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31 Introdu
tion
In re
ent years linear optimization over symmetri
 
ones, or self-s
aled programming,has be
ome the a

epted standard framework to treat linear, quadrati
 and semide�niteprogramming in a uni�ed framework. This theory originated in the work of Nesterov{Todd [29, 30℄, G�uler [9, 10℄, and Faybusovi
h [7, 8℄.A powerful and popular family of methods for solving su
h problems numeri
ally 
on-sists of primal-dual interior point methods (IPMs) based on the Nesterov{Todd (NT)sear
h dire
tion [29, 30℄. As we will show below, the NT dire
tion is de�ned in terms of apseudo Newton system that arises from the Karush{Kuhn{Tu
ker (KKT) 
onditions of aperturbed problem. At �rst sight, this derivation seems like an ad-ho
 �x to a diÆ
ultythat o

urs be
ause of a mismat
h in the dimensions of the preimage and image spa
es ofthese equations. Other, more straightforward approa
hes exist to over
ome this problem,making the NT approa
h seem unne
essarily 
ompli
ated. However, a more in-depth lookreveals that the NT framework has 
ompelling properties that further motivate it. Mu
hof the intrinsi
 beauty of this approa
h is due to the fa
t that the so-
alled s
aling point(see explanations below) relates it to the group a
tion on symmetri
 
ones, whi
h area parti
ular type of homogeneous spa
es. The NT approa
h is designed to be invariantunder this group a
tion whi
h allows for the 
onstru
tion of algorithms that are invari-ant under ex
hanging an input problem with its dual (primal-dual symmetry) and under
oordinate 
hange (s
ale-invarian
e). Su
h methods are una�e
ted by spe
ial types of ill-
onditioning asso
iated with representing the problem geometry in a 
oordinate system.In this paper we explore another interesting property of the NT approa
h: its relation toso-
alled weighted analyti
 
enters and a transformation that is sometimes 
alled the targetmap. This 
onstru
tion was �rst analyzed in the linear programming (LP) literature byKojima{Misuno{Yoshise [22℄ who proved that the target map is a di�eomorphism betweenthe primal-dual stri
tly feasible domain and the stri
tly positive orthant, and that thismap re
ti�es the primal-dual 
entral path, an obje
t that plays an important role inguiding interior point methods to an optimal solution. The Kojima 
onstru
tion has beenextremely useful in the LP literature, and many attempts have been made at generalizingit to other 
onvex optimization problems, see further details below. The main result of thisarti
le shows that the NT-dire
tion arises as the Newton dire
tion de�ned in terms of ageneralization of this 
onstru
tion to arbitrary symmetri
 
ones, see Theorem 3.7, Se
tion3. Apart from linking the NT and target frameworks, Theorem 3.7 has the immediateimpli
ation that the NT pro
ess 
onverges at a quadrati
 rate in a neighborhood of itsattra
tor, and it 
ontributes new te
hniques to the IPM theory by employing Magnusseries and orthogonal 
ows as essential analyti
 tools in its proof. As a prerequisite forthese arguments one needs a thorough variational understanding of the NT pro
ess: if thepro
ess is started at two nearby points, how far will the iterates deviate from one anotherafter a �xed number of iterations, and how will this a�e
t the dire
tion from where the�xed point is approa
hed? A wealth of related questions are answered in Se
tion 2 whi
hmakes an independent 
ontribution to the understanding of the NT pro
ess.



4 In our exposition we 
onsider the following pair of 
onvex programs in 
oni
 duality(P ) inf hx; s0i (D) inf hx0; si (1.1)x 2 �L+ x0� \ �K s 2 �L? + s0� \ �K℄:Here E is a �nite dimensional Eu
lidean spa
e equipped with an inner produ
t h�; �i, L isa linear subspa
e of E, and L? is its orthogonal 
omplement. K is a 
onvex 
one whi
his open and has a pointed 
losure �K, that is, �K does not 
ontain any whole lines. Thepoints x0 2 K and s0 2 K℄ are �xed. The dual 
oneK℄ := fs 2 E : hx; si > 0; 8x 2 Kg (1.2)is also 
onvex, open and with pointed 
losure �K℄. Note that the de�nition of K℄ dependson the 
hoi
e of the inner produ
t h�; �i on E.In the problems we 
onsider, K belongs to a spe
ial family of 
ones whi
h we shall nowde�ne: The automorphism group of an open 
onvex 
one K is the set of nonsingular linearmaps A : E ! E that map K onto K, that is, Aut(K) := �A 2 Gl(E) : A(K) = K	.The 
one K is 
alled homogeneous if Aut(K) a
ts transitively on K, that is, given arbi-trary points x; y 2 K, there exists a map A 2 Aut(K) su
h that Ax = y. K is 
alledself-dual when the inner produ
t h�; �i on E 
an be 
hosen so that K℄ = K, see (1.2). Kis 
alled a symmetri
 
one if it is both homogeneous and self-dual. In the sequel, we willalways assume that E is endowed with an inner produ
t under whi
h K = K℄. Sym-metri
 
ones arise in Jordan algebra theory as follows: a Eu
lidean Jordan algebra is a�nite-dimensional real 
ommutative algebra E endowed with a weakly asso
iative multi-pli
ation with identity element e and an asso
iative inner produ
t. The set of invertiblesquares of a Eu
lidean Jordan algebra is a symmetri
 
one, and every symmetri
 
one
an be represented in this form. Eu
lidean Jordan algebras and, by extension, symmetri

ones have been algebrai
ally 
lassi�ed, see K�o
her [21℄ and the referen
es therein. Ev-ery symmetri
 
one has a unique de
omposition into a dire
t sum of elementary buildingblo
ks, so-
alled irredu
ible symmetri
 
ones, of whi
h there exist only �ve types. Fora 
omplete a

ount of this theory, see Faraut{Kor�anyi [6℄. Three examples of symmet-ri
 
ones are of parti
ular interest to the optimization 
ommunity: the positive orthantK = Rn++ , whi
h is in fa
t the dire
t sum of n irredu
ible symmetri
 
ones 
onsisting ofopen half-lines, the 
one K = Sn�n(R)++ of n � n symmetri
 positive de�nite matri
eswith real 
oeÆ
ients, and the Lorentz 
one K = �� �x � 2 Rn+1 : � > kxk2	, whi
h is also
alled the se
ond-order 
one. The 
oni
 optimization problems asso
iated with these 
onesare linear programming, semide�nite programming and se
ond-order 
one programmingrespe
tively. Considering more general symmetri
 
ones, one 
an treat linear optimiza-tion problems with mixed linear, semide�nite and 
onvex quadrati
 
onstraints in a singleuni�ed framework, see e.g. Todd{Toh{T�ut�un
�u [36℄, Alizadeh{S
hmieta [2℄ or Sturm [35℄.In [29℄, Nesterov and Todd de�ned the 
on
ept of self-s
aled barriers, a spe
ial 
lass ofself-
on
ordant barrier fun
tions whose Hessians form a transitive subset of the automor-phism group of their domain of de�nition. Self-s
aled barriers are well understood: G�uler[9℄ and Nesterov{Todd [29℄ showed that K is the domain of de�nition of a self-s
aledbarrier if and only if K is a symmetri
 
one. Re
ently, Hauser [15, 13, 14℄, S
hmieta



5[33℄, G�uler [11℄, Hauser{G�uler [16℄ and Hauser{Lim [17℄ developed a 
lassi�
ation the-ory showing that all self-s
aled barriers de�ned on a symmetri
 
one with irredu
iblede
omposition K = K1 � � � � �Kp are of the formF : x1 � � � � � xp 7! 
0 + pXi=1 
i lnZK℄i e�hxi;sii dsi; (1.3)where 
i � 1 (i = 1; : : : ; p). The dual barrier is de�ned on K℄ as the Legendre{Fen
heltransform F℄ : s 7! maxf�hx; si � F (x) : x 2 Kg. Under the self-dual embeddingK℄ ,! K it is then the 
ase that F℄(s) = F (x) + 
, where 
 is a 
onstant. See [16℄ for a
omplete survey of self-s
aled barriers and symmetri
 
ones.Using the barrier fun
tion F , most primal-dual interior point methods atta
k a sequen
eof un
onstrained subproblems(P�) inf �F (x) + hx; s0i (D�) inf �F℄(s) + hx0; si (1.4)x 2 �L + x0� \K s 2 �L? + s0� \K℄;for a monotone de
reasing sequen
e of barrier parameter values (�k)N ! 0+. Under theabove made assumptions, (P�) and (D�) have unique optimal solutions for all � > 0.The KKT 
onditions are ne
essary and suÆ
ient optimality 
onditions for these stri
tly
onvex problems, be
ause the linear independen
e 
onstraint quali�
ation holds, see e.g.Borwein{Lewis [3℄. The KKT 
onditions for (P�) are �F 0(x) + s0 + z = 0, z 2 L? andx 2 L + x0. Moreover, F (x) <1 implies that x 2 K. Setting s = z + s0, we gets = ��F 0(x); s 2 L? + s0; x 2 L + x0; (1.5)and it 
an be shown that ��F 0(x) 2 K℄ and ��F 0℄(��F 0(x)) = x, see [29℄. Therefore,the �rst equation in (1.5) 
an be reformulated as x = ��F 0℄(s) and implies that s 2 K℄.This shows that the KKT 
onditions for (P�) and (D�) are equivalent, a property that isreferred to as primal-dual symmetry. Sin
e both problems are stri
tly 
onvex, the solutionpair (x�; s�) 2 K �K℄ is unique. The path � 7! (x�; s�) is 
alled the primal-dual 
entralpath of (1.1). The paradigm of interior point methods is to follow the 
entral path to theoptimal solution of (1.1) that lies at its endpoint.In the LP 
ase (1.5) takes the forms = �x�1; Ax = b; s = 
� ATy; (1.6)where A is a matrix with nullspa
e L, b and 
 are ve
tors, (x; s; y) are the ve
tors ofunknowns, x�1 is the 
omponentwise inverse of x, and s > 0, x > 0 
omponentwise.Writing X = diag(x) for the diagonal matrix with Xii = xi, and e = (1; : : : ; 1)T for theve
tor of ones, the �rst equation in (1.6) 
an be rewritten as 
(x; s) = �e, where 
(x; s) =Xs. The de�nition of 
 is primal-dual symmetri
, be
ause Xs = Sx for S = diag(s). Thelinearization of 
(x; s) = �e yields the Newton system Sdx +Xds = �e� Xs, Adx = 0,ds = �ATdy, or, expressed in terms of 
,��x
(x; s)[dx℄ + ��s
(x; s)[ds℄ = �e� 
(x; s); ds 2 L?; dx 2 L: (1.7)



6 In the main result of this arti
le we show that the operator �elds X and S and, byextension, the target map 
 
an be generalized so that that the NT dire
tion is de�ned asthe target dire
tion obtained as the solution of the Newton equation (1.7), see Theorem 3.7.This result yields a new motivation for the NT dire
tion as a spe
ial 
ase of a more generalfamily of sear
h dire
tions with 
ompelling properties des
ribed in the next paragraph.For a 
lassi
al motivation of the NT approa
h see the last part of this introdu
tion.In the 
ase of linear programming (1.7) de�nes the standard sear
h dire
tion forprimal-dual IPMs. Kojima{Misuno{Yoshise [22℄ and Kojima{Megiddo{Noma{Yoshise[23℄ showed that 
 is a di�eomorphism that transforms the primal-dual stri
tly feasibledomainF(PD) := fx 2 Rn : x > 0; Ax = bg � fs 2 Rn : s > 0; 9y 2 Rm s.t. ATy + s = 
ginto the positive orthant Rn++ := fv 2 Rn : v > 0g. The primal-dual 
entral path isre
ti�ed in the pro
ess, be
ause 
(x�; s�) = �e. This makes it possible to monitor theprogress of IPMs in the image spa
e of 
, whi
h is often 
alled V -spa
e. The paradigmof following the 
entral path 
�1�f�e : � > 0g� { also 
alled the set of analyti
 
en-ters { 
an therefore be relaxed and repla
ed by the new paradigm of following any ray
�1(f�v : � > 0g) where v 2 Rn++ . Points along su
h rays are 
alled weighted analyti

enters. It is possible to follow su
h rays by 
omputing sear
h dire
tions based on theNewton equation ��x
(x; s)[dx℄+ ��s
(x; s)[ds℄ = �v�
(x; s). The V -spa
e approa
h basedon weighted analyti
 
enters o�ers additional 
exibility in the design of algorithms and
on
eptual simpli
ity in their analysis. This framework has therefore attra
ted a lot ofinterest in the IPM 
ommunity. Several 
ompeting notions of V -spa
e have been proposedboth for LP and SDP, notions that are 
on
eptually related but not equivalent: Jansen{Roos{Terlaky{Vial [20℄ and Roos{Terlaky{Vial [32℄ used the transformation 
 12 de�nedby the 
omponentwise square-root of the 
 de�ned above. They 
alled 
 12 the target mapand developed a theory of target-following algorithms for linear programming. By slightabuse of language we will 
all any V -spa
e transformation a target map in the sequel.Monteiro{Pang [27℄, Sturm{Zhang [34℄, Monteiro{Zanja
omo [26℄, and Burer{Monteiro[4℄ all proposed V -spa
e approa
hes for SDP that are based on slightly di�erent targetmaps.In this arti
le, we use a V -spa
e generalization that was independently developed bothby Tun�
el [39, 40℄ and Hauser [15℄, apart from the di�eren
e that the latter approa
hin
ludes a di�erentiable stru
ture whi
h is needed to de�ne an asso
iated target map.This leads to the only generalization of the Kojima LP target map that inherits all ofits essential properties. Let us now brie
y des
ribe this 
onstru
tion. The primal-dualstri
tly feasible domain of the general self-s
aled programming problem pair (1.1) is givenas F(PD) := �K \ (L+ x0)�� �K℄ \ (L? + s0�: (1.8)Although the base spa
e E is endowed with an inner produ
t, we �nd it sometimes
on
eptually preferable to distinguish between E and its dual E℄ and think of this innerprodu
t as a bilinear form h�; �i : E � E℄ ! R. Let V be a Eu
lidean spa
e with



7inner produ
t (�; �) and dimension dimV = dimE. Let eV 2 V be a �xed ve
tor withkeV k2 = � 12 , where � := supfhF 00(x)�1[�F 0(x)℄;�F 0(x)i : x 2 Kg is the 
omplexityparameter of the self-s
aled barrier F , see [28℄ or [31℄. The bilinear produ
ts h�; �i and(�; �) de�ne a notion of adjoint '� : V ! E℄ of a linear operator ' : E ! V via theusual requirement that hx;'�(v)i = ('(x); v) for all (x; v) 2 E � V . Analogously, anotion of adjoint  � exists for linear operators  : E℄ ! V . The gist in generalizing 
is to �nd appropriate generalizations of the operators X and S, de�ned as X = diag(x),S = diag(s) in the LP 
ase. If we aim at preserving all the essential properties of 
 fromthe LP framework, then the 
onditions we need to impose on X and S follow naturallyfrom the NT equations (1.17) introdu
ed further below: we must �nd suÆ
iently smoothoperator �elds X : F(PD)! Iso(E℄; V ) and S : F(PD)! Iso(E; V ), su
h that for ea
h(x; s) 2 F(PD), X�(x; s) ÆX(x; s) = F 00�1(x);X(x; s) Æ F 00�w(x; s)� = S(x; s);and X(x; s)[�F 0(x)℄ = eV : (1.9)The point w(x; s) that appears in the se
ond equation is the s
aling point of x and s:Nesterov{Todd [29℄ showed that whenever K is a symmetri
 
one and F a self-s
aledbarrier for K then for all x 2 K and s 2 K℄ there exists a unique point w(x; s) 2 K su
hthat F 00(w(x; s))[x℄ = s. Our de�nition of X and S is is primal-dual symmetri
, be
auseequations (1.9) are equivalent to their dual analogues. The following is an example ofsu
h a pair of operator �elds: we endow E with an inner produ
t under whi
h K isself-dual: E ' E℄, K = K℄. This implies that there exists a unique e 2 K su
h thatF 00(e) = {, and this point also satis�es kek2 = � 12 , see [29℄. Let us 
hoose V = E, eV = e,X(x; s) = F 00�1(w(e;�F 0(x)) and S(x; s) = X(x; s) Æ F 00(w(x; s)). Then (X;S) is a pairof operator �elds that satisfy 
onditions (1.9), see [39, 15℄. Note that X represents asquare-root of F 00�1(x), and S a square-root of F 00�1℄ (s), with respe
t to appropriately
hosen 
oordinate systems. It 
an be shown that operator �elds X and S that satisfy the
onditions (1.9) 
an be 
onstru
ted so that X depends only on the primal variables x andS only on the dual variables s if and only if K is the interior of a positive orthant, thatis, only when (1.1) 
orresponds to the linear programming problem, see [15℄. Thus, thegeneral theory is ne
essarily more 
ompli
ated than the LP 
ase. Nevertheless, any pairof operator �elds (X;S) that satisfy the 
onditions (1.9) de�nes a generalized target mapvia the assignment 
 : F(PD)! V;(x; s) 7! X(x; s)[s℄ = S(x; s)[x℄: (1.10)This generalized target map inherits all properties of its LP version. This in
ludes there
ti�
ation of the 
entral path (note that substitution of (1.5) into the last equationof (1.9) shows that 
(x�; s�) = �eV ) and the transformation of the primal-dual stri
tlyfeasible domain into a 
one isomorphi
 to K. The only weakening that 
an o

ur is that
 may be one-to-one only in a neighborhood of the 
entral path, see Theorem 4.3.3, [15℄.Let us 
on
lude this introdu
tion by presenting a 
lassi
al motivation of the NT ap-proa
h explained from a modern perspe
tive. Re
all that any self-s
aled barrier F is of



8the form (1.3). It is then the 
ase that ��F 0(x) = �Lpi=1 
ix�1i , or in the parti
ular 
asewhere 
i = 1 for all i, ��F 0(x) = �x�1, where x�1 denotes the Jordan algebra inverse ofx. The 
anoni
al way of solving the system of nonlinear equations (1.5) would appear tobe as follows: a multipli
ation of the �rst equation with Lpi=1 
ixi, using Jordan algebramultipli
ation, transforms the equations into primal-dual symmetri
 form:pMi=1 
ixisi = �e; s 2 L? + s0: x 2 L+ x0; (1.11)Here xisi is the Jordan algebra produ
t of xi and si, and hen
e this is a member of E. One
an then apply a damped Newton method to (1.11) and enfor
e the 
onstraints x 2 K,s 2 K℄ expli
itly using line sear
hes. Indeed, the approa
h we have just des
ribed leads toa family of algorithms whi
h was �rst analyzed by Alizadeh{Haeberly{Overton [1℄ in the
ase of semide�nite programming, although their motivation for the method was di�erent,see the explanations following (1.13) below. The generalization to symmetri
 
ones andthe interpretation of the method in the Jordan algebra setting is due to Faybusovi
h [8℄.The work of Nesterov and Todd [29, 30℄, though later leading to the dis
overy of the
onne
tions between IPMs and Jordan algebras, was originally motivated by an earlierinterpretation of the system (1.5): in the 
ase of semide�nite programming (SDP) whereK is the 
one of n � n symmetri
 positive de�nite matri
es Sn�n(R)++ Equation (1.5)takes the formS = �X�1; tr(Ai(X �X0)) = 0; (i = 1; : : : ; m); S = S0 � mXi=1 yiAi; (1.12)where S;X 2 Sn�n(R)++ , y 2 Rm , S0; X0 2 Sn�n(R)++ are �xed positive de�nite symmet-ri
 matri
es, and where Ai 2 Sn�n(R) (i = 1; : : : ; m) are n�n symmetri
 matri
es. X, S,and y are the unknown variables. In this 
ase we have L = fX 2 Sn�n(R) : tr(AiX) = 0gand L? = spanfAi : i = 1; : : : ; mg. Sn�n(R) is a Eu
lidean Jordan algebra when en-dowed with the multipli
ation (X;S) 7! 12(XS + SX). Thus, if the term X�1 in the �rstequation of (1.12) is interpreted as the Jordan algebra inverse of X, then Jordan algebramultipli
ation with X yields the AHO equation12(XS + SX) = � I : (1.13)However, X�1 is also the inverse of X under standard matrix multipli
ation. Matrixmultipli
ation of the �rst equation in (1.12) by X then yields XS = � I. Note that XS isin general not symmetri
. Therefore, the image spa
e of this system is higher dimensionalthan the preimage spa
e, whi
h makes a dire
t appli
ation of Newton's method impossible.A wealth of �xes to this problem have been proposed. One solution is to apply the Gauss{Newton method instead of Newton's, see Kruk et.al. [24℄. Most other solutions are basedon symmetrizing the equation XS = � I, see Todd [38℄ for a survey. Equation (1.13) andthe AHO approa
h were also originally motivated in this vein, [1℄.One of the drawba
ks of symmetrization is that the resulting sear
h dire
tions arenot s
ale-invariant. Let us 
onsider the AHO method as an example. For any �xed



9W 2 Sn�n(R)++ , one 
an reformulate the primal SDP problem equivalently as follows:(P ) min tr(XS0) (P̂ ) min tr(X̂Ŝ0)s.t. tr(AiX) = bi; (i = 1; : : : ; m) , s.t. tr(ÂiX̂) = b̂i; (i = 1; : : : ; m)X � 0 X̂ � 0;where X̂ = W�1XW�1, Ŝ0 = WS0W , Âi = WAiW and b̂i = bi. The dual problem hasa 
orresponding reformulation with new dual variables Ŝ = WSW , ŷi = yi. The prob-lem pairs �(P ); (D)� and �(P̂ ); (D̂)� represent the same geometri
 problem represented intwo di�erent 
oordinate systems. A 
oordinate independent (s
ale-invariant) algorithmwould move along sequen
es of points that 
orrespond to one another via the same 
o-ordinate transformation when running on the problem inputs �(P ); (D)� and �(P̂ ); (D̂)�respe
tively. But for this to be true, any sear
h dire
tion used by the algorithm wouldhave to be s
ale-invariant too. However, the AHO equation for the res
aled variables(X̂Ŝ + ŜX̂)=2 = � I is equivalent to XS + W 2SXW�2 = 2� I and generally leads todi�erent Newton updates than (1.13). Other symmetrizations of XS = � I lead to thesame drawba
k. In order to over
ome this defe
t, Nesterov and Todd took a di�erentapproa
h to symmetrization: multiplying the linearization of XS = � I with X�1, onegets �S +X�1�XS = �X�1 � S: (1.14)Note that Z 7! X�1ZS maps X to S. But likewise does the map Z 7!W�1ZW�1, whereW = X1=2(X1=2SX1=2)�1=2X1=2; (1.15)and this map takes Sn�n(R) to Sn�n(R), whereas the map Z 7! X�1ZS does not. Thus,Z 7!W�1ZW�1 is a symmetrized version of Z 7! X�1ZS. Repla
ing therefore (1.14) by�S +W�1�XW�1 = �X�1 � S and rewriting this equation in the form�S + F 00(W )[�X ℄ = ��F 0(X)� S; (1.16)where F (Z) = � ln detZ is the ordinary logarithmi
 barrier fun
tion for the 
one ofpositive de�nite symmetri
 matri
es, one 
an 
he
k that the resulting sear
h dire
tions�X ;�S are s
ale-invariant. This approa
h 
an be used on an arbitrary symmetri
 
one Kendowed with an arbitrary self-s
aled barrier F . Indeed, Nesterov{Todd [29℄ showed thatevery pair (x; s) 2 K �K℄ de�nes a unique s
aling point w 2 K su
h that s = F 00(w)[x℄.The NT dire
tion (dx; ds) is then de�ned as the solution to the generalization of equation(1.16): F 00(w)dx + ds = ��F 0(x)� s; ds 2 L?; dx 2 L: (1.17)Various IPMs based on this sear
h dire
tion have been analyzed by Nesterov{Todd [29, 30℄,and variants of this method have been eÆ
iently implemented by Toh{Todd{T�ut�un
�u [37℄and by Sturm [35℄.



102 A Variational Analysis of the Nesterov{Todd FlowWe will now develop a variational analysis of the NT dire
tion �eld and the 
ow asso
iatedwith it. Let X and S be �xed operator �elds that satisfy the 
onditions of (1.9). Theasso
iated target map 
 (see (1.10)) will serve as an essential tool in our analysis.We start by pla
ing the primal and dual problems from (1.1) and (1.4) in the setting ofa single spa
e: 
onsider the ve
tor spa
e Z := L� L?, whi
h has the same dimension asE and whi
h we 
all the primal-dual domain. Let us 
onsider the proje
tions �L : Z ! Land �L? = { � �L of Z onto L and L? along L? and L respe
tively, where { denotesthe identity mapping. Sin
e K is self-dual, there exists an element e 2 K su
h that�F 00(e)��1 = { is the 
anoni
al embedding E℄ ,! E, see [29℄. Therefore, we 
an endow Zwith the inner produ
t(z1; z2) := h�Lz2;F 00(e)�Lz1i+ hF 00�1(e)�L?z2; �L?z1i:Z thereby be
omes a Eu
lidean spa
e in whi
h L and L? are mutually orthogonal. Thefollowing 
oordinate transformation allows us to parametrize F(PD) (see (1.8)) withvariables in Z: x(z) = x0 + �Lz; s(z) = s0 + �L?z;z(x; s) = (x� x0)� (s� s0):Sin
e both X and S are de�ned on F(PD), we 
an writeX(z) := X (x(z); s(z)) ; S(z) := S (x(z); s(z)) ; 
(z) := X (x(z); s(z)) [s(z)℄for z 2 F(PD). It 
an easily be established that z 7! F (x(z)) + F℄(s(z)) is a �-self-
on
ordant barrier for the 
onvex open set F(PD), where � is the 
ommon 
omplexityparameter of F and F℄, see [28℄ or [31℄. Despite its quadrati
 appearan
e, the fun
tiongap(z) := hx(z); s(z)i is a linear fun
tional on Z. Indeed, hx(z)� x0; s(z)� s0i = 0, sogap(z) = h�Lz; s0i + hx0; �L?zi + hx0; s0i. This is the so-
alled duality gap of x(z) ands(z) and has the important property that(PD) inffgap(z) : z 2 F(PD)g and(PD�) minfgap(z) + � (F (x(z)) + F℄(s(z)))gare optimization problems that are equivalent to (1.1) and (1.4) respe
tively, see e.g. [15℄.Thus, the primal-dual 
entral path is the set of minimizers z� of (PD�) for all � > 0:x(z�) = x�, s(z�) = s�. The paradigm of the primal-dual framework is to redu
e theduality gap to zero while maintaining feasibility.We are now going to present a series of results whi
h are proven in [15℄. These arete
hni
al arguments that typi
ally rely on propagating bounds via ODEs espe
ially en-gineered to that aim. Though most of the properties des
ribed below are unsurprisingin the sense that one would expe
t these from a good sear
h dire
tion, these results arenew and not straightforward to prove, be
ause the NT dire
tion is impli
itly de�ned withrespe
t to axiomati
 obje
ts. All of these results play important roles in Se
tion 3.



11Let us �x a value � > 0 of the barrier parameter, and let us 
onsider the 
orrespondingNT dire
tion whi
h is de�ned as the solution (dx; ds) to the system (1.17). Using ourparameterization in Z, we 
an de�ne ve
tor �eldsdx(z) = dx(x(z); s(z)); ds(z) = ds(x(z); s(z));d(z) = (dx(x(z); s(z)); ds(x(z); s(z))) ;whi
h are all in C1(F(PD); Z), see [15℄. The standard existen
e and uniqueness resultsfor solutions or ordinary di�erential equation imply that d(z) is the phase velo
ity �eldof a C1 maximal lo
al 
ow ' : W ! F(PD), where W � R � F(PD) is an open set
ontaining f0g � F(PD), and Iz := ft : (t; z) 2 Wg is the time interval over whi
h the
ux line through z is de�ned, see any textbook on di�erential topology, e.g., [5℄. ' and dare then related as follows:��t'(0; z) = d(z); 8 z 2 F(PD);'(0; z) = z; 8 z 2 F(PD);'(t1 + t2; z) = '(t2; '(t1; z));8 z 2 F(PD); t1; t2 2 R s.t. (t1 + t2; z); (t1; z) 2 W: (2.1)Let us now investigate the global behaviour of the NT 
ow. The distan
e of '(t; z)from z� is best measured in the image under 
. Re
all that 
(z�) = �eV . For allz 2 F(PD) n fz�g and for all t 2 Iz we havek�eV � 
 ('(t; z))k = k�eV � 
(z)k e�t; (2.2)see Lemma 5.2.1 of [15℄. The 
ux lines of ' extend to the point z� when moving inthe positive time dire
tion, and to the boundary of F(PD) or in�nity when moving innegative time dire
tion. In fa
t, for all z 2 F(PD) n fz�g there exists lz 2 (�1; 0) su
hthat Iz = (lz;+1), and limt!+1'(t; z) = z�; (2.3)limt!lz �gap('(t; z)) + �2 (F (x('(t; z))) + F℄(s('(t; z))))� = +1; (2.4)see Lemma 5.2.2 of [15℄. If z is 
lose enough to the 
entral path, then the distan
e formula(2.2) provides an estimate for the 
orresponding distan
e in the preimage spa
e: thereexist real numbers Æ > 0 and � > 1 su
h that for all z 2 BÆ(z�) \ F(PD) n fz�g andt 2 [0;+1), ��1kz� � zk e�t � kz� � '(t; z)k � �kz� � zk e�t; (2.5)see Lemma 5.2.3 of [15℄.Next, we investigate the 
ux line '(t; z) through z 2 F(PD)nfz�g. We are parti
ularlyinterested in the e�e
t 
aused at a later time when z is perturbed at time 0. First, we



12note that the integral R +10 d ('(t; z)) dt is absolutely 
onvergent for all z 2 F(PD)nfz�g,that is, the 
ux lines of ' are of bounded variation. This follows from Lemma 5.2.5 of[15℄, whi
h shows that for z 2 F(PD) n fz�g,kd('(t; z))k � O (kz� � zk) e�t : (2.6)We derive from this inequality thatZ +10 kd ('(t; z))k dt = O (kz� � zk) : (2.7)Lemma 5.2.6 of [15℄ then shows that the derivative of d is approximately the negativeidentity mapping in a neighborhood of z�:d0(z) = �{+O (kz� � zk) : (2.8)The �rst order growth of perturbations in the initial value z 
an be des
ribed by the�nite-time Lyapunov exponents �i of the linearized 
ow around the orbit '(t; z). In the
ase of the NT 
ow, all of these exponents satisfy �i = �1+O(kz�� zk), as follows fromthe following inequality proven in Lemma 5.2.7 of [15℄:kvk e�t(1+jO(kz��zk)j) � 



 ��z'(t; z)[v℄



 � kvk e�t(1�jO(kz��zk)j) : (2.9)Lemma 5.2.7 of [15℄ also shows that



 ��z d('(t; z))[v℄



 = (1 +O(kz� � zk)) 



 ��z'(t; z)[v℄



 : (2.10)Together with (2.9) this implies that the integral R +10 ��zd ('(t; z)) [�℄dt is absolutely 
on-vergent: for all t � 0 and z 2 F(PD) n fz�g,Z +10 



 ��z d ('(t; z)) [�℄



 dt = 1 +O (kz� � zk) : (2.11)The se
ond order variations are 
hara
terized in Lemma 5.2.8 of [15℄, whi
h shows thatfor all � > 0 and z 2 F(PD) n fz�g 
lose enough to z�,



 �2�z2 d('(t; z))[�; �℄



 � 2kd00(z�)k1 + �1� � e�t(1��) : (2.12)This equation implies that for all t � 0 and z 2 F(PD) n fz�g,Z +10 



 �2�z2 d ('(t; z)) [�; �℄



 dt � 2 kd00(z�)k (1 +O(kz� � zk)) ; (2.13)and 



 �2�z2'(t; z)[v;w℄



 = e�t(1�O(kz��zk))O(1): (2.14)



13Finally, Lemma 5.2.9 of [15℄ shows thatZ +10 ��z d ('(t; z)) [�℄dt = �{; (2.15)Z +10 �2�z2 d ('(t; z)) [�; �℄dt = 0: (2.16)We 
on
lude our variational analysis by investigating the limiting behaviour of thedire
tions from whi
h 
ux lines approa
h z�. Lemma 5.2.10 of [15℄ shows that for allz 2 F(PD) n fz�g, the 
orresponding 
ux line has a limiting dire
tion, be
auselimt!+1 et d ('(t; z)) (2.17)exists. Moreover, Lemma 5.2.11 of [15℄ shows thatlimt!+1 et (d ('(t; z))� (z� � '(t; z))) = 0: (2.18)As one would expe
t, the NT 
ow is stri
tly 
ontra
ting in a neighborhood of z�. In fa
t,there exists a radius Æ > 0 su
h that for all z 2 BÆ (z�),kz� � '(t; z)k < kz� � zk 8t > 0; (2.19)see Lemma 5.2.12 of [15℄. And �nally, Lemmas 5.2.13 and 5.2.14 of [15℄ show that for allz 2 F(PD) n fz�g, the limit limt!+1 et ��t �et d ('(t; z))� (2.20)exists, and that ��z d ('(t; z)) = e�t (�{ +O (kz� � zk)) ;��z'(t; z) = e�t ({+O (kz� � zk)) : (2.21)3 Nesterov-Todd Dire
tions in the Target Frame-workIn this se
tion we will 
ontinue to use the primal-dual framework introdu
ed in Se
tion2 and analyze the NT dire
tion de�ned by a �xed point z� on the primal-dual 
entralpath, that is, we 
onsider the ve
tor �eld d(z) : F(PD) ! Z that solves the system ofequations F 00 ((w(x(z); s(z))) �Ld(z) + �L?d(z) = ��F 0 (x(z))� s(z); (3.1)



14
.f. (1.17). Our goal is to 
onstru
t a pair of C2 operator �elds (X;S) that satisfy the
onditions (1.9), and su
h that the asso
iated target map 
 (see (1.10)) has the propertythat the NT dire
tion satis�es the Newton equation
0(z)d(z) = �eV � 
(z) (3.2)for all z 2 F(PD). In other words, we will prove that the NT dire
tion is a spe
ial 
aseof a target dire
tion, see Theorem 3.7.Before we start the 
onstru
tion of (X;S), let us further explore the di�eren
e be-tween the systems (3.1) and (3.2). Multiplying (3.1) by X(z), we get S(z)�Ld(z) +X(z)�L?d(z) = �eV � 
(z), whi
h 
an be written asM(z)d(z) = �eV � 
(z); (3.3)where M 2 C2(F(PD);L(Z; V )) is the operator �eld M(z) : d 7! S(z)�Ld+X(z)�L?d.On the other hand, for all z 2 F(PD), and for �xed orthogonal bases on E ' E℄and V , a linear operator F 00� 12 (x(z)) : E℄ ! V is well-de�ned with respe
t to thesebases by the unique positive de�nite symmetri
 square-root of the matrix that representsF 00�1(x(z)) : E℄ ! E with respe
t to the basis on E. Likewise, F 00� 12℄ (s(z)) 2 L(E; V ) iswell-de�ned. It 
an then be shown (see Chapter 3 of [15℄) that there exist C2 operator�elds 
x;
s : F(PD)! O(V ) su
h thatX(z) = 
x(z)F 00� 12 (x(z));S(z) = 
s(z)F 00� 12℄ (s(z)); (3.4)and then (1.9) implies that
s(z) = 
x(z)F 00� 12 (x(z))F 00 (w(x(z); s(z))F 00 12 �℄ (s(z)):In (3.4), O(V ) denotes the set of orthogonal transformations of V , endowed with the
anoni
al di�erentiable stru
ture that turns it into a di�erentiable manifold and a topo-logi
al group. This is an example of a Lie group (see e.g. [18℄), and we 
all it the orthogonalgroup of V . Now, applying the produ
t rule in the 
omputation of 
0(z) and splitting theleft hand side of (3.2) into parts, we getM(z)d(z) +R(z)d(z) = �eV � 
(z); (3.5)where R 2 C2(F(PD);L(Z; V )) is the operator �eldR(z) : d 7! (
0s(z)[�Ld℄ Æ 
�s(z) + 
0x(z)[�L?d℄ Æ 
�x(z)) 
(z):Therefore, the NT equation (3.3) and the target equation (3.5) di�er only in the termR(z)d(z), and for (3.2) to hold we need to 
onstru
t the operator �elds (X;S) su
h thatR(z)d(z) � 0: (3.6)Proposition 4.1.9, [15℄ shows that for all z 2 F(PD), M(z) is nonsingular,dim(kerR(z)) � 2 and imR(z) � spanfeV ; 
(z)g?. Moreover, if z lies on the 
entral path,



15then R(z) = 0. Sin
e R(z) has a nontrivial kernel, the requirement (3.6) is not a prioriimpossible to satisfy. Ideally, we would like to 
onstru
t (X;S) su
h that d(z) 2 kerR(z)for all z 2 F(PD) and for the NT dire
tion �elds arising from all possible values of � > 0simultaneously. A ne
essary and suÆ
ient 
ondition for this to be true would be that thisrequirement 
an be satis�ed for only two di�erent values of � simultaneously (see [15℄).Again, this requirement is not a priori impossible to satisfy be
ause dim(kerR(z)) � 2.However, the diÆ
ulties of proving that su
h a pair of operator �elds (X;S) exists seemrather extraordinary and we restri
t our analysis to the NT �eld 
orresponding to a �xedvalue of � > 0 throughout.Equations (1.9) and (3.4) show that any two pairs of operator �elds (X;S) and ( ~X; ~S)must be related to ea
h other via a C2 operator �eld 
� : F(PD) ! O(V; eV ) := f� 2O(V ) : ��eV = eV g as follows:X(z) = 
�(z) ~X(z); S(z) = 
�(z) ~S(z):This means that for our 
onstru
tion of a pair of operator �elds (X;S) that satisfy therequirement (3.6), we 
an start with an arbitrary known pair of operator �elds ( ~X; ~S)that satisfy the 
onditions (1.9), e.g., the example of Se
tion 1 for whi
h ~X; ~S 2 C1,and then we must 
onstru
t a C2 operator �eld 
� : F(PD) ! O(V; eV ) su
h that(X;S) = (
� Æ ~X;
� Æ ~S) satis�es (3.6). We adopt the adjoint notation 
� for later
onvenien
e. Let us denote the operator �elds R, 
x and 
s asso
iated with (X;S) and( ~X; ~S) respe
tively by R(z) and ~R(z), 
x(z) and ~
x(z), 
s(z) and ~
s(z) respe
tively.Likewise, let us write 
(z) and ~
(z) respe
tively for the asso
iated target map. Then
x(z) = 
�(z)~
x(z), 
s(z) = 
�(z)~
s(z), andR(z)[d(z)℄ = 
�0[d(z)℄~
(z) + 
�(z)�~
0s(z)[�Ld℄~
�s(z) + ~
0x(z)[�L?d℄~
�x(z)� ~
(z):Therefore, the 
ondition (3.6) is equivalent to(
�0[d(z)℄) [~
℄ = �
� �~
0s[�Ld(z)℄~
�s + ~
0x[�L?d(z)℄~
�x� [~
(z)℄ (3.7)for all z 2 F(PD) n fz�g. For z = z� we don't need to make any assumptions, be
auseR(z�) = ~R(z�) = 0, as remarked above. However, for spe
i�
ity, we require that 
�(z�) ={ be the identity map. Moreover, we strengthen the 
ondition (3.7) by dropping themultipli
ation with ~
(z). Taking adjoints and using 

�0 + 
0
� = 0, the requirementbe
omes �nding a C2 operator �eld 
 : F(PD)! O(V; eV ) su
h that
(z�) = {;
0(z)[d(z)℄ = �~
s(z)0[�Ld(z)℄~
�s(z) + ~
0x(z)[�L?d(z)℄~
�x(z)�
(z) 8 z 2 F(PD) n fz�g:(3.8)Note that (3.8) 
onstitutes a boundary value problem: this is a partial di�erentialequation for an operator valued fun
tion z 7! 
(z) 2 O(V; eV ) with domain of de�nitionF(PD)nfz�g and with the requirement that the boundary 
ondition 
(z�) = { be satis�edat the isolated boundary point z�. Thus, for the purposes of showing the existen
e of



16(X;S) that satisfy (3.6), it suÆ
es to show that the boundary value problem (3.8) has aC2 solution whi
h 
an be extended in a twi
e 
ontinuously di�erentiable manner at theboundary point z�. Indeed, we are going to show that the boundary value problem (3.8)has a unique solution, and that its extension to z� is C2, see Theorem 3.7. Showing thelast property is the te
hni
ally most diÆ
ult part of the proof.Lemma 3.1. The boundary value problem (3.8) has a solution that 
an be extended in atwi
e 
ontinuously di�erentiable manner at z� if and only if it has su
h a solution in aneighborhood of z�.Proof. The only if part is of 
ourse trivially true. Let us therefore assume that thereexists an open ball BÆ(z�) � F(PD) and a mapping �
 2 C2(BÆ(z�);O(V; eV )) su
h that�
0(z)[d(z)℄ = �~
0s(z)[�Ld(z)℄~
�s(z) + ~
0x(z)[�L?d(z)℄~
�x(z)� �
(z) 8 z 2 BÆ(z�) n fz�g:Consider the following boundary value problem:
(z) = �
(z) 8 z 2 �BÆ=2(z�);
0(z)[d(z)℄ = �~
0s(z)[�Ld(z)℄~
�s(z) + ~
0x(z)[�L?d(z)℄~
�x(z)�
(z) 8 z 2 F(PD) n �BÆ=2(z�):(3.9)For any z 2 �BÆ=2(z�), the standard existen
e and uniqueness theorems for solutions ofordinary di�erential equations 
an be implied to show that there exists a unique fun
tion
('(t; z)) that satis�es (3.9) for all points '(t; z) on the interval t 2 (lz; 0℄ (see Se
tion2 for notation). The standard theorems on the smooth dependen
e of solutions of ODEson parameters also imply that 
('(t; z)) varies in a C2 fashion as a fun
tion of z. Therequired 
 is then obtained for all z 2 F(PD) n BÆ=2(z�) by setting 
(z) := 
('(t; ẑ))where (t; ẑ) is the unique point in R���BÆ=2(z�) su
h that z = '(t; ẑ). It follows from thearguments above that the extension 
 is unique and 
oin
ides with �
 on the interse
tionof their domains of de�nition. For a more detailed proof, see Lemma 3.11 of [15℄.Notational Convention 3.2. In the remainder of the present and subsequent se
tions thefollowing shorthand notation will often be employed, where vi are ve
tors:~
0[�v1℄~
� := ~
0s[�Lv1℄~
�s + ~
0x[�L?v1℄~
�x;~
0[�v1℄~
�0[v2℄ := ~
0s[�Lv1℄~
�0s [v2℄ + ~
0x[�L?v1℄~
�0x [v2℄;~
00[�v1; v2℄~
� := ~
00s [�Lv1; v2℄~
�s + ~
00x[�L?v1; v2℄~
�x;~
0[�v1℄~
�00[v2; v3℄ := ~
0s[�Lv1℄~
�00s [v2; v3℄ + ~
0x[�L?v1℄~
�00x [v2; v3℄;~
00[�v1; v2℄~
�0[v3℄ := ~
00s [�Lv1; v2℄~
�0s [v3℄ + ~
00x[�L?v1; v2℄~
�0x [v3℄;~
000[�v1; v2; v3℄~
� := ~
000s [�Lv1; v2; v3℄~
�s + ~
000x [�L?v1; v2; v3℄~
�x:We will hen
eforth 
on
entrate on the problem of showing the existen
e and uniquenessof a solution of (3.8) whi
h is lo
ally de�ned around z� and C2 extendable there. For



17z 2 F(PD)nfz�g, let us 
onsider the following 
oordinate 
hange for the time parameterof the 
ux line '(t; z): r(t; z) = (e�t if t 2 (lz;+1);0 if t = +1;where lz < 0 is de�ned as in (2.4). Then [0; 1℄ � im(r) for all z 2 F(PD) n fz�g. Wewrite t(r; z) for the inverse of r(t; z) and (r; z) := (' (t(r; z); z) if r > 0;z� if r = 0:We 
laim that  2 C1 for any �xed z 2 F(PD) n fz�g. In fa
t, it follows from (2.3) that is 
ontinuous. Moreover, (2.17) shows that the limitlimr!0 ��r (r; z) = limr!0 ��t'(t(r; z); z) ��r t(r; z) = limt!+1 d('(t; z))�r(t; z) = � limt!+1 et d('(t; z))exists.Suppose that 
 is a lo
al solution to (3.8), de�ned on BÆ(z�), where Æ > 0 is 
hosensmall enough for (2.19) to be true. Then the fun
tiony(r; z) = 
( (r; z))is well-de�ned on [0; 1℄� BÆ(z�), and for r > 0 we have��ry(r; z) = 
0( (r; z)) � ��r (r; z)�= 
0( (r; z)) � ��t'(t(r; z); z) ��r t(r; z)�= �
0( (r; z)) �d( (r; z))r �(3.8)= �~
0( (r; z)) ��d( (r; z))r � ~
�( (r; z))
( (r; z))= a(r; z)y(r; z); (3.10)where the mapping a(r; z) = �~
0( (r; z)) ��d( (r; z))r � ~
�( (r; z)) (3.11)is de�ned on (0; 1℄� BÆ(z�).O(V; eV ) is a 
losed subgroup of the Lie group O(V ), and it is therefore a Lie groupitself, see e.g. [5℄. Moreover, sin
e 
(z) 2 O(V; eV ) for all z 2 BÆ(z�), we have��ry(r; z) 2 Ty(r;z)O(V; eV ); (3.12)



18where Ty O(V; eV ) denotes the tangent spa
e of O(V; eV ) at y. It is a trivial fa
t from thetheory of Lie groups that (Ty O(V; eV ))y�1 = T{O(V; eV ), where { is the identity mapping,that is, { is the multipli
ative neutral element of O(V; eV ). T{O(V; eV ), hen
eforth denotedby o(V; eV ), 
onsists of the set of skew-adjoint endomorphisms of V that 
ontain eV intheir kernel, that is, v 2 o(V; eV ), v 2 End(V ); v� = �v; veV = 0:This 
hara
terization shows that the following 
ommutator operation is well-de�ned:[�; �℄ : o(V; eV )� o(V; eV )! o(V; eV );[u; v℄ 7! uv � vu:When o(V; eV ) is endowed with this operation, it be
omes a Lie algebra, see e.g. [18℄. Thisis 
alled the Lie algebra asso
iated with the Lie group O(V; eV ).Equations (3.10) and (3.12) show that a 2 C1((0; 1℄�BÆ(z�); o(V; eV )) (see (3.11)). We
laim that for �xed z 2 BÆ(z�), a 
an be extended to [0; 1℄�fzg in a C1 fashion. In fa
t,~
0 2 C1 and (2.17) shows thatlimr!0 d( (r; z))r = limt!+1 et d('(t; z))exists. This proves that a 
an be 
ontinuously extended at (0; z). On the other hand,(2.20) shows thatlimr!0 ��r �d( (r; z))r � = limt!+1 ��t �et d('(t; z))� �t(r; z)�r = � limt!+1 et ��t �et d('(t; z))�exists. Together with ~
 2 C2 and  2 C1 this proves that the extension of a is 
ontinu-ously di�erentiable with respe
t to r at (0; z).In summary, we have shown that if a lo
al solution 
 to (3.8) exists, then y(r; z) =
( (r; z)) must satisfy the di�erential equationy(0; z) = {;��r y(r; z) = a(r; z)y(r; z) (r 2 [0; 1℄); (z 2 BÆ(z�)); (3.13)where a is de�ned as in (3.11) and 
ontinuously extended at r = 0. If (3.13) has aunique solution and if we 
an integrate this equation then we know 
 along the 
hara
-teristi
  (�; z). In parti
ular, sin
e this 
hara
teristi
 
ows through z, 
(z) is uniquelydetermined. Thus, if (3.8) has a lo
al solution, then (3.13) provides a me
hanism to�nd this solution expli
itly. On the other hand, if (3.13) has a unique solution for allz 2 BÆ(z�) n fz�g then 
(z) := y(1; z) satis�es (3.8) for all z 2 BÆ(z�) n fz�g. In Lemma3.4 we will prove that this is indeed the 
ase. In Lemma 3.5 we will then prove that
(z�) = { extends this solution in a twi
e 
ontinuously di�erentiable manner at z�. Thisproves the existen
e and uniqueness of a lo
al solution for (3.8), and together with Lemma3.1 this 
onstitutes a proof of Theorem 3.7.



19For a �xed z 2 BÆ(z�), (3.13) is a linear ordinary di�erential equation evolving onthe Lie group O(V; eV ) and is driven by the operator a(�; z) 2 C1([0; 1℄; o(V; eV )). Thistype of initial value problem was studied by Hausdor� [12℄ for general Lie groups G andtheir asso
iated Lie algebras g. Substituting G = O(V; eV ), it follows from this theorythat there exists a number r� > 0 and a fun
tion �(�; z) 2 C1([0; r�℄; o(V; eV )) su
h thaty(r; z) = exp(�(r; z)) is the unique solution of (3.13) on r 2 [0; r�℄, where exp is thematrix exponential, and where �(�; z) satis�es the dexpinv equation�(0; z) = 0; (3.14)��r�(r; z) = 1Xm=0 hmadm(a(r; z); �(r; z)); (r 2 [0; r�℄):In (3.14), hm is the m-th Taylor series 
oeÆ
ient of the fun
tion h : C ! C ,h(w) = wew�1 + w (3.15)expanded around w = 0, and the ad-operator adk is re
ursively de�ned as follows:ad0(v; u) = v, and adk(v; u) = [adk�1(v; u); u℄ for k 2 N , where [�; �℄ denotes the 
ommu-tator operator de�ned above. Using Pi
ard-Lindel�of iteration it is possible to expli
itlydetermine more and more terms of a series development for the solution of (3.14). Magnus[25℄ derived the �rst four terms of this series:�(r; z) = Z r0 a(�; z)d�+ 12 Z r0 �a(�; z); Z �0 a(�; z)d��d�+ 14 Z r0 �a(�; z); Z �0 �a(�; z); Z �0 a(�; z)d�� d��d�+ 112 Z r0 ��a(�; z); Z �0 a(�; z)d�� ; Z �0 a(�; z)d�� d�+ : : : : (3.16)The general term of the this series was 
hara
terized by Iserles-N�rsett [19℄. We nowdes
ribe their 
onstru
tion for the spe
ial 
ase where G = O(V; eV ) that applies to ourproblem. Consider the set of fun
tions E � F([0; r�℄; o(V; eV )� for whi
h membershipis de�ned by re
ursively applying the following rules: a(�; z) 2 E , and if p; q 2 E thenr 7! �p(r); R r0 q(�)d�� 2 E . It would be diÆ
ult to work with E without a proper indexingsystem. This is most elegantly a
hieved by use of rooted trees. We re
ursively apply thefollowing rules: the map a(�; z) is asso
iated with the tree �0 
onsisting of a single node,a(r; z) � �0 = �;and if p(r); q(r) 2 E are asso
iated with the trees � [1℄ and � [2℄ respe
tively, then themapping r 7! �p(r); Z r0 q(�)d�� 2 E



20is asso
iated with the tree obtained by appending a new root to � [2℄ and joining theresulting tree with � [1℄ via a new root on the left:hp(r); Z r0 q(�)d�i � � [1℄ � [2℄����� � (3.17)We denote the set of trees that 
an be obtained in this fashion by T , and we denote themember of E asso
iated with � by H� (�; z). By Tk we denote the set of members of Tthat 
ontain k nodes, and we say that these trees are of order k. An indu
tion argumentshows that all trees in T are of order 3k + 1 for some k 2 N0 . Iserles{N�rsett [19℄ provedthat #T3k+1 = (2k)!k!(k + 1)! 8 k 2 N0 : (3.18)Ea
h � 2 Tk 
an be written uniquely in the form
� [1℄����� [2℄����� [3℄. . . ��� [l℄���� � �� �� �� ��

for some trees � [1℄; : : : ; � [l℄ 2 T of order stri
tly less than k. We write � = R�� [1℄; : : : ; � [l℄�to express this relationship. For later 
onvenien
e, let us denote the tree R��0� by �1.With this notation it is possible to de�ne a sequen
e of numbers (�� )T by re
ursivelyapplying the following rules: ��0 = h0, and if all �� [i℄ are de�ned for (i = 1; : : : ; l), then�R(� [1℄;::: ;� [l℄) = hlQli=1 �� [i℄, where hl is de�ned with respe
t to (3.15) as above. Note thatsin
e the fun
tion h has a 
onvergen
e radius stri
tly greater than 1, we havej�� j � 1 (3.19)for all � of suÆ
iently high order (a
tually for all � 2 T ). It follows from the results ofIserles{N�rsett [19℄ that the general term in the series (3.16) is �� R r0 H� (�; z)d�, that is,the solution to the dexpinv equation (3.14) is given by the Magnus series�(r; z) =X�2T �� Z r0 H� (�; z)d� (3.20)on the interval [0; ~r) where both this series and its termwise derivative 
onverge absolutely.Moreover, the solution of the initial value problem (3.13) is given by y(r; z) = exp(�(r; z))on the interval [0; r�℄ on whi
h exp(�(r; z)) is de�ned and r� � ~r. We will see below thatr� � 1.We will now express the Magnus series (3.20) in terms of the parameters (t; z) insteadof (r; z). For ea
h � 2 T we 
an de�ne a fun
tion L� (t; z) : [0;+1)�BÆ(z�)! o(V; eV )by re
ursively applying the following rules:



21(i) L�0(t; z) := �~
0('(t; z))[�d('(t; z))℄~
�('(t; z)).(ii) If � is the tree de�ned in (3.17) thenL� (t; z) := �L� [1℄(t; z); Z +1t L� [2℄(�; z)d�� :The fun
tions de�ned above then satisfyL� (t; z) = e�tH� (e�t; z) (3.21)for all � 2 T . This 
an easily be seen via indu
tion.Now note that if �(�; z) is expressible by the Magnus series (3.20), then 
(z) =
('(0; z)) = y(1; z) = exp�&(z)�, where&(z) := �(1; z) =X�2T �� Z 10 H� (�; z)d� =X�2T �� Z 0+1 �r(t; z)�t H� (r(t; z); z)dt=X�2T �� Z +10 L� (t; z)dt: (3.22)So far we have treated z as a �xed parameter, but (3.22) now shows that the freevariable t disappears when taking the integral. We therefore obtain an expli
it seriesrepresentation for 
(z) as a fun
tion of z, now 
onsidered as a variable. Let us endowo(V; eV ) with the usual operator matrix norm. Re
all that we 
hose Æ small enough for(2.19) to be true. For our further analysis we need to restri
t the neighborhood around z�even further. The results of Se
tion 2 and the fa
t that ~
 2 C1 imply that it is possibleto 
hoose Q > 0 large enough and % > 0 small enough so that the following inequalitiesare satis�ed for all z 2 B%(z�) n fz�g and t � 0:

~
0(z)[��℄~
�(z)

 � Q; (3.23)

~
00(z)[��; �℄~
�(z)

; 

~
0(z)[��℄~
�0(z)[�℄

 � Q; (3.24)

~
000(z)[��; �; �℄~
�(z)

; 

~
00(z)[��; �℄~
�0(z)[�℄

; 

~
0(z)[��℄~
�00(z)[�; �℄

 � Q; (3.25)

d�'(t; z)�

 � Qkz� � zk e�t; see (2.5) and (2.18); (3.26)

z� � '(t; z)

 � kz� � zk; see (2.19); (3.27)



 ��z'(t; z)



 � e� t2 ; see (2.9); (3.28)
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 �2�z2'(t; z)



 � Q; see (2.14); (3.29)



 �2�z2 d('(t; z))



 � Q e� t2 ; see (2.12); (3.30)Z 10 



 ��z d�'(t; z)�



 dt � 1 +Qkz� � zk; see (2.11); (3.31)Z 10 



 �2�z2 d�'(t; z)�



 dt � Q�1 +Qkz� � zk�; see (2.13): (3.32)Lemma 3.3. If Q; % > 0 are 
hosen so that (3.23)-(3.32) hold true, then for all k 2 N0 ,� 2 T3k+1 and z 2 B%(z�) n fz�g the following inequalities hold true:i) Z 10 kL� (t; z)kdt � kz� � zkk+1Q2k+22k;ii) Z 10 



 ��zL� (t; z)



 dt � kz� � zkkQ2k+122k + kz� � zkk+1Q2k+232k+1;iii) Z 10 



 �2�z2L� (t; z)



 dt � kz� � zkk�1Q2k�(k) + kz� � zkkQ2k+1�32k+2 +Q32k�+ kz� � zkk+1Q2k+2�32k+3 +Q32k+1�;where �(k) = (0 if k = 0;22(k+1) if k � 1:We will prove this lemma in Se
tion 4.Lemma 3.4. There exists a radius � > 0 su
h that the mapping &(z) de�ned in (3.22) iswell de�ned and twi
e 
ontinuously di�erentiable on B�(z�) n fz�g. Moreover,i) &(z) = O(kz� � zk);ii) ��z &(z) = Z 10 ��zL�0(t; z)dt+O(kz� � zk);iii) �2�z2 &(z) = Z 10 �2�z2L�0(t; z)dt+ 12 Z 10 �2�z2L�1(t; z)dt +O(kz� � zk):



23We will prove this lemma in Se
tion 5.Lemma 3.5. Let � > 0 be 
hosen as in Lemma 3.4 and let &(z) be 
ontinuously extendedat z�, that is, &(z�) = 0. Then & 2 C2(B�(z�); o(V; eV )). In parti
ular, the derivatives atz� are given as follows: for all v; w 2 Z,& 0(z�)[w℄ = ~
0(z�)[�w℄~
�(z�); (3.33)& 00(z�)[w; v℄ = 12 ~
00(z�)[�v;w℄~
�(z�) + 12 ~
00(z�)[�w; v℄~
�(z�)+ 12 ~
0(z�)[�w℄~
�0(z�)[v℄ + 12 ~
0(z�)[�v℄~
�0(z�)[w℄: (3.34)We will prove this lemma in Se
tion 6.Theorem 3.6 (Lo
al Solution).Let � > 0 and &(z) be 
hosen as in Lemma 3.5. Then 
(z) = exp�&(z)� is a twi
e
ontinuously di�erentiable solution of (3.8) de�ned on B�(z�). The 
ontinuous derivativesat the boundary point z� are given as follows: for all v; w 2 Z,
0(z�)[w℄ = & 0(z�)[w℄; (3.35)
00(z�)[w; v℄ = & 00(z�)[w; v℄ + 12& 0(z�)[w℄& 0(z�)[v℄ + 12& 0(z�)[v℄& 0(z�)[w℄ (3.36)Proof. The �rst statement is 
lear from Lemma 3.5, the fa
t that the exponential mappingis analyti
 and the developments that led to equation (3.22). In order to prove the se
ondstatement, note that at the origin the �rst and se
ond derivatives of the matrix exponentialare as follows: for all V;W 2Mn�n(R),exp0(0)[V ℄ = V; (3.37)exp00(0)[W ;V ℄ = 12(WV + VW ): (3.38)Sin
e o(V; eV ) is a matrix Lie algebra, it is therefore the 
ase that for all v; w 2 Z,
0(z�)[w℄ = exp0�&(z�)�[& 0(z�)[w℄℄ = exp0(0)[& 0(z�)[w℄℄ (3.37)= & 0(z�)[w℄;and 
00�z��[w; v℄ = exp0�&(z�)�[& 00(z�)[w; v℄℄ + exp00�&(z�)�[& 0(z�)[w℄; & 0(z�)[v℄℄= exp0(0)[& 00(z�)[w; v℄℄ + exp00(0)[& 0(z�)[w℄; & 0(z�)[v℄℄(3.38)= & 00(z�)[w; v℄ + 12& 0(z�)[w℄& 0(z�)[v℄ + 12& 0(z�)[v℄& 0(z�)[w℄:



24Theorem 3.7 (NT and Target).There exists a unique twi
e 
ontinuously di�erentiable operator �eld 
 : F(PD) !O(V; eV ) that solves the boundary value problem (3.8). Moreover, the NT dire
tionsolves the Newton system (3.2) when the target map 
 is de�ned with respe
t to X(z) =
�(z) ÆX(z).Proof. The existen
e of 
 follows from Theorem 3.6 and Lemma 3.1. Moreover, the lo
alsolution 
onstru
ted in Theorem 3.6 is unique be
ause y(r; z) = exp(�(r; z)) is the uniquelo
al solution of (3.13), by virtue of Hausdor�'s theory of the dexpinv equation [12℄.Lemma 3.1 shows that there is a unique extension of this lo
al solution to all of F(PD).Finally, (3.8) was expli
itly designed so as to render the remaining 
laims true.
4 Proof of Lemma 3.3Proof. We use indu
tion over k. For k = 0 we have �0 = �, and then we 
an 
he
k 
laimsi), ii), and iii) of Lemma 3.3 as follows:i) Z 10 kL�0(t; z)kdt = Z 10 k~
0('(t; z))[�d('(t; z))℄~
�('(t; z))kdt(3.23);(3.27)� Z 10 Qkd('(t; z))kdt (3.26)� Q Z 10 kz� � zkQ e�t dt= 20Q0+2kz� � zk0+1:

ii) Z 10 



 ��zL�0(t; z)



 dt � Z 10 



~
00('(t; z)) ��d('(t; z)); ��z'(t; z)� ~
�('(t; z))



 dt+ Z 10 



~
0('(t; z)) �� ��z d('(t; z))� ~
�('(t; z))



 dt+ Z 10 



~
0('(t; z))[�d('(t; z))℄~
�0('(t; z)) � ��z'(t; z)�



 dt(3.23);(3.24);(3.27)� Q Z 10 kd('(t; z))k 



 ��z'(t; z)



 dt+Q Z 10 



 ��z d('(t; z))



 dt+Q Z 10 kd('(t; z))k 



 ��z'(t; z)



 dt(3.26);(3.28);(3.31)� 2Q2kz� � zk +Q(1 +Qkz� � zk)= kz� � zk0Q0+120 + kz� � zk1Q0+230+1:
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iii) Z 10 



 �2�z2L�0(t; z)



 dt� Z 10 



~
000('(t; z)) ��d('(t; z)); ��z'(t; z); ��z'(t; z)� ~
�('(t; z))



 dt+ Z 10 



~
00('(t; z)) �� ��z d('(t; z)); ��z'(t; z)� ~
�('(t; z))



 dt+ Z 10 



~
00('(t; z)) ��d('(t; z)); �2�z2'(t; z)� ~
�('(t; z))



 dt+ Z 10 



~
00('(t; z)) ��d('(t; z)); ��z'(t; z)� ~
�0('(t; z)) � ��z'(t; z)�



 dt+ Z 10 



~
00('(t; z)) �� ��z d('(t; z)); ��z'(t; z)� ~
�('(t; z))



 dt+ Z 10 



~
0('(t; z)) �� �2�z2 d('(t; z))� ~
�('(t; z))



 dt+ Z 10 



~
0('(t; z)) �� ��z d('(t; z))� ~
�0('(t; z)) � ��z'(t; z)�



 dt+ Z 10 



~
00('(t; z)) ��d('(t; z)); ��z'(t; z)� ~
�0('(t; z)) � ��z'(t; z)�



 dt+ Z 10 



~
0('(t; z)) �� ��z d('(t; z))� ~
�0('(t; z)) � ��z'(t; z)�



 dt+ Z 10 



~
0('(t; z))[�d('(t; z))℄~
�00('(t; z)) � ��z'(t; z); ��z'(t; z)�



 dt+ Z 10 



~
0('(t; z))[�d('(t; z))℄~
�0('(t; z)) � �2�z2'(t; z)�



 dt



26 (3.23)�(3.25);(3.27)� Q Z 10 kd('(t; z))k 



 ��z'(t; z)



2 dt+Q Z 10 



 ��z d('(t; z))



 



 ��z'(t; z)



 dt+Q Z 10 kd('(t; z))k 



 �2�z2'(t; z)



 dt+Q Z 10 kd('(t; z))k 



 ��z'(t; z)



2 dt+Q Z 10 



 ��z d('(t; z))



 



 ��z'(t; z)



 dt+Q Z 10 



 �2�z2 d('(t; z))



 dt+Q Z 10 



 ��z d('(t; z))



 



 ��z'(t; z)



 dt+Q Z 10 kd('(t; z))k 



 ��z'(t; z)



2 dt+Q Z 10 



 ��z d('(t; z))



 



 ��z'(t; z)



 dt+Q Z 10 kd(t; z)k 



 ��z'(t; z)



2 dt+Q Z 10 kd('(t; z))k 



 �2�z2'(t; z)



 dt(3.28);(3.29)� (4 + 2Q)Q Z 10 kd('(t; z))kdt+ 4Q Z 10 



 ��z d('(t; z))



 dt+Q Z 10 



 �2�z2 d('(t; z))



 dt(3.26);(3.31);(3.32)� (4 + 2Q)Q2kz� � zk+ 4Q(1 +Qkz� � zk) +Q2(1 +Qkz� � zk)� kz� � zk�1Q00 + kz� � zk0Q1(32 +Q30) + kz� � zk1Q2(33 +Q31):This 
ompletes the base 
ase. In order to prove the indu
tion step, let k � 1 and supposethe lemma holds true for all � 2 T3i+1, (i = 0; : : : ; k � 1). Let � 2 T3k+1. Be
ause ofthe re
ursive de�nition of T there exist an integer l < k and two oriented rooted trees� [1℄ 2 T3l+1 and � [2℄ 2 T3(k�l�1)+1 su
h that � is related to � [1℄ and � [2℄ as in (3.17).Therefore, assuming that statements i), ii) and iii) of the lemma hold for � [1℄ and � [2℄, thefollowing arguments show that they hold for � too:
i) Z 10 kL� (t; z)kdt = Z 10 



�L� [1℄(t; z); Z 1t L� [2℄(�; z)d��



 dt� 2 Z 10 kL� [1℄(t; z)k Z 1t kL� [2℄(�; z)kd�dt(2.1)= 2 Z 10 kL� [1℄(t; z)k Z 10 kL� [2℄(�; '(t; z))kd�dti)� Z 10 kL� [1℄(t; z)k2k�lQ2k�2lkz� � '(t; z)kk�ldt(3.27)� 2k�lQ2k�2lkz� � zkk�l Z 10 kL� [1℄(t; z)kdti)� 2k�lQ2k�2lkz� � zkk�l2lQ2l+2kz� � zkl+1 = 2kQ2k+2kz� � zkk+1:
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ii) Z 10 



 ��zL� (t; z)



 dt � Z 10 



� ��zL� [1℄(t; z); Z 1t L� [2℄(�; z)d��



 dt+ Z 10 



�L� [1℄(t; z); Z 1t ��zL� [2℄(�; z)d��



 dt(2.1)� 2 Z 10 



 ��zL� [1℄(t; z)



 Z 10 kL� [2℄(�; '(t; z))kd�dt+ 2 Z 10 kL� [1℄(t; z)k Z 1t 



 ��~zL� [2℄(�; ~z)���~z='(t;z) � ��z'(t; z)�



 d�dti);ii)� 2k�lQ2k�2l Z 10 



 ��zL� [1℄(t; z)



 kz� � '(t; z)kk�ldt+ 2 � 22k�2l�2Q2k�2l�1 Z 10 kL� [1℄(t; z)kkz� � '(t; z)kk�l�1 



 ��z'(t; z)



 dt+ 2 � 32k�2l�1Q2k�2l Z 10 kL� [1℄(t; z)kkz� � '(t; z)kk�l 



 ��z'(t; z)



 dti);ii);(3.27);(3.28)� 2k�lQ2k�2lkz� � zkk�l �22lQ2l+1kz� � zkl+32l+1Q2l+2kz� � zkl+1	+ 2�22k�2l�2Q2k�2l�1kz� � zkk�l�1+32k�2l�1Q2k�2lkz� � zkk�l	 2lQ2l+2kz� � zkl+1= kz� � zkk �Q2k+1�2k�l22l + 2l+122k�2l�2�+ kz� � zkk+1Q2k+2�2k�l32l+1 + 2l+132k�2l�1�� kz� � zkkQ2k+122k + kz� � zkk+1Q2k+232k+1:iii) Z 10 



 �2�z2L� (t; z)



 dt = Z 10 



 �2�z2 �L� [1℄(t; z); Z 1t L� [2℄(�; z)d��



 dt� 2 Z 10 



 �2�z2L� [1℄(t; z)



 Z 1t kL� [2℄(�; z)kd�dt+ 4 Z 10 



 ��zL� [1℄(t; z)



 Z 1t 



 ��zL� [2℄(�; z)



 d�dt+ 2 Z 10 kL� [1℄(t; z)k Z 1t 



 �2�z2L� [2℄(�; z)



 d�dt(2.1)� 2 Z 10 



 �2�z2L� [1℄(t; z)



 Z 10 kL� [2℄(�; '(t; z))kd�dt+ 4 Z 10 



 ��zL� [1℄(t; z)



 Z 10 



 ��~zL� [2℄(�; ~z)���~z='(t;z)



 



 ��z'(t; z)



 d�dt+ 2 Z 10 kL� [1℄(t; z)k Z 10 



 �2�~z2L� [2℄(�; ~z)���~z='(t;z)



 



 ��z'(t; z)



2 d�dt+ 2 Z 10 kL� [1℄(t; z)k Z 10 



 ��~zL� [2℄(�; ~z)���~z='(t;z)



 



 �2�z2'(t; z)



 d�dt



28 i);ii);iii)� 2 Z 10 



 �2�z2L� [1℄(t; z)



 2k�l�1Q2k�2lkz� � '(t; z)kk�ldt+ 4 Z 10 



 ��zL� [1℄(t; z)



 �22k�2l�2Q2k�2l�1kz� � '(t; z)kk�l�1+32k�2l�1Q2k�2lkz� � '(t; z)kk�l	 



 ��z'(t; z)



 dt+ 2 Z 10 kL� [1℄(t; z)k��(k � l � 1)Q2k�2l�2kz� � '(t; z)kk�l�2+ (32k�2l +Q32k�2l�2)Q2k�2l�1kz� � '(t; z)kk�l�1+(32k�2l+1 +Q32k�2l�1)Q2k�2lkz� � '(t; z)kk�l	 



 ��z'(t; z)



2 dt+ 2 Z 10 kL� [1℄(t; z)k�22k�2l�2Q2k�2l�1kz� � '(t; z)kk�l�1+32k�2l�1Q2k�2lkz� � '(t; z)kk�l	 



 �2�z2'(t; z)



 dt(3.27)�(3.29);i);ii);iii)� 2��(l)Q2lkz� � zkl�1 + (32l+2 +Q32l)Q2l+1kz� � zkl+(32l+3 +Q32l+1)Q2l+2kz� � zkl+1	 2k�l�1Q2k�2lkz� � zkk�l+ 4�22lQ2l+1kz� � zkl + 32l+1Q2l+2kz� � zkl+1	 �� �22k�2l�2Q2k�2l�1kz� � zkk�l�1 + 32k�2l�1Q2k�2lkz� � zkk�l	+ 2l+1Q2l+2kz� � zkl+1 ��(k � l � 1)Q2k�2l�2kz� � zkk�l�2+ (32k�2l +Q32k�2l�2)Q2k�2l�1kz� � zkk�l�1+(32k�2l+1 +Q32k�2l�1)Q2k�2lkz� � zkk�l	 � 1+ 2l+1Q2l+2kz� � zkl+1 �22k�2l�2Q2k�2l�1kz� � zkk�l�1+32k�2l�1Q2k�2lkz� � zkk�l	Q= kz� � zkk�1Q2k �2k�l�(l) + 22k + 2l+1�(k � l � 1)	+ kz� � zkkQ2k+1 �2k�l32l+2 + 22l+232k�2l�1 + 22k�2l32l+1+2l+132k�2l +Q(2k�l32l + 2l+132k�2l�2 + 22k�l�1)	+ kz� � zkk+1Q2k+2 �2k�l32l+3 + 2232k + 2l+132k�2l+1+Q�2k�l32l+1 + 2l+132k�2l�1 + 2l+132k�2l�1	 :But note that2k�l�(l) + 22k + 2l+1�(k � l � 1) � (22k + 2 � 22k if l = 0;22l+22k�l + 22k + 2l+122k�2l if l � 1;� (22k+2 if l = 0;22k+1 + 22k + 22k if l � 1; � (22k+2 if l = 0;22k+2 if l � 1:



29Moreover, 2k�l32l+2 + 22l+232k�2l�1 + 22k�2l32l+1 + 2l+132k�2l� (32k��2=9�k � 9 + 2 + �2=3�k � 3 + 2	 if l = 0;32k+1 + 32k+1 + 2232k�2l�232l+1 + 223l�132k�2l if l � 1;� (32k � 8 if l = 0;32k+1 + 32k+1 + 8 � 32k�1 if l � 1; � (32k+2 if l = 0;32k+2 if l � 1;And �nally, 2k�l32l + 2l+132k�2l�2 + 22k�l�1 � 3 � 32k�1 = 32k;2k�l32l+3 + 2232k + 2l+132k�2l+1 � 3 � 32k+2 = 32k+3;2k�l32l+1 + 2l+132k�2l�1 + 2l+132k�2l�1 � 3 � 32k = 32k+1:This 
on
ludes the proof.5 Proof of Lemma 3.4Proof. LetQ and % > 0 be 
hosen so as to render (3.23){(3.32) true. Note that in 
ondition(3.26) we made the impli
it assumption that Q � � and % < Æ, where � and Æ are as in(2.5). Let � 2 T3k+1. It follows from Lemma 3.3 that all of the integrals R10 L� (t; z)dt,R10 ��zL� (t; z)dt and R10 �2�z2L� (t; z)dt exist and 
onverge absolutely. Therefore,��z Z 10 L� (t; z)dt = Z 10 ��zL� (t; z)dt;�2�z2 Z 10 L��'(t; z)�dt = Z 10 �2�z2L��'(t; z)�dtfor all z 2 B%(z�) n fz�g and for all � 2 T .Lemma 3.3 also implies that there exists a radius � 2 (0; %) su
h that for z 2 B�(z�) nfz�g and k 2 N the following inequalities hold true:Z 10 kL� (t; z)kdt < 4�(k+1); Z 10 



 ��zL� (t; z)



 dt < 4�k; Z 10 



 �2�z2L� (t; z)



 dt < 4�(k�1):(5.1)Let �(z) :=P1k=0(#T3k+1)zk be the generating fun
tion of the sequen
e (#T3k+1)k2N0 . Itfollows from (3.18) that �(z) = 1�p1� 4z2z = 1Xk=0 (2k)!k!(k + 1)!zk:Sin
e this fun
tion is analyti
 in B1=4(0) � C , equations (3.19) and (5.1) imply that theseriesX�2T �� Z 10 L� (t; z)dt; X�2T �� Z 10 ��zL� (t; z)dt; X�2T �� Z 10 �2�z2L� (t; z)dt



30all 
onverge absolutely in B�(z�) n fz�g and equal &(z), & 0(z) and & 00(z) respe
tively. The
laims i), ii) and iii) of the lemma now follow from Lemma 3.3 and the fa
ts that T1 = f�0gand T3 = f�1g are singletons, and that ��0 = 1 and ��1 = 1=2, see (3.16).6 Proof of Lemma 3.5Proof. We already know from Lemma 3.4 that & is twi
e 
ontinuously di�erentiable onB�(z�) n fz�g. In order to prove twofold 
ontinuous di�erentiability at the point z�it suÆ
es to show that limz!z� &(z), limz!z� & 0(z) and limz!z� & 00(z) exist. Lemma 3.4shows that limz!z� &(z) = 0;limz!z� & 0(z) = limz!z� Z 10 ��zL�0(t; z)dt; and (6.1)limz!z� & 00(z) = limz!z��Z 10 �2�z2L�0(t; z)dt + 12 Z 10 �2�z2L�1(t; z)dt� : (6.2)Therefore, all we need to show is that the limits on the right hand sides of (6.1) and (6.2)exist, and that these equal the right hand sides of (3.33) and (3.34).Let us �rst show this for & 0(z�). For all w 2 Z we havelimz!z� & 0(z)[w℄ =� limz!z� Z 10 ��z �~
0('(t; z))[�d('(t; z))℄~
�('(t; z))� [w℄dt=� limz!z� Z 10 ~
00('(t; z)) ��d('(t; z)); ��z'(t; z)[w℄� ~
�('(t; z))dt (6.3)� limz!z� Z 10 ~
0('(t; z)) �� ��z d('(t; z))[w℄� ~
�('(t; z))dt (6.4)� limz!z� Z 10 ~
0('(t; z))[�d('(t; z))℄~
�0('(t; z)) � ��z'[w℄� dt; (6.5)so long as all the limits in (6.3){(6.5) exist. Using the fa
t that ~
 2 C1, we 
an 
omputethese limits as follows:limz!z� 



Z 10 ~
00('(t; z)) ��d('(t; z); ��z'(t; z)[w℄� ~
�('(t; z))dt



� limz!z� Z 10 



~
00('(t; z)) ���; ��z'(t; z)[w℄� ~
�('(t; z))



 kd('(t; z))kdt(2.3);(2.9)� k~
00(z�)[��; �℄~
�(z�)kkwk limz!z� Z 10 kd('(t; z))kdt (2.6)= 0; (6.6)and likewise,limz!z� 



Z 10 ~
0('(t; z))[�d('(t; z))℄~
�0('(t; z)) � ��z'(t; z)[w℄� dt



 = 0:



31Finally, limz!z� Z 10 ~
0('(t; z)) �� ��z d('(t; z))[w℄� ~
�('(t; z))dt(2.3)= ~
0(z�) �� limz!z� Z 10 ��z d('(t; z))[w℄dt� ~
�(z�)(2.15)= �~
0(z�)[�w℄~
�(z�);Therefore, the limit limz!z� & 0(z)[w℄ = ~
0(z�)[�w℄~
�(z�) exists and equation (3.33) holdstrue.Let us now 
onsider & 00(z�). For all v; w 2 Z we havelimz!z� Z 10 �2�z2L�0(t; z)[v;w℄dt=� limz!z� Z 10 �2�z2 �~
0('(t; z))[�d('(t; z))℄~
�('(t; z))� [v; w℄dt=� limz!z� Z 10 ~
000('(t; z)) ��d('(t; z)); ��z'(t; z)[w℄; ��z'(t; z)[v℄� ~
�('(t; z))dt(6.7)� limz!z� Z 10 ~
00('(t; z)) �� ��z d('(t; z))[v℄; ��z'(t; z)[w℄� ~
�('(t; z))dt (6.8)� limz!z� Z 10 ~
00('(t; z)) ��d('(t; z)); �2�z2'(t; z)[w; v℄� ~
�('(t; z))dt (6.9)� limz!z� Z 10 ~
00('(t; z)) ��d('(t; z)); ��z'(t; z)[w℄� ~
�0('(t; z)) � ��z'(t; z)[v℄� dt(6.10)� limz!z� Z 10 ~
00('(t; z)) �� ��z d('(t; z))[w℄; ��z'(t; z)[v℄� ~
�('(t; z))dt (6.11)� limz!z� Z 10 ~
0('(t; z)) �� �2�z2 d('(t; z))[w; v℄� ~
�('(t; z))dt (6.12)� limz!z� Z 10 ~
0('(t; z)) �� ��z d('(t; z))[w℄� ~
�0('(t; z)) � ��z'(t; z)[v℄� dt (6.13)� limz!z� Z 10 ~
00('(t; z)) ��d('(t; z)); ��z'(t; z)[v℄� ~
�0('(t; z)) � ��z'(t; z)[w℄� dt(6.14)� limz!z� Z 10 ~
0('(t; z)) �� ��z d('(t; z))[v℄� ~
�0('(t; z)) � ��z'(t; z)[w℄� dt (6.15)� limz!z� Z 10 ~
0('(t; z))[�d('(t; z))℄~
�00('(t; z)) � ��z'(t; z)[w℄; ��z'(t; z)[v℄� dt(6.16)� limz!z� Z 10 ~
0('(t; z))[�d('(t; z))℄~
�0('(t; z)) � �2�z2'(t; z)[w; v℄� dt; (6.17)



32so long as the limits (6.7){(6.17) exist.Expressions (6.7), (6.10), (6.14) and (6.16) 
an be shown to be equal to zero in mu
hthe same way as (6.6), that is by relying on the smoothness of ~
, and on (2.3) and (2.9).Likewise, (6.9) and (6.17) are equal to zero. The argument is almost identi
al for bothexpressions, and we will show it only for (6.9):limz!z� 



Z 10 ~
00('(t; z)) ��d('(t; z)); �2�z2'(t; z)[w; v℄� ~
�('(t; z))dt



� limz!z� Z 10 



~
00('(t; z)) ���; �2�z2'(t; z)[w; v℄� ~
�('(t; z))



 kd('(t; z))kdt(2.3);(3.29)� k~
00(z�)[��; �℄ Æ ~
�(z�)kQkwkkvk limz!z� Z 10 kd('(t; z))kdt (2.7)= 0:Next, we show that expression (6.12) is equal to zero:limz!z� 



Z 10 ~
0('(t; z)) �� �2�z2 d('(t; z))[w; v℄� ~
�('(t; z))dt



� limz!z� Z 10 k~
0('(t; z))[��℄~
�('(t; z))� ~
0(z�)[��℄~
�(z�)k 



 �2�z2 d('(t; z))[w; v℄



 dt+ limz!z� 



~
0(z�) ���Z 10 �2�z2 d('(t; z))[w; v℄dt�� ~
�(z�)



 (2.3);(2.13);(2.16)= 0:Let us next take the limit in expression (6.8):limz!z� Z 10 ~
00('(t; z)) �� ��z d('(t; z))[v℄; ��z'[w℄� ~
�('(t; z))dt= limz!z� Z 10 � e�2t ~
00('(t; z)) ��� et ��z d('(t; z))[v℄; et ��z'(t; z)[w℄� ~
�('(t; z))dt(2.21)= ~
00(z�)[�v;w℄~
�(z�) Z 10 � e�2t dt = �12 ~
00(z�)[�v;w℄~
�(z�):Similar arguments 
an be applied to expressions (6.11), (6.13) and (6.15), yieldinglimz!z� Z 10 ~
00('(t; z)) �� ��z d('(t; z))[w℄; ��z'(t; z)[v℄� ~
�('(t; z))dt= �12 ~
00(z�)[�w; v℄~
�(z�);limz!z� Z 10 ~
0('(t; z)) �� ��z d('(t; z))[w℄� ~
�0('(t; z)) � ��z'(t; z)[v℄� dt= �12 ~
0(z�)[�w℄~
�0(z�)[v℄;limz!z� Z 10 ~
0('(t; z)) �� ��z d('(t; z))[v℄� ~
�0('(t; z)) � ��z'(t; z)[w℄� dt= �12 ~
0(z�)[�v℄~
�0(z�)[w℄:



33In summary we get that for all v; w 2 Z,limz!z� Z 10 �2�z2L�0(t; z)[w; v℄dt = 12 ~
00(z�)[�v;w℄~
�(z�) + 12 ~
00(z�)[�w; v℄~
�(z�)+ 12 ~
0(z�)[�w℄~
�0(z�)[v℄ + 12 ~
0(z�)[�v℄~
�0(z�)[w℄: (6.18)This is the �rst term in the right-hand side of (6.2), and we have shown that it is equalto the right-hand side of equation (3.34).Let us now show that the se
ond term in the right-hand side of (6.2) is equal to zero:for all v; w 2 Z,limz!z� 12 Z 10 �2�z2L�1(t; z)[w; v℄dt= 12 limz!z� Z 10 �2�z2 h~
0('(t; z))[�d('(t; z))℄~
�('(t; z));Z 1t ~
0('(�; z))[�d('(�; z))℄~
�('(�; z))d�� [w; v℄dt= 12 limz!z� Z 10 � �2�z2 �~
0('(t; z))[�d('(t; z))℄~
�('(t; z))� [w; v℄;Z 1t ~
0('(�; z))[�d('(�; z))℄~
�('(�; z))d�� dt (6.19)+ 12 limz!z� Z 10 h~
0('(t; z))[�d('(t; z))℄~
�('(t; z));Z 1t �2�z2 �~
0('(�; z))[�d('(�; z))℄~
�('(�; z))� [w; v℄d��dt(6.20)
+ 12 limz!z� Z 10 � ��z �~
0('(t; z))[�d('(t; z))℄~
�('(t; z))� [w℄;Z 1t ��z �~
0('(�; z))[�d('(�; z))℄~
�('(�; z))� [v℄d�� dt(6.21)+ 12 limz!z� Z 10 � ��z �~
0('(t; z))[�d('(t; z))℄~
�('(t; z))� [v℄;Z 1t ��z �~
0('(�; z))[�d('(�; z))℄~
�('(�; z))� [w℄d��dt(6.22)



34as long as all these limits exist. Note that for all z suÆ
iently 
lose to z�,



Z 1t ~
0('(�; z))[�d('(�; z))℄~
�('(�; z))d�



� Z 1t k~
0('(�; z))[��℄~
�('(�; z))kkd('(�; z))kd�(3.26);(3.27)= O(1)k~
0(z�)[��℄~
�(z�)k Z 1t kz� � zk e�� d� = O(1)kz� � zk e�t : (6.23)Likewise, still for z 
lose enough to z�,



 �2�z2 �~
0('(t; z))[�d('(t; z))℄~
�('(t; z))�



 = O(1) e� t2 : (6.24)In fa
t, this follows from our analysis of expressions (6.7){(6.11) and (6.13){(6.17), equa-tions (2.6) and (2.10), and from the following revised analysis of expression (6.12):



~
0('(t; z)) �� �2�z2 d('(t; z))[w; v℄� ~
�('(t; z))



= O(1)k~
0(z�)[��℄~
�(z�)k 



 �2�z2 d('(t; z))[w; v℄



(3.30)= O(1)k~
0(z�)[��℄~
�(z�)kkwkkvk e� t2 :(6.23) and (6.24) imply that expression (6.19) is zero, be
ause its norm 
an be boundedfrom above bylimz!z� Z 10 



 �2�z2 �~
0('(t; z))[�d('(t; z))℄~
�('(t; z))� [w; v℄



� 



Z 1t ~
0('(�; z))[�d('(�; z))℄~
�('(�; z))d�



 dt(6.24);(6.23)� limz!z�O(1)kz � z�k Z 10 e� 3t2 dt = 0;Likewise, expression (6.20) equals zero, be
ause its norm 
an be bounded similarly.Finally, it remains to analyze expressions (6.21) and (6.22). Note that

et ��z �~
0('(t; z))[�d('(t; z))℄~
�('(t; z))� [w℄ + ~
0(z�)[�w℄~
�(z�)



� et 



~
00('(t; z)) ��d('(t; z)); ��z'(t; z)[w℄� ~
�('(t; z))



+ 



~
0('(t; z)) �� et ��z d('(t; z))[w℄� ~
�('(t; z))� ~
0(z�) �� et ��z d('(t; z))[w℄� ~
�(z�)



+ k~
0(z�)[��℄~
�(z�)k 



et ��z d('(t; z))[w℄ + w



+ et 



~
0('(t; z))[�d('(t; z))℄~
�0('(t; z)) � ��z'(t; z)[w℄�



 (6.25)



35(2.6);(2.9);2:21� O(kz � z�k) e� t2 kwk+ k~
0('(t; z))[��℄~
�('(t; z))� ~
0(z�)[��℄~
�(z�)k 



et ��z d('(t; z))[w℄



+ k~
0(z�)[��℄~
�(z�)kO(kz � z�k) +O(kz � z�k) e� t2 kwk(3.27);(2.21)= O(kz � z�k): (6.26)Equation (6.26) implies that��z �~
0('(t; z))[�d('(t; z))℄~
�('(t; z))� [w℄ = � e�t ~
0(z�)[�w℄~
�(z�) + e�tO(kz � z�k):(6.27)This �nally allows us to 
ompute expression (6.21):limz!z� Z 10 � ��z �~
0('(t; z))[�d('(t; z))℄~
�('(t; z))� [w℄ ;Z 1t ��z �~
0('(�; z))[�d('(�; z))℄~
�('(�; z))� [v℄d�� dt(6.27)= limz!z� Z 10 h� e�t ~
0(z�)[�w℄~
�(z�) + e�tO(kz � z�k) ;Z 1t � e�� ~
0(z�)[�v℄~
�(z�) + e�� O(kz � z�k)d�� dt= limz!z� h~
0(z�)[�w℄~
�(z�); ~
0(z�)[�v℄~
�(z�)i Z 10 e�t Z 1t e�� d�dt+ limz!z�O(kz � z�k)= 12 h~
0(z�)[�w℄~
�(z�); ~
0(z�)[�v℄~
�(z�)i :This implies of 
ourse that (6.22) equals12 h~
0(z�)[�v℄~
�(z�); ~
0(z�)[�w℄~
�(z�)i = � 12 h~
0(z�)[�w℄~
�(z�); ~
0(z�)[�v℄~
�(z�)i :Expressions (6.21) and (6.22) thus 
an
el ea
h other out, and we havelimz!z� 12 Z 10 �2�z2L�1(t; z)[w; v℄dt = 0: (6.28)Substituting (6.18) and (6.28) in (6.2) we �nd that limz!z� & 00(z) exists and (3.34) holdstrue.
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