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31 Introdution
In reent years linear optimization over symmetri ones, or self-saled programming,has beome the aepted standard framework to treat linear, quadrati and semide�niteprogramming in a uni�ed framework. This theory originated in the work of Nesterov{Todd [29, 30℄, G�uler [9, 10℄, and Faybusovih [7, 8℄.A powerful and popular family of methods for solving suh problems numerially on-sists of primal-dual interior point methods (IPMs) based on the Nesterov{Todd (NT)searh diretion [29, 30℄. As we will show below, the NT diretion is de�ned in terms of apseudo Newton system that arises from the Karush{Kuhn{Tuker (KKT) onditions of aperturbed problem. At �rst sight, this derivation seems like an ad-ho �x to a diÆultythat ours beause of a mismath in the dimensions of the preimage and image spaes ofthese equations. Other, more straightforward approahes exist to overome this problem,making the NT approah seem unneessarily ompliated. However, a more in-depth lookreveals that the NT framework has ompelling properties that further motivate it. Muhof the intrinsi beauty of this approah is due to the fat that the so-alled saling point(see explanations below) relates it to the group ation on symmetri ones, whih area partiular type of homogeneous spaes. The NT approah is designed to be invariantunder this group ation whih allows for the onstrution of algorithms that are invari-ant under exhanging an input problem with its dual (primal-dual symmetry) and underoordinate hange (sale-invariane). Suh methods are una�eted by speial types of ill-onditioning assoiated with representing the problem geometry in a oordinate system.In this paper we explore another interesting property of the NT approah: its relation toso-alled weighted analyti enters and a transformation that is sometimes alled the targetmap. This onstrution was �rst analyzed in the linear programming (LP) literature byKojima{Misuno{Yoshise [22℄ who proved that the target map is a di�eomorphism betweenthe primal-dual stritly feasible domain and the stritly positive orthant, and that thismap reti�es the primal-dual entral path, an objet that plays an important role inguiding interior point methods to an optimal solution. The Kojima onstrution has beenextremely useful in the LP literature, and many attempts have been made at generalizingit to other onvex optimization problems, see further details below. The main result of thisartile shows that the NT-diretion arises as the Newton diretion de�ned in terms of ageneralization of this onstrution to arbitrary symmetri ones, see Theorem 3.7, Setion3. Apart from linking the NT and target frameworks, Theorem 3.7 has the immediateimpliation that the NT proess onverges at a quadrati rate in a neighborhood of itsattrator, and it ontributes new tehniques to the IPM theory by employing Magnusseries and orthogonal ows as essential analyti tools in its proof. As a prerequisite forthese arguments one needs a thorough variational understanding of the NT proess: if theproess is started at two nearby points, how far will the iterates deviate from one anotherafter a �xed number of iterations, and how will this a�et the diretion from where the�xed point is approahed? A wealth of related questions are answered in Setion 2 whihmakes an independent ontribution to the understanding of the NT proess.



4 In our exposition we onsider the following pair of onvex programs in oni duality(P ) inf hx; s0i (D) inf hx0; si (1.1)x 2 �L+ x0� \ �K s 2 �L? + s0� \ �K℄:Here E is a �nite dimensional Eulidean spae equipped with an inner produt h�; �i, L isa linear subspae of E, and L? is its orthogonal omplement. K is a onvex one whihis open and has a pointed losure �K, that is, �K does not ontain any whole lines. Thepoints x0 2 K and s0 2 K℄ are �xed. The dual oneK℄ := fs 2 E : hx; si > 0; 8x 2 Kg (1.2)is also onvex, open and with pointed losure �K℄. Note that the de�nition of K℄ dependson the hoie of the inner produt h�; �i on E.In the problems we onsider, K belongs to a speial family of ones whih we shall nowde�ne: The automorphism group of an open onvex one K is the set of nonsingular linearmaps A : E ! E that map K onto K, that is, Aut(K) := �A 2 Gl(E) : A(K) = K	.The one K is alled homogeneous if Aut(K) ats transitively on K, that is, given arbi-trary points x; y 2 K, there exists a map A 2 Aut(K) suh that Ax = y. K is alledself-dual when the inner produt h�; �i on E an be hosen so that K℄ = K, see (1.2). Kis alled a symmetri one if it is both homogeneous and self-dual. In the sequel, we willalways assume that E is endowed with an inner produt under whih K = K℄. Sym-metri ones arise in Jordan algebra theory as follows: a Eulidean Jordan algebra is a�nite-dimensional real ommutative algebra E endowed with a weakly assoiative multi-pliation with identity element e and an assoiative inner produt. The set of invertiblesquares of a Eulidean Jordan algebra is a symmetri one, and every symmetri onean be represented in this form. Eulidean Jordan algebras and, by extension, symmetriones have been algebraially lassi�ed, see K�oher [21℄ and the referenes therein. Ev-ery symmetri one has a unique deomposition into a diret sum of elementary buildingbloks, so-alled irreduible symmetri ones, of whih there exist only �ve types. Fora omplete aount of this theory, see Faraut{Kor�anyi [6℄. Three examples of symmet-ri ones are of partiular interest to the optimization ommunity: the positive orthantK = Rn++ , whih is in fat the diret sum of n irreduible symmetri ones onsisting ofopen half-lines, the one K = Sn�n(R)++ of n � n symmetri positive de�nite matrieswith real oeÆients, and the Lorentz one K = �� �x � 2 Rn+1 : � > kxk2	, whih is alsoalled the seond-order one. The oni optimization problems assoiated with these onesare linear programming, semide�nite programming and seond-order one programmingrespetively. Considering more general symmetri ones, one an treat linear optimiza-tion problems with mixed linear, semide�nite and onvex quadrati onstraints in a singleuni�ed framework, see e.g. Todd{Toh{T�ut�un�u [36℄, Alizadeh{Shmieta [2℄ or Sturm [35℄.In [29℄, Nesterov and Todd de�ned the onept of self-saled barriers, a speial lass ofself-onordant barrier funtions whose Hessians form a transitive subset of the automor-phism group of their domain of de�nition. Self-saled barriers are well understood: G�uler[9℄ and Nesterov{Todd [29℄ showed that K is the domain of de�nition of a self-saledbarrier if and only if K is a symmetri one. Reently, Hauser [15, 13, 14℄, Shmieta



5[33℄, G�uler [11℄, Hauser{G�uler [16℄ and Hauser{Lim [17℄ developed a lassi�ation the-ory showing that all self-saled barriers de�ned on a symmetri one with irreduibledeomposition K = K1 � � � � �Kp are of the formF : x1 � � � � � xp 7! 0 + pXi=1 i lnZK℄i e�hxi;sii dsi; (1.3)where i � 1 (i = 1; : : : ; p). The dual barrier is de�ned on K℄ as the Legendre{Fenheltransform F℄ : s 7! maxf�hx; si � F (x) : x 2 Kg. Under the self-dual embeddingK℄ ,! K it is then the ase that F℄(s) = F (x) + , where  is a onstant. See [16℄ for aomplete survey of self-saled barriers and symmetri ones.Using the barrier funtion F , most primal-dual interior point methods attak a sequeneof unonstrained subproblems(P�) inf �F (x) + hx; s0i (D�) inf �F℄(s) + hx0; si (1.4)x 2 �L + x0� \K s 2 �L? + s0� \K℄;for a monotone dereasing sequene of barrier parameter values (�k)N ! 0+. Under theabove made assumptions, (P�) and (D�) have unique optimal solutions for all � > 0.The KKT onditions are neessary and suÆient optimality onditions for these stritlyonvex problems, beause the linear independene onstraint quali�ation holds, see e.g.Borwein{Lewis [3℄. The KKT onditions for (P�) are �F 0(x) + s0 + z = 0, z 2 L? andx 2 L + x0. Moreover, F (x) <1 implies that x 2 K. Setting s = z + s0, we gets = ��F 0(x); s 2 L? + s0; x 2 L + x0; (1.5)and it an be shown that ��F 0(x) 2 K℄ and ��F 0℄(��F 0(x)) = x, see [29℄. Therefore,the �rst equation in (1.5) an be reformulated as x = ��F 0℄(s) and implies that s 2 K℄.This shows that the KKT onditions for (P�) and (D�) are equivalent, a property that isreferred to as primal-dual symmetry. Sine both problems are stritly onvex, the solutionpair (x�; s�) 2 K �K℄ is unique. The path � 7! (x�; s�) is alled the primal-dual entralpath of (1.1). The paradigm of interior point methods is to follow the entral path to theoptimal solution of (1.1) that lies at its endpoint.In the LP ase (1.5) takes the forms = �x�1; Ax = b; s = � ATy; (1.6)where A is a matrix with nullspae L, b and  are vetors, (x; s; y) are the vetors ofunknowns, x�1 is the omponentwise inverse of x, and s > 0, x > 0 omponentwise.Writing X = diag(x) for the diagonal matrix with Xii = xi, and e = (1; : : : ; 1)T for thevetor of ones, the �rst equation in (1.6) an be rewritten as (x; s) = �e, where (x; s) =Xs. The de�nition of  is primal-dual symmetri, beause Xs = Sx for S = diag(s). Thelinearization of (x; s) = �e yields the Newton system Sdx +Xds = �e� Xs, Adx = 0,ds = �ATdy, or, expressed in terms of ,��x(x; s)[dx℄ + ��s(x; s)[ds℄ = �e� (x; s); ds 2 L?; dx 2 L: (1.7)



6 In the main result of this artile we show that the operator �elds X and S and, byextension, the target map  an be generalized so that that the NT diretion is de�ned asthe target diretion obtained as the solution of the Newton equation (1.7), see Theorem 3.7.This result yields a new motivation for the NT diretion as a speial ase of a more generalfamily of searh diretions with ompelling properties desribed in the next paragraph.For a lassial motivation of the NT approah see the last part of this introdution.In the ase of linear programming (1.7) de�nes the standard searh diretion forprimal-dual IPMs. Kojima{Misuno{Yoshise [22℄ and Kojima{Megiddo{Noma{Yoshise[23℄ showed that  is a di�eomorphism that transforms the primal-dual stritly feasibledomainF(PD) := fx 2 Rn : x > 0; Ax = bg � fs 2 Rn : s > 0; 9y 2 Rm s.t. ATy + s = ginto the positive orthant Rn++ := fv 2 Rn : v > 0g. The primal-dual entral path isreti�ed in the proess, beause (x�; s�) = �e. This makes it possible to monitor theprogress of IPMs in the image spae of , whih is often alled V -spae. The paradigmof following the entral path �1�f�e : � > 0g� { also alled the set of analyti en-ters { an therefore be relaxed and replaed by the new paradigm of following any ray�1(f�v : � > 0g) where v 2 Rn++ . Points along suh rays are alled weighted analytienters. It is possible to follow suh rays by omputing searh diretions based on theNewton equation ��x(x; s)[dx℄+ ��s(x; s)[ds℄ = �v�(x; s). The V -spae approah basedon weighted analyti enters o�ers additional exibility in the design of algorithms andoneptual simpliity in their analysis. This framework has therefore attrated a lot ofinterest in the IPM ommunity. Several ompeting notions of V -spae have been proposedboth for LP and SDP, notions that are oneptually related but not equivalent: Jansen{Roos{Terlaky{Vial [20℄ and Roos{Terlaky{Vial [32℄ used the transformation  12 de�nedby the omponentwise square-root of the  de�ned above. They alled  12 the target mapand developed a theory of target-following algorithms for linear programming. By slightabuse of language we will all any V -spae transformation a target map in the sequel.Monteiro{Pang [27℄, Sturm{Zhang [34℄, Monteiro{Zanjaomo [26℄, and Burer{Monteiro[4℄ all proposed V -spae approahes for SDP that are based on slightly di�erent targetmaps.In this artile, we use a V -spae generalization that was independently developed bothby Tun�el [39, 40℄ and Hauser [15℄, apart from the di�erene that the latter approahinludes a di�erentiable struture whih is needed to de�ne an assoiated target map.This leads to the only generalization of the Kojima LP target map that inherits all ofits essential properties. Let us now briey desribe this onstrution. The primal-dualstritly feasible domain of the general self-saled programming problem pair (1.1) is givenas F(PD) := �K \ (L+ x0)�� �K℄ \ (L? + s0�: (1.8)Although the base spae E is endowed with an inner produt, we �nd it sometimesoneptually preferable to distinguish between E and its dual E℄ and think of this innerprodut as a bilinear form h�; �i : E � E℄ ! R. Let V be a Eulidean spae with



7inner produt (�; �) and dimension dimV = dimE. Let eV 2 V be a �xed vetor withkeV k2 = � 12 , where � := supfhF 00(x)�1[�F 0(x)℄;�F 0(x)i : x 2 Kg is the omplexityparameter of the self-saled barrier F , see [28℄ or [31℄. The bilinear produts h�; �i and(�; �) de�ne a notion of adjoint '� : V ! E℄ of a linear operator ' : E ! V via theusual requirement that hx;'�(v)i = ('(x); v) for all (x; v) 2 E � V . Analogously, anotion of adjoint  � exists for linear operators  : E℄ ! V . The gist in generalizing is to �nd appropriate generalizations of the operators X and S, de�ned as X = diag(x),S = diag(s) in the LP ase. If we aim at preserving all the essential properties of  fromthe LP framework, then the onditions we need to impose on X and S follow naturallyfrom the NT equations (1.17) introdued further below: we must �nd suÆiently smoothoperator �elds X : F(PD)! Iso(E℄; V ) and S : F(PD)! Iso(E; V ), suh that for eah(x; s) 2 F(PD), X�(x; s) ÆX(x; s) = F 00�1(x);X(x; s) Æ F 00�w(x; s)� = S(x; s);and X(x; s)[�F 0(x)℄ = eV : (1.9)The point w(x; s) that appears in the seond equation is the saling point of x and s:Nesterov{Todd [29℄ showed that whenever K is a symmetri one and F a self-saledbarrier for K then for all x 2 K and s 2 K℄ there exists a unique point w(x; s) 2 K suhthat F 00(w(x; s))[x℄ = s. Our de�nition of X and S is is primal-dual symmetri, beauseequations (1.9) are equivalent to their dual analogues. The following is an example ofsuh a pair of operator �elds: we endow E with an inner produt under whih K isself-dual: E ' E℄, K = K℄. This implies that there exists a unique e 2 K suh thatF 00(e) = {, and this point also satis�es kek2 = � 12 , see [29℄. Let us hoose V = E, eV = e,X(x; s) = F 00�1(w(e;�F 0(x)) and S(x; s) = X(x; s) Æ F 00(w(x; s)). Then (X;S) is a pairof operator �elds that satisfy onditions (1.9), see [39, 15℄. Note that X represents asquare-root of F 00�1(x), and S a square-root of F 00�1℄ (s), with respet to appropriatelyhosen oordinate systems. It an be shown that operator �elds X and S that satisfy theonditions (1.9) an be onstruted so that X depends only on the primal variables x andS only on the dual variables s if and only if K is the interior of a positive orthant, thatis, only when (1.1) orresponds to the linear programming problem, see [15℄. Thus, thegeneral theory is neessarily more ompliated than the LP ase. Nevertheless, any pairof operator �elds (X;S) that satisfy the onditions (1.9) de�nes a generalized target mapvia the assignment  : F(PD)! V;(x; s) 7! X(x; s)[s℄ = S(x; s)[x℄: (1.10)This generalized target map inherits all properties of its LP version. This inludes thereti�ation of the entral path (note that substitution of (1.5) into the last equationof (1.9) shows that (x�; s�) = �eV ) and the transformation of the primal-dual stritlyfeasible domain into a one isomorphi to K. The only weakening that an our is that may be one-to-one only in a neighborhood of the entral path, see Theorem 4.3.3, [15℄.Let us onlude this introdution by presenting a lassial motivation of the NT ap-proah explained from a modern perspetive. Reall that any self-saled barrier F is of



8the form (1.3). It is then the ase that ��F 0(x) = �Lpi=1 ix�1i , or in the partiular asewhere i = 1 for all i, ��F 0(x) = �x�1, where x�1 denotes the Jordan algebra inverse ofx. The anonial way of solving the system of nonlinear equations (1.5) would appear tobe as follows: a multipliation of the �rst equation with Lpi=1 ixi, using Jordan algebramultipliation, transforms the equations into primal-dual symmetri form:pMi=1 ixisi = �e; s 2 L? + s0: x 2 L+ x0; (1.11)Here xisi is the Jordan algebra produt of xi and si, and hene this is a member of E. Onean then apply a damped Newton method to (1.11) and enfore the onstraints x 2 K,s 2 K℄ expliitly using line searhes. Indeed, the approah we have just desribed leads toa family of algorithms whih was �rst analyzed by Alizadeh{Haeberly{Overton [1℄ in thease of semide�nite programming, although their motivation for the method was di�erent,see the explanations following (1.13) below. The generalization to symmetri ones andthe interpretation of the method in the Jordan algebra setting is due to Faybusovih [8℄.The work of Nesterov and Todd [29, 30℄, though later leading to the disovery of theonnetions between IPMs and Jordan algebras, was originally motivated by an earlierinterpretation of the system (1.5): in the ase of semide�nite programming (SDP) whereK is the one of n � n symmetri positive de�nite matries Sn�n(R)++ Equation (1.5)takes the formS = �X�1; tr(Ai(X �X0)) = 0; (i = 1; : : : ; m); S = S0 � mXi=1 yiAi; (1.12)where S;X 2 Sn�n(R)++ , y 2 Rm , S0; X0 2 Sn�n(R)++ are �xed positive de�nite symmet-ri matries, and where Ai 2 Sn�n(R) (i = 1; : : : ; m) are n�n symmetri matries. X, S,and y are the unknown variables. In this ase we have L = fX 2 Sn�n(R) : tr(AiX) = 0gand L? = spanfAi : i = 1; : : : ; mg. Sn�n(R) is a Eulidean Jordan algebra when en-dowed with the multipliation (X;S) 7! 12(XS + SX). Thus, if the term X�1 in the �rstequation of (1.12) is interpreted as the Jordan algebra inverse of X, then Jordan algebramultipliation with X yields the AHO equation12(XS + SX) = � I : (1.13)However, X�1 is also the inverse of X under standard matrix multipliation. Matrixmultipliation of the �rst equation in (1.12) by X then yields XS = � I. Note that XS isin general not symmetri. Therefore, the image spae of this system is higher dimensionalthan the preimage spae, whih makes a diret appliation of Newton's method impossible.A wealth of �xes to this problem have been proposed. One solution is to apply the Gauss{Newton method instead of Newton's, see Kruk et.al. [24℄. Most other solutions are basedon symmetrizing the equation XS = � I, see Todd [38℄ for a survey. Equation (1.13) andthe AHO approah were also originally motivated in this vein, [1℄.One of the drawbaks of symmetrization is that the resulting searh diretions arenot sale-invariant. Let us onsider the AHO method as an example. For any �xed



9W 2 Sn�n(R)++ , one an reformulate the primal SDP problem equivalently as follows:(P ) min tr(XS0) (P̂ ) min tr(X̂Ŝ0)s.t. tr(AiX) = bi; (i = 1; : : : ; m) , s.t. tr(ÂiX̂) = b̂i; (i = 1; : : : ; m)X � 0 X̂ � 0;where X̂ = W�1XW�1, Ŝ0 = WS0W , Âi = WAiW and b̂i = bi. The dual problem hasa orresponding reformulation with new dual variables Ŝ = WSW , ŷi = yi. The prob-lem pairs �(P ); (D)� and �(P̂ ); (D̂)� represent the same geometri problem represented intwo di�erent oordinate systems. A oordinate independent (sale-invariant) algorithmwould move along sequenes of points that orrespond to one another via the same o-ordinate transformation when running on the problem inputs �(P ); (D)� and �(P̂ ); (D̂)�respetively. But for this to be true, any searh diretion used by the algorithm wouldhave to be sale-invariant too. However, the AHO equation for the resaled variables(X̂Ŝ + ŜX̂)=2 = � I is equivalent to XS + W 2SXW�2 = 2� I and generally leads todi�erent Newton updates than (1.13). Other symmetrizations of XS = � I lead to thesame drawbak. In order to overome this defet, Nesterov and Todd took a di�erentapproah to symmetrization: multiplying the linearization of XS = � I with X�1, onegets �S +X�1�XS = �X�1 � S: (1.14)Note that Z 7! X�1ZS maps X to S. But likewise does the map Z 7!W�1ZW�1, whereW = X1=2(X1=2SX1=2)�1=2X1=2; (1.15)and this map takes Sn�n(R) to Sn�n(R), whereas the map Z 7! X�1ZS does not. Thus,Z 7!W�1ZW�1 is a symmetrized version of Z 7! X�1ZS. Replaing therefore (1.14) by�S +W�1�XW�1 = �X�1 � S and rewriting this equation in the form�S + F 00(W )[�X ℄ = ��F 0(X)� S; (1.16)where F (Z) = � ln detZ is the ordinary logarithmi barrier funtion for the one ofpositive de�nite symmetri matries, one an hek that the resulting searh diretions�X ;�S are sale-invariant. This approah an be used on an arbitrary symmetri one Kendowed with an arbitrary self-saled barrier F . Indeed, Nesterov{Todd [29℄ showed thatevery pair (x; s) 2 K �K℄ de�nes a unique saling point w 2 K suh that s = F 00(w)[x℄.The NT diretion (dx; ds) is then de�ned as the solution to the generalization of equation(1.16): F 00(w)dx + ds = ��F 0(x)� s; ds 2 L?; dx 2 L: (1.17)Various IPMs based on this searh diretion have been analyzed by Nesterov{Todd [29, 30℄,and variants of this method have been eÆiently implemented by Toh{Todd{T�ut�un�u [37℄and by Sturm [35℄.



102 A Variational Analysis of the Nesterov{Todd FlowWe will now develop a variational analysis of the NT diretion �eld and the ow assoiatedwith it. Let X and S be �xed operator �elds that satisfy the onditions of (1.9). Theassoiated target map  (see (1.10)) will serve as an essential tool in our analysis.We start by plaing the primal and dual problems from (1.1) and (1.4) in the setting ofa single spae: onsider the vetor spae Z := L� L?, whih has the same dimension asE and whih we all the primal-dual domain. Let us onsider the projetions �L : Z ! Land �L? = { � �L of Z onto L and L? along L? and L respetively, where { denotesthe identity mapping. Sine K is self-dual, there exists an element e 2 K suh that�F 00(e)��1 = { is the anonial embedding E℄ ,! E, see [29℄. Therefore, we an endow Zwith the inner produt(z1; z2) := h�Lz2;F 00(e)�Lz1i+ hF 00�1(e)�L?z2; �L?z1i:Z thereby beomes a Eulidean spae in whih L and L? are mutually orthogonal. Thefollowing oordinate transformation allows us to parametrize F(PD) (see (1.8)) withvariables in Z: x(z) = x0 + �Lz; s(z) = s0 + �L?z;z(x; s) = (x� x0)� (s� s0):Sine both X and S are de�ned on F(PD), we an writeX(z) := X (x(z); s(z)) ; S(z) := S (x(z); s(z)) ; (z) := X (x(z); s(z)) [s(z)℄for z 2 F(PD). It an easily be established that z 7! F (x(z)) + F℄(s(z)) is a �-self-onordant barrier for the onvex open set F(PD), where � is the ommon omplexityparameter of F and F℄, see [28℄ or [31℄. Despite its quadrati appearane, the funtiongap(z) := hx(z); s(z)i is a linear funtional on Z. Indeed, hx(z)� x0; s(z)� s0i = 0, sogap(z) = h�Lz; s0i + hx0; �L?zi + hx0; s0i. This is the so-alled duality gap of x(z) ands(z) and has the important property that(PD) inffgap(z) : z 2 F(PD)g and(PD�) minfgap(z) + � (F (x(z)) + F℄(s(z)))gare optimization problems that are equivalent to (1.1) and (1.4) respetively, see e.g. [15℄.Thus, the primal-dual entral path is the set of minimizers z� of (PD�) for all � > 0:x(z�) = x�, s(z�) = s�. The paradigm of the primal-dual framework is to redue theduality gap to zero while maintaining feasibility.We are now going to present a series of results whih are proven in [15℄. These aretehnial arguments that typially rely on propagating bounds via ODEs espeially en-gineered to that aim. Though most of the properties desribed below are unsurprisingin the sense that one would expet these from a good searh diretion, these results arenew and not straightforward to prove, beause the NT diretion is impliitly de�ned withrespet to axiomati objets. All of these results play important roles in Setion 3.



11Let us �x a value � > 0 of the barrier parameter, and let us onsider the orrespondingNT diretion whih is de�ned as the solution (dx; ds) to the system (1.17). Using ourparameterization in Z, we an de�ne vetor �eldsdx(z) = dx(x(z); s(z)); ds(z) = ds(x(z); s(z));d(z) = (dx(x(z); s(z)); ds(x(z); s(z))) ;whih are all in C1(F(PD); Z), see [15℄. The standard existene and uniqueness resultsfor solutions or ordinary di�erential equation imply that d(z) is the phase veloity �eldof a C1 maximal loal ow ' : W ! F(PD), where W � R � F(PD) is an open setontaining f0g � F(PD), and Iz := ft : (t; z) 2 Wg is the time interval over whih theux line through z is de�ned, see any textbook on di�erential topology, e.g., [5℄. ' and dare then related as follows:��t'(0; z) = d(z); 8 z 2 F(PD);'(0; z) = z; 8 z 2 F(PD);'(t1 + t2; z) = '(t2; '(t1; z));8 z 2 F(PD); t1; t2 2 R s.t. (t1 + t2; z); (t1; z) 2 W: (2.1)Let us now investigate the global behaviour of the NT ow. The distane of '(t; z)from z� is best measured in the image under . Reall that (z�) = �eV . For allz 2 F(PD) n fz�g and for all t 2 Iz we havek�eV �  ('(t; z))k = k�eV � (z)k e�t; (2.2)see Lemma 5.2.1 of [15℄. The ux lines of ' extend to the point z� when moving inthe positive time diretion, and to the boundary of F(PD) or in�nity when moving innegative time diretion. In fat, for all z 2 F(PD) n fz�g there exists lz 2 (�1; 0) suhthat Iz = (lz;+1), and limt!+1'(t; z) = z�; (2.3)limt!lz �gap('(t; z)) + �2 (F (x('(t; z))) + F℄(s('(t; z))))� = +1; (2.4)see Lemma 5.2.2 of [15℄. If z is lose enough to the entral path, then the distane formula(2.2) provides an estimate for the orresponding distane in the preimage spae: thereexist real numbers Æ > 0 and � > 1 suh that for all z 2 BÆ(z�) \ F(PD) n fz�g andt 2 [0;+1), ��1kz� � zk e�t � kz� � '(t; z)k � �kz� � zk e�t; (2.5)see Lemma 5.2.3 of [15℄.Next, we investigate the ux line '(t; z) through z 2 F(PD)nfz�g. We are partiularlyinterested in the e�et aused at a later time when z is perturbed at time 0. First, we



12note that the integral R +10 d ('(t; z)) dt is absolutely onvergent for all z 2 F(PD)nfz�g,that is, the ux lines of ' are of bounded variation. This follows from Lemma 5.2.5 of[15℄, whih shows that for z 2 F(PD) n fz�g,kd('(t; z))k � O (kz� � zk) e�t : (2.6)We derive from this inequality thatZ +10 kd ('(t; z))k dt = O (kz� � zk) : (2.7)Lemma 5.2.6 of [15℄ then shows that the derivative of d is approximately the negativeidentity mapping in a neighborhood of z�:d0(z) = �{+O (kz� � zk) : (2.8)The �rst order growth of perturbations in the initial value z an be desribed by the�nite-time Lyapunov exponents �i of the linearized ow around the orbit '(t; z). In thease of the NT ow, all of these exponents satisfy �i = �1+O(kz�� zk), as follows fromthe following inequality proven in Lemma 5.2.7 of [15℄:kvk e�t(1+jO(kz��zk)j) �  ��z'(t; z)[v℄ � kvk e�t(1�jO(kz��zk)j) : (2.9)Lemma 5.2.7 of [15℄ also shows that ��z d('(t; z))[v℄ = (1 +O(kz� � zk))  ��z'(t; z)[v℄ : (2.10)Together with (2.9) this implies that the integral R +10 ��zd ('(t; z)) [�℄dt is absolutely on-vergent: for all t � 0 and z 2 F(PD) n fz�g,Z +10  ��z d ('(t; z)) [�℄ dt = 1 +O (kz� � zk) : (2.11)The seond order variations are haraterized in Lemma 5.2.8 of [15℄, whih shows thatfor all � > 0 and z 2 F(PD) n fz�g lose enough to z�, �2�z2 d('(t; z))[�; �℄ � 2kd00(z�)k1 + �1� � e�t(1��) : (2.12)This equation implies that for all t � 0 and z 2 F(PD) n fz�g,Z +10  �2�z2 d ('(t; z)) [�; �℄ dt � 2 kd00(z�)k (1 +O(kz� � zk)) ; (2.13)and  �2�z2'(t; z)[v;w℄ = e�t(1�O(kz��zk))O(1): (2.14)



13Finally, Lemma 5.2.9 of [15℄ shows thatZ +10 ��z d ('(t; z)) [�℄dt = �{; (2.15)Z +10 �2�z2 d ('(t; z)) [�; �℄dt = 0: (2.16)We onlude our variational analysis by investigating the limiting behaviour of thediretions from whih ux lines approah z�. Lemma 5.2.10 of [15℄ shows that for allz 2 F(PD) n fz�g, the orresponding ux line has a limiting diretion, beauselimt!+1 et d ('(t; z)) (2.17)exists. Moreover, Lemma 5.2.11 of [15℄ shows thatlimt!+1 et (d ('(t; z))� (z� � '(t; z))) = 0: (2.18)As one would expet, the NT ow is stritly ontrating in a neighborhood of z�. In fat,there exists a radius Æ > 0 suh that for all z 2 BÆ (z�),kz� � '(t; z)k < kz� � zk 8t > 0; (2.19)see Lemma 5.2.12 of [15℄. And �nally, Lemmas 5.2.13 and 5.2.14 of [15℄ show that for allz 2 F(PD) n fz�g, the limit limt!+1 et ��t �et d ('(t; z))� (2.20)exists, and that ��z d ('(t; z)) = e�t (�{ +O (kz� � zk)) ;��z'(t; z) = e�t ({+O (kz� � zk)) : (2.21)3 Nesterov-Todd Diretions in the Target Frame-workIn this setion we will ontinue to use the primal-dual framework introdued in Setion2 and analyze the NT diretion de�ned by a �xed point z� on the primal-dual entralpath, that is, we onsider the vetor �eld d(z) : F(PD) ! Z that solves the system ofequations F 00 ((w(x(z); s(z))) �Ld(z) + �L?d(z) = ��F 0 (x(z))� s(z); (3.1)



14.f. (1.17). Our goal is to onstrut a pair of C2 operator �elds (X;S) that satisfy theonditions (1.9), and suh that the assoiated target map  (see (1.10)) has the propertythat the NT diretion satis�es the Newton equation0(z)d(z) = �eV � (z) (3.2)for all z 2 F(PD). In other words, we will prove that the NT diretion is a speial aseof a target diretion, see Theorem 3.7.Before we start the onstrution of (X;S), let us further explore the di�erene be-tween the systems (3.1) and (3.2). Multiplying (3.1) by X(z), we get S(z)�Ld(z) +X(z)�L?d(z) = �eV � (z), whih an be written asM(z)d(z) = �eV � (z); (3.3)where M 2 C2(F(PD);L(Z; V )) is the operator �eld M(z) : d 7! S(z)�Ld+X(z)�L?d.On the other hand, for all z 2 F(PD), and for �xed orthogonal bases on E ' E℄and V , a linear operator F 00� 12 (x(z)) : E℄ ! V is well-de�ned with respet to thesebases by the unique positive de�nite symmetri square-root of the matrix that representsF 00�1(x(z)) : E℄ ! E with respet to the basis on E. Likewise, F 00� 12℄ (s(z)) 2 L(E; V ) iswell-de�ned. It an then be shown (see Chapter 3 of [15℄) that there exist C2 operator�elds 
x;
s : F(PD)! O(V ) suh thatX(z) = 
x(z)F 00� 12 (x(z));S(z) = 
s(z)F 00� 12℄ (s(z)); (3.4)and then (1.9) implies that
s(z) = 
x(z)F 00� 12 (x(z))F 00 (w(x(z); s(z))F 00 12 �℄ (s(z)):In (3.4), O(V ) denotes the set of orthogonal transformations of V , endowed with theanonial di�erentiable struture that turns it into a di�erentiable manifold and a topo-logial group. This is an example of a Lie group (see e.g. [18℄), and we all it the orthogonalgroup of V . Now, applying the produt rule in the omputation of 0(z) and splitting theleft hand side of (3.2) into parts, we getM(z)d(z) +R(z)d(z) = �eV � (z); (3.5)where R 2 C2(F(PD);L(Z; V )) is the operator �eldR(z) : d 7! (
0s(z)[�Ld℄ Æ 
�s(z) + 
0x(z)[�L?d℄ Æ 
�x(z)) (z):Therefore, the NT equation (3.3) and the target equation (3.5) di�er only in the termR(z)d(z), and for (3.2) to hold we need to onstrut the operator �elds (X;S) suh thatR(z)d(z) � 0: (3.6)Proposition 4.1.9, [15℄ shows that for all z 2 F(PD), M(z) is nonsingular,dim(kerR(z)) � 2 and imR(z) � spanfeV ; (z)g?. Moreover, if z lies on the entral path,



15then R(z) = 0. Sine R(z) has a nontrivial kernel, the requirement (3.6) is not a prioriimpossible to satisfy. Ideally, we would like to onstrut (X;S) suh that d(z) 2 kerR(z)for all z 2 F(PD) and for the NT diretion �elds arising from all possible values of � > 0simultaneously. A neessary and suÆient ondition for this to be true would be that thisrequirement an be satis�ed for only two di�erent values of � simultaneously (see [15℄).Again, this requirement is not a priori impossible to satisfy beause dim(kerR(z)) � 2.However, the diÆulties of proving that suh a pair of operator �elds (X;S) exists seemrather extraordinary and we restrit our analysis to the NT �eld orresponding to a �xedvalue of � > 0 throughout.Equations (1.9) and (3.4) show that any two pairs of operator �elds (X;S) and ( ~X; ~S)must be related to eah other via a C2 operator �eld 
� : F(PD) ! O(V; eV ) := f� 2O(V ) : ��eV = eV g as follows:X(z) = 
�(z) ~X(z); S(z) = 
�(z) ~S(z):This means that for our onstrution of a pair of operator �elds (X;S) that satisfy therequirement (3.6), we an start with an arbitrary known pair of operator �elds ( ~X; ~S)that satisfy the onditions (1.9), e.g., the example of Setion 1 for whih ~X; ~S 2 C1,and then we must onstrut a C2 operator �eld 
� : F(PD) ! O(V; eV ) suh that(X;S) = (
� Æ ~X;
� Æ ~S) satis�es (3.6). We adopt the adjoint notation 
� for lateronveniene. Let us denote the operator �elds R, 
x and 
s assoiated with (X;S) and( ~X; ~S) respetively by R(z) and ~R(z), 
x(z) and ~
x(z), 
s(z) and ~
s(z) respetively.Likewise, let us write (z) and ~(z) respetively for the assoiated target map. Then
x(z) = 
�(z)~
x(z), 
s(z) = 
�(z)~
s(z), andR(z)[d(z)℄ = 
�0[d(z)℄~(z) + 
�(z)�~
0s(z)[�Ld℄~
�s(z) + ~
0x(z)[�L?d℄~
�x(z)� ~(z):Therefore, the ondition (3.6) is equivalent to(
�0[d(z)℄) [~℄ = �
� �~
0s[�Ld(z)℄~
�s + ~
0x[�L?d(z)℄~
�x� [~(z)℄ (3.7)for all z 2 F(PD) n fz�g. For z = z� we don't need to make any assumptions, beauseR(z�) = ~R(z�) = 0, as remarked above. However, for spei�ity, we require that 
�(z�) ={ be the identity map. Moreover, we strengthen the ondition (3.7) by dropping themultipliation with ~(z). Taking adjoints and using 

�0 + 
0
� = 0, the requirementbeomes �nding a C2 operator �eld 
 : F(PD)! O(V; eV ) suh that
(z�) = {;
0(z)[d(z)℄ = �~
s(z)0[�Ld(z)℄~
�s(z) + ~
0x(z)[�L?d(z)℄~
�x(z)�
(z) 8 z 2 F(PD) n fz�g:(3.8)Note that (3.8) onstitutes a boundary value problem: this is a partial di�erentialequation for an operator valued funtion z 7! 
(z) 2 O(V; eV ) with domain of de�nitionF(PD)nfz�g and with the requirement that the boundary ondition 
(z�) = { be satis�edat the isolated boundary point z�. Thus, for the purposes of showing the existene of



16(X;S) that satisfy (3.6), it suÆes to show that the boundary value problem (3.8) has aC2 solution whih an be extended in a twie ontinuously di�erentiable manner at theboundary point z�. Indeed, we are going to show that the boundary value problem (3.8)has a unique solution, and that its extension to z� is C2, see Theorem 3.7. Showing thelast property is the tehnially most diÆult part of the proof.Lemma 3.1. The boundary value problem (3.8) has a solution that an be extended in atwie ontinuously di�erentiable manner at z� if and only if it has suh a solution in aneighborhood of z�.Proof. The only if part is of ourse trivially true. Let us therefore assume that thereexists an open ball BÆ(z�) � F(PD) and a mapping �
 2 C2(BÆ(z�);O(V; eV )) suh that�
0(z)[d(z)℄ = �~
0s(z)[�Ld(z)℄~
�s(z) + ~
0x(z)[�L?d(z)℄~
�x(z)� �
(z) 8 z 2 BÆ(z�) n fz�g:Consider the following boundary value problem:
(z) = �
(z) 8 z 2 �BÆ=2(z�);
0(z)[d(z)℄ = �~
0s(z)[�Ld(z)℄~
�s(z) + ~
0x(z)[�L?d(z)℄~
�x(z)�
(z) 8 z 2 F(PD) n �BÆ=2(z�):(3.9)For any z 2 �BÆ=2(z�), the standard existene and uniqueness theorems for solutions ofordinary di�erential equations an be implied to show that there exists a unique funtion
('(t; z)) that satis�es (3.9) for all points '(t; z) on the interval t 2 (lz; 0℄ (see Setion2 for notation). The standard theorems on the smooth dependene of solutions of ODEson parameters also imply that 
('(t; z)) varies in a C2 fashion as a funtion of z. Therequired 
 is then obtained for all z 2 F(PD) n BÆ=2(z�) by setting 
(z) := 
('(t; ẑ))where (t; ẑ) is the unique point in R���BÆ=2(z�) suh that z = '(t; ẑ). It follows from thearguments above that the extension 
 is unique and oinides with �
 on the intersetionof their domains of de�nition. For a more detailed proof, see Lemma 3.11 of [15℄.Notational Convention 3.2. In the remainder of the present and subsequent setions thefollowing shorthand notation will often be employed, where vi are vetors:~
0[�v1℄~
� := ~
0s[�Lv1℄~
�s + ~
0x[�L?v1℄~
�x;~
0[�v1℄~
�0[v2℄ := ~
0s[�Lv1℄~
�0s [v2℄ + ~
0x[�L?v1℄~
�0x [v2℄;~
00[�v1; v2℄~
� := ~
00s [�Lv1; v2℄~
�s + ~
00x[�L?v1; v2℄~
�x;~
0[�v1℄~
�00[v2; v3℄ := ~
0s[�Lv1℄~
�00s [v2; v3℄ + ~
0x[�L?v1℄~
�00x [v2; v3℄;~
00[�v1; v2℄~
�0[v3℄ := ~
00s [�Lv1; v2℄~
�0s [v3℄ + ~
00x[�L?v1; v2℄~
�0x [v3℄;~
000[�v1; v2; v3℄~
� := ~
000s [�Lv1; v2; v3℄~
�s + ~
000x [�L?v1; v2; v3℄~
�x:We will heneforth onentrate on the problem of showing the existene and uniquenessof a solution of (3.8) whih is loally de�ned around z� and C2 extendable there. For



17z 2 F(PD)nfz�g, let us onsider the following oordinate hange for the time parameterof the ux line '(t; z): r(t; z) = (e�t if t 2 (lz;+1);0 if t = +1;where lz < 0 is de�ned as in (2.4). Then [0; 1℄ � im(r) for all z 2 F(PD) n fz�g. Wewrite t(r; z) for the inverse of r(t; z) and (r; z) := (' (t(r; z); z) if r > 0;z� if r = 0:We laim that  2 C1 for any �xed z 2 F(PD) n fz�g. In fat, it follows from (2.3) that is ontinuous. Moreover, (2.17) shows that the limitlimr!0 ��r (r; z) = limr!0 ��t'(t(r; z); z) ��r t(r; z) = limt!+1 d('(t; z))�r(t; z) = � limt!+1 et d('(t; z))exists.Suppose that 
 is a loal solution to (3.8), de�ned on BÆ(z�), where Æ > 0 is hosensmall enough for (2.19) to be true. Then the funtiony(r; z) = 
( (r; z))is well-de�ned on [0; 1℄� BÆ(z�), and for r > 0 we have��ry(r; z) = 
0( (r; z)) � ��r (r; z)�= 
0( (r; z)) � ��t'(t(r; z); z) ��r t(r; z)�= �
0( (r; z)) �d( (r; z))r �(3.8)= �~
0( (r; z)) ��d( (r; z))r � ~
�( (r; z))
( (r; z))= a(r; z)y(r; z); (3.10)where the mapping a(r; z) = �~
0( (r; z)) ��d( (r; z))r � ~
�( (r; z)) (3.11)is de�ned on (0; 1℄� BÆ(z�).O(V; eV ) is a losed subgroup of the Lie group O(V ), and it is therefore a Lie groupitself, see e.g. [5℄. Moreover, sine 
(z) 2 O(V; eV ) for all z 2 BÆ(z�), we have��ry(r; z) 2 Ty(r;z)O(V; eV ); (3.12)



18where Ty O(V; eV ) denotes the tangent spae of O(V; eV ) at y. It is a trivial fat from thetheory of Lie groups that (Ty O(V; eV ))y�1 = T{O(V; eV ), where { is the identity mapping,that is, { is the multipliative neutral element of O(V; eV ). T{O(V; eV ), heneforth denotedby o(V; eV ), onsists of the set of skew-adjoint endomorphisms of V that ontain eV intheir kernel, that is, v 2 o(V; eV ), v 2 End(V ); v� = �v; veV = 0:This haraterization shows that the following ommutator operation is well-de�ned:[�; �℄ : o(V; eV )� o(V; eV )! o(V; eV );[u; v℄ 7! uv � vu:When o(V; eV ) is endowed with this operation, it beomes a Lie algebra, see e.g. [18℄. Thisis alled the Lie algebra assoiated with the Lie group O(V; eV ).Equations (3.10) and (3.12) show that a 2 C1((0; 1℄�BÆ(z�); o(V; eV )) (see (3.11)). Welaim that for �xed z 2 BÆ(z�), a an be extended to [0; 1℄�fzg in a C1 fashion. In fat,~
0 2 C1 and (2.17) shows thatlimr!0 d( (r; z))r = limt!+1 et d('(t; z))exists. This proves that a an be ontinuously extended at (0; z). On the other hand,(2.20) shows thatlimr!0 ��r �d( (r; z))r � = limt!+1 ��t �et d('(t; z))� �t(r; z)�r = � limt!+1 et ��t �et d('(t; z))�exists. Together with ~
 2 C2 and  2 C1 this proves that the extension of a is ontinu-ously di�erentiable with respet to r at (0; z).In summary, we have shown that if a loal solution 
 to (3.8) exists, then y(r; z) =
( (r; z)) must satisfy the di�erential equationy(0; z) = {;��r y(r; z) = a(r; z)y(r; z) (r 2 [0; 1℄); (z 2 BÆ(z�)); (3.13)where a is de�ned as in (3.11) and ontinuously extended at r = 0. If (3.13) has aunique solution and if we an integrate this equation then we know 
 along the hara-teristi  (�; z). In partiular, sine this harateristi ows through z, 
(z) is uniquelydetermined. Thus, if (3.8) has a loal solution, then (3.13) provides a mehanism to�nd this solution expliitly. On the other hand, if (3.13) has a unique solution for allz 2 BÆ(z�) n fz�g then 
(z) := y(1; z) satis�es (3.8) for all z 2 BÆ(z�) n fz�g. In Lemma3.4 we will prove that this is indeed the ase. In Lemma 3.5 we will then prove that
(z�) = { extends this solution in a twie ontinuously di�erentiable manner at z�. Thisproves the existene and uniqueness of a loal solution for (3.8), and together with Lemma3.1 this onstitutes a proof of Theorem 3.7.



19For a �xed z 2 BÆ(z�), (3.13) is a linear ordinary di�erential equation evolving onthe Lie group O(V; eV ) and is driven by the operator a(�; z) 2 C1([0; 1℄; o(V; eV )). Thistype of initial value problem was studied by Hausdor� [12℄ for general Lie groups G andtheir assoiated Lie algebras g. Substituting G = O(V; eV ), it follows from this theorythat there exists a number r� > 0 and a funtion �(�; z) 2 C1([0; r�℄; o(V; eV )) suh thaty(r; z) = exp(�(r; z)) is the unique solution of (3.13) on r 2 [0; r�℄, where exp is thematrix exponential, and where �(�; z) satis�es the dexpinv equation�(0; z) = 0; (3.14)��r�(r; z) = 1Xm=0 hmadm(a(r; z); �(r; z)); (r 2 [0; r�℄):In (3.14), hm is the m-th Taylor series oeÆient of the funtion h : C ! C ,h(w) = wew�1 + w (3.15)expanded around w = 0, and the ad-operator adk is reursively de�ned as follows:ad0(v; u) = v, and adk(v; u) = [adk�1(v; u); u℄ for k 2 N , where [�; �℄ denotes the ommu-tator operator de�ned above. Using Piard-Lindel�of iteration it is possible to expliitlydetermine more and more terms of a series development for the solution of (3.14). Magnus[25℄ derived the �rst four terms of this series:�(r; z) = Z r0 a(�; z)d�+ 12 Z r0 �a(�; z); Z �0 a(�; z)d��d�+ 14 Z r0 �a(�; z); Z �0 �a(�; z); Z �0 a(�; z)d�� d��d�+ 112 Z r0 ��a(�; z); Z �0 a(�; z)d�� ; Z �0 a(�; z)d�� d�+ : : : : (3.16)The general term of the this series was haraterized by Iserles-N�rsett [19℄. We nowdesribe their onstrution for the speial ase where G = O(V; eV ) that applies to ourproblem. Consider the set of funtions E � F([0; r�℄; o(V; eV )� for whih membershipis de�ned by reursively applying the following rules: a(�; z) 2 E , and if p; q 2 E thenr 7! �p(r); R r0 q(�)d�� 2 E . It would be diÆult to work with E without a proper indexingsystem. This is most elegantly ahieved by use of rooted trees. We reursively apply thefollowing rules: the map a(�; z) is assoiated with the tree �0 onsisting of a single node,a(r; z) � �0 = �;and if p(r); q(r) 2 E are assoiated with the trees � [1℄ and � [2℄ respetively, then themapping r 7! �p(r); Z r0 q(�)d�� 2 E



20is assoiated with the tree obtained by appending a new root to � [2℄ and joining theresulting tree with � [1℄ via a new root on the left:hp(r); Z r0 q(�)d�i � � [1℄ � [2℄����� � (3.17)We denote the set of trees that an be obtained in this fashion by T , and we denote themember of E assoiated with � by H� (�; z). By Tk we denote the set of members of Tthat ontain k nodes, and we say that these trees are of order k. An indution argumentshows that all trees in T are of order 3k + 1 for some k 2 N0 . Iserles{N�rsett [19℄ provedthat #T3k+1 = (2k)!k!(k + 1)! 8 k 2 N0 : (3.18)Eah � 2 Tk an be written uniquely in the form
� [1℄����� [2℄����� [3℄. . . ��� [l℄���� � �� �� �� ��

for some trees � [1℄; : : : ; � [l℄ 2 T of order stritly less than k. We write � = R�� [1℄; : : : ; � [l℄�to express this relationship. For later onveniene, let us denote the tree R��0� by �1.With this notation it is possible to de�ne a sequene of numbers (�� )T by reursivelyapplying the following rules: ��0 = h0, and if all �� [i℄ are de�ned for (i = 1; : : : ; l), then�R(� [1℄;::: ;� [l℄) = hlQli=1 �� [i℄, where hl is de�ned with respet to (3.15) as above. Note thatsine the funtion h has a onvergene radius stritly greater than 1, we havej�� j � 1 (3.19)for all � of suÆiently high order (atually for all � 2 T ). It follows from the results ofIserles{N�rsett [19℄ that the general term in the series (3.16) is �� R r0 H� (�; z)d�, that is,the solution to the dexpinv equation (3.14) is given by the Magnus series�(r; z) =X�2T �� Z r0 H� (�; z)d� (3.20)on the interval [0; ~r) where both this series and its termwise derivative onverge absolutely.Moreover, the solution of the initial value problem (3.13) is given by y(r; z) = exp(�(r; z))on the interval [0; r�℄ on whih exp(�(r; z)) is de�ned and r� � ~r. We will see below thatr� � 1.We will now express the Magnus series (3.20) in terms of the parameters (t; z) insteadof (r; z). For eah � 2 T we an de�ne a funtion L� (t; z) : [0;+1)�BÆ(z�)! o(V; eV )by reursively applying the following rules:



21(i) L�0(t; z) := �~
0('(t; z))[�d('(t; z))℄~
�('(t; z)).(ii) If � is the tree de�ned in (3.17) thenL� (t; z) := �L� [1℄(t; z); Z +1t L� [2℄(�; z)d�� :The funtions de�ned above then satisfyL� (t; z) = e�tH� (e�t; z) (3.21)for all � 2 T . This an easily be seen via indution.Now note that if �(�; z) is expressible by the Magnus series (3.20), then 
(z) =
('(0; z)) = y(1; z) = exp�&(z)�, where&(z) := �(1; z) =X�2T �� Z 10 H� (�; z)d� =X�2T �� Z 0+1 �r(t; z)�t H� (r(t; z); z)dt=X�2T �� Z +10 L� (t; z)dt: (3.22)So far we have treated z as a �xed parameter, but (3.22) now shows that the freevariable t disappears when taking the integral. We therefore obtain an expliit seriesrepresentation for 
(z) as a funtion of z, now onsidered as a variable. Let us endowo(V; eV ) with the usual operator matrix norm. Reall that we hose Æ small enough for(2.19) to be true. For our further analysis we need to restrit the neighborhood around z�even further. The results of Setion 2 and the fat that ~
 2 C1 imply that it is possibleto hoose Q > 0 large enough and % > 0 small enough so that the following inequalitiesare satis�ed for all z 2 B%(z�) n fz�g and t � 0:~
0(z)[��℄~
�(z) � Q; (3.23)~
00(z)[��; �℄~
�(z); ~
0(z)[��℄~
�0(z)[�℄ � Q; (3.24)~
000(z)[��; �; �℄~
�(z); ~
00(z)[��; �℄~
�0(z)[�℄; ~
0(z)[��℄~
�00(z)[�; �℄ � Q; (3.25)d�'(t; z)� � Qkz� � zk e�t; see (2.5) and (2.18); (3.26)z� � '(t; z) � kz� � zk; see (2.19); (3.27) ��z'(t; z) � e� t2 ; see (2.9); (3.28)



22  �2�z2'(t; z) � Q; see (2.14); (3.29) �2�z2 d('(t; z)) � Q e� t2 ; see (2.12); (3.30)Z 10  ��z d�'(t; z)� dt � 1 +Qkz� � zk; see (2.11); (3.31)Z 10  �2�z2 d�'(t; z)� dt � Q�1 +Qkz� � zk�; see (2.13): (3.32)Lemma 3.3. If Q; % > 0 are hosen so that (3.23)-(3.32) hold true, then for all k 2 N0 ,� 2 T3k+1 and z 2 B%(z�) n fz�g the following inequalities hold true:i) Z 10 kL� (t; z)kdt � kz� � zkk+1Q2k+22k;ii) Z 10  ��zL� (t; z) dt � kz� � zkkQ2k+122k + kz� � zkk+1Q2k+232k+1;iii) Z 10  �2�z2L� (t; z) dt � kz� � zkk�1Q2k�(k) + kz� � zkkQ2k+1�32k+2 +Q32k�+ kz� � zkk+1Q2k+2�32k+3 +Q32k+1�;where �(k) = (0 if k = 0;22(k+1) if k � 1:We will prove this lemma in Setion 4.Lemma 3.4. There exists a radius � > 0 suh that the mapping &(z) de�ned in (3.22) iswell de�ned and twie ontinuously di�erentiable on B�(z�) n fz�g. Moreover,i) &(z) = O(kz� � zk);ii) ��z &(z) = Z 10 ��zL�0(t; z)dt+O(kz� � zk);iii) �2�z2 &(z) = Z 10 �2�z2L�0(t; z)dt+ 12 Z 10 �2�z2L�1(t; z)dt +O(kz� � zk):



23We will prove this lemma in Setion 5.Lemma 3.5. Let � > 0 be hosen as in Lemma 3.4 and let &(z) be ontinuously extendedat z�, that is, &(z�) = 0. Then & 2 C2(B�(z�); o(V; eV )). In partiular, the derivatives atz� are given as follows: for all v; w 2 Z,& 0(z�)[w℄ = ~
0(z�)[�w℄~
�(z�); (3.33)& 00(z�)[w; v℄ = 12 ~
00(z�)[�v;w℄~
�(z�) + 12 ~
00(z�)[�w; v℄~
�(z�)+ 12 ~
0(z�)[�w℄~
�0(z�)[v℄ + 12 ~
0(z�)[�v℄~
�0(z�)[w℄: (3.34)We will prove this lemma in Setion 6.Theorem 3.6 (Loal Solution).Let � > 0 and &(z) be hosen as in Lemma 3.5. Then 
(z) = exp�&(z)� is a twieontinuously di�erentiable solution of (3.8) de�ned on B�(z�). The ontinuous derivativesat the boundary point z� are given as follows: for all v; w 2 Z,
0(z�)[w℄ = & 0(z�)[w℄; (3.35)
00(z�)[w; v℄ = & 00(z�)[w; v℄ + 12& 0(z�)[w℄& 0(z�)[v℄ + 12& 0(z�)[v℄& 0(z�)[w℄ (3.36)Proof. The �rst statement is lear from Lemma 3.5, the fat that the exponential mappingis analyti and the developments that led to equation (3.22). In order to prove the seondstatement, note that at the origin the �rst and seond derivatives of the matrix exponentialare as follows: for all V;W 2Mn�n(R),exp0(0)[V ℄ = V; (3.37)exp00(0)[W ;V ℄ = 12(WV + VW ): (3.38)Sine o(V; eV ) is a matrix Lie algebra, it is therefore the ase that for all v; w 2 Z,
0(z�)[w℄ = exp0�&(z�)�[& 0(z�)[w℄℄ = exp0(0)[& 0(z�)[w℄℄ (3.37)= & 0(z�)[w℄;and 
00�z��[w; v℄ = exp0�&(z�)�[& 00(z�)[w; v℄℄ + exp00�&(z�)�[& 0(z�)[w℄; & 0(z�)[v℄℄= exp0(0)[& 00(z�)[w; v℄℄ + exp00(0)[& 0(z�)[w℄; & 0(z�)[v℄℄(3.38)= & 00(z�)[w; v℄ + 12& 0(z�)[w℄& 0(z�)[v℄ + 12& 0(z�)[v℄& 0(z�)[w℄:



24Theorem 3.7 (NT and Target).There exists a unique twie ontinuously di�erentiable operator �eld 
 : F(PD) !O(V; eV ) that solves the boundary value problem (3.8). Moreover, the NT diretionsolves the Newton system (3.2) when the target map  is de�ned with respet to X(z) =
�(z) ÆX(z).Proof. The existene of 
 follows from Theorem 3.6 and Lemma 3.1. Moreover, the loalsolution onstruted in Theorem 3.6 is unique beause y(r; z) = exp(�(r; z)) is the uniqueloal solution of (3.13), by virtue of Hausdor�'s theory of the dexpinv equation [12℄.Lemma 3.1 shows that there is a unique extension of this loal solution to all of F(PD).Finally, (3.8) was expliitly designed so as to render the remaining laims true.
4 Proof of Lemma 3.3Proof. We use indution over k. For k = 0 we have �0 = �, and then we an hek laimsi), ii), and iii) of Lemma 3.3 as follows:i) Z 10 kL�0(t; z)kdt = Z 10 k~
0('(t; z))[�d('(t; z))℄~
�('(t; z))kdt(3.23);(3.27)� Z 10 Qkd('(t; z))kdt (3.26)� Q Z 10 kz� � zkQ e�t dt= 20Q0+2kz� � zk0+1:

ii) Z 10  ��zL�0(t; z) dt � Z 10 ~
00('(t; z)) ��d('(t; z)); ��z'(t; z)� ~
�('(t; z)) dt+ Z 10 ~
0('(t; z)) �� ��z d('(t; z))� ~
�('(t; z)) dt+ Z 10 ~
0('(t; z))[�d('(t; z))℄~
�0('(t; z)) � ��z'(t; z)� dt(3.23);(3.24);(3.27)� Q Z 10 kd('(t; z))k  ��z'(t; z) dt+Q Z 10  ��z d('(t; z)) dt+Q Z 10 kd('(t; z))k  ��z'(t; z) dt(3.26);(3.28);(3.31)� 2Q2kz� � zk +Q(1 +Qkz� � zk)= kz� � zk0Q0+120 + kz� � zk1Q0+230+1:
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iii) Z 10  �2�z2L�0(t; z) dt� Z 10 ~
000('(t; z)) ��d('(t; z)); ��z'(t; z); ��z'(t; z)� ~
�('(t; z)) dt+ Z 10 ~
00('(t; z)) �� ��z d('(t; z)); ��z'(t; z)� ~
�('(t; z)) dt+ Z 10 ~
00('(t; z)) ��d('(t; z)); �2�z2'(t; z)� ~
�('(t; z)) dt+ Z 10 ~
00('(t; z)) ��d('(t; z)); ��z'(t; z)� ~
�0('(t; z)) � ��z'(t; z)� dt+ Z 10 ~
00('(t; z)) �� ��z d('(t; z)); ��z'(t; z)� ~
�('(t; z)) dt+ Z 10 ~
0('(t; z)) �� �2�z2 d('(t; z))� ~
�('(t; z)) dt+ Z 10 ~
0('(t; z)) �� ��z d('(t; z))� ~
�0('(t; z)) � ��z'(t; z)� dt+ Z 10 ~
00('(t; z)) ��d('(t; z)); ��z'(t; z)� ~
�0('(t; z)) � ��z'(t; z)� dt+ Z 10 ~
0('(t; z)) �� ��z d('(t; z))� ~
�0('(t; z)) � ��z'(t; z)� dt+ Z 10 ~
0('(t; z))[�d('(t; z))℄~
�00('(t; z)) � ��z'(t; z); ��z'(t; z)� dt+ Z 10 ~
0('(t; z))[�d('(t; z))℄~
�0('(t; z)) � �2�z2'(t; z)� dt



26 (3.23)�(3.25);(3.27)� Q Z 10 kd('(t; z))k  ��z'(t; z)2 dt+Q Z 10  ��z d('(t; z))  ��z'(t; z) dt+Q Z 10 kd('(t; z))k  �2�z2'(t; z) dt+Q Z 10 kd('(t; z))k  ��z'(t; z)2 dt+Q Z 10  ��z d('(t; z))  ��z'(t; z) dt+Q Z 10  �2�z2 d('(t; z)) dt+Q Z 10  ��z d('(t; z))  ��z'(t; z) dt+Q Z 10 kd('(t; z))k  ��z'(t; z)2 dt+Q Z 10  ��z d('(t; z))  ��z'(t; z) dt+Q Z 10 kd(t; z)k  ��z'(t; z)2 dt+Q Z 10 kd('(t; z))k  �2�z2'(t; z) dt(3.28);(3.29)� (4 + 2Q)Q Z 10 kd('(t; z))kdt+ 4Q Z 10  ��z d('(t; z)) dt+Q Z 10  �2�z2 d('(t; z)) dt(3.26);(3.31);(3.32)� (4 + 2Q)Q2kz� � zk+ 4Q(1 +Qkz� � zk) +Q2(1 +Qkz� � zk)� kz� � zk�1Q00 + kz� � zk0Q1(32 +Q30) + kz� � zk1Q2(33 +Q31):This ompletes the base ase. In order to prove the indution step, let k � 1 and supposethe lemma holds true for all � 2 T3i+1, (i = 0; : : : ; k � 1). Let � 2 T3k+1. Beause ofthe reursive de�nition of T there exist an integer l < k and two oriented rooted trees� [1℄ 2 T3l+1 and � [2℄ 2 T3(k�l�1)+1 suh that � is related to � [1℄ and � [2℄ as in (3.17).Therefore, assuming that statements i), ii) and iii) of the lemma hold for � [1℄ and � [2℄, thefollowing arguments show that they hold for � too:
i) Z 10 kL� (t; z)kdt = Z 10 �L� [1℄(t; z); Z 1t L� [2℄(�; z)d�� dt� 2 Z 10 kL� [1℄(t; z)k Z 1t kL� [2℄(�; z)kd�dt(2.1)= 2 Z 10 kL� [1℄(t; z)k Z 10 kL� [2℄(�; '(t; z))kd�dti)� Z 10 kL� [1℄(t; z)k2k�lQ2k�2lkz� � '(t; z)kk�ldt(3.27)� 2k�lQ2k�2lkz� � zkk�l Z 10 kL� [1℄(t; z)kdti)� 2k�lQ2k�2lkz� � zkk�l2lQ2l+2kz� � zkl+1 = 2kQ2k+2kz� � zkk+1:
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ii) Z 10  ��zL� (t; z) dt � Z 10 � ��zL� [1℄(t; z); Z 1t L� [2℄(�; z)d�� dt+ Z 10 �L� [1℄(t; z); Z 1t ��zL� [2℄(�; z)d�� dt(2.1)� 2 Z 10  ��zL� [1℄(t; z) Z 10 kL� [2℄(�; '(t; z))kd�dt+ 2 Z 10 kL� [1℄(t; z)k Z 1t  ��~zL� [2℄(�; ~z)���~z='(t;z) � ��z'(t; z)� d�dti);ii)� 2k�lQ2k�2l Z 10  ��zL� [1℄(t; z) kz� � '(t; z)kk�ldt+ 2 � 22k�2l�2Q2k�2l�1 Z 10 kL� [1℄(t; z)kkz� � '(t; z)kk�l�1  ��z'(t; z) dt+ 2 � 32k�2l�1Q2k�2l Z 10 kL� [1℄(t; z)kkz� � '(t; z)kk�l  ��z'(t; z) dti);ii);(3.27);(3.28)� 2k�lQ2k�2lkz� � zkk�l �22lQ2l+1kz� � zkl+32l+1Q2l+2kz� � zkl+1	+ 2�22k�2l�2Q2k�2l�1kz� � zkk�l�1+32k�2l�1Q2k�2lkz� � zkk�l	 2lQ2l+2kz� � zkl+1= kz� � zkk �Q2k+1�2k�l22l + 2l+122k�2l�2�+ kz� � zkk+1Q2k+2�2k�l32l+1 + 2l+132k�2l�1�� kz� � zkkQ2k+122k + kz� � zkk+1Q2k+232k+1:iii) Z 10  �2�z2L� (t; z) dt = Z 10  �2�z2 �L� [1℄(t; z); Z 1t L� [2℄(�; z)d�� dt� 2 Z 10  �2�z2L� [1℄(t; z) Z 1t kL� [2℄(�; z)kd�dt+ 4 Z 10  ��zL� [1℄(t; z) Z 1t  ��zL� [2℄(�; z) d�dt+ 2 Z 10 kL� [1℄(t; z)k Z 1t  �2�z2L� [2℄(�; z) d�dt(2.1)� 2 Z 10  �2�z2L� [1℄(t; z) Z 10 kL� [2℄(�; '(t; z))kd�dt+ 4 Z 10  ��zL� [1℄(t; z) Z 10  ��~zL� [2℄(�; ~z)���~z='(t;z)  ��z'(t; z) d�dt+ 2 Z 10 kL� [1℄(t; z)k Z 10  �2�~z2L� [2℄(�; ~z)���~z='(t;z)  ��z'(t; z)2 d�dt+ 2 Z 10 kL� [1℄(t; z)k Z 10  ��~zL� [2℄(�; ~z)���~z='(t;z)  �2�z2'(t; z) d�dt



28 i);ii);iii)� 2 Z 10  �2�z2L� [1℄(t; z) 2k�l�1Q2k�2lkz� � '(t; z)kk�ldt+ 4 Z 10  ��zL� [1℄(t; z) �22k�2l�2Q2k�2l�1kz� � '(t; z)kk�l�1+32k�2l�1Q2k�2lkz� � '(t; z)kk�l	  ��z'(t; z) dt+ 2 Z 10 kL� [1℄(t; z)k��(k � l � 1)Q2k�2l�2kz� � '(t; z)kk�l�2+ (32k�2l +Q32k�2l�2)Q2k�2l�1kz� � '(t; z)kk�l�1+(32k�2l+1 +Q32k�2l�1)Q2k�2lkz� � '(t; z)kk�l	  ��z'(t; z)2 dt+ 2 Z 10 kL� [1℄(t; z)k�22k�2l�2Q2k�2l�1kz� � '(t; z)kk�l�1+32k�2l�1Q2k�2lkz� � '(t; z)kk�l	  �2�z2'(t; z) dt(3.27)�(3.29);i);ii);iii)� 2��(l)Q2lkz� � zkl�1 + (32l+2 +Q32l)Q2l+1kz� � zkl+(32l+3 +Q32l+1)Q2l+2kz� � zkl+1	 2k�l�1Q2k�2lkz� � zkk�l+ 4�22lQ2l+1kz� � zkl + 32l+1Q2l+2kz� � zkl+1	 �� �22k�2l�2Q2k�2l�1kz� � zkk�l�1 + 32k�2l�1Q2k�2lkz� � zkk�l	+ 2l+1Q2l+2kz� � zkl+1 ��(k � l � 1)Q2k�2l�2kz� � zkk�l�2+ (32k�2l +Q32k�2l�2)Q2k�2l�1kz� � zkk�l�1+(32k�2l+1 +Q32k�2l�1)Q2k�2lkz� � zkk�l	 � 1+ 2l+1Q2l+2kz� � zkl+1 �22k�2l�2Q2k�2l�1kz� � zkk�l�1+32k�2l�1Q2k�2lkz� � zkk�l	Q= kz� � zkk�1Q2k �2k�l�(l) + 22k + 2l+1�(k � l � 1)	+ kz� � zkkQ2k+1 �2k�l32l+2 + 22l+232k�2l�1 + 22k�2l32l+1+2l+132k�2l +Q(2k�l32l + 2l+132k�2l�2 + 22k�l�1)	+ kz� � zkk+1Q2k+2 �2k�l32l+3 + 2232k + 2l+132k�2l+1+Q�2k�l32l+1 + 2l+132k�2l�1 + 2l+132k�2l�1	 :But note that2k�l�(l) + 22k + 2l+1�(k � l � 1) � (22k + 2 � 22k if l = 0;22l+22k�l + 22k + 2l+122k�2l if l � 1;� (22k+2 if l = 0;22k+1 + 22k + 22k if l � 1; � (22k+2 if l = 0;22k+2 if l � 1:



29Moreover, 2k�l32l+2 + 22l+232k�2l�1 + 22k�2l32l+1 + 2l+132k�2l� (32k��2=9�k � 9 + 2 + �2=3�k � 3 + 2	 if l = 0;32k+1 + 32k+1 + 2232k�2l�232l+1 + 223l�132k�2l if l � 1;� (32k � 8 if l = 0;32k+1 + 32k+1 + 8 � 32k�1 if l � 1; � (32k+2 if l = 0;32k+2 if l � 1;And �nally, 2k�l32l + 2l+132k�2l�2 + 22k�l�1 � 3 � 32k�1 = 32k;2k�l32l+3 + 2232k + 2l+132k�2l+1 � 3 � 32k+2 = 32k+3;2k�l32l+1 + 2l+132k�2l�1 + 2l+132k�2l�1 � 3 � 32k = 32k+1:This onludes the proof.5 Proof of Lemma 3.4Proof. LetQ and % > 0 be hosen so as to render (3.23){(3.32) true. Note that in ondition(3.26) we made the impliit assumption that Q � � and % < Æ, where � and Æ are as in(2.5). Let � 2 T3k+1. It follows from Lemma 3.3 that all of the integrals R10 L� (t; z)dt,R10 ��zL� (t; z)dt and R10 �2�z2L� (t; z)dt exist and onverge absolutely. Therefore,��z Z 10 L� (t; z)dt = Z 10 ��zL� (t; z)dt;�2�z2 Z 10 L��'(t; z)�dt = Z 10 �2�z2L��'(t; z)�dtfor all z 2 B%(z�) n fz�g and for all � 2 T .Lemma 3.3 also implies that there exists a radius � 2 (0; %) suh that for z 2 B�(z�) nfz�g and k 2 N the following inequalities hold true:Z 10 kL� (t; z)kdt < 4�(k+1); Z 10  ��zL� (t; z) dt < 4�k; Z 10  �2�z2L� (t; z) dt < 4�(k�1):(5.1)Let �(z) :=P1k=0(#T3k+1)zk be the generating funtion of the sequene (#T3k+1)k2N0 . Itfollows from (3.18) that �(z) = 1�p1� 4z2z = 1Xk=0 (2k)!k!(k + 1)!zk:Sine this funtion is analyti in B1=4(0) � C , equations (3.19) and (5.1) imply that theseriesX�2T �� Z 10 L� (t; z)dt; X�2T �� Z 10 ��zL� (t; z)dt; X�2T �� Z 10 �2�z2L� (t; z)dt



30all onverge absolutely in B�(z�) n fz�g and equal &(z), & 0(z) and & 00(z) respetively. Thelaims i), ii) and iii) of the lemma now follow from Lemma 3.3 and the fats that T1 = f�0gand T3 = f�1g are singletons, and that ��0 = 1 and ��1 = 1=2, see (3.16).6 Proof of Lemma 3.5Proof. We already know from Lemma 3.4 that & is twie ontinuously di�erentiable onB�(z�) n fz�g. In order to prove twofold ontinuous di�erentiability at the point z�it suÆes to show that limz!z� &(z), limz!z� & 0(z) and limz!z� & 00(z) exist. Lemma 3.4shows that limz!z� &(z) = 0;limz!z� & 0(z) = limz!z� Z 10 ��zL�0(t; z)dt; and (6.1)limz!z� & 00(z) = limz!z��Z 10 �2�z2L�0(t; z)dt + 12 Z 10 �2�z2L�1(t; z)dt� : (6.2)Therefore, all we need to show is that the limits on the right hand sides of (6.1) and (6.2)exist, and that these equal the right hand sides of (3.33) and (3.34).Let us �rst show this for & 0(z�). For all w 2 Z we havelimz!z� & 0(z)[w℄ =� limz!z� Z 10 ��z �~
0('(t; z))[�d('(t; z))℄~
�('(t; z))� [w℄dt=� limz!z� Z 10 ~
00('(t; z)) ��d('(t; z)); ��z'(t; z)[w℄� ~
�('(t; z))dt (6.3)� limz!z� Z 10 ~
0('(t; z)) �� ��z d('(t; z))[w℄� ~
�('(t; z))dt (6.4)� limz!z� Z 10 ~
0('(t; z))[�d('(t; z))℄~
�0('(t; z)) � ��z'[w℄� dt; (6.5)so long as all the limits in (6.3){(6.5) exist. Using the fat that ~
 2 C1, we an omputethese limits as follows:limz!z� Z 10 ~
00('(t; z)) ��d('(t; z); ��z'(t; z)[w℄� ~
�('(t; z))dt� limz!z� Z 10 ~
00('(t; z)) ���; ��z'(t; z)[w℄� ~
�('(t; z)) kd('(t; z))kdt(2.3);(2.9)� k~
00(z�)[��; �℄~
�(z�)kkwk limz!z� Z 10 kd('(t; z))kdt (2.6)= 0; (6.6)and likewise,limz!z� Z 10 ~
0('(t; z))[�d('(t; z))℄~
�0('(t; z)) � ��z'(t; z)[w℄� dt = 0:



31Finally, limz!z� Z 10 ~
0('(t; z)) �� ��z d('(t; z))[w℄� ~
�('(t; z))dt(2.3)= ~
0(z�) �� limz!z� Z 10 ��z d('(t; z))[w℄dt� ~
�(z�)(2.15)= �~
0(z�)[�w℄~
�(z�);Therefore, the limit limz!z� & 0(z)[w℄ = ~
0(z�)[�w℄~
�(z�) exists and equation (3.33) holdstrue.Let us now onsider & 00(z�). For all v; w 2 Z we havelimz!z� Z 10 �2�z2L�0(t; z)[v;w℄dt=� limz!z� Z 10 �2�z2 �~
0('(t; z))[�d('(t; z))℄~
�('(t; z))� [v; w℄dt=� limz!z� Z 10 ~
000('(t; z)) ��d('(t; z)); ��z'(t; z)[w℄; ��z'(t; z)[v℄� ~
�('(t; z))dt(6.7)� limz!z� Z 10 ~
00('(t; z)) �� ��z d('(t; z))[v℄; ��z'(t; z)[w℄� ~
�('(t; z))dt (6.8)� limz!z� Z 10 ~
00('(t; z)) ��d('(t; z)); �2�z2'(t; z)[w; v℄� ~
�('(t; z))dt (6.9)� limz!z� Z 10 ~
00('(t; z)) ��d('(t; z)); ��z'(t; z)[w℄� ~
�0('(t; z)) � ��z'(t; z)[v℄� dt(6.10)� limz!z� Z 10 ~
00('(t; z)) �� ��z d('(t; z))[w℄; ��z'(t; z)[v℄� ~
�('(t; z))dt (6.11)� limz!z� Z 10 ~
0('(t; z)) �� �2�z2 d('(t; z))[w; v℄� ~
�('(t; z))dt (6.12)� limz!z� Z 10 ~
0('(t; z)) �� ��z d('(t; z))[w℄� ~
�0('(t; z)) � ��z'(t; z)[v℄� dt (6.13)� limz!z� Z 10 ~
00('(t; z)) ��d('(t; z)); ��z'(t; z)[v℄� ~
�0('(t; z)) � ��z'(t; z)[w℄� dt(6.14)� limz!z� Z 10 ~
0('(t; z)) �� ��z d('(t; z))[v℄� ~
�0('(t; z)) � ��z'(t; z)[w℄� dt (6.15)� limz!z� Z 10 ~
0('(t; z))[�d('(t; z))℄~
�00('(t; z)) � ��z'(t; z)[w℄; ��z'(t; z)[v℄� dt(6.16)� limz!z� Z 10 ~
0('(t; z))[�d('(t; z))℄~
�0('(t; z)) � �2�z2'(t; z)[w; v℄� dt; (6.17)



32so long as the limits (6.7){(6.17) exist.Expressions (6.7), (6.10), (6.14) and (6.16) an be shown to be equal to zero in muhthe same way as (6.6), that is by relying on the smoothness of ~
, and on (2.3) and (2.9).Likewise, (6.9) and (6.17) are equal to zero. The argument is almost idential for bothexpressions, and we will show it only for (6.9):limz!z� Z 10 ~
00('(t; z)) ��d('(t; z)); �2�z2'(t; z)[w; v℄� ~
�('(t; z))dt� limz!z� Z 10 ~
00('(t; z)) ���; �2�z2'(t; z)[w; v℄� ~
�('(t; z)) kd('(t; z))kdt(2.3);(3.29)� k~
00(z�)[��; �℄ Æ ~
�(z�)kQkwkkvk limz!z� Z 10 kd('(t; z))kdt (2.7)= 0:Next, we show that expression (6.12) is equal to zero:limz!z� Z 10 ~
0('(t; z)) �� �2�z2 d('(t; z))[w; v℄� ~
�('(t; z))dt� limz!z� Z 10 k~
0('(t; z))[��℄~
�('(t; z))� ~
0(z�)[��℄~
�(z�)k  �2�z2 d('(t; z))[w; v℄ dt+ limz!z� ~
0(z�) ���Z 10 �2�z2 d('(t; z))[w; v℄dt�� ~
�(z�) (2.3);(2.13);(2.16)= 0:Let us next take the limit in expression (6.8):limz!z� Z 10 ~
00('(t; z)) �� ��z d('(t; z))[v℄; ��z'[w℄� ~
�('(t; z))dt= limz!z� Z 10 � e�2t ~
00('(t; z)) ��� et ��z d('(t; z))[v℄; et ��z'(t; z)[w℄� ~
�('(t; z))dt(2.21)= ~
00(z�)[�v;w℄~
�(z�) Z 10 � e�2t dt = �12 ~
00(z�)[�v;w℄~
�(z�):Similar arguments an be applied to expressions (6.11), (6.13) and (6.15), yieldinglimz!z� Z 10 ~
00('(t; z)) �� ��z d('(t; z))[w℄; ��z'(t; z)[v℄� ~
�('(t; z))dt= �12 ~
00(z�)[�w; v℄~
�(z�);limz!z� Z 10 ~
0('(t; z)) �� ��z d('(t; z))[w℄� ~
�0('(t; z)) � ��z'(t; z)[v℄� dt= �12 ~
0(z�)[�w℄~
�0(z�)[v℄;limz!z� Z 10 ~
0('(t; z)) �� ��z d('(t; z))[v℄� ~
�0('(t; z)) � ��z'(t; z)[w℄� dt= �12 ~
0(z�)[�v℄~
�0(z�)[w℄:



33In summary we get that for all v; w 2 Z,limz!z� Z 10 �2�z2L�0(t; z)[w; v℄dt = 12 ~
00(z�)[�v;w℄~
�(z�) + 12 ~
00(z�)[�w; v℄~
�(z�)+ 12 ~
0(z�)[�w℄~
�0(z�)[v℄ + 12 ~
0(z�)[�v℄~
�0(z�)[w℄: (6.18)This is the �rst term in the right-hand side of (6.2), and we have shown that it is equalto the right-hand side of equation (3.34).Let us now show that the seond term in the right-hand side of (6.2) is equal to zero:for all v; w 2 Z,limz!z� 12 Z 10 �2�z2L�1(t; z)[w; v℄dt= 12 limz!z� Z 10 �2�z2 h~
0('(t; z))[�d('(t; z))℄~
�('(t; z));Z 1t ~
0('(�; z))[�d('(�; z))℄~
�('(�; z))d�� [w; v℄dt= 12 limz!z� Z 10 � �2�z2 �~
0('(t; z))[�d('(t; z))℄~
�('(t; z))� [w; v℄;Z 1t ~
0('(�; z))[�d('(�; z))℄~
�('(�; z))d�� dt (6.19)+ 12 limz!z� Z 10 h~
0('(t; z))[�d('(t; z))℄~
�('(t; z));Z 1t �2�z2 �~
0('(�; z))[�d('(�; z))℄~
�('(�; z))� [w; v℄d��dt(6.20)
+ 12 limz!z� Z 10 � ��z �~
0('(t; z))[�d('(t; z))℄~
�('(t; z))� [w℄;Z 1t ��z �~
0('(�; z))[�d('(�; z))℄~
�('(�; z))� [v℄d�� dt(6.21)+ 12 limz!z� Z 10 � ��z �~
0('(t; z))[�d('(t; z))℄~
�('(t; z))� [v℄;Z 1t ��z �~
0('(�; z))[�d('(�; z))℄~
�('(�; z))� [w℄d��dt(6.22)



34as long as all these limits exist. Note that for all z suÆiently lose to z�,Z 1t ~
0('(�; z))[�d('(�; z))℄~
�('(�; z))d�� Z 1t k~
0('(�; z))[��℄~
�('(�; z))kkd('(�; z))kd�(3.26);(3.27)= O(1)k~
0(z�)[��℄~
�(z�)k Z 1t kz� � zk e�� d� = O(1)kz� � zk e�t : (6.23)Likewise, still for z lose enough to z�, �2�z2 �~
0('(t; z))[�d('(t; z))℄~
�('(t; z))� = O(1) e� t2 : (6.24)In fat, this follows from our analysis of expressions (6.7){(6.11) and (6.13){(6.17), equa-tions (2.6) and (2.10), and from the following revised analysis of expression (6.12):~
0('(t; z)) �� �2�z2 d('(t; z))[w; v℄� ~
�('(t; z))= O(1)k~
0(z�)[��℄~
�(z�)k  �2�z2 d('(t; z))[w; v℄(3.30)= O(1)k~
0(z�)[��℄~
�(z�)kkwkkvk e� t2 :(6.23) and (6.24) imply that expression (6.19) is zero, beause its norm an be boundedfrom above bylimz!z� Z 10  �2�z2 �~
0('(t; z))[�d('(t; z))℄~
�('(t; z))� [w; v℄� Z 1t ~
0('(�; z))[�d('(�; z))℄~
�('(�; z))d� dt(6.24);(6.23)� limz!z�O(1)kz � z�k Z 10 e� 3t2 dt = 0;Likewise, expression (6.20) equals zero, beause its norm an be bounded similarly.Finally, it remains to analyze expressions (6.21) and (6.22). Note thatet ��z �~
0('(t; z))[�d('(t; z))℄~
�('(t; z))� [w℄ + ~
0(z�)[�w℄~
�(z�)� et ~
00('(t; z)) ��d('(t; z)); ��z'(t; z)[w℄� ~
�('(t; z))+ ~
0('(t; z)) �� et ��z d('(t; z))[w℄� ~
�('(t; z))� ~
0(z�) �� et ��z d('(t; z))[w℄� ~
�(z�)+ k~
0(z�)[��℄~
�(z�)k et ��z d('(t; z))[w℄ + w+ et ~
0('(t; z))[�d('(t; z))℄~
�0('(t; z)) � ��z'(t; z)[w℄� (6.25)



35(2.6);(2.9);2:21� O(kz � z�k) e� t2 kwk+ k~
0('(t; z))[��℄~
�('(t; z))� ~
0(z�)[��℄~
�(z�)k et ��z d('(t; z))[w℄+ k~
0(z�)[��℄~
�(z�)kO(kz � z�k) +O(kz � z�k) e� t2 kwk(3.27);(2.21)= O(kz � z�k): (6.26)Equation (6.26) implies that��z �~
0('(t; z))[�d('(t; z))℄~
�('(t; z))� [w℄ = � e�t ~
0(z�)[�w℄~
�(z�) + e�tO(kz � z�k):(6.27)This �nally allows us to ompute expression (6.21):limz!z� Z 10 � ��z �~
0('(t; z))[�d('(t; z))℄~
�('(t; z))� [w℄ ;Z 1t ��z �~
0('(�; z))[�d('(�; z))℄~
�('(�; z))� [v℄d�� dt(6.27)= limz!z� Z 10 h� e�t ~
0(z�)[�w℄~
�(z�) + e�tO(kz � z�k) ;Z 1t � e�� ~
0(z�)[�v℄~
�(z�) + e�� O(kz � z�k)d�� dt= limz!z� h~
0(z�)[�w℄~
�(z�); ~
0(z�)[�v℄~
�(z�)i Z 10 e�t Z 1t e�� d�dt+ limz!z�O(kz � z�k)= 12 h~
0(z�)[�w℄~
�(z�); ~
0(z�)[�v℄~
�(z�)i :This implies of ourse that (6.22) equals12 h~
0(z�)[�v℄~
�(z�); ~
0(z�)[�w℄~
�(z�)i = � 12 h~
0(z�)[�w℄~
�(z�); ~
0(z�)[�v℄~
�(z�)i :Expressions (6.21) and (6.22) thus anel eah other out, and we havelimz!z� 12 Z 10 �2�z2L�1(t; z)[w; v℄dt = 0: (6.28)Substituting (6.18) and (6.28) in (6.2) we �nd that limz!z� & 00(z) exists and (3.34) holdstrue.
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