Cubic Spline Prewavelets on the Four-Directional Mesh

M. D. BuhmannV), O. Davydov® and T. N. T. Goodman?®

Abstract. In this paper, we design differentiable, twodimensional, piecewise poly-
nomial cubic prewavelets of particularly small compact support. They are given in

closed form, and provide stable, orthogonal decompositions of L2(IR?). In particular,
the splines we use in our prewavelet constructions give rise to stable bases of spline
spaces that contain all cubic polynomials, whereas the more familiar box spline con-
structions cannot reproduce all cubic polynomials, unless resorting to a box spline of
higher polynomial degree.

Dedicated to Professor M.J.D. Powell on the occasion of his 65th birthday and his re-
tirement.

§1. Introduction

At the present time, there is a particularly attractive research area in approximation
theory, namely the theory and practice of wavelet decomposition of signals and functions.
They are highly relevant to the foundations of numerical analysis, as one of the basic
instruments for state-of-the-art numerical methods [9, 16, 13], for example.

Their applications include the numerical solution of partial differential equations,
especially when Galerkin approaches are used [9, 16]. In this application, bivariate
splines, that is finite elements in the language of PDE solvers, are important as well as
particular properties of the generating functions, namely small, compact support. In this
note we propose spline prewavelets of small support that can be useful for such practical
use. The small support is closely related to the sparsity in the stiffness or mass matrices
which come up in PDE applications.

We remark already at this point that there is a host of construction of univariate
prewavelets and wavelets which may be generalised in a simple way by tensor production
methods to multiple dimensions. We avoid this approach because it usually leads to
much larger support sizes than required (in some highly complicated situations, however,
such as wavelets on irregular bounded domains, local tensor product constructions of
continuous wavelets are very suitable, see, e.g. [9]). After all we are aiming at small
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supports in this work. This is true both for spline constructions and for example for
Daubechies wavelets [13]; in this paper we focus on spline (pre)wavelets.

Apart from the aforementioned univariate constructions, there are several multi-
variate spline constructions. Especially for continuous wavelets on non-uniform meshes,
there are many articles for one and more dimensional constructions [3, 12, 17, 27]. There
are also very general approaches to prewavelets in [1], for instance, or see the related
paper [24], while we wish to get very explicit constructions in this article. Nonetheless,
our construction is based on the basic ideas for generating prewavelets as in [1].

Several other quite explicit constructions in the literature use C! hierarchical bases
[11, 15, 25], and there are other constructions of splines and hierarchical bases either on
the four-directional mesh [7, 8, 19] or on the so-called Fraeijs de Veubeke-Sander (FVS)
triangulations [5, 18, 20, 26]. By contrast, continuously differentiable spline-based pre-
wavelets on R? for more than one dimension (d > 2) are available only as tensor product
or box spline constructions. The box spline constructions suffer from the problem that
the stable constructions generate a spline space which does not contain all polynomials
of corresponding degree in two dimensions (see, e.g., [2]) and that box spline on the four-
directional mesh are no longer stable (see, e.g., [10], [7]). By contrast, our subsequent
construction is based on stable piecewise cubic bases which generate all cubic bivari-
ate polynomials. Therefore, they give prewavelets orthogonal to all cubic polynomials
and possess so-called vanishing moments [12] of component degree at most three. Also,
they are on the four-directional mesh which provides more symmetry than the three-
directional mesh which has an undesirable bias. This is the reason why, for instance,
the famous Zwart—Powell element [22,28] that is a quadratic piecewise polynomial on the
four-directional mesh is so popular. To remind the reader of the concepts of three and
four-directional meshes, we recall that the latter is the triangulation of R? generated by
the four families of parallel lines 1 = k, z2 = k, ©1 — 22 = k, 1 + 29 = k, k € 7 [6],
while the former comes from leaving out the 1 + 2 = k lines in the construction.

In order to introduce prewavelets formally in this article, we have to recall the
definition of a multiresolution analysis.This is always an infinite nested sequence of closed
subspaces V; C L? (R%), j € Z,

{0}c---cVoicVycViC---C L3(RY)

that satisfy the following three fundamental properties:
(i) feV; e f(2:) €V, for all integers j,

(i)

N vi={ U vi=1"®),
j=—00 j=—o00
(but see [1] for conditions under which (ii) is redundant),
(iii) there is a Riesz basis {¢; : i € I} of Vj, i.e.,
Vo = spang pn{p;: 1 € I},
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where [ is a countable index set, the coefficients of the spanning functions are always
square-summable as indicated by the subscript, and there exist positive and finite
constants K7 > 0 and Ky < oo such that for all ¢ € £2(I)

Z Citpi

i€l

Ki|c[|a < < Ks||c]|2-

2

Here we use the notation ¢ = (¢;)icr; the 2-norms conveniently denote the Euclidean
norm on £2(I) or on L?(IR%) as is appropriate from the context.

The above Riesz basis property is of particular importance with respect to the sta-
bility of the computations of the coefficients of an expansion. Unless this property is
provided, instabilities can occur through cancellations of coefficients of a function’s ex-
pansion in the infinite basis.

It is usually advantageous to use so-called shift-invariant spaces V; so long as this
is possible; the spaces generated in the above MRA are usually called shift-invariant as
soon as, if an element f is contained in them, then any shift by an integer times 277,
depending on the index of V}, is as well. If the space originates from just one function
that is translated, i.e., for instance, V} is spanned by ¢ and its multiinteger shifts, then
it is called a principal shift-invariant space (PSI). If several (finitely many) functions are
used and translated to span the space, then the latter is called a finitely generated (FSI)
shift-invariant space. de Boor, DeVore and Ron have analysed PSI and FSI spaces in a
series of papers, not only in the wavelet or prewavelet context, of which [1] is just one.
Throughout this paper, we shall be dealing with finitely generated shift-invariant spaces.
(See, however, Remark 4.5.) To begin with, our construction relies on a very explicit
computation of the generators of the FSI spaces V and V; which will be the theme of
the next section.

Before we begin with this, however, we observe that the properties (i)—(iii) of mul-
tiresolution analysis have many fundamental consequences. One of them is that we can
find a collection of square-integrable functions named prewavelets in V; \ {0}, which are
orthogonal to Vj, call the set of prewavelets ¥, whose translates span a space W = V;6V}.
In other words, V; is the direct and orthogonal sum of V;, and the space W, for which
W = Vi & Vp is a short notation. In principle, all functions of W, and indeed the
aforementioned spanning set, can be found by computing the error of a least-squares
projection of all elements from V7 onto Vj, i.e., the element of V7 minus its projection
onto Vj, and this is how we find our spanning set for W. Indeed, the whole construction
relies on finding a suitable set of generating functions (in the event, they are differen-
tiable cubic splines of small support) in V; whose projection is then computed to form
the prewavelets. Given that V; and Vj are FSI spaces in our context (their generators
are specified later-on), W will be an FSI space too.

The most important consequence of the properties of multiresolution analysis and
the properties of W are that we get the infinite decomposition

L*(RY) = é W;.

j=—o0

3



Here W; denotes W with the functions scaled by 27, see for instance [16, 1] or many
other standard works on wavelets or prewavelets.

In summary, we have the desired decomposition of the whole of L2 (]Rd), because
the W; are mutually orthogonal which follows from a standard argument using the fact
that the prewavelets i are orthogonal to Vy and from (i). The prewavelets are called
wavelets if their translates on the same scale are also mutually orthonormal. We will
not perform the final orthogonalisation step in this paper here and rely on prewavelets
instead, because compact support for spline prewavelets is usually lost when they are
orthogonalised to become wavelets. A general construction of prewavelets from shift-
invariant spaces is to be found in [1].

The goal is to obtain an explicit construction of prewavelets spanned by a finite
linear combination of splines from Vy and V; with rational coefficients which enables us
to get prewavelets with small support. Moreover, we will use piecewise cubic splines and
construct prewavelets as opposed to wavelets. We note that not all piecewise polynomial
spaces in more than one dimension are able to provide multiresolution analyses and are
indeed refinable. The construction in this paper provides this property, as does, for
example, the construction of splines in two dimensions with the famous Powell-Sabin
split [23].

The finding of biorthogonal dual functions with especially small support is very
relevant to our construction because it facilitates the computation of the aforementioned
projections (see a similar approach to computing continuous prewavelets in [27, 12]), as
is a general finite element basis for the four-directional mesh with which we shall begin.
To start now, we have a notation for the mesh generated by the four directions and
for the spline space thereon: Let A denote the four-directional mesh as defined in the
introduction above, and let S3(A) be the space of all square integrable C! cubic splines
with respect to A,

S3(A) ={s e C*(R*)NL*(R?) : sy €Ils, T € A},

where I3 denotes the space of bivariate polynomials of total degree at most three. This
is our Vj in the notation for multiresolution analyses above. Both V, and V; will play
the dominant roles in our construction, because they are needed to find the prewavelets,
while all other V; and W; are found trivially by dilation.

§2. Bases for Si(A)

2.1. Finite-element basis

Since A is a special case of the FVS triangulation (quadrangulation with both diagonals
added to each quadrilateral), we start by describing the classical finite-element basis for it
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[18,26] (see also [5,19]). To this end, consider the set of nodal functionals on Vg := Si(A)

018 = s(k), ke 72,
02,155 = Dy, s(k), ke 72,
03 xS = Dy, s(k), ke 72,

1 \ (2.1)
0458 =Dy, s (k—l—(0,§)>, keZ”,

1
0518 = Dy, s (k + (5,())) , ke 722,

where D, , D,, denote the derivatives in z; and x5, respectively. The finite element basis
functions s; ; € S3(A),i=1,...,5,k € 722, are required to give the duality condition

[, itj=iade=F
325k =0 0, otherwise.

By the well-posedness of the corresponding finite-element interpolation scheme, it
follows that
[—1,1]% + &, 1=1,2,3,
suppsik =< [-1,1]x [0,1]+k, i=4, keZ> (2.2)
[0,1] x [-1,1]+ k, =5,

The uniformity and symmetry of the triangulation imply that all basis functions are
integer translates of the five functions s; :=s;0,¢=1,...,5,

sik = si(- — k), i=1,...,5, keZ>
Moreover, it is easy to see that
s3(x1, T2) = s2(x2,21), ss(x1, r2) = sa(x2,21),
and the functions s1, $2, s4 possess the following symmetries:

81(331,502) = 81($2,$1) = 81(|£U1|, |l'2|),
82(331,502) = 82($1, —372) = —82(—331,552),

84(21,22) = 84(21,1 — 22) = —s4(—121, 22).
Let us denote the set of all functions s; by Brg,
Brg = {Si’k ZSZ‘('—]{I) ce=1,...,5, k€ 22}.

By using the explicit dual basis (2.1) and the locality of the supports of s; 5 (2.2), it is
easy to show (see e.g. Lemma 6.2 in [14]) that Brg is a Riesz basis for Si(A), i.e., for
any square summable coefficient vector c, it is true that

Killelle < | Z > cinsi-— )|

1=1 kcZ?

oy < Kl



where K1, K5 > 0 are some finite absolute constants. In fact, this holds for all L?.
Another important feature of the finite-element basis Brg is that it is locally linearly
independent (LLI) with respect to the partition

R’ = [ J (0,1 +k),

keZ?

i.e., for each k € 7ZZ?, the set

BFE‘[0,1]2+I¢ = {5‘[0,1]2+k 1 s E BFE, supp s N ((0, 1)2 + k) 7é @}

is a basis for S3(A)|[0,12+k- Indeed, it follows from the theory of FVS element that
dim S3(A)|jp124% = 16. Since Brg|jp,12+% is a spanning set for S3(A)[p,1j24% and
#BrE|j0,112+% = 16, local linear independence follows.

As a consequence, the basis Bpg has the following support property (cf. [4]): if
s € S}(A) and supp s C M, where

M = U ([0,1]% + k), for some K C 72,
kek

then

S = E C,L'Jgsi’k.

1,k
supp si,k:gM
Indeed, if k ¢ K, then 3|[0,1]2+k = 0 and, by LLI, all coefficients c¢; x of s such that
supps N ((0,1)2 + k) # 0 must be zero. The support property of the scaled version
BFE(%A) of Brg will be used in the proof of Theorem 3.1.

Remark 2.1. Note that Bpg is not LLI with respect to A.

In what follows we will use the Bernstein-Bézier representations of the basis splines
for S3(A) introduced in [19]. Using the notation of [19], we have the following relations:
15(0:0) = g, 15(10) = g, 4 %34 + %84’(0,_1), 1s(b2) = —%34. Figures 1 and 2 in [19] can be
used to compute the Bernstein-Bézier coefficients of the finite element basis splines we
will refer to in some calculations.

2.2. Modified basis

We set
tl = S1.
Using the Bernstein-Bézier representations of the functions sq,...,ss, it is easy to see
that the function
1
tg =89 — S3 — Z (84 + 84’(07_1) — S8y — 85’(_1’0)) (23)
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has a smaller support than s, namely
supp t2 = {(21,72) € R? : [z1] < 1, |z2| < 1, |21 — 32| < 1}.

Similarly, the function
1
l3 = —s2 —s3+ 1 (84 T S4,(0,—1) T+ S5 + 85,(—1,0)) (2.4)

has a smaller support than s3, viz.
suppts = {(z1,72) € R® : |z1] < 1, |z2| < 1, |21 + 32| < 1},
and we have
ts(r1,z2) = ta(—21, 22).

Therefore, we want to construct a new Riesz basis for S3(A) using to,t3 as generators
instead of ss, s3.

Moreover, there is a subtle technical reason (which will become clear later, see Re-
mark 3.2) for replacing sy, s5 along with their translates 84,(0,—1)s 85,(—1,0) by the functions

ti_ =S4 + 54,(0,—1);
ty = 84— 84,0,-1)>
. (2.5)
lg = 85+ S5,(-1,0),
t5_ = 85 - 357(_170)'
Then
t;_(.’ﬂ]_, $2) = ti(m27 $1)7 t;(:Ulw/EZ) = tZ (:1:273:1)7
and
supp tff = supp 155jE =[-1,1]%

It is easy to see that the functions 1, ¢o, tff possess the following symmetries:

ti(z1, 22) = ti(z2, 21) = t1(Jz1], [22]),

to(z1,22) = ta(—x2, —21) = —ta(x2, 21),

ti (z1, m2) = tf (v1, —x2) = —t (—21, 22),

tZ(ﬂ?l,Jfg) = —tZ(—Jfl,l‘z) = —tZ(.’Bl, —.’172).

We set
Bi={tix:i=1,...,5 k€ Z*}
where
tig =t;(-—k) i=1,2,3, keZ?

P ti(-—k), if k € 72 x 272,
BTVt (= k4 (0,-1)), ifk€Zx (2Z-1), (2.6)
P t&(-— k), if k € 272 x 72,
SRV ts (k4 (=1,0)), ifke (2%Z—1) x Z.

’
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Since )
s1,k = t1,k; k e 72*,

1
Sok = (tag —t3k)/2 + 1(34,1: + S4,k4(0,-1)) ke,

1
s3k = —(tax +t3k)/2+ Z(Ss,k + 85, k+(~1,0)) ke Z?,

s — (t4,k + t4,k+(0,_1))/27 k € Z X 2%,
4,k (t4,k+(0,1) — t4’k)/2, k e 7 x (QZ — 1),
_J(

o, = d s+ ts kt(=1,00)/2, k€27 x ZL,
ok (ts,k+(1,0) — ts,k)/2, k€ (2Z—-1)xZ,

the transformation from Bpg to B and back can be done with the help of multiplication
by band matrices, which implies that B is also a Riesz basis for S3(A).

It is easy to see that B is LLI and hence has the aforementioned support property
with respect to the partition

R’ = J ([-1,1]% +2k).
kez?

§3. Biorthogonal dual functions

Let the triangulation %A be the refined four-directional mesh generated by the parallel
lines 1 = k/2, x9 = k/2, 1 — 29 = k/2, z1 + 22 = k/2, k € ZZ. Obviously, the space
S3(34) of C! cubics with respect to A contains all elements of S3(A),

Vo =83(A) C S3(34) =W
By scaling we obtain a finite-element Riesz basis for the space S3(34),
Bre(1A) = {s;x(2)): i=1,...,5, ke Z*},

which is LII with respect to the partition

R*= ] ([0,1/2]° + k/2),

keZ?

and has the support property with respect to it.
We now want to construct a set B C S3(2A) of biorthogonal dual functions (with
respect to BB), that we call

B:={tix: i=1,...,5, keZ*},
such that

3 tixl|3, ifi=1 and k=&
t; tir 1) = || 6k112; ’ !
(tigos tir gor) { 0, otherwise, .



where

)= | o

However, the condition (3.1) does not determine the set B uniquely since the space
S3(3A) is much richer than S}(A). Therefore, we assume that i;y have the same
support and symmetry properties as t;  to take up the extra degrees of freedom, i.e.,

supp t; ; C suppt; k, i=1,...,5, kelZ?, (3.2)

tix="=4:(-—k i=1,23, kecZ?

P ti(-—k), if k € 7 x 272,
YETV V(= k+(0,-1)), ifkeZx (2% —1), (3.3)
P ty (- — k), if k € 27 x 72,
SRV (- k+(-1,0), ifke(2Z—-1)xZ,
t3(z1,2) = ta(—x1, T2), - (3.4
ty (1, 22) =15 (w2, 21), 5 (21,22) =ty (x2,21),
t1(w1,22) = t1 (22, 1) = t1(|71], |22]),
to(z1,22) = t~2(—372, —z1) = —t2(x2,21), (3.5)
b4 (21, m9) = tf (21, —22) = —1f (—21, 22), .
ty (T1,22) = —ty (=71, 22) = —ty (21, —T2),
where we set N N
i == tz,(0,0)a 1=1,2,3,
t = 54,(0,0); ty == 54,(0,—1);
ty =150, t5 =15 1,0
In addition, to remove the still remaining degrees of freedom, we require that
supp £
suppzz+ C{(x1,20) €ER?: |z1] <1, |m2| < 1, |21 + 20| < 3/2} (3.6)
suppt,
and
. (1 - (3
D$1t4 (0, O) = Dw2t4 5, O == D$2t4 Z, 0 == 0- (3-7)

Note that (3.7) is natural to assume since ¢ and t; have the corresponding properties.

Theorem 3.1. There is a unique set of biorthogonal dual functions B = {fi’k 1=
1,...,5, k € ZZ*} C SY(3A) satisfying (3.1)—(3.7).

Proqf: It is sufficient to establish the existence and uniqueness of the functions t1, to, f;f
and t, satisfying (3.1), (3.2), (3.5)—(3.7) since the other basis functions can then be
defined using (3.3) and (3.4) and necessarily satisfy all desired conditions.
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The basis function %y, if exists, must satisfy suppt; C [—1,1]2. Therefore, by the
support and local linear independence properties of BFE(%A), t1 is a linear combination of
functions s; 1 (2-) with supp s; (2-) C [—1, 1]%. Moreover, by symmetry (3.5) we conclude
that ¢; has the following form:

t1(-/2) = a5
+ a2(81,(1,0) + 51,(0,1) + 51,(=1,0) + 51,(0,—1))
+ a3(s1,(1,1) + 81,(-1,1) T S1,1,—1) + 51,(—-1,-1))
+ CL4(32,(—1,0) — 82,(1,0) T $3,(0,—1) — 33,(0,1))
+ as5(82,(1,1) + 83,(1,1) + 52,(1,—1) — 53,(1,—1)
— 82,(—1,1) T 83,(-1,1) — S2,(-1,-1) — 53,(—1,—1))
+ a6(34,(1,0) — 84,(—1,0) T 85,(0,1) — S5,(0,—1)
+ 84,(1,—1) — S4,(-1,—1) T S5,(=1,1) — S5,(—~1,~1))
+ ar(84,(1,1) = S4,(=1,1) T 85,(1,1) — 55,(1,—1)

+ 847(17_2) - 847(_17_2) + 357(_271) - 857(_2a_1))’

with some real coefficients a, ..., a7. Due to the symmetry of ¢, (3.1) is equivalent to
the following six conditions:

(t1, 1) = (t1,t1), (b1, t1,1,0)) = (b1, t1,01)) = 0,
<£Iat2,(1,0)> = <£lat2,(1,—1)> = <El,t4,(1,0)> =0.

We note that the symmetry ensures that all other orthogonality conditions are satisfied,
e.g. (t1,t4) = 0 since the integrand is odd in z;.

By considering the Bernstein-Bézier coefficients of the finite element basis functions
si k it is not difficult to see that ¢; satisfies (3.6) if and only if

as/4+ as/24+ a7/6 = 0.

This gives us a total of seven equations to determine the seven coefficients aq, ..., ar.
Using Matlab we find that this system of linear equations has a unique solution

12698499 __ __ 4556039 __ 2117951 __ 4429311

01 = 5576168 ° (2 = ~5152336° a3 = 10304672° A4 = —7644042
4 — _ 1732869 4w — _ 35636205 0 — _ 2888115
5 = T 2576168’ 6 — T 20609344’ 7 = T 20609344"
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Similarly, we have by symmetry assumptions and the support property of BFE(%A),

Ez('/Q) = 51(81,(1,0) — 81,(-1,0) + $1,(0,—1) — 81,(0,1))
+ ba(s2 — s3)

+ b3(52,(0,1) + 82,(0,—1) — 53,(1,0) — 33,(—1,0))
+ b4(32,(1,0) + 82,(—1,0) — 53,(0,1) — 33,(0,—1))
+ 55(52,(1,1) + 82,(—1,—-1) — $3,(1,1) — 53,(—1,—1))
+ b6 (54 + 54,(0,-1) — 55 — 85,(—1,0))

+ b7(54,(1,0) + 84,(—1,—1) — 55,(0,1) — 55,(=1,—1))
+ bs(54,(0,1) + 54,(0,—2) — 5,(1,0) — 55,(—2,0))

+ bg(54,(1,1) + 84,(—1,—2) — 55,(1,1) — 55,(=2,—1))

+ b10(347(_170) + 847(17_1) - 857(07_1) - 857(_171))'

By considering the Bernstein-Bézier coefficients of the basis functions s; i, we see that
to satisfies (3.2) if and only if

b1/2 — b3/12 +b4/6+b8/3 =0,
by + b3/12 + by /12 + bg /3 + b1p/3 = 0.

Nontrivial biorthogonality conditions are:

(tat1,1,00) =0, (f2,t2) = (ta2,t2),
(T2, ta,(1,00) = (E2,t2,(1,1)) = (F2,83,(1,0)) = 0,
= (

(Ez,t4,(o,o)> ~2,154,(1,0)) = (fz,t4,(1,—1)> =0.

Again, a computation with Matlab finds that the resulting system of 10 equations with
10 unknowns is nonsingular, and the b;’s are given by

b, — _ 112135 b, — 92539839 b — 484907 b, — 2567543
1= T 505064’ 2 — 1136394 3 — 505064’ — 2272788
b — Al4l be — _ 40839731 b, — _ 47560123 b — 149281
5 = 17416 6 — T 18182304° 7 — T 418192992 8 — 18182304
bo — 259927495 bio — 1231025
9 — 418192992’ 10 — 9p91152"
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Similar considerations show that £, has the form

EI('/2) = 01(51,(1,0) - 31,(—1,0))
+ c2(81,(1,1) — 81,(=1,1) T 51,(1,—-1) — 51,(—=1,—1))
+ €382
+ ca(52,(1,0) + 82,(~1,0))
+ ¢5(82,(0,1) + 82,(0,-1))
+c6(82,(1,1) + 82,(~1,1) + S2,(1,—1) T S2,(~1,-1))

(
(
7(83,(1,1) — 83,(-1,1) — 83,(1,-1) + 33,(—1,—1))
+ cg(84 + 54,00,-1))

+ co(54,0,1) + 84,(0,—2))

+ c10(84,(1,0) + S4,(1,—1) + 54,(—1,0) T 54,(=1,-1)
+ c11(84,(1,1) + Sa,(—1,1) + 54,(1,—2) + S4,(—1,—2)
+ c12(
(

+ €13(85,(1,1) = $5,(1,—1) — S5,(-2,1) T 55,(—2,-1))-

85,(0,1) = 85,(0,—1) — 85,(—1,1) T 85,(—1,-1)

)
)
)
)

It is easy to check that ¢; satisfies (3.6) if and only if

62/2—66/12+C7/6+611/3:0,
Cz+CG/12+C7/12+011/3+613/3: 0,

and it satisfies (3.7) if and only if
C3 = 0.

In addition, we have 10 nontrivial biorthogonality conditions:
(tf,t1,1,00) = (04, t1,1,1)) =0,

(T4, ta) =t t2,1,0)) = (&1 t2,00,0)) = (T4 t2,1,1) = (84, t2,1,-1)) = O,
(A5,t8) = 5t (Ef ta,,0) = {7 t5,(—1,1)) = 0.

This gives
¢, — 53506383 ¢y — _ 931930406 P ¢4 — _ 20270664283
1 196402666’ 2 2062227993 3= 4 — T 72749637324 °
¢ — 12775765033 . — 6848898731 = 9417522901 o — 8042814861
5 = 1374818662 ’ 6 = 5499274648’ 7 = 5499274648’ 8 = 5499274648’
co — 2388717689 o — 222303404979 1y — 2024730425 Cro — _ 2846476149
9 — 5499274648’ 10 = 721997098592 ° 11 = 21997098592 12 = 721997098592
1 — 10630611935
13 = 21997098592 "
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Next, £; has the form

EZ(‘/2) = d]- 317(1’1) - 817(_171) - 817(17_1) + 817(_17_1))
+ d2(s2,(0,1) — $2,(0,-1))
+ d3(s2,(1,1) + S2,(—1,1) — S2,(1,-1) — 52,(~1,-1))

+ da(s3,(1,0) — 33,(—1,0))

(
(
(
(
+ds(53,(1,1) — 83,(=1,1) + 53,(1,—1) — 83,(~1,—1))
+ de(54 — 54,00,-1))

+ d7(54,(0,1) - 34,(0,—2))

+ d8(54,(1,0) + 84,(-1,0) — S4,(1,-1) — 34,(—1,—1))
+ do(54,(1,1) + 84,(=1,1) — 54,(1,—2) — 54,(~1,—2))
+ d1o(85 — 85,(-1,0))

+ d11(85,(1,0) — 55,(—2,0))
+ dyo(
(

+ d13(s5,(1,1) + 85,(1,—1) — S5,(—2,1) — 55,(=2,—1))>

55,(0,1) T 85,(0,—1) — 55,(=1,1) — 55,(—1,~1))

where

di/2 —d3/12 4+ d5/6 + dg/3 = 0,
dy +ds/12 4+ d5/12 4+ dg/3 + d13/3 = 0,
ds =dn =0,
to ensure (3.6) and (3.7), and

(7 t1,1,1)) =0,
<£Zat2,(1,0)> = (fzat2,(0,1)> = <£Z,t2,(1,1)> = <EZ,t2,(1,—1)> =0,
(i te) =t te), (g taa—1) = s ts,—1,0) = (g ts,(—1,1)) =0,

to guarantee the biorthogonality.
The linear system is again uniquely solvable, with

d. — _ 160587713 d, — 2810669524 da — 58590743 de =0
1 = 7 3629286668 2 — 907321667 ° 3 — 1814643334 4 =Y
d- — 66969045 d. — _ 5548921443 d- — 1993454073 de — 588620171

5 — 1814643334’ 6 — T 907321667 ° 7 = 7259234762 ° 8 = 3629286668
do — 14400282 dio — _ 998583157 dii =0 dro — _ 13573487031
9 129617381’ 10 259234762 11 ) 12 1814643334 °
dia — — 184224651

13 — 7 3629286668 "

Clearly, t3, f;r and t~5_ are to be constructed using the same ideas from (3.4),
??3(371,352) = 52(—3?1,372), f5i($1,332) = fit(mz,xl);

and satisfy all our requirements. O
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Remark 3.2. It is impossible to construct a function 4 € S}(3A) with the prop-
erty supp §4 C supp s4 such that s4 satisfy the biorthogonality conditions with respect
to a basis for S3(A) that includes ss. Indeed, there are only 19 linear independent
functions in S%(lA) whose supports are subsets of supp sy = [—1,1] x [0, 1], whereas
dim S3(A)|[=1,1]x[0,1] = 25. Similar arguments apply to s5. This fact was our primary
reason to replace sg4, s5 with t4 ,t5 via a Haar-like transform (2.5).

Theorem 3.3. The set
BU{t;x(2): keZ?\ 2, i=1,...,5}, (3.8)
where
Z:=27% i=1,2,3,
Zy =270 x (AZLU (AZL — 1)), Zs:= (47 U (AZZ — 1)) x 272,
is a Riesz basis for the space S}(3A).

Proof: In view of the transformation formulas between B and Bpg (see Section 2.2), it
suffices to show that

BU{sin(2),: ke Z*\ 2, i=1,...,5} (3.9)
is a Riesz basis for S3(3A).
Let
5 5
Z Z Ginlip Y, Y. irsik(2),
i=1 keZ? i=1 keZ2\Z;
such that . ;
lodl3 =" > lasl®+Y, > lawgl* < oo
i=1 ke i=1 heZ?\ 2,
We have
sl = [P = 3 [
me2%Z?

Given any m € 27Z°, we consider the space S3(3A)|[_1 1)24m of splines in S3(3A)
restricted to [—1,1]? + m. It is not difficult to see that

dim S3(38)|—1,1724m = 115,
and the following splines form a basis for S3(3A)[(_1,124m

Sikrom(2) = sik(2-—2m),  i=1,2,3, ke€Z*nN[-2,2]
Satram(2) = sak(2-—2m), ke Z>n([-2,2] x [-2,1]), (3.10)
85, k+2m(2°) = 85,5(2 - —2m), ke’ ([-2,1] x [-2,2).
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We now replace some of these basis functions with splines in B and consider the following
set of splines of the same cardinality 115,

fi k(- — m), i=1,2,3, keZ*n[-1,1]%
~4,k( - m), ke Zz N ([_17 1] X [_1’0])a
~5,k(' - m)a k € Zz N ([_L 0] X [_17 1])7

. S \ (3.11)
sig(2-=2m),  i=1,2,3, ke (Z*\2Z%)N[-2,2)

s45(2-—2m), ke (Z*\ 2) N ([-2,2] x [-2,1]),
s5.%(2 - —2m), ke (Z*\ Z5) N ([-2,1] x [-2,2]).

We claim that this set is also a basis for S3(3A)|[—1,1j24m- Indeed, the matrix of the
transformation of the basis (3.10) into the system (3.11) is given by

A B
u=[5 )

where I,, denotes the n x n identity matrix, O a zero matrix, B a 39 x 76 matrix, and

arly * * *  x
O bng _b2I9 * *
A= @] —bgfg —ngg * *x |,
@] @] O C D
O O O D C
with

0 0 O 0 0 07
0 0 O 0 0 0
C:[cslg csfg}’ p_| 0 00 0 00
d6I3 —d6I3 d10 0 0 _d10 0 0
0 0 O 0 0 0
| 0 0 O 0 0 04

Here the coefficients a1, by etc. are as in the definitions of ¢1, t5 etc. A simple computation
shows that

C D

det A = ad(—2bs)° det [D C

] — _915a99eBdd (@2 — d2y).

Since a1, bo, cg, dg are nonzero, and

d2 . d2 _ 74300868971580563195 ?é 0
6 10 3292930429630635556 ’

the matrix M is nonsingular, which proves our claim.

15



Since the system (3.11) is precisely the set of all splines in (3.9) whose supports have
nonempty intersection with the interior of [—1,1]2 4+ m, and since each function in (3.9)
is supported on at most four of the sets [—1,1]% + m, m € 27Z%, we get the inequality

Clalp< X [ 5P <aclal
me2T2 [-1,1]24m

where Cy,C2 > 0 are the Riesz constants of the (finite) basis (3.11). (Obviously, C; and
C5 are independent of m.) Thus,

Crllallz < isll2 < 2C:lall2, (3.12)
and the proof is complete. O
§4. Prewavelets
Let foralli=1,...,5, k € Z*\ Z;,
5

Yig i =tin(2) = > Y Mfﬂ. (4.1)

Note that, due to the local support of the functions ?; ; and Ej’e, the above sums have
only finite number (at most 39, in fact) of nonzero terms. Consequently, the support of
each function 1, is contained in a square of sidelength four.

By using the biorthogonality conditions it is easy to see that the functions ; ; are
orthogonal to the basis splines of B, and therefore they lie in the prewavelet space

Wi = S3(30) & S1(D).

Moreover,
Wy = Spanez(zz){’lpi’k c1=1,...,5, k€ V/he \ Zz}

Indeed, let s € W;. Since Wy C S%(%A), by Theorem 3.3 there exists a unique represen-

tation
5

5
s = Z Z a; gtk (2-) + Z Z ajetje-

1=1 ke Z2\Z; i=1¢ec7?

with square summable coeflicients. Since the basis functions have local support, we
compute the scalar products (s,¢;,) = 0 termwise and get

5
tik(2),t;
&j)‘e = _Z Z azak< ’L,k( )’ J’e>’ j = ]" : "57 E E Z27

TR
i=1 keZ?\ 2, ||tJ,€||2
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which implies
5
Z o k Vi k-
i=1 keZ2\ Z;
Lemma 4.1. The functions (4.1) form a Riesz basis for W7.
Proof: Given o € R,i=1,...,5, k€ 7Z*\ Z;, let

5
s=Y . > ixtik

i=1 keZ?\Z;
5

Z Z a; gt (2 Z Z Z Z W th,E-
i=1 ke Z>\ Z; j=leez? \i=1keZ?\Z;

By Theorem 3.3 we immediately get the lower estimate
[sll2 > Crllel2,

where C; > 0 is the absolute constant from (3.12). On the other hand, since at most
115 scalar products (; x(2:),%;,¢) are nonzero for fixed j, £, and at most 39 of them are
nonzero for fixed 7, k, we have by a standard argument

2

3 5
SY Y Y e <ol

J=1leeZ? |i=1 ke Z?\ Z;

where

2
< o0
y° ”tJ el

is a finite constant since t; ; are translates of only 7 functions t1, t2, 3, tff, t5i. Therefore,
by Theorem 3.3
[sll2 < Callall2,

where C4 > 0 is an absolute constant. The proof is complete. O

Theorem 4.2. The functions
wzk = 2] 11!)2 k(2] ' ) 1=1,2,3,4,5, k GEQ\Z'Z’ ] GE, (42)

form a prewavelet basis for L2(R?).

Proof: Indeed, by Lemma 4.1 for all j € 7Z,
Yl =20 (27, i=1,2,3,4,5, keZ?\Z;,
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is a Riesz basis for W; := S}(277A)© S3(279 1 A) with the same Riesz constants Cy, C.
Since we have orthogonal decomposition

L*(R?) = P w;,

JEZ

the statement follows. O
Finally, we note that our prewavelets 1); ;; can be obtained as translates of a finite
subset of them. Indeed, by (2.6) it is easy to see that

{tin(2): ke Z?\ 2} = {tir(2-—2m) : k= (1,0),(0,1),(1,1), m e Z*}, (4.3)
fori=1,2,3, and

{tan(2): ke Z2\ Z4) = (t5,(2- —2m) : k= (1,0),(0,2),(1,2), m € Z x 27Z},

{ts1(2) : k€ Z*\ Z5} = {t5,(2-—2m) : k=(0,1),(2,0),(2,1), m €27 x 7},
(4.4)
for i = 4,5. In view of (4.1), this implies

Yiksam = Yip(-—m),  m e 22> (4.5)

We note, however, that (4.1) is the closed form (where everything is known once the
inner products are computed) to be used in practical applications due to its simplicity
(and the inner products are computed only once and for all).

Remark 4.3. Stability in Sobolev spaces H?®: It can be shown by a standard argument
(see e.g. [12]) that the prewavelets (4.2) form a stable basis of the Sobolev spaces H?® for
all =5/2 < s <5/2.

Remark 4.4. Prewavelets on bounded domains in R?: The above construction can
be employed to construct prewavelets on bounded domains due to their own local sup-
port and the explicit construction we use. This is also not possible when box spline
constructions are used where always the whole domain IR? has to be incorporated.

Remark 4.5. Irregular quadrangulations: Unlike the usual constructions, e.g. in [1],
this construction is without the use of Fourier transforms and can therefore, in principle,
be extended to irregular quadrangulations by pertubation arguments and re-computation
of the explicit coefficients. The analogs of bases Brg and B are readily available for any
FVS triangulations.
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