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1 Introduction

In recent years linear optimization over symmetric cones, or self-scaled programming,
has become the accepted standard framework to treat linear, quadratic and semidefinite
programming in a unified framework. This theory originated in the work of Nesterov—
Todd [29, 30], Giiler [9, 10], and Faybusovich [7, 8|.

A powerful and popular family of methods for solving such problems numerically con-
sists of primal-dual interior point methods (IPMs) based on the Nesterov—Todd (NT)
search direction [29, 30]. As we will show below, the NT direction is defined in terms of a
pseudo Newton system that arises from the Karush-Kuhn-Tucker (KKT) conditions of a
perturbed problem. At first sight, this derivation seems like an ad-hoc fix to a difficulty
that occurs because of a mismatch in the dimensions of the preimage and image spaces of
these equations. Other, more straightforward approaches exist to overcome this problem,
making the NT approach seem unnecessarily complicated. However, a more in-depth look
reveals that the NT framework has compelling properties that further motivate it. Much
of the intrinsic beauty of this approach is due to the fact that the so-called scaling point
(see explanations below) relates it to the group action on symmetric cones, which are
a particular type of homogeneous spaces. The NT approach is designed to be invariant
under this group action which allows for the construction of algorithms that are invari-
ant under exchanging an input problem with its dual (primal-dual symmetry) and under
coordinate change (scale-invariance). Such methods are unaffected by special types of ill-
conditioning associated with representing the problem geometry in a coordinate system.

In this paper we explore another interesting property of the N'T approach: its relation to
so-called weighted analytic centers and a transformation that is sometimes called the target
map. This construction was first analyzed in the linear programming (LP) literature by
Kojima-Misuno—Yoshise [22] who proved that the target map is a diffeomorphism between
the primal-dual strictly feasible domain and the strictly positive orthant, and that this
map rectifies the primal-dual central path, an object that plays an important role in
guiding interior point methods to an optimal solution. The Kojima construction has been
extremely useful in the LP literature, and many attempts have been made at generalizing
it to other convex optimization problems, see further details below. The main result of this
article shows that the N'T-direction arises as the Newton direction defined in terms of a
generalization of this construction to arbitrary symmetric cones, see Theorem 3.7, Section
3. Apart from linking the NT and target frameworks, Theorem 3.7 has the immediate
implication that the N'T process converges at a quadratic rate in a neighborhood of its
attractor, and it contributes new techniques to the IPM theory by employing Magnus
series and orthogonal flows as essential analytic tools in its proof. As a prerequisite for
these arguments one needs a thorough variational understanding of the N'T process: if the
process is started at two nearby points, how far will the iterates deviate from one another
after a fixed number of iterations, and how will this affect the direction from where the
fixed point is approached? A wealth of related questions are answered in Section 2 which
makes an independent contribution to the understanding of the N'T process.



In our exposition we consider the following pair of convex programs in conic duality

(P) inf (x; so) (D) inf (xg; s) (1.1)
z€(L+z)NK s € (L* + sp) N K*.

Here E is a finite dimensional Euclidean space equipped with an inner product (-;-), L is
a linear subspace of E, and L' is its orthogonal complement. K is a convex cone which
is open and has a pointed closure K, that is, K does not contain any whole lines. The
points 7y € K and s, € K* are fixed. The dual cone

K':={sc E: (x;5) >0, VorecK} (1.2)

is also convex, open and with pointed closure K*. Note that the definition of K* depends
on the choice of the inner product (-;-) on E.

In the problems we consider, K belongs to a special family of cones which we shall now
define: The automorphism group of an open convex cone K is the set of nonsingular linear
maps A : E — E that map K onto K, that is, Aut(K) := {A € GL(E) : A(K) = K}.
The cone K is called homogeneous if Aut(K) acts transitively on K, that is, given arbi-
trary points x,y € K, there exists a map A € Aut(K) such that Az = y. K is called
self-dual when the inner product (-;-) on E can be chosen so that K* = K, see (1.2). K
is called a symmetric cone if it is both homogeneous and self-dual. In the sequel, we will
always assume that F is endowed with an inner product under which K = K*. Sym-
metric cones arise in Jordan algebra theory as follows: a Euclidean Jordan algebra is a
finite-dimensional real commutative algebra F endowed with a weakly associative multi-
plication with identity element e and an associative inner product. The set of invertible
squares of a Fuclidean Jordan algebra is a symmetric cone, and every symmetric cone
can be represented in this form. Euclidean Jordan algebras and, by extension, symmetric
cones have been algebraically classified, see Kocher [21] and the references therein. Ev-
ery symmetric cone has a unique decomposition into a direct sum of elementary building
blocks, so-called irreducible symmetric cones, of which there exist only five types. For
a complete account of this theory, see Faraut-Koranyi [6]. Three examples of symmet-
ric cones are of particular interest to the optimization community: the positive orthant
K =R}, which is in fact the direct sum of n irreducible symmetric cones consisting of
open half-lines, the cone K = S™"(R),, of n X n symmetric positive definite matrices
with real coefficients, and the Lorentz cone K = {(7) € R*™' : 7 > [|z||»}, which is also
called the second-order cone. The conic optimization problems associated with these cones
are linear programming, semidefinite programming and second-order cone programming
respectively. Considering more general symmetric cones, one can treat linear optimiza-
tion problems with mixed linear, semidefinite and convex quadratic constraints in a single
unified framework, see e.g. Todd-Toh-Tiitiinci [36], Alizadeh—Schmieta [2] or Sturm [35].

In [29], Nesterov and Todd defined the concept of self-scaled barriers, a special class of
self-concordant barrier functions whose Hessians form a transitive subset of the automor-
phism group of their domain of definition. Self-scaled barriers are well understood: Giiler
[9] and Nesterov—Todd [29] showed that K is the domain of definition of a self-scaled
barrier if and only if K is a symmetric cone. Recently, Hauser [15, 13, 14], Schmieta



[33], Giiler [11], Hauser—Giiler [16] and Hauser-Lim [17] developed a classification the-
ory showing that all self-scaled barriers defined on a symmetric cone with irreducible

decomposition K = K; @ - - @ K, are of the form
F:o,®--®x,— 00+Zcz~ ln/ e~ (@isi) gg, (1.3)

where ¢; > 1 (i = 1,...,p). The dual barrier is defined on K* as the Legendre-Fenchel
transform Fy : s — max{—(z;s) — F(z) : * € K}. Under the self-dual embedding
K* < K it is then the case that Fy(s) = F(z) + ¢, where c is a constant. See [16] for a
complete survey of self-scaled barriers and symmetric cones.

Using the barrier function F', most primal-dual interior point methods attack a sequence
of unconstrained subproblems

(P,) inf puF(x) + (z; so) (D,) inf pFy(s) + (xo;s) (1.4)
xE(L+x0)ﬂK SE(LJ'—FSU)ﬂKﬁ,

for a monotone decreasing sequence of barrier parameter values (ug)y — 0+. Under the
above made assumptions, (P,) and (D,) have unique optimal solutions for all p > 0.
The KKT conditions are necessary and sufficient optimality conditions for these strictly
convex problems, because the linear independence constraint qualification holds, see e.g.
Borwein-Lewis [3]. The KKT conditions for (P,) are uF'(z) +so+ 2 =0, z € L+ and
x € L+ xg. Moreover, F(z) < oo implies that € K. Setting s = z + s, we get

s = —uF'(z), s € Lt + s, r € L+ xo, (1.5)

and it can be shown that —uF'(z) € K* and —pFj(—pF'(z)) = x, see [29]. Therefore,
the first equation in (1.5) can be reformulated as & = —puF}(s) and implies that s € K*.
This shows that the KKT conditions for (P,) and (D,) are equivalent, a property that is
referred to as primal-dual symmetry. Since both problems are strictly convex, the solution
pair (z,,s,) € K x K is unique. The path p + (x,,s,) is called the primal-dual central
path of (1.1). The paradigm of interior point methods is to follow the central path to the
optimal solution of (1.1) that lies at its endpoint.
In the LP case (1.5) takes the form

s =z, Ax = b, s=c— Ay, (1.6)

where A is a matrix with nullspace L, b and ¢ are vectors, (x,s,y) are the vectors of
unknowns, z~! is the componentwise inverse of z, and s > 0, £ > 0 componentwise.
Writing X = diag(z) for the diagonal matrix with X;; = z;, and e = (1,...,1)" for the
vector of ones, the first equation in (1.6) can be rewritten as v(z, s) = pe, where y(z, s) =
Xs. The definition of v is primal-dual symmetric, because Xs = Sz for S = diag(s). The
linearization of y(z, s) = pe yields the Newton system Sd, + Xds; = pe — Xs, Ad, =0,
ds = —A"d,, or, expressed in terms of v,

9] 0 N
%7(% s)[dz] + %*y(x, s)|ds] = pe — y(x, s), ds € L™, d, € L. (1.7)



In the main result of this article we show that the operator fields X and S and, by
extension, the target map ~ can be generalized so that that the N'T direction is defined as
the target direction obtained as the solution of the Newton equation (1.7), see Theorem 3.7.
This result yields a new motivation for the NT direction as a special case of a more general
family of search directions with compelling properties described in the next paragraph.
For a classical motivation of the NT approach see the last part of this introduction.

In the case of linear programming (1.7) defines the standard search direction for
primal-dual TPMs. Kojima—Misuno—Yoshise [22] and Kojima—Megiddo-Noma—Yoshise
[23] showed that 7 is a diffeomorphism that transforms the primal-dual strictly feasible
domain

F(PD):={zcR": 2>0,Ar =b} x {s€R": s>0,Iy e R" s.t. ATy+5=rc}

into the positive orthant R}, := {v € R* : v > 0}. The primal-dual central path is
rectified in the process, because v(z,,s,) = pe. This makes it possible to monitor the
progress of IPMs in the image space of 7, which is often called V-space. The paradigm
of following the central path ~~! ({ue o> 0}) — also called the set of analytic cen-
ters — can therefore be relaxed and replaced by the new paradigm of following any ray
vy *({pv : p > 0}) where v € R}, . Points along such rays are called weighted analytic
centers. It is possible to follow such rays by computing search directions based on the
Newton equation =v(z, s)[d,] + 27(z, s)[ds] = pv—~(z, s). The V-space approach based
on weighted analytic centers offers additional flexibility in the design of algorithms and
conceptual simplicity in their analysis. This framework has therefore attracted a lot of
interest in the IPM community. Several competing notions of V-space have been proposed
both for LP and SDP, notions that are conceptually related but not equivalent: Jansen—
Roos-Terlaky-Vial [20] and Roos-Terlaky-Vial [32] used the transformation v2 defined
by the componentwise square-root of the v defined above. They called 7% the target map
and developed a theory of target-following algorithms for linear programming. By slight
abuse of language we will call any V-space transformation a target map in the sequel.
Monteiro-Pang [27], Sturm-Zhang [34], Monteiro-Zanjacomo [26], and Burer-Monteiro
[4] all proposed V-space approaches for SDP that are based on slightly different target
maps.

In this article, we use a V-space generalization that was independently developed both
by Tungel [39, 40] and Hauser [15], apart from the difference that the latter approach
includes a differentiable structure which is needed to define an associated target map.
This leads to the only generalization of the Kojima LP target map that inherits all of
its essential properties. Let us now briefly describe this construction. The primal-dual
strictly feasible domain of the general self-scaled programming problem pair (1.1) is given
as

F(PD) := (KN (L+m)) x (K*N(L"+s). (1.8)

Although the base space E is endowed with an inner product, we find it sometimes
conceptually preferable to distinguish between E and its dual E¥ and think of this inner
product as a bilinear form (;;-) : E x E* — R. Let V be a Euclidean space with



inner product (+;-) and dimension dim V' = dim E. Let ey, € V be a fixed vector with
lev|ls = v2, where v := sup{(F"(z)"![-F'(2)]; —F'(z)) : © € K} is the complexity
parameter of the self-scaled barrier F, see [28] or [31]. The bilinear products (-;-) and
(+;+) define a notion of adjoint p* : V — E* of a linear operator ¢ : E — V via the
usual requirement that (x;¢*(v)) = (p(z);v) for all (z,v) € E x V. Analogously, a
notion of adjoint 1)* exists for linear operators ¢ : E* — V. The gist in generalizing
is to find appropriate generalizations of the operators X and S, defined as X = diag(x),
S = diag(s) in the LP case. If we aim at preserving all the essential properties of v from
the LP framework, then the conditions we need to impose on X and S follow naturally
from the NT equations (1.17) introduced further below: we must find sufficiently smooth
operator fields X : F(PD) — Iso(E*,V) and S : F(PD) — Iso(E, V), such that for each
(z,s) € F(PD),

X' (x,8) 0 X(x,5) F" 1()
X(z,s) o F"(w(z,s))

and X (z,s)[— ( )]

(1.9)

The point w(x,s) that appears in the second equation is the scaling point of z and s:
Nesterov-Todd [29] showed that whenever K is a symmetric cone and F' a self-scaled
barrier for K then for all # € K and s € K¥ there exists a unique point w(x, s) € K such
that F"(w(z,s))[x] = s. Our definition of X and S is is primal-dual symmetric, because
equations (1.9) are equivalent to their dual analogues. The following is an example of
such a pair of operator fields: we endow E with an inner product under which K is
self-dual: F ~ E' K = K* This implies that there exists a unique e € K such that
F"(e) =1, and this point also satisfies ||e|ls = 2, see [29]. Let us choose V = E, ey = e,
X(z,s) = F""Y(w(e,—F'(x)) and S(z,s) = X(z,s) o F"(w(z, s)). Then (X,S) is a pair
of operator fields that satisfy conditions (1.9), see [39, 15]. Note that X represents a
square-root of F"~1(x), and S a square-root of Fu”_l(s), with respect to appropriately
chosen coordinate systems. It can be shown that operator fields X and S that satisfy the
conditions (1.9) can be constructed so that X depends only on the primal variables x and
S only on the dual variables s if and only if K is the interior of a positive orthant, that
is, only when (1.1) corresponds to the linear programming problem, see [15]. Thus, the
general theory is necessarily more complicated than the LP case. Nevertheless, any pair
of operator fields (X, S) that satisfy the conditions (1.9) defines a generalized target map
via the assignment

v: F(PD) =V,

(z,5) = X(z,5)[s] = S(z, s)[z]. (1.10)

This generalized target map inherits all properties of its LP version. This includes the
rectification of the central path (note that substitution of (1.5) into the last equation
of (1.9) shows that (z,,s,) = pey) and the transformation of the primal-dual strictly
feasible domain into a cone isomorphic to K. The only weakening that can occur is that
v may be one-to-one only in a neighborhood of the central path, see Theorem 4.3.3, [15].

Let us conclude this introduction by presenting a classical motivation of the NT ap-
proach explained from a modern perspective. Recall that any self-scaled barrier F' is of



the form (1.3). It is then the case that —puF’(z) = p@?_, c;r; ', or in the particular case
where ¢; = 1 for all 4, —pF'(z) = puz!, where =1 denotes the Jordan algebra inverse of
x. The canonical way of solving the system of nonlinear equations (1.5) would appear to
be as follows: a multiplication of the first equation with €?_, ¢;x;, using Jordan algebra

multiplication, transforms the equations into primal-dual symmetric form:
P
@cixisi = ue, se Lt + s, x € L+ x, (1.11)
i=1

Here z;s; is the Jordan algebra product of x; and s;, and hence this is a member of E. One
can then apply a damped Newton method to (1.11) and enforce the constraints = € K,
s € K* explicitly using line searches. Indeed, the approach we have just described leads to
a family of algorithms which was first analyzed by Alizadeh-Haeberly-Overton [1] in the
case of semidefinite programming, although their motivation for the method was different,
see the explanations following (1.13) below. The generalization to symmetric cones and
the interpretation of the method in the Jordan algebra setting is due to Faybusovich [8].
The work of Nesterov and Todd [29, 30], though later leading to the discovery of the
connections between IPMs and Jordan algebras, was originally motivated by an earlier
interpretation of the system (1.5): in the case of semidefinite programming (SDP) where
K is the cone of n x n symmetric positive definite matrices S™*"(R),, Equation (1.5)
takes the form

S=pX"",  tr(A(X-Xo) =0, (i=1....m), S=S-> yd, (112)
i=1

where S, X € S"*"(R),,,y € R™, Sy, Xy € S"*"(R) . are fixed positive definite symmet-
ric matrices, and where A; € S"*"(R) (i = 1,...,m) are n X n symmetric matrices. X, S,
and y are the unknown variables. In this case we have L = {X € S"*"(R) : tr(A4;X) =0}
and Lt = span{4; : i = 1,...,m}. S"*(R) is a Euclidean Jordan algebra when en-
dowed with the multiplication (X, S) + (XS 4+ SX). Thus, if the term X" in the first
equation of (1.12) is interpreted as the Jordan algebra inverse of X, then Jordan algebra
multiplication with X yields the AHO equation

1
S(XS+8X) = ul. (1.13)

However, X! is also the inverse of X under standard matrix multiplication. Matrix
multiplication of the first equation in (1.12) by X then yields XS = pI. Note that XS is
in general not symmetric. Therefore, the image space of this system is higher dimensional
than the preimage space, which makes a direct application of Newton’s method impossible.
A wealth of fixes to this problem have been proposed. One solution is to apply the Gauss—
Newton method instead of Newton’s, see Kruk et.al. [24]. Most other solutions are based
on symmetrizing the equation XS = 1, see Todd [38] for a survey. Equation (1.13) and
the AHO approach were also originally motivated in this vein, [1].

One of the drawbacks of symmetrization is that the resulting search directions are
not scale-invariant. Let us consider the AHO method as an example. For any fixed



W e S"™™(R), ,, one can reformulate the primal SDP problem equivalently as follows:

(P) mintr(X5Sp) (P) mintr(XS)
st. tr(4,X)=0b;, (i=1,...,m) & st tr(AX) =0, (i=1,...,m)
X =0 X =0,

where X = W=IXW~! Sy = WS, W, A, = WA,W and b; = b;. The dual problem has
a corresponding reformulation with new dual variables S = WSW, 9; = y;. The prob-
lem pairs ((P), (D)) and ((]5), (lA))) represent the same geometric problem represented in
two different coordinate systems. A coordinate independent (scale-invariant) algorithm
would move along sequences of points that correspond to one another via the same co-
ordinate transformation when running on the problem inputs ((P), (D)) and ((15), (D))
respectively. But for this to be true, any search direction used by the algorithm would
have to be scale-invariant too. However, the AHO equation for the rescaled variables
(XS + SX)/2 = ul is equivalent to XS + W2SXW 2 = 241 and generally leads to
different Newton updates than (1.13). Other symmetrizations of XS = u1I lead to the
same drawback. In order to overcome this defect, Nesterov and Todd took a different
approach to symmetrization: multiplying the linearization of XS = uI with X~!, one
gets

As+ X '"AxS=puX1-8. (1.14)
Note that Z — X175 maps X to S. But likewise does the map Z — W=1ZW =1, where
W = X'"2(X2eX1/2) 1212 (1.15)

and this map takes S™*"(R) to S™*"(R), whereas the map Z — X 'ZS does not. Thus,
Z — W='ZW="is a symmetrized version of Z — X~!'ZS. Replacing therefore (1.14) by
Ag+WIAxW=! = uX~! — S and rewriting this equation in the form

Ag + F"(W)[Ax] = —pF'(X) — 8, (1.16)

where F'(Z) = —Indet Z is the ordinary logarithmic barrier function for the cone of
positive definite symmetric matrices, one can check that the resulting search directions
Ax,Ag are scale-invariant. This approach can be used on an arbitrary symmetric cone K
endowed with an arbitrary self-scaled barrier F. Indeed, Nesterov—Todd [29] showed that
every pair (z,s) € K x K* defines a unique scaling point w € K such that s = F"(w)[x].
The NT direction (d,, ds) is then defined as the solution to the generalization of equation
(1.16):

F'"(w)d, +dy = —pF'(x) —s, d,eL*,  d,€L. (1.17)
Various IPMs based on this search direction have been analyzed by Nesterov—Todd [29, 30],

and variants of this method have been efficiently implemented by Toh—Todd-Tiitiincii [37]
and by Sturm [35].



10

2 A Variational Analysis of the Nesterov—Todd Flow

We will now develop a variational analysis of the N'T direction field and the flow associated
with it. Let X and S be fixed operator fields that satisfy the conditions of (1.9). The
associated target map ~y (see (1.10)) will serve as an essential tool in our analysis.

We start by placing the primal and dual problems from (1.1) and (1.4) in the setting of
a single space: consider the vector space Z := L @ L+, which has the same dimension as
E and which we call the primal-dual domain. Let us consider the projections 7, : Z7 — L
and 7,0 = 1 — 7, of Z onto L and L+ along L+ and L respectively, where ¢ denotes
the identity mapping. Since K is self-dual, there exists an element e € K such that
(F’”(e))_1 =1 is the canonical embedding E* < E, see [29]. Therefore, we can endow 7
with the inner product

(215 29) i= (mp2e; F(e)mr21) + (F" e)mpiz0; mpizy).

Z thereby becomes a Euclidean space in which L and L* are mutually orthogonal. The
following coordinate transformation allows us to parametrize F(PD) (see (1.8)) with
variables in Z:

z(z) = xo + T2, s(z) = sp + Lz,
2(x,s) = (x — x0) ® (s — o).

Since both X and S are defined on F(PD), we can write

X(2) =X (2(2),5(2)),  S(2) = 5(x(2),5(2)), 1(2) = X (2(2), 5(2)) [s(2)]

for z € F(PD). It can easily be established that z — F(z(2)) + Fy(s(2)) is a v-self-
concordant barrier for the convex open set F(PD), where v is the common complexity
parameter of F' and Fj, see [28] or [31]. Despite its quadratic appearance, the function
gap(z) := (x(2);s(z)) is a linear functional on Z. Indeed, (z(z) — x¢;s(z) — so) = 0, so
gap(z) = (mpz; 80) + (xo; mpr2) + (205 80). This is the so-called duality gap of x(z) and
s(z) and has the important property that

(PD) inf{gap(z) : z € F(PD)}  and
(PD,)  min{gap(z) + p (F(2(2)) + Fy(s(2)))}

are optimization problems that are equivalent to (1.1) and (1.4) respectively, see e.g. [15].
Thus, the primal-dual central path is the set of minimizers z, of (PD,) for all ;1 > 0:
z(z,) = %, s(z,) = s,. The paradigm of the primal-dual framework is to reduce the
duality gap to zero while maintaining feasibility.

We are now going to present a series of results which are proven in [15]. These are
technical arguments that typically rely on propagating bounds via ODEs especially en-
gineered to that aim. Though most of the properties described below are unsurprising
in the sense that one would expect these from a good search direction, these results are
new and not straightforward to prove, because the N'T direction is implicitly defined with
respect to axiomatic objects. All of these results play important roles in Section 3.
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Let us fix a value p > 0 of the barrier parameter, and let us consider the corresponding
NT direction which is defined as the solution (d,,ds) to the system (1.17). Using our
parameterization in Z, we can define vector fields

dy(2) = do(2(2),5(2)),  di(2) = ds(2(2), 5(2)),
d(z) = (do(2(2), 5(2)), ds(2(2), 5(2))) ,

which are all in C*(F(PD), Z), see [15]. The standard existence and uniqueness results
for solutions or ordinary differential equation imply that d(z) is the phase velocity field
of a C*° maximal local flow ¢ : W — F(PD), where W C R x F(PD) is an open set
containing {0} x F(PD), and I, := {t : (t,z) € W} is the time interval over which the
flux line through z is defined, see any textbook on differential topology, e.g., [5]. ¢ and d
are then related as follows:

) =d(z), Vze F(PD),
©0(0,2) = z, Vz e F(PD), (2.1)
)

So(tl + t27 zZ)= So(t% So(tla Z)),
Vze F(PD),t,ty € Rs.t. (t1 +to, 2), (t1,2) € W.

Let us now investigate the global behaviour of the NT flow. The distance of ¢(¢, 2)
from z, is best measured in the image under 7. Recall that v(z,) = pey. For all
z € F(PD)\ {z,} and for all t € I, we have

ey — v (o(t, 2))|| = [[nevy —v(2)|le”, (2:2)

see Lemma 5.2.1 of [15]. The flux lines of ¢ extend to the point z, when moving in
the positive time direction, and to the boundary of F(PD) or infinity when moving in
negative time direction. In fact, for all z € F(PD) \ {z,} there exists [, € (—o0,0) such
that I, = (,,+00), and

Jim ot 2) = 2, (2.3)
lim (gap(e(t, ) + 5 (F((p(t, 2)) + Fy(s(e(t, ) = +oo, (2.4)

see Lemma 5.2.2 of [15]. If z is close enough to the central path, then the distance formula
(2.2) provides an estimate for the corresponding distance in the preimage space: there
exist real numbers 6 > 0 and o > 1 such that for all z € Bjs(z,) N F(PD) \ {2,} and
t €10, +00),

oz —zlle” <llzw — o(t, 2)ll < ollzu — zlle ™, (2.5)

see Lemma 5.2.3 of [15].
Next, we investigate the flux line ¢(¢, z) through 2 € F(PD)\{%,}. We are particularly
interested in the effect caused at a later time when z is perturbed at time 0. First, we
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note that the integral f0+°° d (p(t, 2)) dt is absolutely convergent for all z € F(PD)\ {z,},
that is, the flux lines of ¢ are of bounded variation. This follows from Lemma 5.2.5 of
[15], which shows that for z € F(PD) \ {z,},

ld((t DI < O (|2, — 2[) e (2.6)

We derive from this inequality that

/0 Oolld(w(t,Z))Hdt:0(||Zy—Z||)- (2.7)

Lemma 5.2.6 of [15] then shows that the derivative of d is approximately the negative
identity mapping in a neighborhood of z,:

d(z) = =140z, — 2]) - (2.8)

The first order growth of perturbations in the initial value z can be described by the
finite-time Lyapunov exponents \; of the linearized flow around the orbit ¢(¢, z). In the
case of the NT flow, all of these exponents satisfy \; = —1+ O(]|z, — 2||), as follows from
the following inequality proven in Lemma 5.2.7 of [15]:

||U|| e—t(l-l-\O(qu—ZH)D < Haﬁ(’p(t’ Z) [’U] < ||’U|| e—t(1—|0(||z#—z\|)|)‘ (29)
V4

Lemma 5.2.7 of [15] also shows that

| gzdtett, 0t

= (14O~ ) | 57,0 (210

Together with (2.9) this implies that the integral f0+°° Zd (¢p(t, z)) [-]dt is absolutely con-
vergent: for all t > 0 and z € F(PD) \ {2},

+o0
I
The second order variations are characterized in Lemma 5.2.8 of [15], which shows that
for all e > 0 and z € F(PD) \ {2,} close enough to z,,

;z (o(t, 2)) ]Hdt—1+0(||zu—z||) (2.11)

9° " 1+4+¢ .
| amtote. D) < 2ol e e, 2.12)
This equation implies that for all ¢t > 0 and z € F(PD) \ {2},
82
/0 ‘ 524 (#lt, ))[-;-]Hdtg 2(|d" ()| (1 + Oz, — 211)) (2.13)

and

Ha Sp(t, 2)[v; w]H = e~t1=0Uz=2D) O (1), (2.14)
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Finally, Lemma 5.2.9 of [15] shows that

/0 o %d((p(t, ) [dt = -1, (2.15)

/0 N 88—;61(90(75, 2)) [+ -]dt = 0. (2.16)

We conclude our variational analysis by investigating the limiting behaviour of the
directions from which flux lines approach z,. Lemma 5.2.10 of [15] shows that for all
z € F(PD)\ {z,}, the corresponding flux line has a limiting direction, because

lim e'd (o(t, 2)) (2.17)

t—400

exists. Moreover, Lemma 5.2.11 of [15] shows that

lim e (d(¢(t, 2)) — (2, — p(t, 2))) = 0. (2.18)

t—+4o00

As one would expect, the NT flow is strictly contracting in a neighborhood of z,. In fact,
there exists a radius 6 > 0 such that for all z € By (2,),

lzu =@t 2 <llzu =2l VE>0, (2.19)

see Lemma 5.2.12 of [15]. And finally, Lemmas 5.2.13 and 5.2.14 of [15] show that for all
z € F(PD)\ {z,}, the limit

tlg-noo et% (e"d (p(t, 2))) (2.20)

exists, and that

aﬁd (p(t,2)) =e " (=2 + O (llzu = 21))
. (2.21)

%@(t, z) = e*t (2 + 0 (qu - ZH)) :

3 Nesterov-Todd Directions in the Target Frame-
work

In this section we will continue to use the primal-dual framework introduced in Section
2 and analyze the NT direction defined by a fixed point z, on the primal-dual central
path, that is, we consider the vector field d(z) : F(PD) — Z that solves the system of
equations

F" ((w(@(2), 5(2))) mpd(2) + 7ped(z) = —pF" (2(2)) — s(2), (3.1)
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c.f. (1.17). Our goal is to construct a pair of C? operator fields (X, S) that satisfy the
conditions (1.9), and such that the associated target map v (see (1.10)) has the property
that the N'T direction satisfies the Newton equation

7' (2)d(2) = pev —(2) (3:2)

for all z € F(PD). In other words, we will prove that the NT direction is a special case
of a target direction, see Theorem 3.7.

Before we start the construction of (X,S), let us further explore the difference be-
tween the systems (3.1) and (3.2). Multiplying (3.1) by X(z), we get S(z)m.d(z) +
X (2)rp1d(2) = pey — y(2), which can be written as

M(z)d(z) = pev —(2), (3:3)

where M € C?(F(PD),L(Z,V)) is the operator field M (2) : d — S(2)7pd + X (2)7.d.

On the other hand, for all z € F(PD), and for fixed orthogonal bases on E ~ E¥
and V, a linear operator F"~2(z(z)) : E* — V is well-defined with respect to these
bases by the unique positive definite symmetric square-root of the mzlmtrix that represents
F"=Y(z(2)) : E¥ — E with respect to the basis on E. Likewise, Fullﬁ(s(z)) € L(E,V) is
well-defined. Tt can then be shown (see Chapter 3 of [15]) that there exist C? operator
fields Q,, Qs : F(PD) — O(V) such that

1
1 (3.4)

and then (1.9) implies that

0u(2) = () F" 2 (2(2) F" (w(a(2), 5(2)) ™ (5(2)).

In (3.4), O(V) denotes the set of orthogonal transformations of V', endowed with the
canonical differentiable structure that turns it into a differentiable manifold and a topo-
logical group. This is an example of a Lie group (see e.g. [18]), and we call it the orthogonal
group of V. Now, applying the product rule in the computation of 7'(z) and splitting the
left hand side of (3.2) into parts, we get

M(2)d(z) + R(z)d(z) = pey — v(2), (3.5)
where R € C?(F(PD),L(Z,V)) is the operator field
R(z) : d = (2 (2)[mrd] o () + 5 (2) [rpd] 0 2 (2)) 7(2).

Therefore, the NT equation (3.3) and the target equation (3.5) differ only in the term
R(z)d(z), and for (3.2) to hold we need to construct the operator fields (X, S) such that

R(z)d(z) = 0. (3.6)

Proposition 4.1.9, [15] shows that for all z € JF(PD), M(z) is nonsingular,
dim(ker R(z)) > 2 and im R(z) C span{ey,y(2)}*. Moreover, if  lies on the central path,
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then R(z) = 0. Since R(z) has a nontrivial kernel, the requirement (3.6) is not a priori
impossible to satisfy. Ideally, we would like to construct (X, S) such that d(z) € ker R(z)
for all z € F(PD) and for the NT direction fields arising from all possible values of u > 0
simultaneously. A necessary and sufficient condition for this to be true would be that this
requirement can be satisfied for only two different values of ;1 simultaneously (see [15]).
Again, this requirement is not a priori impossible to satisfy because dim(ker R(z)) > 2.
However, the difficulties of proving that such a pair of operator fields (X, S) exists seem
rather extraordinary and we restrict our analysis to the NT field corresponding to a fixed
value of > 0 throughout.

Equations (1.9) and (3.4) show that any two pairs of operator fields (X, S) and (X,
must be related to each other via a C? operator field Q* : F(PD) — O(V,ey) := {6
O(V) : 0*ey = ey} as follows:

)
c

X(2) =Q%(2)X(2), S(z) = Q" (2)S(2).

This means that for our construction of a pair of operator fields (X, S) that satisfy the
requirement (3.6), we can start with an arbitrary known pair of operator fields (X, S)
that satisfy the conditions (1.9), e.g., the example of Section 1 for which X,S € C,
and then we must construct a C? operator field Q* : F(PD) — O(V,ey) such that
(X,S) = (0 o X,0Q* 0 S) satisfies (3.6). We adopt the adjoint notation Q* for later
convenience. Let us denote the operator fields R, 2, and €2 associated with (X, S) and
(X, S) respectively by R(z) and R(z), Q,(2) and Q.(2), Q,(2) and Q,(2) respectively.
Likewise, let us write v(z) and (z) respectively for the associated target map. Then

Qe(2) = Q*(2)Q(2), Qs(z) = Q*(2)Qs(2), and
R(G)A(:)) = Q) + () (R med ) + Dz d () 7).
Therefore, the condition (3.6) is equivalent to
(Q[d(2)]) 3] = " (Ulred(2)] + Xy d(2)]% ) ((2)] (3.7)

for all z € F(PD) \ {z,}. For z = z, we don’t need to make any assumptions, because
R(z,) = R(z,) = 0, as remarked above. However, for specificity, we require that Q*(z,) =
¢ be the identity map. Moreover, we strengthen the condition (3.7) by dropping the
multiplication with 4(z). Taking adjoints and using QQ* + Q'Q* = 0, the requirement
becomes finding a C? operator field Q : F(PD) — O(V, ey) such that

(2)[d(2)] (Qs(z)'[de(z)]Q;‘(z) + Q&(Z)[?TM(Z)]%(Z)) Q(z)  Vze F(PD)\{z}.

(3.8)

Note that (3.8) constitutes a boundary value problem: this is a partial differential
equation for an operator valued function z — Q(z) € O(V, ey ) with domain of definition
F(PD)\{#,} and with the requirement that the boundary condition €2(z,) = ¢ be satisfied
at the isolated boundary point z,. Thus, for the purposes of showing the existence of
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(X, S) that satisfy (3.6), it suffices to show that the boundary value problem (3.8) has a
C? solution which can be extended in a twice continuously differentiable manner at the
boundary point z,. Indeed, we are going to show that the boundary value problem (3.8)
has a unique solution, and that its extension to z, is C?, see Theorem 3.7. Showing the
last property is the technically most difficult part of the proof.

Lemma 3.1. The boundary value problem (3.8) has a solution that can be extended in a
twice continuously differentiable manner at z, if and only if it has such a solution in a
netghborhood of z,.

Proof. The only if part is of course trivially true. Let us therefore assume that there
exists an open ball B;(z,) C F(PD) and a mapping Q € C?*(Bs(z,), O(V,ey)) such that

Y(2)]d(2)] = (Q'S(Z)[WLd(Z)]QZ‘(Z) + Q;(Z)[Trud(Z)]Qi(Z)> Q(z) Y2 € Bs(z) \ (=)

Consider the following boundary value problem:

Q( ) Qz) Vze 8Bé/z(zu)a

(Q Y d(2)]S(2) + Q;(z)[md(z)]s};(z)) O(z) Vze F(PD)\ Bspl(z).
(3.9)

For any z € 0B;/2(2,), the standard existence and uniqueness theorems for solutions of
ordinary differential equations can be implied to show that there exists a unique function
Q(p(t, 2)) that satisfies (3.9) for all points (¢, z) on the interval ¢ € (I,,0] (see Section
2 for notation). The standard theorems on the smooth dependence of solutions of ODEs
on parameters also imply that Q(¢(¢, 2)) varies in a C? fashion as a function of z. The
required €2 is then obtained for all z € F(PD) \ By/2(2,) by setting Q(z) := Q(¢(t, 2))
where (, 2) is the unique point in R_ x 0Bs/2(2,) such that z = ¢(t, £). It follows from the
arguments above that the extension {2 is unique and coincides with ) on the intersection
of their domains of definition. For a more detailed proof, see Lemma 3.11 of [15]. O

Notational Convention 3.2. In the remainder of the present and subsequent sections the
following shorthand notation will often be employed, where v; are vectors:

Ql[ﬂ' ]N = [WLUI]Q:_FQ;[TL_LUJQZ,

O

[0 Q0 [v5] = Q01 ] [va] + [0 01)2 [wa],

Q" [mvy, ] i = Qv va] U + Q[ vy, 0] QL
Q1| Q" [0, vs] == QL[mLv1 | [va, vs] + QL[ 101 Q" [v3, v3],
Q" [rvy, o]0 [vs] == Q[ vy, va)Q [vs] + Q' [rp, vy, va] Q0[]
Q"' [7vy, v, v3)QF 1= QP [wpv1, Vg, vs] QU + QY[ 01, vy, v3] Q.

We will henceforth concentrate on the problem of showing the existence and uniqueness
of a solution of (3.8) which is locally defined around z, and C? extendable there. For
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z € F(PD)\{z,}, let us consider the following coordinate change for the time parameter
of the flux line ¢(¢, 2):

r(t,2) = et if t € (1, 4+00),
o it = 400,

where [, < 0 is defined as in (2.4). Then [0,1] C im(r) for all 2 € F(PD) \ {z,}. We
write t(r, z) for the inverse of r(¢, z) and

{90 (t(r, 2), 2) if r >0,

We claim that ¢ € C! for any fixed z € F(PD)\ {z,}. In fact, it follows from (2.3) that
1 is continuous. Moreover, (2.17) shows that the limit

9 i 2 9 _ iy Het2)
lim 200 2) = lim o(t(r,2), )50 2) = lim TERTE = lim ol d( (1, 2)
exists.

Suppose that €2 is a local solution to (3.8), defined on Bs(z,), where § > 0 is chosen
small enough for (2.19) to be true. Then the function

y(r,z) = Qh(r, 2))

is well-defined on [0, 1] x Bs(z,), and for r > 0 we have

Sr.2) =l ) | -l )]
= (0 2) | ol 2) )52
D (o) [P @i D000 2)
= a(r, 2)y(r, z), (3.10)
where the mapping
alr,2) =~ ((r, 2)) {ww] 0 (4(r, 2)) (3.11)

is defined on (0, 1] x Bj(z,).
O(V,ey) is a closed subgroup of the Lie group O(V'), and it is therefore a Lie group
itself, see e.g. [5]. Moreover, since 2(z) € O(V,ey) for all z € Bjs(z,), we have

aary(r 2) € Tyie) O(Vsev), (3.12)
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where T, O(V, ey) denotes the tangent space of O(V, ey ) at y. It is a trivial fact from the
theory of Lie groups that (T, O(V,ey))y ' = T, O(V, ey), where 1 is the identity mapping,
that is, 2 is the multiplicative neutral element of O(V, ey). T, O(V, ey), henceforth denoted
by o(V,ey), consists of the set of skew-adjoint endomorphisms of V' that contain ey in
their kernel, that is,

(OS] O(V, €V) =S End(V), vt = —v, vey = 0.
This characterization shows that the following commutator operation is well-defined:

[,]]: o(V,ey) x o(V,ey) — o(V,ey),

[, v] = uv — vu.

When o(V, ey ) is endowed with this operation, it becomes a Lie algebra, see e.g. [18]. This
is called the Lie algebra associated with the Lie group O(V, ey ).

Equations (3.10) and (3.12) show that a € C'((0, 1] X Bs(z,,), 0(V, ev)) (see (3.11)). We
claim that for fixed z € Bs(z,), a can be extended to [0,1] x {z} in a C" fashion. In fact,
Q' € C' and (2.17) shows that

: d(lb(r, Z)) _ : t

lim === = lim " d(e(t, 2))
exists. This proves that a can be continuously extended at (0,z). On the other hand,
(2.20) shows that

ot(r2) _ 0 (e" d(p(t, 2)))

) 0
= lim _(etd(gp(t, z))) or tstoo Ot

t—+oo O

exists. Together with Q € C% and ¢ € C™ this proves that the extension of a is continu-
ously differentiable with respect to r at (0, 2).

In summary, we have shown that if a local solution © to (3.8) exists, then y(r,z) =
Q(t)(r, z)) must satisfy the differential equation

y(0,2) =1,

3.13
Sy =al,y(nz) (e 0,1), (= € Bale), .

where a is defined as in (3.11) and continuously extended at r = 0. If (3.13) has a
unique solution and if we can integrate this equation then we know €2 along the charac-
teristic ¢(+, z). In particular, since this characteristic flows through z, Q(z) is uniquely
determined. Thus, if (3.8) has a local solution, then (3.13) provides a mechanism to
find this solution explicitly. On the other hand, if (3.13) has a unique solution for all
z € Bs(z,) \ {z,} then Q(2) := y(1, 2) satisfies (3.8) for all z € B;s(z,) \ {2,}. In Lemma
3.4 we will prove that this is indeed the case. In Lemma 3.5 we will then prove that
(z,) =1 extends this solution in a twice continuously differentiable manner at z,. This
proves the existence and uniqueness of a local solution for (3.8), and together with Lemma
3.1 this constitutes a proof of Theorem 3.7.
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For a fixed z € Bj(z,), (3.13) is a linear ordinary differential equation evolving on
the Lie group O(V, ey ) and is driven by the operator a(-,z) € C'([0,1],0(V,ey)). This
type of initial value problem was studied by Hausdorff [12] for general Lie groups G and
their associated Lie algebras g. Substituting G = O(V,ey), it follows from this theory
that there exists a number 7* > 0 and a function o(-,2) € C*([0,7*],0(V, ey)) such that
y(r,z) = exp(o(r,z)) is the unique solution of (3.13) on r € [0,7*], where exp is the
matrix exponential, and where o (-, z) satisfies the dezpinv equation

o(0,2) = 0, (3.14)
%U(T, Z) = thadm(a(T’ Z),U(T, Z))a (T € [O’T*])'

In (3.14), h,, is the m-th Taylor series coefficient of the function h : C — C,

w

h = 3.15
()= o +w (3.15)
expanded around w = 0, and the ad-operator ad® is recursively defined as follows:
ad’(v,u) = v, and ad®(v,u) = [ad" (v, u),u] for k € N, where [-,-] denotes the commu-

tator operator defined above. Using Picard-Lindelof iteration it is possible to explicitly
determine more and more terms of a series development for the solution of (3.14). Magnus
[25] derived the first four terms of this series:

o(r, 2) :/OT alk, z)dn+%/0r {a(/ﬁ, z),/:a(g, z)d{} dr
+i/0 [a(ﬁ, z),/: [a(f, z),/oga(n, z)dn] dg} dk (3.16)

+% Or Ha(/ﬁ,z),/ona(f,z)df] ,/Ona(n,z)dn] di+ ...

The general term of the this series was characterized by Iserles-Ngrsett [19]. We now
describe their construction for the special case where G = O(V, ey ) that applies to our
problem. Consider the set of functions & C F([0,7*],0(V,ev)) for which membership
is defined by recursively applying the following rules: a(-,2) € &, and if p,q € £ then
T [p(r), for q(ﬁ;)d/f] € &£. It would be difficult to work with £ without a proper indexing
system. This is most elegantly achieved by use of rooted trees. We recursively apply the
following rules: the map a(-, z) is associated with the tree 7y consisting of a single node,

a(r,z) ~ 1 =e,

1

and if p(r),q(r) € € are associated with the trees 71! and 7[% respectively, then the

mapping

r s {p(r),/ﬂrq(/ﬁ)dﬁ} =
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is associated with the tree obtained by appending a new root to 7!

resulting tree with 71! via a new root on the left:

and joining the

o), [ atae] . (3.17)

We denote the set of trees that can be obtained in this fashion by 7, and we denote the
member of £ associated with 7 by H,(-,2). By T we denote the set of members of T
that contain k& nodes, and we say that these trees are of order k. An induction argument
shows that all trees in T are of order 3k + 1 for some k € Ny. Iserles—Ngrsett [19] proved
that

#Tak1 = (2F)! VkeN (3.18)
3k+1 — l{;'(k+ 1)' 0- .
Each 7 € T; can be written uniquely in the form
A
[
2
T . T[I]

for some trees 71,... |71 € T of order strictly less than k. We write 7 = R(r!"),... , 71

to express this relationship. For later convenience, let us denote the tree R(Tg) by 7.
With this notation it is possible to define a sequence of numbers («,)7 by recursively
applying the following rules: «a,, = hg, and if all ;) are defined for (i = 1,...,1), then
AR, -y = My [T, .11, where hy is defined with respect to (3.15) as above. Note that
since the function A has a convergence radius strictly greater than 1, we have

| <1 (3.19)

for all 7 of sufficiently high order (actually for all 7 € T). It follows from the results of
Iserles—Norsett [19] that the general term in the series (3.16) is a, [, H,(k, z)dk, that is,
the solution to the dexpinv equation (3.14) is given by the Magnus series

o(r,z) = ZaT /07“ H.(k,z)dk (3.20)

TET

on the interval [0, 7) where both this series and its termwise derivative converge absolutely.
Moreover, the solution of the initial value problem (3.13) is given by y(r, z) = exp(o(r, 2))
on the interval [0, 7*] on which exp(o(r, 2)) is defined and r* < 7. We will see below that
r* > 1.

We will now express the Magnus series (3.20) in terms of the parameters (¢, z) instead
of (r,2). For each 7 € T we can define a function L.(t, z) : [0,400) X Bs(2,) = o(V,ey)
by recursively applying the following rules:
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(1) Ly, 2) 1= =2 (p(t, 2))[md(o(t, )12 (p(2, 2)).

(ii) If 7 is the tree defined in (3.17) then
+00
Lot 2) = {LTM (t, 2), / L (0, z)dé] |
t

The functions defined above then satisfy
L,(t,z) =e " H, (e 2) (3.21)

for all 7 € T. This can easily be seen via induction.
Now note that if o(-,z) is expressible by the Magnus series (3.20), then Q(z) =

Q((0,2)) = y(1, 2) = exp(s(z)), where

o(2) ;a/ H, (k. » dm_;%/ (r(t, 2), 2)dt
=> o, /+oo (t, 2) (3.22)

TET

So far we have treated z as a fixed parameter, but (3.22) now shows that the free
variable ¢ disappears when taking the integral. We therefore obtain an explicit series
representation for Q(z) as a function of z, now considered as a variable. Let us endow
o(V,ey) with the usual operator matrix norm. Recall that we chose § small enough for
(2.19) to be true. For our further analysis we need to restrict the neighborhood around z,
even further. The results of Section 2 and the fact that @ € C™ imply that it is possible
to choose () > 0 large enough and o > 0 small enough so that the following inequalities
are satisfied for all z € B,(z,) \ {#2,} and t > 0:

|9 (2) [ (2)|| <@, (3.23)

1€ ()5 197 ()| [ ()12 (]| < @ (3.24)

12" ()l 5 12 (2|, |2 () 5 197 U [ 1" ()15 < @ (3.25)
|d(e(t, 2))|| < Qllzu — 2] e, see (2.5) and (2.18), (3.26)

[ = (69| < 13— 21l see (219, 3.27)

|5retta)]| <, soo 20) (3.29
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Haa—;gp(t, z) ‘ <@, see (2.14), (3.29)
0? _t
H@d((p(t’ z))‘ < Qe 2, see (2.12), (3.30)
[ ozttt e < 1+l see 20 (3.31)
0
00 82
/0 ‘ wd(gp(t, z)) H dt < Q(l + Q|2 — z||), see (2.13). (3.32)

Lemma 3.3. If ), 0 > 0 are chosen so that (3.23)-(3.32) hold true, then for all k € Ny,
T € Tak1 and z € By(z,) \ {z,} the following inequalities hold true:

o0
i) / L (t, z)||dt < ||z, — Z||k+1Q2k+22k’
0

dt < ||Zu _ Z||kQ2k+122k + ||Zu _ Z||k+1Q2k+232k+1,

et

dt < ||z, — 2" Q* (k) + |z — 2[FQ* (372 + Q3%)

+ ||Z# . Z||k+1Q2k+2 (32k+3 4 Q32k+1),

where

0 ifk=0,
x(k) = {22<k+l> if k> 1.

We will prove this lemma in Section 4.

Lemma 3.4. There ezists a radius p > 0 such that the mapping s(z) defined in (3.22) is
well defined and twice continuously differentiable on B,(z,) \ {2,}. Moreover,

i) <(2) = O(llz — 2,

y 0 >0
i) sl = [ SrEalt )+ O~ 2.

2 2

0? <0 1 [0
w)  p5a(e) = i Sy ln(t,2)dt + 5 i 552 Ln (8, 2)dt + O(llz, — z))-
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We will prove this lemma in Section 5.

Lemma 3.5. Let p > 0 be chosen as in Lemma 3.4 and let ¢(z) be continuously extended
at z,, that is, <(z,) = 0. Then s € C*(B,(z,),0(V,ey)). In particular, the derivatives at
2, are given as follows: for all v,w € Z,

< () [w] = Q' (z) [rw]€2" (2,,), (3.33)

oz 0] = 0" () v w0 () + 20" (2 s 0} (5
1. . 1. . (3.34)
+ 5 ) [l (z) o] + 5 ()l ()],

We will prove this lemma in Section 6.

Theorem 3.6 (Local Solution).

Let p > 0 and s(2) be chosen as in Lemma 3.5. Then Q(z) = exp(s(z)) is a twice
continuously differentiable solution of (3.8) defined on B,(z,). The continuous derivatives
at the boundary point 2z, are given as follows: for all v,w € Z,

() [u] = '), (3.35)
() 0] = " (s e] + 3¢/ ()l (5] + 36/ (AP (2lw]  (3.36)

Proof. The first statement is clear from Lemma 3.5, the fact that the exponential mapping
is analytic and the developments that led to equation (3.22). In order to prove the second
statement, note that at the origin the first and second derivatives of the matrix exponential
are as follows: for all VW € M,..,(R),

exp! (0)[V] = V, (3.37)
exp” (0)[WV; V] = %(WV V. (3.38)

Since o(V, ey ) is a matrix Lie algebra, it is therefore the case that for all v, w € Z,

@ (z)[w] = exp' (s (2)) [z [w] = exp' (0)[ (zu)[w]] 27 ¢/ (2,)[w],

and

Q" (2) [w; v] = exp’ ((2,) ) [¢" (2) [w3 v]] + exp” (c(2)) [¢” () [w]; ' () []]
= exp'(0)[¢" (zu)[w; v]] + exp”(0)[¢" (z,) [w]; ' (z) 0]

B2 12w 0] + 5 ()l (z) o] + 5 ()0l ) o]
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Theorem 3.7 (NT and Target).
There exists a unique twice continuously differentiable operator field Q : F(PD) —
O(V,ey) that solves the boundary value problem (3.8). Moreover, the NT direction

solves the Newton system (3.2) when the target map v is defined with respect to X (z) =
Q*(2) o X (2).

Proof. The existence of €2 follows from Theorem 3.6 and Lemma 3.1. Moreover, the local
solution constructed in Theorem 3.6 is unique because y(r, z) = exp(o(r, z)) is the unique
local solution of (3.13), by virtue of Hausdorff’s theory of the dexpinv equation [12].
Lemma 3.1 shows that there is a unique extension of this local solution to all of F(PD).
Finally, (3.8) was explicitly designed so as to render the remaining claims true. O

4 Proof of Lemma 3.3

Proof. We use induction over k. For k = 0 we have 75 = e, and then we can check claims
i), ii), and iii) of Lemma 3.3 as follows:

i) / L (8, 2) i = / N (ot 2 (ol 21 (ol 2)) e

(3.23),(3.27) 2
2 /Q||d (2|t % Q/ 2 — 2@ " dt

— 20Q0+2||Z# o ||0+1.

i) [ gt s [T @t o [ratote 0 5 ote )| 0ot |

b [ |t [rgzaetn, | 0o, |
+ [ |t i ane o ) | o) | a

(3.23),(3.24),(3.27)
< Q/ |ld(p tz||H o(t, 2)

+Q [ atete Dl | ot
),(3.28),(3.31)

(3.26),(3.28),(3.31 9
< 2071z — 2l + QUL+ Q|2 — 2[))
— ||Z# o ZHUQ0+120 4 ||Z# _ Z||1Q0+230+1.

L (t, 2)

dt+Q/ H—d tz))Hdt

dt
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Gz 327@/ ld(o(t, 2) ||H— .|| a
+Q/0 ‘a tzHH ot ) dt+Q/ e tz||Ha2g0 dt
0 /OooHd(sO(t,Z))HH&w(t,Z) it+Q [ et o) | Zote. o) a
+Q [ | atete | e+ [T ot )| | ote )| a
v [Tttt | 2ot )| av @ [ Lot | | Zotw o)

dt

2 00 02
it+Q [ttt N [zt

o 0
+Q [l 9l |-t
(329)

(3.28),(3.29

41200 / " o (e, 2))lde

+4Q/ o(t, 2)) Hdt+Q/ ‘
(3.26),(3.31),(3.3

2)
<A 2@ — 2] +4Q( + Q12 — 2l + Q21+ Qllz, — 21)
< o= 27 QU0 + 7 — 21°Q1 (3% + Q3°) + |1z — 2" (3 + Q3.

5.2 ))H o

This completes the base case. In order to prove the induction step, let £ > 1 and suppose
the lemma holds true for all 7 € 73,41, (1 = 0,...,k —1). Let 7 € T3,41. Because of
the recursive definition of 7 there exist an integer [ < k and two oriented rooted trees
€ Ty41 and 77 € Ty_j-1)1 such that 7 is related to 71!l and 71 as in (3.17).
Therefore, assuming that statements i), ii) and iii) of the lemma hold for 7[J and 72l the
following arguments show that they hold for 7 too:

) [ eete, )= °°H[LTm(t,z>, [ Lt 1] a

§2/ 1Lt 2 ||/ 1L (€, 2) | dedt
0

(2.1)

Dy [T 1Lt 2 [ (e ot 2l
0 0
< [ I Q2 — )
0
(327 k—1,2k—21 1k > I
<21 gy ol [ (e )
0

i
)
< 2k71Q2k721HZ# . Z||k7121Q2l+2||Z# . Z||l+1 — 2kQ2k+2“Zﬂ . Z||k+1.
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H tz

dt< H{ L.m(t, Z)a/too L. (&, )dﬁ]H

H|: 7_[1] t Z / —L 2] d§:| H dt

/0 | Lo (€, (1, 2)) | dedt

+2/ ||LT[1]tz||/ |2zt

@),i1)
< 2k—l 2k—2l L a(t
> Q 0 _6z T[]( ,Z)

(21
< 2 H— 1](t Z)

0
o [gw(t, z)] H dédt

|20 — ©(2, 2) Hk_ldt

o0 9
T il A RO RIS A Rs)
0 A
o 9
#2102~ o0, | St ) |
0 Z
):i#),(3-27),(3.28) k—12k—21 k—1 [ 92l n20+1 l
£ et o (222, 2|
+321+1Q21+2||Zu - Z||l+1} _|_2 {22k72l*2Q2k72l71||zu - Z||kflfl
—|—32k_2l_1Q2k_2leu _ ZHk—l} 2lQ2l+2||Zu _ Z||l+1
— ||ZH _ ZHk . Q2k+1 (2k71221 4 2l+122k72172)
4 ||Z# o Z||k+1Q2k+2 (2k7132l+1 + 21+132k72171)
< ||ZM _ Z||kQ2k+122k + ||ZM _ z||k+1Q2k+232k+1.
o || g2 w0
W)/O ‘822 -(t,2) dt:/o Hﬁ [Lr[l](taz)al L. (¢, )dﬁ]H
<2 H—ZLT[l](t,z) / Lo (€, 2) | dedt
t
|| 9
+4 e T[ll(t z) %L[ 1€, 2)|| d€dt
+ 2/ ||L[1]tz||/ Lo ()| deds
0
(2.1)
<2 [7 )| [ inate ote lasar
0
|| o =l 9 9
P A 9 o, 2)|| deat
+ / ot [7 ] rmenl || oo e
8 2
+2/ ||L1]tz||/ ‘NQT &9, ‘82 (t,2)|| deat
82
2 L_n(t —L z —(t dédt
w2 [Tl [ | Zrmeal | |5
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82

1),i1),144) o0
< 2 . @LTD] (t, Z)

v f
0

o 7 7 0
FIR QA — ()Y |

2IQE 2, — (t, )|

0
— L. (t, Z)

5 {22k72l72Q2k72171Hz# o go(t, z)“kflfl
z

dt

2 [ Ll k= 1= D@* 2, — plt, o)
0

+ (32k72l + Q32k72172)Q2k72171qu o QO(t, z)“kflfl
2

(32T Q321 2= g )[R Haﬁz@(t, z)|| dt

2 [ L2l {22 2Q g, — )
0

82
AR )T ngo(t, z)|| dt
z

(3'27)_(3'?)’i)’ii)’iii)2 NO% TS 2142 20\ H20+1 T
< {x(NQ* |z — 2lI"™" + (377 + Q3*)Q* 2, — 2|

+(32z+3 + Q32l+1)Q21+2||z# _ z||l+1} 2k7l71Q2k721||z# _ z||k*l
) {22[622[“”% . z“z i 32[+1Q2H2“Zu _ z||l+1} )
) {2%—21—262%—21—1”2” _ ZHk:—l—l 4 32k—2l—1Q2k—2l”Zu _ z“k—l}
+ 21+1Q2l+2”z# _ z||l+1 {X(k - 1)Q2k72172“z# _ z||k7l72
+ (321%21 + Q32k72172)Q2k72171Hz# _ Zkalfl
+(32k—2l+1 4 Q32k—2l—1)Q2k—2leu _ z“k—l} 1
4 2l+1Q2z+2qu _ z||z+1 {22k—2l—2Q2k—2l—1“zu _ z”k—l—l
+32k72171Q2k72l“Z# _ z||k*l} Q
_ |2, — z“kqQ% {2'“4)((1) 192k 4 2l+1X(k - 1)}
+ 2 — z“kQQk—i—l {2k—l32l+2 4 92l+252k=21=1 | o2k—2I32I+1
Loltlg2k—2l Q(2k4321 4 oltlg2k—20-2 | 221&14)}
+ 2 — z||k+1Q2k+2 {2k432l+3 4 9232k | 9l+132k—21+1
+Q (2k—l32l+1 4 olt1g2k=20-1 | 2l+132k—2l—1} ‘

But note that

22k 2. 9% if 1 =0,
22[+22k71 + 22k + 2l+122k721 if I > 1,

{22k+2 if =0, {22k+2 if =0,
< <

2RIy (l) + 2% 42 (b —1—1) < {

9%+l 4 92k 4 9%k if [ > ] 9242 if [ > 1.
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Moreover,

2kfl32l+2 4 22l+232k72l71 4 22k72132l+1 4 2l+132k72l

- {32k{(2/9)’“-9+2+(2/3)’“-3+2} it =0,
32k+1 + 32k+1 + 2232k—2l—232l+1 + 223!—132k—2l lfl > 1,
{3%-8 ifl=0,  _ {32k+2 if 1 =0,
32k+1 4 32k+l gL 32kl §f ] > 1, 3242 f [ > 1,
And finally,
2]97132! 4 2[+132k72172 + 22k7l71 < 3 A 32k71 _ 32k,
2k7132l+3 + 2232k 2l+132k 201+1 < 3 32k+2 32k+3
2k—l32l+1 4 2l+132k 20—1 4 2l+132k 20—1 S 3. 32k — 32k+1.
This concludes the proof. O

5 Proof of Lemma 3.4

Proof. Let @ and ¢ > 0 be chosen so as to render (3.23)—(3.32) true. Note that in condition
(3.26) we made the implicit assumption that @@ > o and p < 4§, where ¢ and § are as in
(2.5). Let 7 € Tpq1. It follows from Lemma 3.3 that all of the integrals [ L. (t, z)dt,

[0 2L, (t, 2)dt and [;° £ ‘9 Y- L, (t, z)dt exist and converge absolutely. Therefore,

8 o0
5/0 LT(t,z)dt—/O Lol 2}

@/0 LT(go(t,z))dt:/O ﬁLT(go(t,z))dt

for all z € B,(z,) \ {z,} and for all 7 € T.
Lemma 3.3 also implies that there exists a radius p € (0, o) such that for z € B,(z,) \
{z,} and k € N the following inequalities hold true:

o0 o0 8
/ Lot 2)|dt < 4 4D, / ‘ dt < 4°F, / ‘
0 0 0

e

5, L7 (t:2)

Let O(z) := > 7 o (#7T3k+1)2" be the generating function of the sequence (#73x11)ken, - It
follows from (3.18) that

62

7 L.(t,2)| dt <4 *!
Z

(5.1)

oo

1-v1-4z V1—4z J
O(z) = Zk'k+1 '

Since this function is analytic in By/4(0) C C, equations (3.19) and (5.1) imply that the
series

o0 o0 8 00 82
L. (t, 2)dt —L_(t -—
ZaT/O +(t, z)dt, ZaT/O o +(t, z)dt, ZaT/O 822L7(t, z)dt
TET TET TET
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all converge absolutely in B,(z,) \ {z,} and equal ¢(2), ¢'(z) and ¢"(z) respectively. The
claims i), ii) and iii) of the lemma now follow from Lemma 3.3 and the facts that 71 = {7}
and T3 = {7} are singletons, and that «,, =1 and «;, = 1/2, see (3.16). O

6 Proof of Lemma 3.5

Proof. We already know from Lemma 3.4 that ¢ is twice continuously differentiable on
B,(z,) \ {#,}. In order to prove twofold continuous differentiability at the point z,
it suffices to show that lim,_,,, ¢(2), lim,_,., ¢'(2) and lim,,,, ¢"(2) exist. Lemma 3.4
shows that

lim ¢(z) =0,

z2—2y

zliglu J'(2) = ZIHEL i &LTO (t,2)dt, and (6.1)
lim ¢"(2) = li N a—2L (t, z)dt + L a—2L (t, z)dt (6.2)
o T, o 02277 0 2 ), 02277 0 ' '

Therefore, all we need to show is that the limits on the right hand sides of (6.1) and (6.2)
exist, and that these equal the right hand sides of (3.33) and (3.34).
Let us first show this for ¢’(z,). For all w € Z we have

Jim <)l == Jim [ 2 (ot Dl I (ot 2)) o
—— tim [ (el0,2)) [maolt, s 5ol et (63)
-~ tim [T e09) [ dote, ]| 2ot 2 (6.0
-t [T @l N0 2) | ol (69)

so long as all the limits in (6.3)—(6.5) exist. Using the fact that € C™, we can compute
these limits as follows:

lim
22y

[ et 29 [t 25 5ot | ot 2|

0

< lim

()
z=zu [

(o(0,2)) s gt 2| (60,20 | o, )
(2.3),(2.

9 . =, . o (2.6)
<1 Gl 1 Gl i [ et 2l = o, (66)
and likewise,

lim
22y

[ ettt Mot ) | ot ul] | o,

0
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Finally,

i [0 [ u ] *(lt, =)
(2.15) _Q,(zu)[ﬂ-w]ﬁ*(zu)’

Therefore, the limit lim,_,,, ¢'(2)[w] = Q' (2,)[rw]Q*(2,) exists and equation (3.33) holds
true.
Let us now consider ¢"(z,). For all v,w € Z we have

: °9?
leglﬂ/o @Lm(t,z)[v;w]dt

= tim [ L (@ ottt ) (0, 2) o e

- tim [ @0 2) [wd«o(t, )i ol luls Sl z)[v]] (ol 2))dt

T A ) A T e )| X R

~ tim [ R pl0,2) [0, ) g ele ol o N (69)
- tim [T pl0,2) w0, 2 5 pteVnl| 27002 | ol D
) (6.10)

. 00~// [ 0 0 )
— tim [T, 9) [l )l ot )| ot e )
~ tim 7 l0,20) r ot Dol | 9o (6.12)

- lim / (p(0.2) [l ) u]| 27 (o102 | ot - (6.13)

- tim [T ol0,2) w02 5pl0 01| 27002 | ol ol

z=2u 0z
(6.14)
— tim [Tt ) [ttt Nl 2ol 2) | Lot | (6.15)
~ tim 7 ot Dl N ol 2) | Lot 2Nk oot
(6.16)
- tim [ ol Nl N (1 9) | et ol [, (617



32

so long as the limits (6.7)—(6.17) exist.

Expressions (6.7), (6.10), (6.14) and (6.16) can be shown to be equal to zero in much
the same way as (6.6), that is by relying on the smoothness of Q, and on (2.3) and (2.9).
Likewise, (6.9) and (6.17) are equal to zero. The argument is almost identical for both
expressions, and we will show it only for (6.9):

[ et [ttt s et Ywsol | 9 ottt

ee] ‘

lim
22y

2

< tim [ (6020 75 et sl ottt 2

2=z o

(23),(3.20) <, ) o0 (2.7)
< Gl o Gl QU Tim [ et ) o,

Next, we show that expression (6.12) is equal to zero:

lim
22y

[ et [ gztote sl o,y
ittt )|

(2.3),(2.13),(2.16) 0

< tim [ 19 NI (000 2) - a1 |

(e [ ([ pdtott, Dlwsolir) | ()

+ lim

2=z

Let us next take the limit in expression (6.8):

tim [ p(0,2)) gLt s 5ol | (o,

T ST ) [—w o Lttt ke Lot z)[w1] (ol 2))dt

z=zu Jg

(2.21

. . 00 1~ -
20 00 im0l () [ = o d = =5 ) s w2,
0
Similar arguments can be applied to expressions (6.11), (6.13) and (6.15), yielding

tim [ (o(1,2) [ (ot )k olt, ) [vl] (ol 2))dt

2=zu fg | 0z

— —%Q”(zu)[ﬂw; V] (2,),

tim [ Q((1.2) |7 (et z))[wl] (ol 2)) [%p(t, z)[vl] i

z=zu [

= S ()]0 () o],

tim [ (e, 2) [%d(so(t, z))[vl] (ol 2)) [%o(t, z)[w]} i

2=z g

= (I () ]
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In summary we get that for all v, w € Z,

0o 92 1=~ - 1~ ~
i [ Lt st = 59 (s wlS () + 5 () s v ()
z=zu f

50 () ] (5[] + 5 ()]0 (5[], (6.18)

This is the first term in the right-hand side of (6.2), and we have shown that it is equal
to the right-hand side of equation (3.34).

Let us now show that the second term in the right-hand side of (6.2) is equal to zero:
for all v,w € Z,

li L 82L t s u|dt
M5 ), galnblw]
1 * 92

—im [ [Q'(gp(t, 2))[md(o(t, )] (o(t, 2)),

N

/OO ' ((8, 2))[md(2(8, 2))2" (12(6, Z))d9] [w; v]dt

-3l /ooo {aa— (@ ((t, ) md((t, DI (1, 2))) [ 0],
[ o0 ) 008 e (019
3 lm [ " (ot 2 (ol DI (2, )
[ 5 (2000, (6. )19 (500,20 ws ol a
(6.20)
+%ZIHQL /000 {% (Q'(@(t, 2))[wd(p(t, 2))] (ot z))) [w],
/too 8% (Q'(SO(Q,z))[ﬂd(gO(G,z))]@*(gp(e,z))) [U]dg] dt
(6.21)
+oam [ [3 (@ (ot 2) (i (t, )2 (2, 2))) o]
2z—)zu 0 0z ’ ) , ,
/t 8% (Q'(SO(Q,z))[ﬂd(gO(G,z))]@*(gp(e,z))) [w]d&] dt

(6.22)
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as long as all these limits exist. Note that for all ~ sufficiently close to z,,

[w@wwﬂnhﬂﬂa@m?@wﬂan
< [ IO (el ) 16, 2Dl
(3.26),(3.27)

= 01 () [ (2) / 12, — 2l e™" df = O(1) ]|z, — z[le™". (6.23)
t
Likewise, still for z close enough to z,,

aaz2 <Q,( (t Z))[Wd( (t z))]Q*( t Z

In fact, this follows from our analysis of expressions (6.7)f(6.11) and (6.13)—(6.17), equa-
tions (2.6) and (2.10), and from the following revised analysis of expression (6.12):

ez, (6.24)

2

V(o0,2)) 5zl lsol| (6,2
=

= O (2) [ ]2 ()| || 55 d((2, 2))[w; 0]

(3.30) :

O(1)[|€ (2) [ 12" (z) [ [[w]][v]| €2 .
(6.23) and (6.24) imply that expression (6.19) is zero, because its norm can be bounded
from above by

38222 <Q( (t, 2)[rd(sp(t, 2))I (o (1, Z))) [w; v]

Likewise, expression (6.20) equals zero, because its norm can be bounded similarly.
Finally, it remains to analyze expressions (6.21) and (6.22). Note that

/too Y (0(8, 2))[wd((8, 2))] (2(0, z))deH dt

(6.24),(6.23)
2 im0 Hz—@“/ e ¥ dt =0,

Z=2Zu

e - (Xt lraolt, 2D (1, 2)) ] + 2 )l ()

‘

+ 116 () 12" ()

ertet o [ratete. s 5ot 001 o,

(1, 2) et (et ol 0 (pt0,2) = ¥ (s0) et Lol 2l | 3

o Srdle(t o] +u

+ et

(o, )t 000,20 | ot 2|
(6.25)
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(2.6),(2.9),2.21 ¢
< O(lz=zull) e [|wl]

I8 0, 2T (11 2) — D )| [o 5,2 |
9 () I GOz — 240 + 01z — 2l lul

(3.27),(2.21)

LD 0|z~ 2,). (6.26)

Equation (6.26) implies that

& (@l (1, NI (L2, 2)) ] = = e & (2l () + 7 Oz = 2.

0z
(6.27)

This finally allows us to compute expression (6.21):

oo

lim [83 (Y (ot 2DImdlp(t, 2D (p(t,2) ) [w]

z=zu J

/t ) % (Q’(w(e, 2))[rd(p(, z))]Q*(gp(G,z))) [U]do] dt

(6.27) .. 0 P ~ _
2 lim [ e @ () ] (2) + 7 Ol zl)

z=zu J

/too e Y () [r0] (2) + e O(| 2 — zu||)d9] dt

= i [ [l (), (20 ]2 (2, /0 Tt /t e ot

+ Jim O(|[z — zu)
- % [QI(ZM)[WU’]Q*(ZM)vQ,(ZH)[WU]Q*(Z“)] '

This implies of course that (6.22) equals

[ ()lmol (2), Y () [l ()| = = 5 [ () [ (2), @ () [0l (24)]

N =
DN | —

Expressions (6.21) and (6.22) thus cancel each other out, and we have

.1 [ o2
Zhj?# 5/ @Ln (t, 2)[w, v]dt = 0. (6.28)
Substituting (6.18) and (6.28) in (6.2) we find that lim,_,,, ¢"(2) exists and (3.34) holds
true. 0
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