-
lative step-count data corresponds a stream of length 600.
Kim et al. [48] have also used a public PAMAP2 physical
activity monitoring data collected from [71] which contains
a heart rate monitoring dataset that is collected using sen-
sors. To track physiological activity, smart-home data is also
used [72, 73]. Data are collected under 7 scenarios, includ-
ing sleeping, resting, dressing, eating, toilet use,hygiene and
communication.

Bozkir et al. [53] also used two public datasets: i) pub-
lic eye-tracking dataset collected with an Oculus VR device
and ii) pupil eye-tracking dataset from [74] where 20 par-
ticipants were tasked with reading three different document
types (a comic, newspaper, and textbook) in a VR environ-
ment. The utilisation of different datasets is summarised in
Table 9.

Real-time category: Real-time data publishing is also vali-
dated by using datasets. Liyue et al. [55] have utilised three
different sets of public datasets, namely Flu dataset [76],
Traffic dataset [77] and Unemployment dataset [78] and tried
to correlate them. The same Flu dataset has been harnessed
by Gao et al. [61] as well. Rastogi et al. [57] have utilised
different public datasets such as GPS, Traffic and Weight
where the last dataset contained daily weight data of about
300 users. Fan et al. [62] have utilised three real-world pub-
lic datasets which are Flu [76], Unemployment [78] and
Traffic [79]. Wang et al. [60] experimented with two real-
world public datasets, Taxi Trajectory Prediction [80] and
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Table 9: Different types of datasets

Data Type Availability Physiological Real-time Others

Private [37], [39], [41], [52] - -Heart-related Public [40], [54] - -
Blood dataset Public [75] - -

Private [44], [45] - -Activity (Step Count,
Running) Public [48] - -
Eye tracking Public [53] - -

Wearable sensors Private [38], [37], [46] - -
Smart home Public [51] [56] -
GPS, Traffic, Weight Public - [57], [60] -
Flu, Traffic and
Unemployment Public - [62], [55], [61] -

Microsoft Band and
Community Health Private - - [67]

Mix

Mobile health Public - - [65]

World Cup [81] and one synthetic Spatio-temporal dataset
called Brinkhoff [82]. Utilised datasets for the real-time cat-
egory are summarized in Table 9.

Others category: Yang et al. [65] have used two real-world
public datasets, namely Reference Energy Disaggregation
Dataset and Mobile Health Dataset which consists of 1 mil-
lion records from 24 different sensor signals. Luo et al. [67]
also have used two real-world private case studies. The first
one was a community health survey consisting of the heart
rate of 20 students in order to find the average heart rate and
heart rate distribution. The second dataset was a collabora-
tive emotion classification dataset in which Microsoft Band
was used to collect the heart rate, GSR, and skin temperature
from users to build collaborative classification models. We
have summarised the used datasets in the others category in
Table 9.

Programming languages: In addition to dataset, we have
also reviewed what programming languages have been used
to implement differential privacy. In our survey, we have
found that Java. MATLAB, and Python are frequently used
by researchers for implementing their algorithms. Fig. 10
shows how different programming languages are used for
implementation. However, recently python has emerged as
the most used programming language in terms of open source
differential privacy implementation [83]. Google has also
open sourced their differential privacy library [84], which
is implemented using C++ language.

5.4 RQ4: What are the privacy criteria used in data
publishing?

Different researchers have considered different privacy cri-
teria for preserving privacy of data. Most common criteria
is ε-differential privacy(ε-DP) where ε is the privacy bud-
get associated with any data release. Other than this, for

50%40%

10%

Java

Matlab

Python

Fig. 10: Languages used for perturbation schemes

real-time data, Shi et al [58] have provided a methodology
that depends on (ε , δ )-differential privacy((ε , δ )-DP). At the
same time some have considered new privacy criterion such
as w-event and w-day ε-differential privacy [56, 60, 63]. In
these mechanisms, privacy budget is calculated for w con-
secutive events. Liyue et al. [55] have solved the privacy
preserving problem a bit differently. Their proposed solu-
tion satisfies α/T -differential privacy, where α is the pri-
vacy budget and T is the length of the entire series. Wang et
al. [56] have collected health data for w different days and
preserved privacy for those consecutive days. We have pre-
sented a summary of different privacy criteria in Table 10.

5.5 RQ5: What are the limitations of the proposed
solutions?

Researchers have conducted several experiments for evalu-
ating their proposed methodology. However, these experi-
ments have several limitations. The limitations of existing
methodologies need to be addressed for a suitable, and more
practical privacy preserved framework.
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Table 10: Different privacy criterion adopted by researchers

Category Privacy Criterion List of Papers

Physiological ε-DP

[40], [39], [51], [49],
[42], [43], [44], [45],
[48], [46], [47], [52],
[53], [54]

w-day ε-DP [41]

Real-time

ε-DP [57], [59], [61]
(ε , δ )-DP [58]
w-event ε-DP [56], [60], [63]
(α/T )-DP [55]
α-DP [62]

Others ε-DP [64], [65]

Physiological category: For physiological data, the proposed
DP solutions mainly suffer from scalability issues [52]. Many
of the proposed differential privacy models are strict to static
data publishing and confined to single dimension [49]. More-
over, many of the privacy protection schemes are just theo-
retical in nature [38, 50]. Some models [51] suffer from per-
formance degradation with an increasing number of cloud
resources. The method in [42] introduced relative errors with
a heavy computational burden on cloud servers. Finally, the
algorithm proposed by Mohammad et al. [39] has a higher
complexity than existing works (e.g. Li’s [85]). In addition,
the proposed methods also vulnerable to information leak-
age in the presence of a strong adversarial model. It can
cause the adversary gain more knowledge and result in pri-
vacy leakage.

Real-time category: For real-time data, the proposed DP
solutions mainly suffer from different types of errors such
as reconstruction & perturbation errors [57], relative errors
[56, 62] and absolute error [61] have been observed. To de-
tail, an algorithm’s accuracy is found to be affected by fail-
ures occurred when the algorithm is executing to answer a
query [57]. For non-linear synthetic datasets, the proposed
method has a higher relative error due to a model misfit com-
pared to the existing methods [62]. One of the most common
problem is the difficulty choosing an optimal value for ep-
silon (ε) to gain any advantage. For example, for a large
budget (ε > 1), there is no substantial advantages [55] and
even some proposed method under perform with a higher ep-
silon value [56]. Similarly, in [61], it has been found that in-
creasing in epsilon value has weakened the algorithm. Thus,
choosing an appropriate value for threshold is a challeng-
ing task. Besides,the absolute error in the GGA algorithms
is smaller than other algorithms only when the query range
is greater than 40. Authors in [58], have noted a number of
issues such as dynamic join and aggregation problem. Also,
when a node failure occurs, some of the participants become
unable to provide their encrypted data. Another limitation is

lack of support for graceful degradation during node fail-
ures.

Others category: As for the others category, communica-
tion overheads with estimation errors have been reported as
the major shortcoming [64]. In [66], local and global errors
have been highlighted, compared to the Laplace mechanism,
because of the usage of sine polyonym. System and compu-
tational overheads have incurred due to usage of Salus in
[67]. In addition, computational overhead and data recon-
struction error have been experienced. Maintaining a bal-
anced noise and sensitivity have also been an obstacle in the
way of preserving privacy as large training sets contain too
much noise which results in the loss of utility for the pro-
posed model [65].

Summary: Different types of limitations found in different
approaches are summarized in Table 11.

6 Discussion

Differential privacy has paved the way for a more flexible
solution in privacy preservation. It has overcome the limi-
tations of existing methodologies to some extent. However,
the basic differentially private perturbation method alone can-
not protect data from getting exposed. Several researchers
have identified the major concerns regarding challenges of
publishing such data by using basic mechanisms of differen-
tial privacy [86, 87]. Therefore, researchers have proposed to
combine different methods with differential privacy in order
to provide an effective privacy protection mechanism. They
have tried to propose their mechanisms in such a way that
both the privacy and data utilization are well balanced.

Throughout the paper we have explored, through our re-
search questions, the advantages of applying differential pri-
vacy over other techniques, challenges faced by basic mech-
anisms and how different researchers have extended the ba-
sic differential privacy to meet the requirements of wear-
able data publishing. In this section, we have summarised
our findings from different perspectives.

6.1 Research Question Perspective

At first, we present the following summary from the per-
spective of our research questions.

– Application domains: Researchers have considered dif-
ferent application domains for their proposed mecha-
nisms. We have illustrated the number of published pa-
pers for different domains in Fig. 11a. As evident from
the figure, most of the researches have explored areas
such as BSNs, wearable devices, data mining applica-
tions and so on.



16

Table 11: Limitations in the current research works

Limitations Type Physiological Real-time Others

Error

Relative error - [62], [42] -
Reconstruction error - [57] -
Perturbation error - [57] -
Absolute error - [61] -
Error increased due to
larger group - [63] -

Estimation error - - [64]
Data reconstruction error - - [67]

Overhead
Communication Overhead - - [64]
Computational overhead [42] - [67]
System Overhead - - [67]

Appropriate value
for epsilon - [38]

[55], [56],
[61], [62], [63] [65]

Algorithm
Complexity [39] - -
Unable to detect
tempered data [47] - -

Scalability [52] - -
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Fig. 11: Number of research papers in different application domains and data management

– Application scheme: Versatile application schemes have
been considered by researchers while preserving data
privacy. Some researchers have considered data publish-
ing scheme whereas some of them have proposed aggre-
gation or data release schemes. Fig. 11b visualizes the
proposed schemes. From the figure, for the physiologi-
cal category, the highest number of papers (8) are for the
data collection scheme. On the other hand, the aggrega-
tion scheme has the highest number of papers, with 5
and 2, for the real-time and others category respectively.

– Privacy criteria: In case of privacy criteria, researchers
have mostly considered ε-DP. Other than this, they have
also considered (ε , δ )-DP, α/T -DP. Some of them even
considered w-event DP where data is collected for con-
secutive w-events. Fig. 12 illustrates privacy criteria of
proposed schemes in each category: physiological, real-
time and others.

– Programming language used: For implementing dif-
ferential privacy algorithms, different programming lan-

guages such as Java, Python, Matlab have been consid-
ered. We have presented a detailed summary of program-
ming languages used in developing the mechanisms in
Fig. 13.
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– Considered datasets for developing mechanisms: Af-
ter developing the mechanism the most important thing
to do is to evaluate the mechanism. For this purpose re-
searchers have used both the private and public datasets.
We have provided a summary in Fig. 14 which visualizes
datasets used by different researchers.

6.2 Data Perspective

Next, we have summarised all works from the perspective of
data: physiological, real-time and others.

– Physiological data: With the enormous advancement in
sensor technology and the physiological data generated
from them, the privacy issues with physiological data is
a concerned topic. These sensors generate data which
can be dynamically updated or can be temporally corre-
lated. Although, encryption and k-anonymity are largely
adopted solutions for preserving privacy, however, they
can be more computationally complex and less practical.
Conversely, differential privacy based solutions are more
light-weight, more practical and thus have less commu-
nication overhead.
18 papers have been selected which have met our se-
lection criteria for the physiological data category. In
these 18 papers, researchers have showed various meth-
ods for preserving privacy in a better way. Among them,
different application behavior such as data collecting,
data releasing, aggregation studies for making decisions
are majorly noticed. These frameworks have covered ar-
eas such as BSNs, wearable devices, smart watches and
even in head mounted displays. We have also noticed re-
searchers used Laplace perturbation method most. Which
means, numerical queries have been majorly covered.
Throughout the method, mostly they have followed ε-
DP. Other than this, FPA, Gaussian mechanism and w-
event privacy have also been applied. For conducting ex-
periments, in most cases, they have developed their algo-
rithm in Java and considered their self generated dataset.
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Fig. 13: Languages used for developing mechanisms

Fig. 15 makes a summary what we have found among
the selected 18 papers.
Researchers have focused on various aspects of physi-
ological data. They have focused mainly on effective-
ness of publishing data, how efficiently data can be col-
lected, reducing calculation and communication over-
head, maintaining availability and reliability so that pro-
posed solutions provide better accuracy as well as main-
tain the balance between utility and privacy. Differen-
tial privacy based schemes such as, MHDA⊕ [42], Re-
DPoctor [40], EDPDCS [43], WSV-MDAV [49], APDP
[51] outperforms other existing methods. PMHA-DP [47]
has less communication overhead than existing solutions.
APDP gives more privacy protection in comparison with
UDP and NPDP. It also has best performance in terms on
attack resistance. The proposed method from [53] is ca-
pable of handling correlation in data.

– Real-time data: Differential privacy has also proven it-
self as a suitable solution in case of preserving privacy
of real-time data. We have conducted our review over
real-time healthcare sectors as real-time data also gen-
erates continuous data. We have found 9 papers satisfy-
ing our selection criteria, where majority of researchers
have focused in aggregation studies by which data an-
alytics can take important decisions. Other than aggre-
gation, data releasing and publications are barely cov-
ered. These frameworks have covered areas such as data
mining applications, sensors and dynamic applications
as well.
From our review, we can conclude that the most of the
researchers have considered Laplace mechanism as a mean
of preserving privacy. Researchers have maintained ε-
DP for their given mechanisms. Besides, newly adopted
privacy criteria such as w-event DP, α/T -DP has also
been observed. In general, developing mechanism in Java
and conducting experiment with public dataset is pre-
ferred by the researchers.
For real-time health data, differential privacy based mech-
anisms outperform existing methods. Researchers have
found better results by using differential privacy as a
means of privacy protection. Rastogi et al. [57], Liyue
et al. [55], and Fan et al. [62] have proposed methods
that can achieve better accuracy and utility. The proposal
from Rastogi et al. [57], PASTE, can also perform excel-
lently under small privacy cost. RescueDP [60], an ag-
gregate monitoring scheme, outperforms existing solu-
tions as well as improves utility, ensures strong privacy
guarantee. Proposed solutions of Wang et al. [56] using
Laplace noise with unscented Kalman Filter and Kellaris
et al. [63] using Laplace noise with sophisticated sam-
pling and dynamic privacy budget allocation technique
are more practical.
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Fig. 14: Type of datasets used for evaluation
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Laplce Mechanism
Most used purturbation
technique.

epsilon-DP
Most Used Privacy
Criterion.

Matlab
Mostly used for
mechanism development.

Private Dataset
Researchers have
mostly consedered for
conducting experiment.

Papers Published
17 of them proposed
new mechanism and
the rest one proposed
an algorithm.

8
Applied Area
Including 5 papers on
BSNs, 4 papers on
wearables and 2 each on
smart watches and
headmounted displays and
smart healthcare service.

42%

Frameworks for Data Collection
16% frameworks on data releasing,
21% are on aggregative statistics.

Physio-
logical

Fig. 15: Summary of the reviewed works in the physiologi-
cal category

Other mechanisms such as UKFDP [56], FPAk [57], Con-
TPL [59] and FAST [62] outperform the existing state-
of-the-art methods and provide more practical solutions
in terms of accuracy and privacy. Gao et al. [61] have
provided a solution that can reduce noise errors and out-
perform existing solutions.
In Fig. 16 we have represented a summary for real-time
healthcare domain.

– Others: The papers in the others category generate sim-
ilar patterns like wearable or real-time health data. Dif-
ferential privacy has also been found beneficial for ap-
plying privacy-preserving mechanisms over these data.
We have reviewed 4 papers which have satisfied our se-
lection criteria.
The frameworks proposed in these papers cover a wide
range of application areas such as smart devices, IoT
devices and MCS application. Among all the mecha-
nisms, Laplace mechanism has been mostly adopted by
researchers with ε-DP being the most widely used pri-
vacy criterion. But none of the researchers has mentioned
anything about the platform/language they have used for

89%

44% 80%

78%

9

Laplce Mechanism
Most used purturbation
technique.

epsilon-DP
Most Used Privacy
Criterion.

Java
Mostly used for
mechanism development.

Public Dataset
Researchers have
mostly consedered for
conducting experiment.

Papers Published
7 of them proposed
new framework and
the rest of them
proposed algorithm.

4
Applied Area
Including 4 papers on Data
mining application, 2 each
on sensors and Dynamic
data publishing application.

56%

Frameworks for Aggregation
33% frameworks on data releasing,
11% are on data publish.

Real-time89%

44%

89%

44%

78%

9

Fig. 16: Summary of the reviewed works in real-time cate-
gory

developing either the framework or algorithm. The re-
searchers have conducted various experiments in order
to prove the efficiency of their proposed solution and
they have used both the public and private datasets equally
for their experiments. Among the solutions, Harmony
[64] and Salus [67] are more practical, provide accurate
and efficient results, reduce errors and maintain a stable
balance between privacy and utility by trying to improv-
ing accuracy. With the help of fog computing architec-
ture, MLDP [65] can aggregate by reducing communi-
cation overhead and [64] can reduce both the computa-
tional and communication overhead. Researchers of [67]
have claimed that they achieved enhancement in data
protection by using differential privacy. In Fig. 17, we
have represented a summary for the others category.

7 Current Challenges and Future Direction

Table 12 provides a summary of the major contribution in
terms of wearable data publishing under differential privacy.
We have observed that researchers have focused more on
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Table 12: Major contributed area by research communities

Contribution
Type Physiological Real-time Others

Privacy
Enhancement

[40], [37], [49],
[51], [53], [54] [60] [65], [67]

Utility
Enhancement

[51], [52], [45],
[46]

[56], [60],
[61], [62]

[64], [67],
[66]

Improved
Accuracy

[38], [39], [43],
[45], [46], [52] [61] [64], [65]

Performance
Enhancement [41], [48], [43]

[55], [60],
[63], [56],
[63], [57],
[62]

[64], [67]

Reduction of
Overhead

[47], [42], [38],
[50] [55] [64], [65]

Secure and
Reliable [42], [51] [56] [67]

utility and performance enhancement compared to security
and reliability of the model.

7.1 Limitation of the Exiting Studies

We have compiled the limitations of the current approaches
and future research directions in the following section.

– Choosing appropriate value for ε: One of the major
concerns in differential privacy is to choose an appropri-
ate value for privacy budget denoted with ε . The value
of ε determines the strictness and strength of privacy. A
smaller value of ε provides stronger privacy, however,
with that the data losses its utility and vice versa. There-
fore, finding a optimal value for ε is a great challenge
for any DP-based technique.There is very limited works
have been done on finding the optimal value.

– Correlation of data: Real-world datasets often contain
strong correlation among the data which can cause dis-
closure of an individual’s information. For example, such

correlation between data can enable an adversary to find
out sensitive information about different individuals. The
adversary can combine obfuscated data with existing cor-
relation and derive sensitive information about individ-
uals. Researchers have proposed model based approach
[88], [89] and transformation based approach [90], [57]
for solving this issue of data correlation. However, these
approaches did not prove to be an optimal solution and
even sometimes can distort the data to a great extent
[91]. Therefore, overcoming the obstacles of data cor-
relation is a big challenge for differential privacy.

– Sensitivity: The principal purpose of differential privacy
is to maintain the indistinguishability between the pres-
ence or absence of any individual in the dataset. Sensitiv-
ity is the maximum difference between two neighboring
dataset (datasets differing in one row). Noise is added to
cover the difference and maintain the same identity for
both the databases. To improve sensitivity more noise
needs to be added. However, large value of noise can
distort the data and this can result in unwanted utility
loss. These trade-off between privacy and utility needs
to be maintained. Some technologies are using diversity
sensitivity to overcome this issue [92]. However, it is
still a challenge to choose an optimal value of sensitivity
and preserve both privacy and utility simultaneously to
maintain the trade-off.

– Vulnerability of basic mechanisms: Basic mechanisms
of differential privacy face various challenges when re-
searchers tried to implement them. In [93], authors have
shown Laplace Noise is vulnerable to tracker attack. Af-
ter querying few times, results (after adding Laplace noise
with true value) have either no privacy or no utility. In
addition, [67] have shown Laplace mechanism is vul-
nerable to Data Reconstruction attack.

Finally, we have analyzed the papers published until April
31, 2020. Between May to the acceptance time, new papers
may have been published in different scientific journals. In
addition, we have not considered papers that are not focused
on wearable devices rather used traditional IoT devices or
MIoT devices.

7.2 Future Direction

In this section, we discuss future research direction in dif-
ferential privacy.

Adaptive Privacy Budgeting for real-time data: Selecting
an appropriate ε value is a crucial task in order to protect the
privacy of the individuals. Unlike static data, we do not have
prior knowledge of the data point values for the real-time
streaming data. Thus, distributing budget adaptively (rather
than statically) could be an excellent way to preserve bal-
ance between privacy and utility. Kellaris et al’s [63] re-
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search work has established the superiority of adaptive bud-
get allocation over static budget allocation for streaming data.

Integrating Blockchain with Differential Privacy: In the
past few years, blockchain has emerged as a key technol-
ogy that establishes trust among trust-less parties in a dis-
tributed and decentralized manner. It has the potential to
transform the way in which we share information [94] and
guarantees secure and immutable data storage. Along with
its association with the bitcoin concept, the blockchain has
been widely adopted in various fields, including healthcare,
finances, logistics, IoT [95–98], and even wearable devices
and smart healthcare [99].However, privacy is a big concern
for blockchain, specially for public blockchain. Several re-
searchers have used differential privacy to overcome privacy
issues in blockchain systems [100].

In addition, blockchain is also used to build trust on the
privacy budget by providing a distributed and transparent
system. Authors from [101, 102] have proposed a blockchain
based approach for tracking and saving differential privacy
costs.

Differential Privacy in Big data and Artificial Intelligence
(AI): In today’s world big data and AI have become one of
the major driving forces. In recent years, big data and artifi-
cial intelligence (AI) have gotten a lot of attention and have
become valuable resources. Big data refers to the produc-
tion of a massive amount of data from various sources, in-
cluding sensors, wearable devices, IoT devices, social media
platforms, and many more. Due to its massive scale, privacy
and security are a major concern regarding this. Researchers
are using differential privacy for big data publishing in dif-
ferent domains (e.g., transport, health)[103]. Authors from
[104] have shown that integrating differential privacy have
resulted in resolving many of the privacy issues of big data
publishing.

8 Conclusion

Due to the rapid growth of wearable technologies, there is
hardly any area which is not affected by it. Therefore, Health
sectors are benefited by adapting wearable technologies. How-
ever, privacy is always a big concern for health data. Differ-
ential privacy has emerged as one of the most popular pri-
vacy preserving mechanisms in recent times. The purpose
of this article is to understand the trends and limitations of
differential privacy on wearable data.

Even though the existing privacy-preserving mechanisms
are applicable in wearable technologies, there is still a gap,
which necessitates additional effort in designing and devel-
oping a more secure privacy preserving mechanism to hinder
PII information. Though the proposed schemes from [42, 64,
67] have outperformed existing state-of-the-art solutions by

providing a more efficient solution and have provided bet-
ter data protection still these schemes suffer from overhead
problems such as computational, communications, and even
in-system overheads.

There are still a number of issues faced by differential
privacy such as fine-tuning ε , its privacy budget, to balance
between privacy and usability as well as other issues such
as dimentionality and temporal correlation also need to be
addressed. There are some open research problems such as
data reconstruction errors [57, 67], perturbation errors [57],
absolute errors [61] and relative errors [42, 56, 62]. It is im-
portant to find solutions that can minimize an error rate sig-
nificantly so that data utilization can be increased. In addi-
tion, we have also observed that there are only limited num-
ber of works have been done on real-time health data pub-
lishing.Finally, privacy mechanisms need to be more adap-
tive where users can fine-tune their privacy according to
their needs.
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Appendix A: Appendix: Paper Search and Review

Google Scholar records identified = 14,435 
IEEE records identified = 93
Springer records identified = 1,210
ACM DL records identified = 2,359
ScienceDirect records identified = 666
Jamia records identified = 39 
PubMed records identified = 17

                            (n = 18,819)

Additional records identified through
reference and citation

 list of selected articles = 13

Records after duplicates removed
(n = 16.031)

Full-text articles assessed for
eligibility 
(n = 75)

Full-text articles excluded by
applying Quality Assesment

Criteria
(n' = 44)

Studies included in review
(n = 31)

Records screened after applying
inclusion criteria 

(n = 62)

Records excluded by applying
exclusion criteria
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Fig. 18: PRISMA flow diagram
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Table 13: Retrieved papers using logical AND & OR

Number of retrieved papers
Keywords (using logical AND & OR) Google

Scholar IEEE ACM
DL

Science
Direct Springer JAMIA PubMed

(Wearable OR "privacy preserving") AND
("data publishing" AND "differential privacy") 3170 45 157 132 288 0 4

("Temporal data" OR "wearable data") AND
("publish using" OR "publish under") AND
("differential privacy")

0 0 0 27 2 0 0

(Wearable OR Medical OR Health) AND
"data privacy" AND (using OR under) AND
"differential privacy"

5920 0 311 188 472 14 3

("Wearable" OR "Wearable devices generated") AND
"data privacy" AND (using OR under) AND
"differential privacy"

901 0 63 54 66 0 0

((Review OR Survey OR SLR OR “Literature Review”) on AND
("Wearable Data" OR "Wearable devices data")) AND
(("Publishing using" OR "data publishing") AND
("differential privacy")

4 0 177 1 0 0 0

(Wearable OR "privacy preserving") AND
(("data publishing" OR "publishing using") AND
"differential privacy")

3170 45 157 209 289 0 10

(Wearable data) AND (publish under OR publishing using) AND
"differential privacy" 1270 3 1494 55 93 25 0

Total retrieved: 14435 93 2359 666 1210 39 17
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