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Abstract

The existence of string functions, which are not polynomial time
computable, but whose graph is checkable in polynomial time, is a ba-
sic assumption in cryptography. We prove that in the framework of
algebraic complexity, there are no such families of polynomial func-
tions of polynomially bounded degree over fields of characteristic zero.
The proof relies on a polynomial upper bound on the approximative
complexity of a factor g of a polynomial f in terms of the (approxima-
tive) complexity of f and the degree of the factor g. This extends a
result by Kaltofen (STOC 1986). The concept of approximative com-
plexity allows to cope with the case that a factor has an exponential
multiplicity, by using a perturbation argument. Our result extends to
randomized (two-sided error) decision complexity.

1 Introduction

Checking or verifying a solution to a computational problem might be easier
than computing a solution. In a certain sense, this is the contents of the
famous P 6= NP hypothesis. In [39] Valiant made an attempt to clarify the
principal relationship between the complexity of checking and evaluating.
In particular, he asked whether any (string) function, for which values can
be checked in polynomial time, can also be evaluated in polynomial time.

∗A preliminary version of this work appeared in Proc. 42nd FOCS 2001, pp. 378-385,
Oct. 14-17, 2001, Las Vegas. The full version has been published at J. FoCM 4(4): 369–
396, 2004. In this version, we have corrected an error in the statement and proof of
Theorem 5.7.
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Cryptographers hope that the answer to this question is negative, since it
turns out to be intimately connected to the existence of one-way functions.
Indeed, the inverse ϕ of a one-way function is not polynomial time com-
putable, but membership to the graph of ϕ can be decided in polynomial
time. The converse is also known to be true [20, 35] and equivalent to
P 6= UP.

The goal of this paper is to investigate the relationship between the
complexity of computational and decisional tasks in an algebraic framework
of computation, a line of research initiated by Lickteig [29, 30]. Unless stated
otherwise, k denotes a fixed field of characteristic zero. Are there families
of polynomials (ϕn) over k, for which checking the value can be done with a
polynomial number of arithmetic operations and tests, but which cannot be
evaluated with a polynomial number of arithmetic operations? We do not
know the answer to this question. However, we will be able to show that
the answer is negative under the restriction that the degree of ϕn grows at
most polynomially in n. Actually, our result is slightly weaker in the sense
that we know it to be true only for a notion of approximative complexity.

1.1 Decision, Computation, and Factors

We discuss a basic relationship between the complexity of decision and com-
putation in our algebraic framework of computation and raise some natural
open questions.

By the straight-line complexity L(g) of a multivariate polynomial g over k
we understand the minimal number of arithmetic operations sufficient to
compute g(X1, . . . ,Xn) by a straight-line program without divisions from
the variables Xi and constants in k. The decision complexity C(g) of g is
defined as the minimal number of arithmetic operations and tests sufficient
for an algebraic computation tree to decide for given points x in kn whether
g(x) = 0. If k = R, we allow also ≤-tests. Clearly, C(g) ≤ L(g) + 1 (the 1
accounts for the zero test). We define the exclusion complexity EC (g) of g
similarly as in [30, 11]

EC (g) := min{L(f) | f ∈ k[X1, . . . ,Xn] \ {0}, g | f}.

We clearly have EC (g) ≤ L(g). For formal definitions, we refer to [10].
In the following, we assume that g is the irreducible generator of a hy-

persurface in kn and either k = R or C. Let f be a nonzero polynomial
multiple of g, say f = geh with a polynomial h coprime to g and e ∈ N>0.
Then any straight-line program for f can be used to exclude membership
to the zeroset of g: f(x) 6= 0 implies g(x) 6= 0 and the converse is also true,
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provided h(x) 6= 0. Thus we may consider EC (g) as a “generic decision
complexity” of g.

The following well-known lemma provides a link between decisional and
computational complexity (cf. [12, 3]). The proof is a rather straightforward
consequence of the Nullstellensatz.

Lemma 1.1 Let g be the irreducible generator of a hypersurface in Rn or
Cn. Then EC (g) ≤ C(g).

Over the reals, we need both assumptions that g is irreducible (see the
comment on question (2) below) and that the zeroset of g is a hypersurface
(take g = X2m

1 + . . . +X2m
n over R). Over the complex numbers, one can

relax these assumptions and show that EC (g) ≤ C(g)+r−1 if g is squarefree
with r irreducible factors. Moreover, we remark that the conclusion of this
lemma remains true over any infinite field k if g is the generator of the graph
of a polynomial ϕ, that is, g = Y − ϕ(X1, . . . ,Xn).

Under the assumption of the lemma we have EC (g) ≤ C(g) ≤ L(g) + 1.
Asking about inequalities in the reverse direction, it is natural to raise the
following questions:

L(g) ≤ EC (g)O(1) ? (1)

L(g) ≤ C(g)O(1) ? (2)

L(ϕ) ≤ C(graph(ϕ))O(1) ? (3)

Again, g denotes the irreducible generator of a hypersurface in Rn or Cn

and ϕ denotes a polynomial. We have the following chain of implications:
(1) ⇒ (2) ⇒ (3).

We believe that all these three questions have negative answers, but
we have been unable to prove this for irreducible g. However, the follow-
ing counterexamples are known for questions (1) and (2) when allowing for
reducible polynomials g, and assuming k = R for question (2).

Referring to question (1), there exist univariate polynomials f having
reducible factors g with a complexity exponential in the complexity of f , a
fact first discovered by Lipton and Stockmeyer [32]. The simplest known
example illustrating this is as follows: Consider fn = X2n −1 =

∏

j<2n(X−

ζj), where ζ = exp(2πi/2n). By repeated squaring we get L(fn) ≤ n+1. On
the other hand, one can prove that for almost all M ⊆ {0, 1, . . . , 2n− 1} the
random factor

∏

j∈M(X − ζj) has a complexity which is exponential in n,
cf. [10, Exercise 9.8]. A similar reasoning can be made over the reals using
Chebychev polyomials.
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Commenting on question (2), we remark that the answer is negative
if we drop the irreducibility assumption and assume k = R. This follows
from the following trivial example from [12], which shows that L(g) may be
exponentially larger than C(g): Let gn ∈ R[X] have n distinct real roots.
Then C(gn) ≤ log n using binary search, but L(gn) ≥ n if the roots of g are
algebraically independent over Q.

We regard to question (3), we note that its truth would imply that there
are no “one-way functions” in the algebraic setting of computations with
polynomials.

It would be interesting to find out whether the truth of the above ques-
tions is equivalent to the collapse of some complexity classes, similarly as
P = UP in the bit-model.

1.2 Main Results

The counterexamples discussed above established polynomials g whose de-
gree was exponential in the exclusion or decision complexity of g, respec-
tively. We restrict now our attention to factors g having a degree polynomi-
ally bounded in the complexity of f .

The Factor Conjecture from [7, Conj. 8.3] states that for polynomials g

L(g) ≤ (EC (g) + deg g)O(1). (4)

A partial step towards establishing this conjecture is an older result due to
Kaltofen [22], which can be seen as a byproduct of his achievements [23]
to factor polynomials given by a straight-line program representations (see
also [25]). Kaltofen proved that the complexity of any factor g of f is
polynomially bounded in the complexity of f and in the degree and the
multiplicity of the factor g.

Before stating the precise result, let us fix some notation. For the re-
mainder of this paper, M(d) denotes an upper bound on the complexity for
the multiplication of two univariate polynomials of degree d over k, that
is, for computing the coefficients of the product polynomial from the coeffi-
cients of the given polynomials. It is well-known that M(d) ≤ O(d log d) for
k = R or C, cf. [10]. We will assume that M(d1) ≤ M(d2) for d1 ≤ d2 and
the subadditivity property M(d1) +M(d2) ≤M(d1 + d2).

Here is the precise statement of Kaltofen’s result, which was indepen-
dently found by the author, compare [7, Thm. 8.14].

Theorem 1.2 Let f = geh with coprime polynomials g, h ∈ k[X1, . . . ,Xn].
Let d ≥ 1 be the degree of g. We suppose that k is a field of characteristic
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zero. Then we have

L(g) ≤ O(M(d3e)(L(f) + d log e)).

Thus our Factor Conjecture claims that the dependence on the multi-
plicity can be omitted. It is known [22] that this is true in the case f = ge,
in which case L(g) ≤ O(M(d)L(f)) with d = deg g, see Proposition 6.1 in
the appendix.

The main result of this paper states that the dependence on the multi-
plicity can indeed be omitted when switching to an approximative complex-
ity measure. The approximative complexity L(g) of a polynomial g is the
minimal cost of “approximative straight-line programs” computing approxi-
mations of g with any precision required. A formal definition will be given
in Section 2.

The precise formulation is as follows:

Theorem 1.3 Let k be a field of characteristic zero. Assume that n by n
matrices over k can be multiplied with O(nγ) arithmetic operations in k. For
g ∈ k[X1, . . . ,Xn] of degree d we have

L(g) ≤ O(M(d)M(d4)EC (g) + d2γM(d)2).

We remark that the “exponent γ of matrix multiplication” may be chosen
as 2 ≤ γ < 2.38, see [13, 10].

Remark 1.4 There is certainly room for improvement in this bound. In
fact, the proof of Theorem 1.3 yields better estimates in the following cases.

1. If g is the generator of the graph of a polynomial function ϕ, we obtain
L(g) ≤ O(M(d2)EC (g)).

2. We have L(g) ≤ O(M(d4)EC (g) + d2γM(d)) if g is the irreducible
generator of a hypersurface in Rn or Cn.

An interesting consequence is the following degree bounded version of
question (3):

Corollary 1.5 The approximative complexity L(ϕ) of a polynomial ϕ is
polynomially bounded in the decision complexity of the graph of ϕ and the
degree d of ϕ, namely L(ϕ) ≤ O(M(d2)C(graph(ϕ))). This remains true if
we allow randomization with two-sided error.
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Coming back to the discussion of one-way functions, we remark that
Sturtivant and Zhang [38] obtained the following related result, which ex-
cludes the existence of certain one-way functions in the algebraic framework
of computation. Let ψ: kn → kn be bijective such that ψ as well as ψ−1 are
polynomial mappings. Then the complexity to evaluate ψ is polynomially
bounded in the complexity to evaluate the inverse ψ−1 and the maximal
degree of the component functions of ψ. Again, it is unknown whether the
degree restriction can be omitted.

The paper is organized as follows: In Section 2 we introduce the concept
of approximative complexity. Section 3 contains the proof of the main result.
We then shortly discuss some applications in Section 4, where we also build
in the concept of approximative complexity into Valiant’s algebraic P-NP
framework [40, 42] (see also [10, 7]). Section 5 is devoted to a more detailed
analysis of the concept of approximative complexity. Finally, the appendix
contains a proof of Theorem 1.2.

For some other aspects of the issues discussed in this paper see [9].

Acknowledgments: Thanks go to Erich Kaltofen for communicating to
me his paper [22] and to an anonymous referee for pointing out the refer-
ence [38]. I am grateful to Alan Selman for answering my questions about
the complexity of one-way functions.

Note added in proof: Thomas Lickteig informed me that his unpublished
papers [29, §4] and [30, Thm. (H.3)] already contain a proof of the central
result in Section 3.2 (Proposition 3.4), which is based on the same method.

2 Approximative Complexity

In complexity theory it has proven useful to study “approximative algo-
rithms”, which use arithmetic with infinite precision and nevertheless only
give us an approximation of the solution to be computed, however with any
precision required. This concept was systematically studied in the frame-
work of bilinear complexity (border rank) and there it has turned out to be
one of the main keys to the currently best known fast matrix multiplica-
tion algorithms [13]. We refer to [10, Chap. 15] and the references there for
further information.

Although approximative complexity is a very natural concept, it has
been investigated in less detail for computations of polynomials or rational
functions. Originally, it had been introduced by Strassen in a topological
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way [37]. Griesser [18] generalized most of the known lower bounds for mul-
tiplicative complexity to approximative complexity. Lickteig systematically
studied the notion of approximative complexity with the goal of proving
lower bounds [30]. In Grigoriev and Karpinski [19] the notion of approxi-
mative complexity is also employed for proving lower bounds.

It is not known how to meaningfully relate the complexity of trailing
coefficients or of factors of a polynomial to the complexity of the polynomial
itself. However, by allowing approximative computations, we are able to
establish quite satisfactory reductions in these cases. The deeper reason why
this is possible seems to be the lower semicontinuity of the approximative
complexity, which allows a controlled passage to the limit and can be used
in perturbation arguments.

Assume the polynomial f is expanded with respect to Y :

f = fq(X1, . . . ,Xn)Y
q + fq+1(X1, . . . ,Xn)Y

q+1 + . . . .

We do not know whether the complexity of the trailing coefficient fq can be
polynomially bounded in the the complexity of f . However, we can make the
following observation. For the moment assume that k is the field of real or
complex numbers. We have limy→0 y

−qf(X, y) = fq(X) and L(f(X, y)) ≤
L(f) for all y ∈ k. Thus we can approximate fq with arbitrary precision
by polynomials having complexity at most L(f). We will say that fq has
“approximate complexity” at most L(f).

In what follows, we will formalize this in an algebraic way; a topological
interpretation will be given later. Throughout the paper, K := k(ǫ) is a
rational function field in the indeterminate ǫ over the field k and R denotes
the local subring of K consisting of the rational functions defined at ǫ = 0.
We write Fǫ=0 for the image of F ∈ R[X] under the morphism R[X] → k[X]
induced by ǫ 7→ 0.

Definition 2.1 Let f ∈ k[X1, . . . ,Xn]. The approximative complexity L(f)
of the polynomial f is the smallest natural number r such that there exists F
in R[X1, . . . ,Xn] satisfying Fǫ=0 = f and L(F ) ≤ r. Here the complexity L
is to be interpreted with respect to the larger field of constants K.

Even though L refers to division-free straight-line programs, divisions
may occur implicitly since our model allows the free use of any elements ofK
as constants (e.g., division by powers of ǫ). In fact, the point is that even
though F is defined with respect to the morphism ǫ 7→ 0, the intermediate
results of the computation may not be so! Note that L(f) ≤ L(f).
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We remark that the assumption that any elements ofK are free constants
is just made for conceptual simplicity. We may as well require to build up
the needed elements of K from ǫ, ǫ−1 and elements of k. It is easy to see
that this would not change our main result (i.e., Theorem 1.3).

Assume that L(f) ≤ r over k = R, say Fǫ(x) = f(x) + ǫRǫ(x) and
L(Fǫ) ≤ r. Let S be the supremum of Rǫ(x) over all ǫ ∈ [0, 1] and x ∈ Rn

with ||x||∞ ≤ 1. Then we have for such ǫ and x that |Fǫ(x) − f(x)| =
ǫ |Rǫ(x)| ≤ Sǫ. Therefore, for each ǫ > 0 we can compute on input x an ap-
proximation to f(x) with absolute error less than Sǫ with only r arithmetic
operations. If we would additionally require in the definition of L to build
up the needed constants in K from ǫ, ǫ−1, then L(f) ≤ r would even mean
that one can compute an approximation with error less than Sǫ with only r
arithmetic operations on input x and ǫ.

Example 2.2 Let us illustrate the notion of approximative complexity with
an example. The convex hull of the support suppf of a polynomial

f =
∑

a∈suppf

caX
a1
1 · · ·Xan

n (ca 6= 0)

is called the Newton polytope P of f . To a supporting hyperplane H of P
we may assign the corresponding initial term polynomial

inHf :=
∑

a∈H∩suppf

caX
a1
1 · · ·Xan

n .

We claim that
L(inHf) ≤ L(f) + n+ 1.

Indeed, we may obtain inH(f) as a “degeneration” of f as follows. Assume
that 〈w, x〉−c = 0 is the equation of H, say 〈w, x〉 ≥ c on P . We can always
achieve that w ∈ Zn, c ∈ Z. Then we have

F := ǫ−cf(ǫw1X1, . . . , ǫ
wnXn) =

∑

a∈suppf

caǫ
〈w,a〉−cXa1

1 · · ·Xan
n = inHf+O(ǫ)

using the convenient, intuitive Big-Oh notation. Therefore, Fǫ=0 = inHf
and L(F ) ≤ L(f) + n + 1 which proves our claim. (Recall that the powers
of ǫ are considered as constants.)

The next lemma states some of the basic properties of L.
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Lemma 2.3 1. (Semicontinuity) If F is defined over R and f = Fǫ=0,
then L(f) ≤ L(F ). Note that the quantity L(F ) is well-defined for a
polynomial F over K (adjoining a further indeterminate to K).

2. (Elimination of constants) Let k1 be a field extension of k of degree at
most d and f be a polynomial over k. Then L(f) ≤ O(M(d)L k1

(f)),
where L k1

(f) denotes the approximative complexity of f interpreted as
a polynomial over k1 (i.e., constants in k1 may be used freely).

3. (Transitivity) The approximative complexity L(f | g) to compute f
from g and the variables is defined in a natural way. We have L(f) ≤
L(f | g)+L(g), and an analogous inequality is true for the computation
of several polynomials.

Proof. (1) We start with a general observation: Let Φ be a rational function
in two variables ǫ, δ. We assume that Φ, viewed as a rational function in δ
over k(ǫ), is defined at δ = 0 with value Φδ=0. Moreover, we assume that the
rational function Φδ=0 is defined at ǫ = 0 with value λ := (Φδ=0)ǫ=0. Then
Φ(ǫ, ǫN ) is defined at ǫ = 0 with value λ for sufficiently large N . Indeed, if
B is the denominator of Φ and B(ǫ, 0) = Bm ǫ

m + O(ǫm+1), Bm 6= 0, then
it is easy to check that it suffices to take N > m.

Let now Φ ∈ k(ǫ, δ)[X] be such that Φδ=0 = F and L(Φ) = L(F ).
An optimal computation of Φ takes place in a finitely generated subring of
k(ǫ, δ)[X]. The morphism δ 7→ ǫN is defined on this subring if N is chosen
sufficiently large. Then we have L(φ) ≤ L(Φ) for φ := Φ(ǫ, ǫN ,X). If N
is chosen sufficiently large, we have φǫ=0 = Fǫ=0 by the observation at the
beginning of the proof. This implies the claim.

(2) This follows easily from [7, Prop. 4.1(iii)].

(3) By definition there exists G ∈ k(ǫ)[X] such that Gǫ=0 = g and
L(g) = L(G). Moreover, there exists F ∈ k(ǫ)[X] such that Fǫ=0 = f and

L(f | g) = L(F | g).

Let Γ be an optimal straight-line program computing F from g, variables
Xi, and constants in k(ǫ). We replace ǫ by a new indeterminate δ and denote
the element thus corresponding to G by G(δ) ∈ k(δ)[X] (abusing notation).
If we replace the input g by G(δ), then the program Γ, using the same
constants in k(ǫ) as Γ, will compute an element Φ ∈ k(ǫ, δ)[X]. Clearly,
Φδ=0 = F .

Since the computation of Φ takes place in a finitely generated subring
of k(ǫ, δ)[X], the morphism δ 7→ ǫN is defined on this subring if N is chosen
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large enough. If we denote the image of Φ under this morphism by φ and
the image of G(δ) by G(ǫN ), then we have

L(φ | G(ǫN )) ≤ L(F | g) = L(f | g).

Moreover, we clearly have L(G(ǫN )) ≤ L(G) = L(g). By the transitivity
of L, we get L(φ) ≤ L(f | g)+L(g). From the observation at the beginning of
the proof of part (1) of the lemma, we conclude that φǫ=0 = f for sufficiently
large N . This implies the claim. ✷

We proceed with a topological interpretation of approximative complex-
ity, which points out the naturality of this notion from a mathematical point
of view. It will not be needed for the proof of the main Theorem 1.3.

Assume k to be an algebraically closed field. There is a natural way
to put a Zariski topology on the polynomial ring An := k[X1, . . . ,Xn] as a
limit of the Zariski topologies on the finite dimensional subspaces {f ∈ An |
deg f ≤ d} for d ∈ N. If k is the field of complex numbers, we may define
the Euclidean topology on An in a similar way.

If f ∈ An satisfies L(f) ≤ r, then it easy to see that f lies in the closure
(Zariski or Euclidean) of the set {f ∈ An | L(f) ≤ r}. Indeed, we have
L(Fǫ=y) ≤ L(F ) for all but finitely many y ∈ k and limy→0 Fǫ=y = Fǫ=0 = f .
Alder [1] has shown that the converse is true and obtained the following
topological characterization of the approximative complexity.

Theorem 2.4 Let k be algebraically closed. The set {f ∈ An | L(f) ≤ r}
is the closure of the set {f ∈ An | L(f) ≤ r} for the Zariski topology. If
k = C, this is also true for the Euclidean topology.

This essentially claims that L is the largest lower semicontinuous function
of f bounded by L(f). The proof of Theorem 5.7 in Section 5.2 implies the
above result as a special case. We remark that this theorem can also be easily
deduced from [10, Lemma 20.28]. One can show that the above statement is
also true over the reals with the Euclidean topology, similar as in Lehmkuhl
and Lickteig [26].

3 Approximative Complexity of Factors

We will supply here the proof of our main result Theorem 1.3. The outline of
the proof is as follows: Let f = geh with coprime g and h and assume k = C.
After a suitable coordinate transformation one can interpret the zeroset of
the factor g locally as the graph of some analytic function ϕ. In order to
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cope with a possibly large multiplicity e of g, we apply a small perturbation
to the polynomial f without affecting its complexity too much. This results
in a small perturbation of ϕ. We compute now the homogeneous parts of
the perturbed ϕ by a Newton iteration up to a certain order. Using efficient
polynomial arithmetic, this gives us an upper bound on the approximative
complexity of the homogeneous parts of ϕ up to a predefined order (Propo-
sition 3.4). In the special case, where the factor g is the generator of the
graph of a polynomial function, we are already done. This is essentially the
contents of Section 3.2.

In a second step, elaborated in Section 3.3, we view the factor g as the
minimal polynomial of ϕ in Y := Xn over the field k(X1, . . . ,Xn−1). We
show that the Taylor approximations up to order 2d2 uniquely determine
the factor g and compute the bihomogeneous components of g with respect
to the degrees in the X-variables and Y by fast linear algebra.

3.1 Preliminaries

The following result is obtained by a straightforward application of a tech-
nique introduced by Strassen [36] for the computation of homogeneous com-
ponents and avoiding divisions. A proof will be sketched in Section 5.1.

Proposition 3.1 Assume that F (X,Y ) =
∑

i,δ F
(δ)
i Y i is the bihomoge-

neous decomposition of the polynomial F ∈ k[X1, . . . ,Xn, Y ] with respect

to the total degree in the X-variables and the degree Y . Thus F
(δ)
i is a ho-

mogeneous polynomial in the X-variables of degree δ. Then we have for all
D ≥ 1

L({F
(δ)
i | i, δ ≤ D}) ≤ O(M(D2)L(F ))

and the same is true if the complexity L is replaced by the approximative
complexity L.

Part (1) of the next lemma follows immediately from the well-known
algorithms for the multiplication and division of univariate power series
described in [10, §2.4] by interpreting the homogeneous components of a
multivariate power series f ∈ k[[X1, . . . ,Xn]] as the T -adic coefficients of
the transformed series f(TX1, . . . , TXn). Part (2) of this lemma is obtained
from part (1) by applying Horner’s rule.

Lemma 3.2 (1) We can compute the homogeneous parts up to degree D
of the product F · G and of the quotient F/G (if G(0) 6= 0) of multi-
variate power series F and G from the homogeneous parts of F and G
up to degree D by M(D) arithmetic operations.
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(2) Assume that the multivariate power series F0, . . . , FD and Φ are given
by their homogeneous parts up to degree D. Then we can compute
from this data the homogeneous parts of

∑D
i=0 FiΦ

i up to degree D by
O(DM(D)) arithmetic operations.

We remark that D2 nonscalar operations are needed for the composition
problem (2) in the generic case. For proving this, we assume that we have
just one variable and choose for Φ a constant power series: Φ = a. Let
Fi =

∑

j Fi,jX
j . The problem then reduces to the simultaneous evaluation

of
∑

i≤D Fi,ja
i for j ≤ D, a problem known to be of nonscalar complexity

(D + 1)2 − 1, see [10, Exercise 6.2].

3.2 Approximative Computation of Graph

We need the following lemma.

Lemma 3.3 Let g, h ∈ k[X1, . . . ,Xn] be coprime, g irreducible and d :=
deg g. Then there is field extension k1 of degree at most d over k and a
point p ∈ kn1 such that

g(p) = 0, h(p) 6= 0, grad g(p) 6= 0.

Moreover, we may assume in this statement that k1 = k if either k = C or
if k = R and g is the irreducible generator of a hypersurface in Rn.

Proof. The claim for k = C is a straightforward consequence of the Null-
stellensatz. In the case k = R we apply Theorem 4.5.1 in [5], which tells us
that {x ∈ Rn | g(x) = 0, grad g(x) 6= 0} is Zariski dense in the zeroset of g
and that the vanishing ideal of this zeroset is generated by g. This implies
the claim.

In the general case, we apply a linear coordinate transformation Xi 7→
Xi+uiY (i < n), Y 7→ vY for suitable ui, v ∈ k in order to achieve that g is
monic of degree d with respect to the variable Y := Xn. From now on we
write X := (X1, . . . ,Xn−1). Since g is irreducible and g, h are coprime, the
resultants resY (g, ∂Y g) and resY (g, h) in k[X] with respect to the variable
Y are not the zero polynomials. We choose a point ξ ∈ kn−1 where these
resultants do not vanish. From the properties of the resultant we conclude
that the univariate polynomials g̃ := g(ξ, Y ) and h̃ := h(ξ, Y ) are coprime
and that g̃ is squarefree. Let η be a root of g̃ is some extension field k1 of
k of degree at most d. Then ∂Y g̃ and h̃ do not vanish at η and the point
p = (ξ, η) satisfies the claim of the lemma. ✷
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We assume now that we are in the situation of Theorem 1.3. Without
loss of generality we may assume that g is irreducible (apply Theorem 1.3
to the irreducible factors of g and use the subadditivity and monotonicity of
M). From now on we use the notations Y := Xn and X := (X1, . . . ,Xn−1).

Let f = geh, where g and h coprime such that EC (g) = L(f). We choose
the field extension k1 and the point p = (ξ, η) ∈ kn1 according to Lemma 3.3.
To simplify notation, we assume that k1 = k, an assumption which will be
eliminated at the end of Section 3.3 at the price of an additional factorM(d)
in the complexity bound.

We are now going to transform the polynomials into a special form by
suitable linear transformations. By a coordinate shift we can always achieve
that (ξ, η) = (0, 0). By a substitution g̃(X,Y ) := g(X1 + u1Y, . . . ,Xn−1 +
un−1Y, vY ) we may achieve that the degree of g̃ in Y equals d and that
∂Y g̃(0, 0) does not vanish. Indeed, if g(d) denotes the homogeneous com-
ponent of g of degree d, then the coefficient of Y d in g̃ equals g̃(d)(0, 1) =
g(d)(u, v). Moreover, ∂Y g̃(0, 0) = u1∂X1

g(0, 0) + . . . + un−1∂Xn−1
g(0, 0) +

v∂Y g(0, 0). Hence it suffices to choose u, v such that this linear combination
does not vanish and such that g(d)(u, v) 6= 0. By scaling, we may assume
without loss of generality that g̃ is monic with respect to Y . In the fol-
lowing, we will assume that this transformation has already been done, i.e.,
g̃ = g, which results in a complexity increase of f of at most 2n. Note that
L(f) ≥ n if all the variables occur in f .

Summarizing, we achieved the following by a suitable choice of a linear
transformation:

g(0, 0) = 0, h(0, 0) ∂Y g(0, 0) 6= 0, degY g = d. (5)

The implicit function theorem implies that there exists a unique formal
power series ϕ ∈ k[[X]] such that

g(X,ϕ(X)) = 0, ϕ(0) = 0. (6)

Moreover, this power series can be recursively computed by the following
Newton iteration: if we put ϕ0 = 0 and define

ϕν+1 = ϕν −
g(X,ϕν )

∂Y g(X,ϕν)
, (7)

then we have quadratic convergence of the ϕν towards ϕ, in the sense that
ϕν ≡ ϕ mod (X)2

ν

, where (X) denotes the maximal ideal of k[[X]] (cf. [10,
Theorem 2.31]).
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It is easy to see that if the partial derivative ∂Y f(0, 0) would not van-
ish, then the above power series ϕ could also be recursively computed by
the Newton recursion (7) with g replaced by f . However, ∂Y f(0, 0) = 0
always vanishes for multiplicities e > 1. The key idea is now to enforce
the nonvanishing of this partial derivative by a suitable perturbation of the
given polynomial f . By doing so, we have to content ourselves with an
approximative computation of the factor g.

Based on these ideas, we prove the following assuming the conditions (5):

Proposition 3.4 The homogeneous parts ϕ(δ) of ϕ of degree δ satisfy

∀D ≥ 1 : L(ϕ(1), . . . , ϕ(D)) ≤ O(M(D2)L(f)).

Proof. Note that g, viewed as a polynomial in Y over k(X), is the minimal
polynomial of ϕ over k(X). W.l.o.g. we may assume that ϕ is not a rational
function (otherwise d = 1, ϕ would be linear, and the claim obvious).

We define the perturbed polynomial F (X,Y ) := f(X,Y + ǫ) − f(0, ǫ)
over the coefficient ring R. It is clear that F (0, 0) = 0 and Fǫ=0 = f . By a
straight-forward calculation we get

∂Y F (0, 0) = (eh ∂Y g + g ∂Y h)(0, ǫ) · g
e−1(0, ǫ).

Assumptions (5) tell us that g(0, ǫ) = λǫ+O(ǫ2) with λ ∈ k×, hence

∂Y F (0, 0) = e λe h(0, 0) ǫe−1 +O(ǫe)

and we conclude that this partial derivative does not vanish (char k = 0).
As in the reasoning before, the implicit function theorem implies that

there exists a unique formal power series Φ over the field K = k(ǫ) such
that F (X,Φ(X)) = 0, Φ(0) = 0 and this power series can be recursively
computed by the Newton iteration

Φ0 = 0, Φν+1 = Φν −
F (X,Φν)

∂Y F (X,Φν)
(8)

with quadratic convergence: Φν ≡ Φ mod (X)2
ν

.

Claim: Φν is defined over the coefficient ring R for all ν.

We prove this claim by induction on ν, the induction start ν = 0 being
clear. So let us assume that Φν is defined over R and set ψν := (Φν)ǫ=0. By
applying the morphism R[[X]] → k[[X]], ǫ 7→ 0 we obtain

(∂Y F (X,Φν))ǫ=0 = ∂Y f(X,ψν)

= (eh ∂Y g + g ∂Y h)(X,ψν) · g
e−1(X,ψν).
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The first parenthesis maps under the substitution X 7→ 0 to (eh ∂Y g)(0, 0),
which is nonzero by our assumptions. The second factor g(X,ψν) can only
vanish if ψν = ϕ since the power series ϕ is uniquely determined by the
conditions (6). In this case, ϕ would be a rational function, which we
have excluded at the beginning of the proof. We have thus shown that
(∂Y F (X,Φν))ǫ=0 nonzero. By equation (8) this implies that Φν+1 is defined
over R and proves the claim.

The claim implies that Φ is defined over R. From F (X,Φ(X)) = 0 we get
f(X, (Φ(X))ǫ=0) = 0, hence g(X, (Φ(X))ǫ=0) = 0, as h(X, (Φ(X))ǫ=0) 6= 0.
We conclude that (Φ(X))ǫ=0 = ϕ. If Φ(δ) denotes the homogeneous part of
Φ of degree δ, we have (Φν)

(δ) = Φ(δ) for δ < 2ν . This implies for δ < 2ν

that
((Φν)

(δ))ǫ=0 = (Φ(δ))ǫ=0 = (Φǫ=0)
(δ) = ϕ(δ).

As a word of warning, we point out that a certain care in these argumen-
tations is necessary. For instance, Example 3.5 below shows that in general
(Φν)ǫ=0 6= ϕν .

We turn now to the algorithmic analysis of the proof. First of all we note
that L(F ) ≤ L(f)+2. A moment’s thought shows that also L(F ) ≤ L(f)+2.
In order to prove the proposition it is enough to show that

L(Φ
(1)
N , . . . ,Φ

(D)
N ) ≤ O(M(D2)L(f)), (9)

whereN := ⌈log(D+1)⌉. In fact, by the semicontinuity of L (Lemma 2.3(1)),
we only need to prove this estimate for approximative complexity on the
lefthand side.

The following computation deals with polynomials in the X-variables,
which are truncated at a certain degree and represented by their homo-
geneous parts up to this degree. We obtain from Proposition 3.1 for the
bihomogeneous decomposition of F that

L({F
(δ)
i | i, δ ≤ D}) ≤ O(M(D2)L(F )). (10)

In the following, we assume that we have already computed the bihomoge-

neous components F
(δ)
i for i, δ ≤ D.

Inductively, we suppose that we have computed the homogeneous parts
of Φν up to degree 2ν . The main work of one Newton step (8) consists in
the computation of the substituted polynomials F (X,Φν) and ∂Y F (X,Φν).
By Lemma 3.2 we can compute the homogeneous parts up to degree 2ν+1

of F (X,Φν) by O(2νM(2ν)) arithmetic operations. Analogously, we get the
homogeneous parts up to degree 2ν+1 of ∂Y F (X,Φν) by the same number of
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arithmetic operations. By a division and a subtraction we obtain from this
the homogeneous parts of Φν+1 up to degree 2ν+1 using further O(M(2ν))
arithmetic operations. Altogether, we obtain

L(Φ
(1)
N , . . . ,Φ

(D)
N | {F

(δ)
i | i, δ ≤ D})

≤ O(

N
∑

ν=0

2νM(2ν)) ≤ O(DM(D)) ≤ O(M(D2)),

by the monotonicity and subadditivity of M . The assertion (9) follows
from this estimate and equation (10) by the transitivity of approximative
complexity (Lemma 2.3(3)). ✷

Example 3.5 Consider the bivariate polynomial g := (1 + Y )2 − 1 − X2

and put f = g2, h = 1. Then the conditions (5) are satisfied. The first
Newton iterate according to (7) satisfies ϕ1 = 1

2X
2 and the power series ϕ

defined by (6) has the expansion

ϕ =
1

2
X2 −

1

8
X4 + · · · .

As in the proof of Proposition 3.4 we set F := f(X,Y + ǫ) − f(0, ǫ). A
straightforward computation (e.g., using a computer algebra system) yields
for the first Newton approximation Φ1 according to (8) that

Φ1 = −
1

4

(−X2 + 2ǫ+ ǫ2)2 − ǫ2(2 + ǫ)2

(−X2 + 2ǫ+ ǫ2)(1 + ǫ)
.

Therefore, (Φ1)ǫ=0 = 1
4X

2 6= ϕ1. On the other hand, we note that the
expansion of Φ1 starts as follows

Φ1 =
1

2(1 + ǫ)
X2 +

1

4ǫ(1 + ǫ)(2 + ǫ)
X4 + · · ·

and we see that (Φ
(2)
1 )ǫ=0 = 1

2X
2 = ϕ

(2)
1 . Note that the fourth order term

of this expansion is not defined for ǫ = 0 even though Φ1 is defined under
this substitution!

3.3 Reconstruction of Minimal Polynomial

Consider the bihomogeneous decomposition g(X,Y ) =
∑

i,α≤d g
(α)
i Y i. Let

T be an additional indeterminate and perform the substitution Xj 7→ TXj .
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The condition g(X,ϕ(X)) = 0 mod (X)D+1 then translates to
∑

i,α≤d

g
(α)
i Tα(

∑

δ≤D

ϕ(δ)T δ)i ≡ 0 mod TD+1

for any D ≥ 1. Moreover, we have g
(0)
d = 1 and g

(α)
d = 0 for 0 < α ≤ d, since

g is monic of degree d in Y . The next lemma states that these conditions
uniquely determine the bihomogeneous components of g if we chooseD ≥ d2.
The proof is based on well-known ideas from the application of the LLL-
algorithm to polynomial factoring [28] (see also [17, Lemma 16.20]), adapted
from Z to the setting of a polynomial ring.

Lemma 3.6 By comparing the coefficients of the powers of the indetermi-
nate T , one can interpret the conditions

∑

i,α≤d

Zi,αT
α(

∑

δ≤2d2

ϕ(δ)T δ)i ≡ 0 mod T 2d2+1,

Zd,0 = 1, Zd,1 = 0, . . . , Zd,d = 0

as a system of linear equations over the field k(X) in the unknowns Zi,α.
(There are 2d2 + 1 equations and (d + 1)2 unknowns). This linear system

has as the unique solution the bihomogeneous components Zi,α = g
(α)
i of g.

Proof. We define the bivariate polynomial A(T, Y ) :=
∑

i,α≤d g
(α)
i TαY i

over k(X) and assign to a solution ζi,α of the above linear system of equations
the bivariate polynomial B(T, Y ) :=

∑

i,α≤d ζi,αT
αY i. Note that A is an

irreducible polynomial in Y over k(X,T ) since we assume g to be irreducible
and monic with respect to Y . The polynomial ψ :=

∑

δ≤2d2 ϕ
(δ)T δ is an

approximative common root of A and B in the sense that

A(T, ψ) ≡ 0 mod T 2d2+1, B(T, ψ) ≡ 0 mod T 2d2+1.

The resultant res(A,B) ∈ k(X)[T ] of A and B with respect to Y satisfies
the degree estimate

degT res(A,B)) ≤ degY A · degT B + degT A · degY B ≤ 2d2,

which is easily seen from the description of the resultant as the determinant
of the Sylvester matrix (cf. [17, §6.3]). It is well-known that there exist
polynomials u, v ∈ k(X)[T, Y ] such that uA + vB = res(A,B). Substitut-
ing the approximative common root ψ for Y in this equation implies that
res(A,B) ≡ 0 mod T 2d2+1, hence the resultant vanishes. Since A is irre-
ducible, it must be a factor of B over k(X,T ). However, we assume A and
B both to be monic with respect to Y . This implies that in fact A = B as
claimed. ✷
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The coefficients of the linear system of equations in Lemma 3.6 can be
computed from the homogenous components ϕ(δ), δ ≤ 2d2, with d multipli-
cations of power series given by their coefficients up to degree 2d2. This can
be done with O(dM(d2)) arithmetic operations (Lemma 3.2).

Assume that n by n matrices can be multiplied with O(nγ) arithmetic
operations. Then we can compute from the coefficients of the linear sys-
tem the unique solution with O(d2γ) operations (see [10, Chap. 16]). This
computation can be interpreted as a straight-line program involving divi-
sions. However, as the bihomogeneous components of g we are seeking for
are homogenous of degree at most d, we can apply Strassen’s idea of avoid-
ing divisions [36] and transform this straight-line program into one without
divisions, which is at most by a factor of O(M(d)) longer. Summarizing, we
obtain the following:

L({g
(δ)
i | i, δ ≤ d} | ϕ(1), . . . , ϕ(2d2)) ≤ O(d2γM(d)). (11)

Our main Theorem 1.3 is a consequence of this estimate and Proposi-
tion 3.4. In fact, this provides an upper bound on L(g) with respect to
the field extension k1 of k of degree at most d considered at the beginning
of Section 3.2. To simplify notation, we assumed there that k1 = k. This
assumption can now be eliminated at the price of an additional factor M(d)
in the complexity bound according to Lemma 2.3(2). As noted in the proof,
we may directly take k1 = k in the cases k = R or C, so that this additional
factor is not necessary in these cases. Moreover, note that if g is the gener-
ator of the graph of a polynomial function, we obtain the improved bound
stated in Remark 1.4 directly from Proposition 3.4. Summarizing, we have
now provided the proof of the main Theorem 1.3 as well as of Remark 1.4.

Remark 3.7 Alternatively, one can compute the bihomogeneous compo-
nents of g by an analogue of the LLL-algorithm applied to the lattice

{A ∈ k(X)[T, Y ] | degY A ≤ d,A(T, ψ) ≡ 0 mod T 2d2+1} ≃ R+RY + · · ·Rd

over the principal ideal domain R := k(X)[T ]. The complexity bound re-
sulting from this approach is O(d4 · d2) operations in R (cf. [15, Thm. 4.8]
or [27]). This results in O(d6M(d)) operations in k(X), including divisions,
which is worse than the bound O(d2γ) of Proposition 11 for Gaussian elim-
ination (γ = 3).

We think that an improvement upon the bound of inequality (11) is
possible by taking account of the structure of the linear system of equations
under consideration, based on the ideas of Wiedemann [43, 24]. This reduces
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to the question of how fast the matrix underlying the above linear system
can be multiplied with a vector. This is an interesting problem in its own
right, which will be addressed elsewhere.

4 Applications to Decision Complexity

By combining Theorem 1.3, Remark 1.4, and Lemma 1.1, we obtain the
following corollary.

Corollary 4.1 Let g be the generator of an irreducible hypersurface in Rn

or Cn of degree d. Assume that n by n matrices can be multiplied with O(nγ)
arithmetic operations. Then we have

L(g) ≤ O(M(d4)C(g) + d2γM(d)).

We remark that if the hypersurface is the graph of a polynomial func-
tion, then we obtain the better bound L(g) ≤ O(M(d2)C(g)). This implies
Corollary 1.5 of the introduction for deterministic decision complexity. The
claim about randomized complexity (formalized by randomized algebraic
computation trees) then follows easily by the results in [33, 11, 14].

In [40, 42] Valiant had proposed an analogue of the theory of NP-
completeness in a framework of algebraic complexity, in connection with
his famous hardness result for the permanent [41]. This theory features
algebraic complexity classes VP and VNP as well as VNP-completeness re-
sults for many families of generating functions of graph properties, the most
prominent being the family of permanents. There is rather strong evidence
for Valiant’s hypothesis VP 6= VNP. In fact, if it were false, then the nonuni-
form versions of the complexity classes NC and PH would collapse [8]. For
a comprehensive presentation of this theory, we refer to [16, 10, 7]. In the
following, we assume some basic familiarity with the concepts introduced
there.

It is quite natural to incorporate the concept of approximative complex-
ity into Valiant’s framework.

Definition 4.2 An approximatively p-computable family is a p-family (fn)
such that L(fn) is a p-bounded function of n. The complexity class VP
comprises all such families over a fixed field k.

It is obvious that VP ⊆ VP. If the polynomial f is a projection of a
polynomial g, then we clearly have L(f) ≤ L(g). Therefore, the complexity
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class VP is closed under p-projections. We remark that VP is also closed
under the polynomial oracle reductions introduced in [6].

We know very few about the relationship between the complexity classes
VP, VP, and VNP. We therefore raise the following question:

Problem 4.3 Is the class VP strictly contained VP?

Intuitively, one would think that VP should not differ too much from VP.
Commenting on this, we remark that by Lemma 5.6(3), an improvement of
Theorem 5.7 of the form max{q, Lq(f)} ≤ (L(f) + deg f)O(1) would imply
that VP = VP. However, we do not see how to achieve such an improvement.

The class VNP is closed under taking coefficients (cf. [7, §2.3]). This
makes it plausible that VP is contained in VNP. Nevertheless, this is not
clear as the occuring polynomials might have a degree exponential in ǫ.

The hypothesis
VNP 6⊆ VP (12)

is a strengthening of Valiant’s hypothesis, which is equivalent to saying that
VNP-complete families are not approximately p-computable.

This hypothesis should be compared with the known work on polyno-
mial time deterministic or randomized approximation algorithms for the
permanent of non-negative matrices [31, 2, 21]. Based on the Markov chain
approach, Jerrum, Sinclair and Vigoda [21] have recently established a fully-
polynomial randomized approximation scheme for computing the permanent
of an arbitrary real matrix with non-negative entries. We note that this
result does not contradict hypothesis (12), since the above mentioned algo-
rithm works only for matrices with non-negative entries, while approximative
straight-line programs a fortiori work on all real inputs.

Under the hypothesis VNP 6⊆ VP, we can conclude from Corollary 4.1
that checking the values of polynomials forming VNP-complete families is
hard, even when we allow randomized algorithms with two-sided error.

Corollary 4.4 Assume VNP 6⊆ VP over a field k of characteristic zero.
Then for any VNP-complete family (gn), checking the value y = gn(x) can-
not be done by deterministic or randomized algebraic computation trees with
a polynomial number of arithmetic operations and tests in n.

Hypothesis (12) implies a separation of complexity classes in the Blum-
Shub-Smale model of computation [4]. See [3] for the definition of the classes
PR and PARR. (For the proof use Corollary 4.1 with the permanent poly-
nomial g.)
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Corollary 4.5 If VNP 6⊆ VP is true, then we have PR 6= PARR in the
Blum-Shub-Smale model over the reals.

5 Properties of Approximative Complexity

We perform here a more detailed analysis of the concept of approximative
complexity. The results of this section are not needed for understanding
the main results of the paper. The field k may here also be of positive
characteristic.

5.1 Trailing p-adic Coefficients

We discuss first a result about the complexity to compute the p-adic expan-
sion of a polynomial, which is related to Proposition 3.1 and proved in a
similar way.

Let A be a commutative algebra over the field k and p ∈ A[Y ] be a fixed
monic polynomial of degree d ≥ 1. Any polynomial f ∈ A[Y ] has a unique
p-adic expansion f =

∑

i≥0 fip
i, where fi =

∑

µ<d fi,µY
µ ∈ A[T ] is of degree

strictly less than d. We will write

Cp
D(f) := {fi,µ | i ≤ D,µ < d} ⊆ A

for the set of coefficients of the p-adic coefficients of f up to order D.

Lemma 5.1 For f, g ∈ A[T ] we have

L(Cp
D(f · g) | Cp

D(f, g)) ≤ O(M(Dd)).

Proof. Let f =
∑

i,µ fi,µY
µpi and g =

∑

j,ν gj,νY
νpj be the p-adic expan-

sions of f and g. Assume that

∑

ℓ≤2D,λ<2d−1

hℓ,λY
λU ℓ =

(

∑

i≤D,µ<d

fi,µY
µU i

)(

∑

j≤D,ν<d

gj,νY
νU j

)

,

where U is a new indeterminate. The coefficients hℓ,λ can be computed
by bivariate polynomial multiplication with O(M(Dd)) operations. Put
hℓ :=

∑

λ<2d−1 hℓ,λY
λ.

Suppose that
∑

ℓ≤2D+1 hℓp
ℓ is the p-adic expansion of f ·g =

∑

ℓ≤2D hℓp
ℓ.

It is easy to see that the h0, . . . , h2D+1 can be obtained from the h0, . . . , h2D
by 2D divisions with remainder by p. Such a division with remainder can
be performed with M(d) arithmetic operations in A (cf. [10, Cor. 2.26]).
Therefore, the coefficients of h0, . . . , h2D+1 can be obtained from the coeffi-
cients of h0, . . . , h2D with O(DM(d)) arithmetic operations in A. ✷
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The next proposition shows that the computation of the (coefficients of
the) p-adic coefficients of a polynomial up to a certain order D is not much
harder than the computation of the polynomial.

Proposition 5.2 For D ≥ 1 we have

L(Cp
D(f)) ≤ O(M(Dd)L(f)).

Proof. Let g1, . . . , gr ∈ A[Y ] be the sequence of intermediate results of a
computation of f . Suppose that gρ = gi · gj , i, j < ρ. By Lemma 5.1, we
can compute the elements of Cp

D(gρ) from the elements of Cp
D(gi, gj) using

O(M(Dd)) arithmetic operations in A. If gρ = gi ± gj , then we can clearly
do this with O(Dd) operations. In this way, we can successively compute
the elements in Cp

D(g1), . . . , C
p
D(gr) with the required number of arithmetic

operations in A. ✷

We note that the statement of Proposition 5.2 does also hold for ap-
proximative complexity L. (The proof is obvious.) We remark that Propo-
sition 3.1 of Section 3.1 may be derived from the above Proposition 5.2 by
applying to F (X,Y ) the substitution Xi 7→ Y Xi, Y 7→ p := Y dX+1, where
dX = degX F , and by taking A = k[X1, . . . ,Xn]. (Of course, it can also be
derived directly.)

Our initial motivation for the introduction of approximative complexity
was the study of trailing coefficients. We come now back to this issue in a
more general setting.

In the following let A = k[X1, . . . ,Xn] and p ∈ A[Y ] be monic of de-
gree d ≥ 1. Let f =

∑

i fip
i be the p-adic expansion of f ∈ A[Y ]. By

Proposition 5.2 we know that the complexity of the p-adic coefficient poly-
nomial fi of Y

i is polynomially bounded in d, i, and L(f). The following
proposition essentially going back to Valiant [42] shows that the dependence
on the degree i cannot be avoided in general.

Proposition 5.3 The complexity of the coefficient polynomials in the p-adic
expansion of a polynomial f with respect to a polynomial p is not polynomi-
ally bounded in L(f) and deg p, unless Valiant’s hypothesis is false.

Proof. We take p = Y and consider the Y -adic expansion of the following
polynomial fn of complexity L(fn) ≤ O(n2):

fn :=
n
∏

i=1

(
n
∑

j=1

XijY
2j−1

) =
∑

i

fn,i(X)Y i.
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The coefficient fn,2n−1(X) equals the sum over all products X1j1 · · ·Xnjn

such that {j1, . . . , jn} = {1, 2, . . . , n}. That is, fn,2n−1(X) equals the per-
manent PERn(X) of the matrix [Xij ]. An estimate as claimed in the propo-
sition would imply that L(PERn(X)) ≤ nO(1), which contradicts Valiant’s
hypothesis. ✷

Assume now that the p-adic expansion f = fqp
q + fq+1p

q+1 + . . . starts
at order q (fq 6= 0). We call fq the trailing coefficient of f with respect
to the base p. By contrast with Proposition 5.3, we can say the following
about the approximative complexity of the trailing coefficient in relation to
the complexity of f .

Proposition 5.4 The approximative complexity of the trailing coefficient fq
with respect to p is polynomially bounded in d = deg p and L(f); we have

L(fq) ≤ O(M(d)L(f)).

Proof. By the semicontinuity of L (Lemma 2.3(1)) it is sufficient to prove
the statement for L(f) on the right-hand side. Let K = k(ǫ) and R be
as usual. We have f = fqp

q + upq+1 with some u ∈ k[X,Y ], hence f ≡
ǫqfq + ǫq+1u mod (p − ǫ). Let ρ(u) ∈ k[X,Y ] denote the remainder of u by
division with p − ǫ (viewed as a polynomial in Y ). Then we conclude that
ρ(f) = ǫq(fq + ǫρ(u)). From the definition of approximative complexity we
obtain

L(fq) ≤ L(ǫ−qρ(f)) ≤ 1 + L(ρ(f)).

On the other hand, we conclude from Proposition 5.2 that ρ(f) can be
computed with O(M(d)L(f)) arithmetic operations. This proves the claim.

✷

Note that the main reason for us to work with approximative complexity
is that we do not know whether a statement similar to Prop. 5.4 does hold
for complexity (compare Problem 4.3).

5.2 Further Characterizations

In order to investigate the relationship between L and L, it is useful to
introduce a variant L∞ of approximative complexity, which differs from L
at most by a factor of two.

Definition 5.5 The approximative complexity Lq(f) of order q ∈ N of a
polynomial f in k[X1, . . . ,Xn] is the smallest natural number r such that
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there exists f ′ ∈ k[[ǫ]][X1, . . . ,Xn] satisfying

L(ǫqf + ǫq+1f ′) ≤ r,

where L refers here to the total (division-free) complexity in the polynomial
ring k[[ǫ]][X1, . . . ,Xn] with free constants in the ring of formal power series
k[[ǫ]]. Moreover, we define the modified approximative complexity L∞(f) :=
minq Lq(f).

The following lemma summarizes some of the basic properties of this
notion. The field k((ǫ)) of formal Laurent series is defined as the quotient
field of k[[ǫ]].

Lemma 5.6 (1) We have 1
2L∞(f) ≤ L(f) ≤ L∞(f) + 1.

(2) In Definition 5.5 one can equivalently work with the polynomial ring
k[ǫ] instead of with the coefficient ring k[[ǫ]] of formal power series.
In Definition 2.1 one can equivalently work with R = k[[ǫ]] and K =
k((ǫ)).

(3) We have L(f) ≤ O(M(q)Lq(f)).

Proof. (1) For proving the right-hand estimate of (1), we assume that
we have an optimal straight-line program of length r = L∞(f) = Lq(f)
computing ǫqf + ǫq+1f ′ in k[[ǫ]][X]. We can execute this straight-line pro-
gram in k[[ǫ]][X]/(ǫq+1) ≃ k[ǫ][X]/(ǫq+1) by applying the canonical pro-
jection. By interpreting this computation back in k[ǫ][X] we obtain that
L(ǫqf + ǫq+1f ′′) ≤ r for some suitable f ′′ ∈ k[ǫ][X], where L refers here
to k[ǫ][X]. We multiply the result with the constant ǫ−q (this is the only
computational step leading outside k[ǫ][X]) and conclude that L(f) ≤ r+1.

For proving the left-hand estimate of (1), we use the embedding of K =
k(ǫ) in the field k((ǫ)) of formal Laurent series. This leads to an embedding
K[X] →֒ k((ǫ))[X]. The elements of k((ǫ))[X] can be written in the form
ǫ−α ·A with α ∈ N and A ∈ k[[ǫ]][X]. Note that for α ≥ β

ǫ−αA± ǫ−βB = ǫ−α(A± ǫα−β ·B), ǫ−αA · ǫ−βB = ǫ−α−β(A ·B).

If we encode an element ǫ−α ·A by the constant ǫ−α and the polynomial A
over the ring k[[ǫ]], then we can simulate any division-free straight-line com-
putation in k((ǫ))[X] of length r by a straight-line computation in k[[ǫ]][X]
of length at most 2r. (The number of nonscalar multiplications even re-
mains the same.) This way, a computation of F = f + ǫf ′ in k(ǫ)[X] with
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f ′ ∈ k[[ǫ]][X] will lead to a computation in k[[ǫ]][X] of some C such that
ǫ−γC = F for some γ ∈ N, hence C = ǫγf + ǫγ+1f ′.

(2) This follows from the first part of the proof of part (1).
(3) This is a consequence of part (2) and Proposition 5.2 applied to

compute ǫ-adic coefficients. ✷

Part (3) of the above lemma provides a polynomial bound on the com-
plexity in terms of the approximative complexity of a certain order of ap-
proximation q and this order q. Unfortunately, the best general upper bound
on the order q, that we are able to prove, is exponential in the complexity.

Theorem 5.7 For polynomials f over an algebraically closed field k we have
Lq(f) ≤ 2L(f) with q ≤ 2L(f)

2

.

Proof. We proceed as in Lehmkuhl and Lickteig [26], who proved a similar
bound on the order of approximation for border rank (approximative bilinear
complexity).

The proof is based on the following geometric description of the set
{f ∈ An | L(f) ≤ r}. The field k is assumed to be algebraically closed. A
straight-line program Γ is a description for a computation of a polynomial
from constants z1, . . . , zm and variables X1, . . . ,Xn (recall that we do not
allow divisions). Let φΓ(z) denote the polynomial in An := k[X1, . . . ,Xn]
computed by Γ from the list of constants z ∈ km. Let r∗ denote the number
of multiplication instructions of Γ. Then we have

φΓ(z) =
∑

µ

φΓ,µ(z)X
µ,

where the sum runs over all µ ∈ Nn with µ1 + . . . + µn ≤ 2r∗ . Moreover,
the coefficient polynomials φΓ,µ(z) have degree at most 2r∗ . We interpret
φΓ as a morphism km → {f ∈ An | deg f ≤ 2r∗} of affine varieties. Ap-
plying [10, Theorem 8.48] to the polynomial map z 7→ (z, φΓ(z)), we see
that deg graph(φΓ) ≤ (2r∗)m =: D. The image CΓ of φΓ is an irreducible,
constructible set. We have for fixed r that

{f ∈ An | L(f) ≤ r} =
⋃

Γ

CΓ,

where the union is over all straight-line programs Γ of length r.
Assume now that f is in the Zariski-closure of the set on the left-hand

side. Then we have f ∈ CΓ for some Γ. (We remark that in the case
k = C the Zariski-closure of constructible sets coincides with the closure
with respect to the Euclidean topology (cf. [34, Theorem 2.33]).
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We apply now two results proven in Lehmkuhl and Lickteig [26] to
the morphism φΓ. Proposition 1 of [26] claims that there exists an irre-
ducible curve C ⊆ km such that f ∈ φΓ(C) and degC ≤ deg graph(φΓ).
The Corollary to Proposition 3 in [26] states that there exists a point
ζ = (ζ1, . . . , ζm) ∈ k((ǫ))m such that F := φΓ(ζ) is defined over k[[ǫ]],
satisfies Fǫ=0 = f and such that all formal Laurent series ζi have order at
least − degC. We conclude with Lemma 5.6(2) that L(F ) ≤ r and hence
L(f) ≤ r, which proves the nontrivial direction of Theorem 2.4. More-
over, we have shown that there is a straight-line program of length r, which
computes F in k((ǫ))[X] from the X-variables and constants ζi having or-
der at least − degC ≥ −D. By a similar reasoning as in the proof of
Lemma 5.6(1), we can construct from this a straight-line program of length
at most 2r, which computes in k[[ǫ]][X] an element of the form ǫqf + ǫq+1f ′

with q ≤ 2r∗D = 2(m+1)r∗ . We therefore have Lq(f) ≤ 2r. To complete the
proof, we note that (m + 1)r∗ ≤ r2, unless m = r and r = r∗. However, in
this case, the components of φΓ have degree at most 1 and we get q ≤ 2r∗

since deg graphφΓ ≤ 1. ✷

By tracing the proofs of the above results it is straightforward to show
the following statement.

Remark 5.8 By counting only nonscalar multiplications, one can introduce
the notions Lns , Lns

q in an analogous way. We then have Lns = Lns

∞ = Lns

q .

Finally, we show that the restriction to division-free straight-line pro-
grams in the definition of approximative complexity is not a serious one.

Lemma 5.9 If L′(f) denotes the approximative complexity of a multivariate
polynomial f of degree d, where divisons are allowed, then the divison-free
approximative complexity L(f) can be bounded by L(f) ≤ O(M(d)L′(f)).
Here the ground field k is assumed to be infinite.

Proof. Formally, L′(f) ≤ r means there exists F ∈ R(X) with Fǫ=0 = f
and such that the complexity of F in K(X) (allowing divisions) is at most r.
We can avoid the divisions using the well-known ideas of [36]. Accordingly,
there exists ξ ∈ kn such that an optimal computation of F takes places in
the local subring Oξ of K(X) consisting of the rational functions defined
at X = ξ. To simplify notion, we assume without loss of generality that
ξ = 0. Let F (δ) denote the homogeneous component of F of degree δ.
By [10, Theorem 7.1], the division-free complexity L of these components
of degree up to d satisfies L(F (0), . . . , F (d)) = O(M(d)r). As F is defined
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over R, also its homogeneous components are defined over R and we have
(F (δ))ǫ=0 = f (δ). This implies that L(f (0), . . . , f (d)) = O(M(d)r) as claimed.

✷

6 Appendix

We include here the proofs of Theorem 1.2 and Proposition 6.1. Although
being essentially the same as the original proofs in [22] (with minor im-
provements in complexity), we believe that our exposition, integrated in the
coherent framework of this paper, will facilitate the reader’s understanding
of the difficulties encountered in extending these results to Theorem 1.3.

Proof of Theorem 1.2. Let f = geh with coprime polynomials g, h ∈
k[X1, . . . ,Xn] and d = deg g. As in the proof of Lemma 3.3 we may achieve
by a linear coordinate transformation that g is monic of degree d with respect
to the variable Y := Xn. We put X := (X1, . . . ,Xn−1) and A = k[X]. Using
resultants, we see that there is some point ξ ∈ kn−1 such that the univariate
polynomials g(0) := g(ξ, Y ) and h(0) := h(ξ, Y ) are coprime. By a coordinate
translation, we may assume that ξ = 0. Note that g(0) is a monic univariate
polynomial over k of degree d. We have uh(0) + vg(0) = 1 with uniquely
determined u, v ∈ k[Y ] such that deg u < d.

The basic idea is to use Hensel lifting in order to successively compute
the factorization f = geh from f (0) := (g(0))eh(0). The crux is the choice
of the suitable valuation by which to lift. We will lift with respect to the
total degree in the X-variables. Consider the decomposition of polynomials
in A[Y ] into homogeneous parts with respect to the total degree in the X-
variables:

f =
∑

δ≥0

f (δ), g =
∑

δ≥0

g(δ), h =
∑

δ≥0

h(δ),

where f (δ), g(δ), h(δ) ∈ A[Y ] are homogeneous of degree δ in the X-variables.
This notation is consistent with our earlier introduction of f (0), g(0), h(0).
We have degY g

(δ) < d for δ > 0, and g(δ) = 0 for i > d.
We are going to derive a formula, which allows to compute g(s+1), h(s+1)

from the homogeneous parts of g and h up to degree s. From f = geh we
obtain modulo the ideal generated by the monomials of degree s+ 2 in the
X-variables that

f ≡

( s
∑

δ=0

g(δ) + g(s+1)

)e( s
∑

δ=0

h(δ) + h(s+1)

)
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≡

(( s
∑

δ=0

g(δ)
)e

+ e(g(0))e−1g(s+1)

)( s
∑

δ=0

h(δ) + h(s+1)

)

≡

( s
∑

δ=0

g(δ)
)e( s

∑

δ=0

h(δ)
)

+ e(g(0))e−1g(s+1)h(0) + (g(0))eh(s+1).

If we write

F :=
∑

δ≥0

F (δ) :=

( s
∑

δ=0

g(δ)
)e( s

∑

δ=0

h(δ)
)

(omitting the dependence of F on s) and set ∆(s+1) := f (s+1)−F (s+1), then
we obtain

Q :=
∆(s+1)

(g(0))e−1
= eg(s+1)h(0) + g(0)h(s+1). (13)

Since degY g
(s+1) < d, this relation uniquely determines the polynomial

g(s+1). On the other hand, we have Q = uQh(0) + vQg(0). It follows that
eg(s+1) is the remainder of the division of uQ by g(0), hence eg(s+1) is the
(e− 1)th g(0)-adic coefficient of u∆(s+1).

We write elements a ∈ A[Y ] in the form

a =
∑

δ≥0

a(δ) =
∑

δ≥0,i≥0

a
(δ)
i (g(0))i =

∑

δ≥0,i≥0,j<d

a
(δ)
ij Y

j(g(0))i

with coefficients a
(δ)
ij ∈ A, which are homogeneous polynomials of degree δ

in the X-variables. Note that the a
(δ)
i =

∑

j<d a
(δ)
ij Y

j are the g(0)-adic

coefficients of a(δ). The collection of coefficients

a
(δ)
ij for 0 ≤ δ ≤ d, 0 ≤ j < d, 0 ≤ i ≤ D

will be used to represent the element a approximatively. We will call this
an approximation of order D of a.

Assume that c = a · b in A[Y ]. A straightforward generalization of

Lemma 5.1 yields that the coefficients c
(δ)
ij of c with δ ≤ d, j < d, i ≤ D can

be computed from the corresponding coefficients of a and b with O(M(d2D))
arithmetic operations in A. Using this generalization of Lemma 5.1, we can
generalize Proposition 5.2 in an obvious way and obtain that the coefficients

f
(δ)
ij for δ ≤ d, j < d, i ≤ de can be computed with O(M(d2 · de)L(f))
arithmetic operations in A.

For 0 ≤ s ≤ d we define Cs as the set of the coefficients g
(δ)
ij , h

(δ)
ij for

δ ≤ s, j < d, i ≤ (d− s)e. Note that Cs is a subset of A = k[X]. Moreover,
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C0 ⊆ k, thus the elements of C0 can be considered as free constants. Note

also that g(δ) = g
(δ)
0 for δ > 0 as degY g

(δ) < d.
Inductively, we assume now that we have already computed the elements

of Cs for s < d. From these data we can compute the coefficients F
(s+1)
ij of F

for j < d, i ≤ (d−s)e with O(M(d2(d−s)e log e)) arithmetic operations using
the above mentioned generalization of Lemma 5.1 (log e squarings). From

this and the coefficients f
(δ)
ij , δ ≤ d, j < d, i ≤ de, we compute the coefficients

of u∆(s+1) up to order (d−s)e with O(M(d(d−s)e)) arithmetic operations.
In particular, we have thus computed the coefficients of eg(s+1), since eg(s+1)

is the (e−1)th g(0)-adic coefficient of u∆(s+1). From equation (13) we obtain

∆(s+1) − eg(s+1)(g(0))e−1h(0) = h(s+1)(g(0))e.

We can compute the coefficients of this polynomial up to order (d − s)e
with further O(M(d(d − s)e)) arithmetic operations. This way, we get the
coefficients of h(s+1) up to order (d − s − 1)e. Note that the order has
decreased by e.

Summarizing, the cost of each induction step is O(M(d3e log e)) and
there are at most d induction steps. The polynomial g = g(0)+g(1)+. . .+g(d)

can be computed with further O(d2) additions from the coefficients of the

g(δ) = g
(δ)
0 for 1 ≤ δ ≤ d. Altogether, we obtain L(g) = O(M(d3e)(L(f) +

d log e)) as claimed. ✷

Proposition 6.1 Assume that f = ge in k[X1, . . . ,Xn], d = deg g ≥ 1 and
char k = 0. Then L(g) ≤ O(M(d)L(f)).

Proof. By a coordinate shift, we may assume that g(0) 6= 0; without loss of
generality g(0) = 1. The polynomial ϕ = g−1 ∈ k[X] is the unique solution
of the equation

(1 + ϕ)e − f = 0, ϕ(0) = 0

to be solved in the ring of formal power series k[[X]]. This power series ϕ
can be recursively computed by the Newton iteration ϕ0 = 0 and

ϕν+1 = ϕν −
(1 + ϕν)

e − f

e(1 + ϕν)e−1
= −

1

e
+ (1−

1

e
)ϕν +

1

e

f

(1 + ϕν)e−1

satisfying ϕν ≡ ϕ mod (X)2
ν

. (Compare Section 3.2 and [10, Theorem
2.31].)

We first compute the homogeneous parts of f up to degree d with
O(M(d)L(f)) arithmetic operations by a variant of Proposition 3.1. Us-
ing Lemma 3.2, we can compute from this and the homogeneous parts of
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ϕν up to degree 2ν the homogeneous parts of ϕν+1 up to degree 2ν+1 with
O(M(2ν) log e) arithmetic operations (log e squarings). As

∑N
ν=0M(2ν)) ≤

M(2N+1 − 1), a total of O(M(d)(L(f)+ log e)) arithmetic operations is suf-
ficient. Since L(f) ≥ log deg f ≥ log e, the claim follows. ✷
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