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Dedicated to Michel Demazure

“.......Il est fréquent, devant un problème concret, de trou-
ver un théorème qui “s’applique presque”....... . Le rôle des
contre–exemples est justement de délimiter le possible, et ce n’est
pas par perversité (ou en tout cas pas totalement) que les textes
mathématiques exhibent des monstres” M. Demazure, 1987

Abstract

Elimination theory is at the origin of algebraic geometry in the
19-th century and deals with algorithmic solving of multivariate poly-
nomial equation systems over the complex numbers, or, more generally,
over an arbitrary algebraically closed field. In this paper we investigate
the intrinsic sequential time complexity of universal elimination pro-
cedures for arbitrary continuous data structures encoding input and
output objects of elimination theory (i.e. polynomial equation sys-
tems) and admitting the representation of certain limit objects.

Our main result is the following: let be given such a data structure
and together with this data structure a universal elimination algorithm,
say P , solving arbitrary parametric polynomial equation systems. Sup-
pose that the algorithm P avoids “unnecessary” branchings and that
P admits the efficient computation of certain natural limit objects (as
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3Depto. de Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad de

Buenos Aires, Ciudad Universitaria, Pabellón I (1428) Buenos Aires, Argentina.
4Member of the National Council of Science and Technology (CONICET), Argentina.
5Instituto de Desarrollo Humano, Universidad Nacional de General Sarmiento, Cam-

pus Universitario, José M. Gutiérrez 1150 (1613) Los Polvorines, Pcia. de Buenos Aires,
Argentina.

1

http://arxiv.org/abs/math/0301194v1


e.g. the Zariski closure of a given constructible algebraic set or the
parametric greatest common divisor of two given algebraic families of
univariate polynomials). Then P cannot be a polynomial time algo-
rithm.

The paper contains different variants of this result and discusses
their practical implications.

Keywords. Polynomial equation solving, elimination theory, complexity, contin-

uous data structure, holomorphic and continuous encoding.
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1 Introduction. Basic notions.

Complexity theory deals with the efficiency of answering mathematical ques-
tions about mathematical objects. In this context, mathematical objects
happen usually to posses a unique encoding in a previously fixed data struc-
ture (e.g. integers are encoded by their bit representation, polynomials by
their coefficients, etc.). Once a data structure is fixed, standard complex-
ity theory searches for an efficient algorithm answering the mathematical
questions under consideration and tries to certify the optimality of this al-
gorithm.

However, things become somewhat more complicated in the particular
case of geometric elimination theory (polynomial equation solving in alge-
braically or real closed fields). Complexity theory for geometric elimination
requires simultaneous optimization of data structures and algorithms. In
order to illustrate this statement, let us consider the following first order
formula, say Φ, belonging to the language of the elementary theory of alge-
braically closed fields of characteristic zero:

(∃X1) · · · (∃Xn)
(
X1−T−1 = 0∧X2

1−X2 = 0∧· · ·∧X2
n−1−Xn = 0∧Y = X2

n

)
.

The formula Φ contains two free variables, namely T and Y . Moreover Φ is
logically equivalent to the following quantifier–free formula, which we denote
by Ψ:

Y −
2n∑

i=0

(
2n

i

)
T i = 0.

If we choose as our data structure the standard dense or sparse encoding of
polynomials by their coefficients, then Φ has length O(n), whereas the length
of Ψ exceeds 2n. However, if we encode polynomials by arithmetic circuits
(or straight–line programs), then Φ and Ψ happen both to be of length

O(n), since the polynomial

2n∑

i=0

(
2n

i

)
T i = (1 + T )2

n

can be evaluated in

n+ 1 steps, using iterated squaring.
For the dense (or sparse) representation of polynomials superexponential

(sequential) time is necessary (and sufficient) in order to eliminate a single
quantifier block (see e.g. [CGH89], [DFGS91], [GV88], [HRS89], [Can88]),
whereas the elimination of an arbitrary number of quantifier blocks requires
doubly exponential time in this data structure (see [Hei83], [Wei88], [DH88],
[FGM90a], [FGM90b], [MP93] for lower and upper complexity bounds and
[Ier89], [HRS90], [Ren92] for upper complexity bounds only).
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The existing superexponential (mostly Gröbner basis) algorithms for the
elimination of a single quantifier block are often asymptotically optimal for
the dense and sparse encoding of polynomials. Nevertheless their complex-
ity makes them infeasible for real world sized problems (however not so
for impressive software demos). Moreover, a simple minded Gröbner basis
approach to the elimination of a single block of quantifiers may lead to a
doubly exponential complexity.

This situation suggests that these elimination algorithms require alter-
native data structures if one wishes to improve their complexity behaviour
substantially. This observation led in the past to the idea of using arith-
metic circuits for the representation of the polynomials occurring in the basic
elimination procedures of algebraic and semialgebraic geometry (see [HS82],
[HS81] and [Kal88] for an early application of this idea). This change of
data structure allowed in a first attempt to reduce the complexity of the
elimination of a single block of quantifiers from superexponential to sin-
gle exponential time ([GH93], [GHS93], [FGS95], [KP94], [KP96], [Mat99]).
However, the corresponding algorithms required the dense representation of
the input polynomials and returned a circuit encoding of the output polyno-
mials. Therefore these algorithms were unadapted to successive elimination
of several quantifier blocks (see [PS98] for more details) and unable to profit
from a possible special geometric feature of the input system.

In a second attempt ([GHMP95], [Par95], [GHM+98], [GHH+97],
[GHMP97]), this problem could be settled by means of a new elimination
procedure which transforms a given circuit representation of the input poly-
nomials into a circuit representation of the output polynomials. The time
complexity of this new procedure is roughly the circuit size of the input
polynomials multiplied by a polynomial function of a certain geometric in-
variant of the input system, called its degree. Let us observe that the degree
is always bounded by the Bézout–number of the input system and happens
often to be considerably smaller.

For worst case input systems, the new algorithm becomes polynomial
in the Bézout–number of the system, and this was the first time that this
complexity goal could be reached without hiding an exponential extra factor
(compare [MP97], [Roj00]).

Afterwards the new algorithm and its data structure was extended and
refined in [HKP+00], [GS99], [HMPS00], [HMW01], [GLS01], [Sch00],
[Lec01], and in [BGHM97], [BGHM01] it was adapted to the problem of
polynomial equation solving over the reals. A successful implementation of
the full algorithm ([Lec00]) is based on [GLS01]. A partial implementation
of the algorithm (including basic subroutines) is described in [BHMW02]
(see also [CHLM00]). So far the account of successive improvements of
data structures and algorithms for symbolic elimination. The complexity
aspect of numeric elimination was treated in a series of papers ([SS93a],
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[SS93b], [SS93c], [SS96], [SS94], [CS99]; see also [BCSS98]). In [CHMP01]
and [CMPS02] the bit complexity aspect of the above mentioned symbolic
and numeric algorithms was analyzed and compared. Taking bit complexity
and the bit representation of rational numbers into account, it turns out that
a suitable numerical adaptation of the above mentioned new symbolic elim-
ination algorithm has the best complexity performance between all known
numerical elimination algorithms. Therefore we shall limit our attention in
this paper to symbolic elimination procedures.

Let us now briefly sketch the known lower bound results for the com-
plexity of arithmetic circuit based procedures for the elimination of a single
quantifier block. Any such elimination algorithm which is geometrically ro-
bust in the sense of [HMPW98] requires necessarily exponential time on
infinitely many inputs. Geometric robustness is a very mild condition that
is satisfied by all known (symbolic) elimination procedures.

Moreover, suppose that there is given an algorithm for the elimination
of a single quantifier block and suppose that this algorithm is in a suitable
sense “universal”, avoiding “unnecessary branchings” and able to compute
Zariski closures of constructible sets and “parametric” greatest common
divisors of algebraic families of univariate polynomials. Then necessarily this
algorithm has to be robust and hence of non–polynomial time complexity
[GH01]. In particular, any “reasonable” and “sufficiently general” procedure
for the elimination of a single quantifier block produces geometrically robust
arithmetic circuit representations of suitable elimination polynomials and
therefore outputs of non–polynomial size in worst case.

In this paper we are going to argue that the non–polynomial complexity
character of the known symbolic geometric elimination procedures is not
a special feature of a particular data structure (like the dense, sparse or
arithmetic circuit encoding of polynomials), but rather a consequence of
the information encoded by the respective data structure (see Theorem 4
below).

1.1 Data structures for geometric objects.

Informally, we understand by a data structure a class, say D, of “simple”
mathematical objects which encode another class, say O, of “complicated”
ones. An element D ∈ D which encodes a mathematical object O ∈ O is
called a code of O. The data structure D is supposed to be embedded in
a context, where we may process its elements, in order to answer a certain
catalogue of well defined questions about the mathematical objects belonging
to O (or about the object class O itself). Of course, the choice of the data
structure D depends strongly on the kind of potential questions we are going
to ask and on the time we are willing to wait for the answers.

The mathematical objects we are going to consider in this paper will
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always be polynomial functions or algebraic varieties and their codes will al-
ways belong to suitable affine ambient spaces. The size of a code is measured
by the dimension of its ambient space.

The (optimal) encoding of discrete (e.g. finite) sets of mathematical
objects is a well known subject in theoretical computer science and the
main theme of Kolmogorov complexity theory ([LV93]; see also [Bor48]).

This paper addresses the problem of optimal encoding of continuous
classes of mathematical objects. The continuous case differs in many aspects
from the discrete one and merits particular attention. Any object class O
we are considering in this paper will possess a natural topology and may
be thought to be embedded in a (huge) affine or projective ambient space.
The given topology of O becomes always induced by the Zariski (or strong)
topology of its ambient space. In this paper, the closure O of the object
class O in its ambient space will generally have a natural interpretation as
a class of objects of the same nature as O. In this sense we shall interpret
a given element of O \ O as a limit (or degenerate) object of O. We shall
always suppose that data structures, object classes and graphs of encodings
form constructible subsets of their respective ambient spaces.

If O is for example a class of equidimensional closed subvarieties of fixed
dimension and degree of a suitable projective space, then the topology and
the ambient space of O may be given by the Chow coordinates of the objects
of O. Or if O is the class of polynomial functions of bounded arithmetic cir-
cuit complexity L, then O is contained in a finite dimensional linear subspace
of the corresponding polynomial ring and has therefore a natural topology.
The limit objects of O are then those polynomials which have approximative
complexity at most L (see [Ald84], [BCS97] and Section 3.3.2 for details).

Let be given a data structure D encoding an object class O. By as-
sumption, D is embedded in a suitable affine or projective ambient space
from which D inherits a natural topology. We shall always assume that
D encodes O continuously or holomorphically (see Section 3.1 for precise,
mathematical definitions). However, in order to capture the important case
of the arithmetic circuit representation of polynomials, we shall not insist on
the injectivity of the given encoding. More precisely, we say that D encodes
O injectively or unambiguously if for any object O ∈ O the data structure
D contains a single element encoding O (otherwise we call the encoding
ambiguous).

A fundamental problem addressed in this paper is the following:

given an “efficient” (i.e. short) data structure D encoding the object class
O, how may we find another data structure D encoding the object class O?
How does the size of D (i.e. the size of its codes) depend on the size of D?

In Theorem 1, Corollary 3, Corollary 9 and in Section 4 below we shall see
that the solution of this problem depends strongly on the type of questions
about the object class O which the data structure D allows to answer.
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This leads us to the subject of the questions we wish to be answered by
a given data structure D encoding a given object class O. We shall always
require that any element D ∈ D encoding an object O ∈ O contains enough
information in order to distinguish O from other elements of the object class
O. Thus a typical question we wish to be answered by the data structure D
is the following:

let D and D′ be two elements of D encoding two objects O and O′ of O.
Are O and O′ identical?

In other words, we require to be able to deduce whether O = O′ holds
by means of processing the codes D and D′. We call this problem the
identity question associated to the data structure D. A common way to
solve this identity question consists of the transformation of the (supposedly
ambiguous) data structure D in a new one, which encodes the objects of O
injectively.

Another typical question arises in the following context:
suppose additionally that the object class O consists of (total) functions
which can be evaluated on a continuous (or discrete) domain R. Suppose
furthermore that we have free access to any element of R. Let O be a given
element of the object class O and let D ∈ D be an arbitrary code of O.

The question we wish to be answered by the data structure D about the
object O is the following:

for any given argument value r ∈ R, what is the function value O(r)?

In other words, we require to be able to compute the function value O(r)
by means of processing the code D and the argument value r. We call this
problem the value question associated to the data structure D. Of course,
for a class O of polynomial functions whose number of variables and degree
was previously bounded, the value question for a continuous domain R can
be reduced by means of interpolation techniques to the value question for a
discrete domain, namely to the task of determining, for any monomial M
and any polynomial function O ∈ O, the coefficient of M in the polynomial
O.

1.2 The rôle of data structures in elimination theory.

In algebraic geometry, polynomial equation systems are the “simple” math-
ematical objects which encode the real objects of interest: algebraic varieties
or schemes. Except for the particular case of hypersurfaces, there is no a
priori privileged canonical equation system that defines a given algebraic
variety. It depends on the questions we are going to ask about the given
variety, whether we shall feel the need to transform a given equation system
into a new, better suited one for answering our questions.

As far as possible, we wish just to modify the syntactical form of our
equations, without changing their meaning, represented by the underlying
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variety or scheme. Let us explain this in two different situations.
Very often the new equation system we are looking for is uniquely deter-

mined by the underlying variety or scheme and the syntactical requirements
the new system has to satisfy. We meet this situation in the particular case
of the (reduced) Gröbner basis of a given ideal (representing a scheme) for
a previously fixed monomial order. The monomial order we shall choose de-
pends on the kind of questions we are going to ask about the given scheme:
we choose an (e.g. lexicographical) elimination order if we wish to “solve”
the given equation system (i.e. uncouple its variables) or we choose a graded
order if we wish to compute the Hilbert polynomial (the dimension and the
degree) of the given (projective) scheme, etc. If we want to analyze a given
scheme or variety by means of deformations, suitable (i.e. flat) equation sys-
tems, like Gröbner bases, are even mandatory ([BM93]). Although Gröbner
bases are able to answer all typical questions about the variety or scheme
under consideration, they are not well suited for the less ambitious task of
polynomial equation solving (this constitutes the main elimination problem
the paper is focusing on).

Since Gröbner bases are able to answer too many questions about the
scheme or variety they define, they may become difficult to encode: a com-
plete intersection ideal given by low degree binomial equations, may have
a Gröbner basis of doubly exponential degree for a suitable elimination or-
der, whereas it is possible to solve the corresponding elimination problem in
singly exponential time using only polynomials of singly exponential degree
(see [DFGS91], [KP96], [HMPS00]).

Let us consider another case of this general situation:
for the particular task of polynomial equation solving it suffices to replace
the original algebraic variety (which is supposed to be equidimensional) by
a birationally equivalent hypersurface in a suitable ambient space. This hy-
persurface and its minimal equation may be produced by means of generic
linear projections (see e.g. [Kro82], [CG83], [GM89], [Can88], [CGH89],
[DFGS91], [GH91], [GH93], [KP96], [GHM+98], [GHH+97]) or by means of
dual varieties (see [GKZ94] and the references cited there). The minimal
equation encodes the necessary information about the dimension and de-
gree of the original algebraic variety and about a suitable set of independent
variables. However, as a consequence of Bézout’s Theorem, the degree of
the canonical output equation may increase exponentially with respect to
the degree of the given input equations if we apply this strategy of elimina-
tion. We call an elimination procedure Kronecker–like if in terms of suitable
data structures, the procedure computes from the representation of equa-
tions of the given variety a representation of the minimal equation of the
corresponding hypersurface (see Section 5.1 for more details).

In either case of this general situation, we need an input object (a poly-
nomial equation system describing an algebraic variety or scheme) and an
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output object that describes the same variety or scheme (or a birationally
equivalent one) and satisfies some additional syntactical requirements (al-
lowing e.g. the uncoupling of the variables of the original system). The
corresponding elimination problem maps input objects to output objects.
Since an output object may have degree exponential in the degree of the
corresponding input object we are led to ask about short encodings of high
degree polynomials in few variables. In this context let us mention the
main outcome of [GHM+98], namely the observation that using the arith-
metic circuit representation, elimination polynomials (i.e. the output ob-
jects of Kronecker–like procedures) have always size polynomial in their de-
gree, whereas the size of their sparse (or dense) representation may become
exponential in this quantity. But unfortunately, elimination polynomials
may have exponential degrees. This inhibits the elimination procedure of
[GHM+98] and [GHH+97] to become polynomial in the input length, at
least in worst case.

We consider therefore in more generality the following task:

let be given an elimination problem and a data structure D encoding the
input objects. Find a data structure D∗ encoding the corresponding output
objects and an elimination algorithm P which maps input codes belonging to
D to output codes belonging to D∗ and solves the given elimination problem.

In this terminology, the main problem this paper tries to solve can be
formulated as follows:

is it possible to find in the given situation a data structure D∗ and a con-
tinuous algorithm P (in the sense specified in Sections 2 and 5) such that
the size of each output code belonging to D∗ is only polynomial in the size
of the corresponding input code belonging to D? Under which circumstances
do such a data structure D∗ and such an algorithm P exist and under which
circumstances do they not?

As mentioned before, the solution of this problem depends strongly on
the questions about the output objects we wish to be answered by the output
data structure D∗.

In view of the methodological progress made in [GHM+98], [GHH+97],
[GHMP97], [HKP+00], [GLS01] and [HMW01] (leading to a substantial im-
provement of previously known complexity bounds) and motivated by our
interest in lower complexity bounds, we limit our attention to basic and
relatively simple elimination problems of the following type:

(i ) Let be given a zero–dimensional algebraic variety V by an input equa-
tion system in n variablesX1, . . . ,Xn and let be given a supplementary
input polynomial F in these n variables and possibly some additional
parameters U1, . . . , Ur. Let X := (X1, . . . ,Xn) and U := (U1, . . . , Ur)
and let us suppose that the input equation system and F have short
encodings in a previously fixed input data structure D. The problem is
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to find an output data structure D∗ and a Kronecker–like elimination
procedure P such that P associates to each input code of D represent-
ing a specialization u of the parameters U of F , an output code of
D∗ representing the canonical elimination polynomial of F (u,X) with
respect to the given variety V (see Sections 5.1 and 5.3 for definitions
and an example).

(ii ) Let be given a class O of mathematical objects and a data structure D
encoding the object class O. Suppose that O and D satisfy all general
assumptions we made before on this kind of mathematical entities.
Find a data structure D∗ and a procedure P such that D∗ encodes
the topological closure O of the object class O and such that P maps
any element of D encoding a given object O of O to an element of D∗

encoding the same object O.

In case of problems of type (ii ), a typical example of such a procedure
P for arithmetic circuit represented rational functions of bounded degree d
is the “Vermeidung von Divisionen” algorithm of [Str73b] (see also [KP96]).
In this case the limit objects are polynomials of degree at most 2d + 1 (see
[Ald84] for details). Another example of such a procedure is the transfor-
mation (by means of “tensoring”) of approximative algorithms for matrix
multiplication into exact ones [BCS97].

In elimination theory one meets very natural non–closed input object
classes with limit objects not encoded by the given input data structure.
However, such a limit object may possess a well–defined output object. In
this case one may require that the given output data structure is able to
encode this output object. This is the typical context where a problem of
type (ii ) arises in elimination theory.

Another context, related to approximation and interpolation theory is
the following:

let ω : D → O be a given encoding of an object class of t–variate polynomial
functions over C having degree bounded by an a priori constant ∆. Consider
O as a metric space equipped with the corresponding (strong) topology.
Suppose that the encoding ω is holomorphic, allowing for each code D ∈ D
and any argument r ∈ Ct the computation of the value ω(D)(r) using a
fixed number of arithmetic operations in C (see Section 3.1 for details). Let
O ∈ O\O be a limit object of O, let (Di)i∈N be a sequence of codes of D such
that the sequence (ω(Di))i∈N converges to the limit object O and let r ∈ Ct

be a given argument. As one easily sees, O is again a t–variate polynomial
over C of degree at most ∆ and therefore the value O(r) is well defined.
Moreover, the sequence of complex numbers (ω(Di)(r))i∈N converges to the
value O(r). However, the convergence rate of (ω(Di)(r))i∈N will typically
depend on the argument r. Our goal is to compute the value O(r) using
only a fixed number of arithmetic operations and limit processes in C for
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sequences which do not depend on the argument r. We reach this goal if
we are able to solve in this context problem (ii) by a data structure which
answers the value question.

All known algorithms solving problem (i ) or, limited to the context of
classical elimination theory, problem (ii ), possess branching–free versions of
the same order of complexity. We shall therefore consider only branching–
free algorithms for the solution of these two elimination problems. In this
case, we shall always assume that our output codes depend holomorphically
(or at least continuously) on our input codes (see Section 2.2 for details).

An elimination algorithm is called universal if it solves for appropri-
ate input and output data structures any standard elimination problem on
arbitrary inputs consisting of boolean combinations of parameter dependent
polynomial equations. A universal elimination algorithm is called branching–
parsimonious if it avoids branchings for the solution of suitable instances of
problems of type (i ) and (ii ).

This paper is organized as follows:
In Section 2 we introduce the language and tools from algebraic geometry

and algebraic complexity theory we are going to use in this paper. In Section
3 we discuss different types of encodings of object classes: holomorphic,
robust and continuous ones. We prove our first main result, namely Theorem
1, saying that any holomorphic (ambiguous) encoding may be replaced by
a continuous and unambiguous one of similar size. We retake the subject of
this section in an appendix of this paper, namely in Section A, generalizing
Theorem 1 to Corollary 9 and estimating the VC–dimension of a given,
holomorphically encoded object class in terms of the size of its encoding.

In Section 4 we introduce the main technique we are going to apply in
this paper in order to prove lower bounds for robust encodings of specific
object classes. We exemplify this technique by two fundamental examples.

In Section 5 we apply the tools developed in the preceding sections to
elimination theory. We introduce the notion of a robust elimination pro-
cedure for flat families of zero–dimensional elimination problems and show
that any robust elimination procedure requires necessarily exponential (se-
quential) time on infinitely many inputs (Theorem 3). This result is then
used in order to prove the second main result of this paper, namely Theorem
4, which may be paraphrased as follows:

Suppose that there is given a universal, branching–parsimonious elimination
procedure P which is also able to solve in the context of elimination theory
suitable problems of the above type (ii ). In particular, we suppose that the
procedure P is able to eliminate quantifiers in parametric existential first or-
der formulas of the language of the elementary theory of algebraically closed
fields of characteristic zero and that P is able to compute equations for the
Zariski closure of any given constructible set and the generically square–free
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parametric greatest common divisor of any given algebraic family of uni-
variate polynomials (see Sections 2.2, 5.2 and 5.4 for precise, mathematical
definitions). Then, the elimination procedure P cannot be of polynomial
(sequential) time complexity.

In conclusion, a universal, branching–parsimonious procedure for the
elimination of a single existential quantifier block which is able to solve suit-
able problems of type (ii ) cannot be polynomial. Let us remark that all
known universal elimination procedures satisfy this requirement since they
are based on subroutines (in particular greatest common divisor computa-
tions) which behave well under specialization.

All these results are formulated in an exact computation model which
allows to represent all known symbolic and seminumeric elimination proce-
dures (based on the sparse or dense or the arithmetic circuit representation
of polynomials).

2 Notions and notations.

2.1 Language and tools from algebraic geometry.

Let k be an infinite, perfect field which we think to be “effective” with respect
to arithmetic operations as addition/subtraction, multiplication/division
and extraction of p–th roots in case k has positive characteristic p. Let
k be an algebraically closed field containing k (in the sequel we shall call
such a field an algebraic closure of k.

Most of the statements and arguments of this paper will be independent
of the characteristic of k. Therefore the reader may assume without loss of
generality that k is of characteristic zero. For the sake of simplicity we shall
assume in this case k := Q and k = C. We denote by N the set of natural
numbers and by Z≥0 the set of nonnegative integers.

Fix n ∈ Z≥0 and let X0, . . . ,Xn be indeterminates over k. We denote
by An := An(k) the n–dimensional affine space and by Pn := Pn(k) the n–
dimensional projective space over k. The spaces An and Pn are thought
to be endowed with their respective Zariski topologies over k and with
their respective sheaves of k–rational functions with values in k. Thus the
points of An are elements (x1, . . . , xn) of k and the points of Pn are (non

uniquely) represented by nonzero elements (x0, . . . , xn) of k
n+1

and denoted
by (x0 : · · · : xn). The indeterminates X1, . . . ,Xn are considered as the
coordinate functions of the affine space An. The coordinate ring (of polyno-
mial functions) of An is identified with the polynomial ring k[X1, . . . ,Xn].
Similarly we consider the (graded) polynomial ring k[X0, . . . ,Xn] as the
projective coordinate ring of Pn. Consequently we represent rational func-
tions of Pn as quotients of homogeneous polynomials of equal degree be-
longing to k[X0, . . . ,Xn]. Let F1, . . . , Fs be polynomials which belong to

12



k[X1, . . . ,Xn] or are homogeneous and belong to k[X0, . . . ,Xn]. We denote
by {F1 = 0, . . . , Fs = 0} or V (F1, . . . , Fs) the algebraic set of common ze-
roes of the polynomials F1, . . . , Fs in An and Pn respectively. We consider
the set V := {F1 = 0, . . . , Fs = 0} as (Zariski–)closed (affine or projective)
subvariety of its ambient space An or Pn and call V the affine or projective
variety defined by the polynomials F1, . . . , Fs. We think the variety V to be
equipped with the induced Zariski topology and its sheaf of rational func-
tions. The irreducible components of V are defined with respect to its Zariski
topology over k . We call V irreducible if V contains a single irreducible
component and equidimensional if all its irreducible components have the
same dimension. The dimension dimV of the variety V is defined as the
maximal dimension of all its irreducible components. If V is equidimen-
sional we define its (geometric) degree as the number of points arising when
we intersect V with dimV many generic (affine) linear hyperplanes of its
ambient space An or Pn. For an arbitrary closed variety V with irreducible
components C1, . . . , Ct we define its degree as degV := deg C1 + · · ·+deg Ct.
With this definition of degree the intersection of two closed subvarieties V
and W of the same ambient space satisfies the Bézout inequality

deg V ∩W ≤ deg V degW

(see [Hei83], [Ful84], [Vog84]).
We denote by k[V ] the affine or (graded) projective coordinate ring of

the variety V . If V is irreducible we denote by k(V ) its field of rational
functions. In case that V is a closed subvariety of the affine space An we
consider the elements of k[V ] as k–valued functions mapping V into k. The
restrictions of the projections X1, . . . ,Xn to V generate the coordinate ring
k[V ] over k and are called the coordinate functions of V . The data of n
coordinate functions of V fixes an embedding of V into the affine space An.
Morphisms between affine and projective varieties are induced by polynomial
maps between their ambient spaces which are supposed to be homogeneous
if the source and target variety is projective.

Replacing the ground field k by its algebraic closure k, we may apply all
this terminology again. In this sense we shall speak about the Zariski topolo-
gies and coordinate rings over k and sheaves of k–rational functions. In this
more general context varieties are defined by polynomials with coefficients in
k. If we want to stress that a particular variety V is defined by polynomials
with coefficients in the ground field k, we shall say that V is k–definable
or k–constructible. The same terminology is applied to any set determined
by a (finite) boolean combination of k–definable closed subvarieties of An

or Pn. By a constructible set we mean simply a k–constructible one. Con-
structible and k–constructible sets are always thought to be equipped with
their corresponding Zariski topology. In case of k := Q and k := C we shall
sometimes also consider the euclidean (i.e. “strong”) topology of An and Pn

and their constructible subsets.
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The rest of our terminology and notation of algebraic geometry and com-
mutative algebra is standard and can be found in [Lan58], [Sha84], [Mum88,
Chapter I], and in [Lan93], [AM69], [Mat80].

2.2 Algorithmic models and complexity measures.

The algorithmic problems we are going to consider in this paper will depend
on continuous parameters and therefore the corresponding input data struc-
tures have to contain entries for these parameters. We call them problem or
input parameters.

Once such a parametric problem is given, the specialization of the pa-
rameters representing input objects are called (admissible) problem or input
instances. Thus the problem parameters may in principle be algebraically
dependent. An algorithm solving the given problem operates on the cor-
responding input data structure and produces for each admissible input
instance an output instance which belongs to a previously chosen output
data structure. We shall always require that output instances depend ratio-
nally on the input parameters. Since we limit in this paper our attention
to branching–free algorithms, particular admissible input instances may not
produce well defined output instances. In order to surmount this difficulty,
we shall in the sequel admit certain limit processes which we modelize us-
ing the notion of places from valuation theory. These places will mimic the
process of limit determination and calculation by means of de l’Hôpital’s
rule.

The chosen output data structure must enable us to answer certain pre-
viously fixed questions about the output objects of our algorithmic problem.

Let us consider the case that these output objects are polynomial func-
tions and that we wish to answer the value question for these functions (we
shall say that we want to “compute” or “evaluate” them). For the sake
of definiteness let us suppose that there is given an algorithmic problem
depending on r parameters and that this problem is expressible in the ele-
mentary language of algebraically closed fields over the ground field k. Let
U1, . . . , Ur be indeterminates representing the input parameters of the given
problem. Let S ⊂ Ar be the Zariski closure of the set of admissible input
instances and suppose that S is irreducible. Since our algorithmic prob-
lem is elementarily expressible over k, we conclude that S is k–definable.
Let m be the size of the output data structure we are going to use for the
solution of our problem. In the sense of this paper, a (branching–free) con-
tinuous algorithm computing for each admissible input instance the code
of the corresponding output object, is given by certain rational functions
θ1, . . . , θm of k(S) such that the rational map θ = (θ1, . . . , θm) is well–
defined for any admissible input instance u ∈ S and such that θ maps u to
the corresponding output instance θ(u) (observe that the admissible input
instances form a Zariski dense subset of S). Suppose now that our out-
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put objects are polynomial functions in the variables Y1, . . . , Yt. We call
our algorithm essentially division–free if these polynomial functions belong
to the polynomial ring k[θ1, . . . , θm][Y1, . . . , Yt]. Thus essentially division–
free algorithms do not contain divisions which involve any of the arguments
Y1, . . . , Yt of the output objects. Nevertheless such an algorithm is allowed
to contain divisions involving exclusively elements of k(U) which represent
rational functions of k(S). Once the value θ(u) is determined for an ad-
missible input instance u ∈ S, the output objects may be evaluated in any
point y ∈ At without using additional divisions. If moreover the param-
eter functions θ1, . . . , θm belong to the coordinate ring k[S], we shall say
that our algorithm if totally division–free. Unfortunately, the limitation to
totally division–free algorithms would be too restrictive for an appropriate
complexity analysis of geometric elimination problems. On the other hand,
the notion of essentially division–free algorithm modelizes in a fairly realis-
tic manner the intuitive meaning of algebraic (symbolic) tools in situations
which admit branching–free procedures. In particular, it captures all today
known parametric elimination procedures for these situations.

Suppose now that our algorithmic problem is well defined for any element
of S. Thus the set of admissible input instances is the Zariski closed set
S. Suppose furthermore that there are given rational functions θ1, . . . , θm ∈
k(U) and a constructible Zariski dense subset S0 of S, such that the rational
map θ = (θ1, . . . , θm) is defined in any point of S0 and such that θ represents
an essentially division–free algorithm which solves our algorithmic problem
for any input instance belonging to S0 correctly. We shall say that the given
algorithm can be (uniquely) extended to the limit data structure S of S0
(and to the corresponding limit input objects) if the following condition is
satisfied:

for any input instance u ∈ S and any place ϕ : k(S) → k∪{∞} whose valu-
ation ring contains the local ring of the variety S at the point u, the values
ϕ(θ1), . . . , ϕ(θm) are finite and uniquely determined by the input instance u.

We observe that this condition implies that θ1, . . . , θm belong to the integral
closure of k[S] in k(S).

Intuitively speaking, we admit certain (algebraic) limit processes in the
spirit of de l’Hôpital’s rule in order to extend the given algorithms from S0
to the limit data structure S. These limit processes are necessary because
in elimination theory one often faces situations where parameters become
algebraically dependent elements of domains which are not factorial. Great-
est common divisor computations for polynomials with coefficients in these
domains lead then to essential divisions of elements of these domains (i.e. to
divisions whose results do not anymore belong to the given domain). These
kind of situations can be found in [GH01] and Section 5.4.

In the context of this paper we shall not care about the representation
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of the rational map θ. However, in concrete situations, it is reasonable to
think that the rational functions θ1, . . . , θm are represented by numerator
and denominator polynomials belonging to k[U1, . . . , Ur], and that these
polynomials are holomorphically encoded by a suitable data structure (see
Section 3.1 for the notion of holomorphic encoding).

Let us finally exemplify the abstract notion of an essentially division–free
algorithm in the context of arithmetic circuits (see [BCS97] for details).

An essentially division–free arithmetic circuit is an algorithmic device
that can be represented by a labeled directed acyclic graph (dag) as follows:
the circuit depends on certain input nodes, labeled by indeterminates over
the ground field k. These indeterminates are thought to be subdivided
in two disjoints sets, representing the parameters and the variables of the
given circuit. For the sake of definiteness, let U1, . . . , Ur be the parameters
and Y1, . . . , Yt the variables of the circuit. Let K := k(U1, . . . , Ur). We
call K the parameter field of the circuit. The circuit nodes of indegree
zero which are not inputs are labeled by elements of k, which are called
the scalars of the circuit (here “indegree” means the number of incoming
edges of the corresponding node). Internal nodes are labeled by arithmetic
operations (addition, subtraction, multiplication and division). We require
that the internal nodes of the circuit represent polynomials in the variables
Y1, . . . , Yt. We call these polynomials the intermediate results of the given
circuit. The coefficients of these polynomials belong to the parameter field
K. In order to achieve this requirement, we allow in an essentially division-
free circuit only divisions which involve elements of K. Thus essentially
division–free circuits do not contain divisions involving intermediate results
which depend on the variables Y1, . . . , Yt. A circuit which contains only
divisions by nonzero elements of k is called totally division-free.

Finally we suppose that the given circuit contains one or more nodes
which are labeled as output nodes. The results of these nodes are called
outputs of the circuit. Output nodes may occur labeled additionally by sign
marks of the form “= 0” or “6= 0” or may remain unlabeled. Thus the
given circuit represents by means of the output nodes which are labeled by
sign marks a system of parametric polynomial equations and inequations.
This system determines in its turn for each admissible parameter instance
a locally closed set (i.e. an embedded affine variety) with respect to the
Zariski topology of the affine space At of variable instances. The output
nodes of the given circuit which remain unlabeled by sign marks represent
a parametric polynomial application (in fact a morphism of algebraic vari-
eties) which maps for each admissible parameter instance the corresponding
locally closed set into a suitable affine space. We shall interpret the sys-
tem of polynomial equations and inequations represented by the circuit as a
parametric family of systems in the variables of the circuit. The correspond-
ing varieties constitute a parametric family of varieties. The same point of
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view is applied to the morphism determined by the unlabeled output nodes
of the circuit. We shall consider this morphism as a parametric family of
morphisms.

To a given essentially division–free arithmetic circuit we may associate
different complexity measures and models. In this paper we shall be ex-
clusively concerned with sequential computing time, measured by the size
of the circuit. Our main complexity model is the non–scalar one, over the
parameter field K. Exceptionally we will also consider the non–scalar com-
plexity model over the ground field k. In the non–scalar complexity model
over K we count only the essential multiplications (i.e. multiplications be-
tween intermediate results which actually involve variables and not exclu-
sively parameters). This means that K–linear operations (i.e. additions and
multiplications by arbitrary elements of K) are cost free. Similarly, k–linear
operations are not counted in the non-scalar model over k.

Let θ1, . . . , θm be the elements of the parameter field K computed by the
given circuit. Since this circuit is essentially division–free we conclude that
its outputs belong to k[θ1, . . . , θm][Y1, . . . , Yt]. Let L be the non–scalar size
(over K) of the given circuit and suppose that the circuit contains q output
nodes. Then the circuit may be rearranged (without affecting its non–scalar
complexity nor its outputs) in such a way that the condition

m = L2 + (2t− 1)L+ q(L+ t+ 1) (1)

is satisfied (see [BCS97, Chapter 9, Exercise 9.18]). In the sequel we shall
always assume that we have already performed this rearrangement. Let
Y := (Y1, . . . , Yt), θ := (θ1, . . . , θm) and let f1, . . . , fq ∈ k[θ][Y ] be the
outputs of the given circuit. Let Z1, . . . , Zm be new indeterminates and write
Z := (Z1, . . . , Zm). Then there exist polynomials F1, . . . , Fq ∈ k[Z, Y ] such
that f1 = F1(θ, Y ), . . . , fq = Fq(θ, Y ) holds. Let us write f := (f1, . . . , fq)
and F := (F1, . . . , Fq). Consider the object class

O := {F (ζ, Y ) : ζ ∈ Am}

which we think represented by the data structure D := Am by means of the
obvious encoding which maps each code ζ ∈ D to the object F (ζ, Y ) ∈ k[Y ]q.

For the moment, let us consider as input data structure the Zariski open
subset U where the rational map θ = (θ1, . . . , θm) is defined. Then the given
essentially division–free arithmetic circuit represents an algorithm which
computes for each input code u ∈ U an output code θ(u) representing the
output object f(u, Y ) = F

(
θ(u), Y

)
. This algorithm is in the above sense

essentially division–free. From identity (1) we deduce that the size m of
the data structure D is closely related to the non–scalar size L of the given
circuit. In particular we have the estimate

√
m− (t+ q) ≤ L. (2)
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Later we shall meet specific situations where we are able to deduce from a
previous (mathematical) knowledge of the mathematical object
f = (f1, . . . , fq) a lower bound for the size of the output data structure
of any essentially division–free algorithm which computes for an arbitrary
input code u ∈ U the object f(u, Y ). Of course, in such situations we ob-
tain by means of (2) a lower bound for the non–scalar size (over K) of any
essentially division–free arithmetic circuit which solves the same task. In
particular we obtain lower bounds for the total size and for the non–scalar
size over k of all such arithmetic circuits.

3 Holomorphic, continuous and robust encodings.

3.1 Holomorphic and continuous encodings.

Let O be an object class of polynomial functions belonging to the polynomial
ring k[Y1, . . . , Yt]. We shall say that O is k–constructible (or k–definable) if
the following conditions are satisfied:

(i) The k–vector space W generated by the elements of O in k[Y1, . . . , Yt]
is finite dimensional and there exists a k–basis of W consisting of
polynomials which belong to k[Y1, . . . , Yt] (we call such a basis of W
canonical).

(ii) With respect to a given canonical basis of W , the object class O forms
a k–constructible subset of W (observe that this condition does not
depend on the particular canonical basis we have chosen).

Suppose now that the object class O is k–constructible and fix a canon-
ical basis P = (P1, . . . , PN ′) of W . Without loss of generality we may
assume P1, . . . , PN ′ ∈ O. The evaluation map eval : W × At → A1 is de-
fined by eval(F, y) := F (y) for F ∈ W and y ∈ At. With respect to the
canonical basis P , the evaluation map is k–definable and linear in its first
argument. Since P1, . . . , PN ′ are polynomials of k[Y1, . . . , Yt] one sees easily
that there exists a bound ∆ ∈ N with degF ≤ ∆ for any F ∈ W . Let

N ≥
(
∆+ t

t

)
. Then we have N ′ ≤ N and there exist suitable (generic in-

terpolation) points η1, . . . , ηN ∈ kt such that the map ϕ : W → AN defined
for F ∈ W by ϕ(F ) :=

(
eval(F, η1), . . . , eval(F, ηN )

)
=
(
F (η1), . . . , F (ηN )

)

induces a k–linear embedding ofW into the affine space AN . Observe that ϕ
is k–definable with respect to the canonical basis P of W . In particular the
image of ϕ is a k–definable linear subspace of AN of dimension N ′. Under
the embedding ϕ, the object class O becomes a k–constructible subset of the
ambient space AN and the evaluation map becomes a k–definable morphism
of algebraic varieties which is linear in its first argument and whose domain
of definition can be extended (not uniquely) to the affine space AN × At.
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This is the point of view we shall adopt in the sequel for k–constructible
object classes of polynomial functions.

In particular we consider O and W as topological spaces equipped with
the Zariski (or, in case k := Q and k := C, with the strong topology)
induced from the ambient space AN . Observe that the Zariski closure O
of the object class O is a k–definable closed subvariety of AN whose degree
does not depend on the particular k–linear embedding ϕ we have chosen.
We denote this degree by degO. Furthermore observe that any upper bound
for the degree of the polynomials of k[Y1, . . . , Yt] contained in O is also an
upper bound for the degree of the polynomials in O.

We say that O is a cone if for any λ ∈ k the set λO := {λf ; f ∈ O} is
contained in O. Suppose that O is a cone. One immediately verifies that the
k–closure O of O is a k–definable cone which is contained in W . Therefore
the evaluation map eval : W × At → A1 induces a k–definable morphism
of algebraic varieties O × At → A1 which we denote also by eval, which is
homogeneous of degree one in its first argument (i.e. for f ∈ O, y ∈ At and
λ ∈ k we have eval(λf, y) = λ eval(f, y)).

Let O be an arbitrary (not necessarily k–constructible) object class of
polynomial functions belonging to the polynomial ring k[Y1, . . . , Yt]. Let
γ1, . . . , γm ∈ At and let γ := (γ1, . . . , γm). We say that m is the length of γ.
We call γ a correct test sequence for the object class O if for any polynomial
F ∈ O the following implication holds:

F (γ1) = · · · = F (γm) = 0 ⇒ F = 0.

We call γ an identification sequence for O if for any two polynomials
F1, F2 ∈ O the following implication holds

F1(γ1) = F2(γ1), . . . , F1(γm) = F2(γm) ⇒ F1 = F2.

Now we suppose that there exists a bound ∆ ∈ N with degF ≤ ∆ for

any F ∈ O. Let N ≥
(
∆+ t

t

)
. We may interpret O as a subset of AN .

Suppose now that there is given a k–definable data structure D ⊂ AL which
encodes the object class O and contains a Zariski–dense set of k–rational
points. Let ω : D → O be this encoding and suppose that there exists a
k–definable polynomial map ρ : AL × At → A1 with ρ(D, y) = ω(D)(y) for
any D ∈ D and any y ∈ At. In these circumstances we say that ρ allows to
answer the value question about the object class O holomorphically.

Remark 1 Let assumptions and notations be as before. Then O is k–
constructible and ω : D → O is the restriction of a suitable k–definable
polynomial map Ω : AL → AN .
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Proof.– Let N ′ ≤ N be the dimension of the k–vector space W generated
in k[Y1, . . . , Yt] by the elements of O. Choose N generic interpolation points
η1, . . . , ηN ∈ kt for the polynomials of k[Y1, . . . , Yt] of degree at most ∆.
Since the k–rational points are Zariski–dense in D we conclude that there
exist D1, . . . ,DN ′ ∈ D ∩ kL such that for any choice of indices 1 ≤ k1 <

· · · < kN ′ ≤ N the N ′ ×N ′–matrix

(
ω(Di)(ηkj )

)
1≤i,j≤N ′

=
(
ρ(Di, ηkj )

)
1≤i,j≤N ′

is regular. Since for any such index choice this matrix is k–rational we deduce
that ω(D1), . . . , ω(DN ′) are polynomials which belong to O ∩ k[Y1, . . . , Yt]
and form a basis of the k–vector space W . In the same manner as before,
using the k–rational interpolation points η1, . . . , ηN , we may construct from
ρ a k–definable polynomial map Ω : AL → AN with Ω|D = ω (here Ω|D
denotes the restriction of the map Ω to the set D). In particular we have
Ω(D) = O. Since the polynomial map Ω is k–definable we conclude that O
is a k–constructible subset of AN .

The preceding considerations about object classes of polynomial func-
tions and their encodings lead us to the following fundamental notions of
this paper:

Definition 1 Let be given a data structure D ⊂ AL, an object class O ⊂ AN

and an encoding ω : D → O.
We call ω a k–definable encoding if the graph of ω is a k–constructible

subset of the affine space AL × AN .
Similarly the data structure D and the object class O are called k–

constructible (or k–definable) if they form k–constructible subsets of the
affine spaces AL and AN respectively.

Let ω : D → O be k–definable. We call ω a continuous encoding if ω is
a continuous map with respect to the Zariski topologies of D and O (or, in
case k := Q and k := C, with respect to their strong topologies).

We call ω a holomorphic encoding if there exists a k–definable polynomial
map Ω : AL → AN with ω = Ω |D.

In case that the k–definable encoding ω : D → O is holomorphic, we
observe that ω can be extended uniquely to a morphism of algebraic varieties
mapping D into O. We denote this morphism also by ω.

3.2 Robust encodings.

For data structures, object classes and encodings which are defined over
Q and interpreted over C, it may happen that an unbounded sequence of
codes produces a convergent sequence of objects. This is for example a
typical behaviour of circuit encodings of polynomials (see Sections 4 and
5.3).
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A continuous encoding which does not admit this phenomenon is called
robust. Unfortunately, this notion of robustness is only well defined in case
k := Q and k := C. In order to obtain a more operative notion of robustness
which is also applicable to ground fields of arbitrary characteristic, we are
going to analyze this notion of robustness under the restriction that the
given encoding is not only continuous, but also holomorphic. This will lead
us to a new definition of robustness which is equivalent to the previous one
in case k := Q, k := C and in case that the given encoding is holomorphic.

Let D ⊂ AL(C) and O ⊂ AN (C) be Q–constructible sets and let ω : D →
O be a Q–definable map with ω(D) = O. Suppose that ω is continuous with
respect to the strong topologies of D and O. Let us consider D as a data
structure, O as an object class and ω|D : D → O as a Q–definable continuous
encoding of the object class O by the data structure D. In order to simplify
notations we denote the map ω|D just by ω : D → O.

Definition 2 (Robustness for continuous encodings)
Let notations and assumptions be as before. We call the continuous encoding
ω : D → O robust if ω satisfies the following condition:

let (Di)i∈N be an arbitrary sequence of elements of D encoding a sequence
(Oi)i∈N of objects of O. Let O ∈ O be an accumulation point of (Oi)i∈N
(with respect to the strong topology of AN (C)). Then there exists in D an
accumulation point Q of the sequence (Di)i∈N with ω(Q) = O.

Remark 2 Let notations and assumptions be as before. Suppose further-
more that the data structure D is a closed subvariety of its affine ambient
space. Then the robustness of the encoding ω : D → O is equivalent to the
condition that ω is a surjective and Q–definable proper continuous map of
topological spaces. If ω is robust, then ω has finite, non-empty fibers. More-
over, if O is a closed subvariety of its affine ambient space, then ω–preimages
of compact subsets of O are compact.

Proof.– One sees easily that properness of the Q–definable, continuous
map ω implies its robustness.

Suppose now that ω is robust. Since D is closed, we conclude that ω
is a closed, continuous map with (sequentially) compact fibers. Hence ω is
proper.

From the arguments used at the beginning of the proof of Lemma 2
below, one deduces easily that ω has finite fibers.

Suppose furthermore that O is a closed subvariety of its affine ambient
space. Then D and O are locally compact topological spaces. Therefore,
since ω is a proper continuous map, we conclude that ω–preimages of com-
pact subsets of O are compact.

21



We are now going to discuss the notion of robustness in terms of alge-
braic geometry in order to obtain a suitable and well motivated definition of
robustness for k–definable holomorphic encodings over any ground field k.
For the rest of this subsection we assume that ω is a holomorphic encoding.

We are going to use the following fact:

Lemma 1 Let S be a locally closed subvariety of An(C). Suppose dimS >

0. Then S is unbounded in An(C).

Proof.– Let r := dimS. From Noether’s Normalization Lemma we deduce
that there exists a linear map ϕ : An(C) → Ar(C) with ϕ(S) = Ar(C) (see
[Mum88, I.7]). Observe that the C–Zariski closure S of S coincides with the
closure of S in the strong topology of An(C) (see [Mum88, I.10, Corollary
1]). Suppose that S is bounded. Then S is compact in the strong topology
and therefore also its image ϕ(S). However ϕ(S) = Ar(C) is not compact
since r is positive.

The following key result will lead us to the intended notion of robustness
for holomorphic encodings defined over ground fields of arbitrary character-
istic:

Lemma 2 Let notations and assumptions be as before and suppose that
ω : D → O is a holomorphic encoding. Suppose that ω is robust in the sense
of Definition 2. Let V be a closed irreducible (C–definable) subvariety of
AL(C) and suppose that there exists a nonempty Zariski open subset U of V
such that U is contained in D. Let W := ω(U) and let O be a point of ω(U).
Let m be the maximal ideal of C[W ] which defines the point O. Then C[V ]m
is a finite C[W ]m–module (i.e. the C–algebra extension C[W ]m → C[V ]m
induced by ω is integral).

Proof.– Since U Zariski dense in V and U is contained in D, we conclude
that V is contained in D.

By assumption ω : D → O is a Q–definable morphism of algebraic
varieties. Therefore there exists a (unique) extension of ω|U : U → O
to a morphism of algebraic varieties which maps V into W . We denote
this morphism by ω : V → W and observe that it is a dominant mor-
phism of irreducible affine varieties. Thus ω : V → W induces an injective
C–algebra homomorphism C[W ] → C[V ] and consequently a field extension
C(W ) → C(V ). Observe that ω−1(O) ∩ U is a locally closed algebraic sub-
variety of AL(C). From O ∈ ω(U) we deduce that ω−1(O)∩U is not empty.
Therefore r := dimω−1(O) ∩ U is nonnegative. Suppose r > 0. Then from
Lemma 1 we deduce that ω−1(O) ∩ U is unbounded. Thus there exists a
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sequence (Di)i∈N of points of ω−1(O) ∩ U ⊂ D which has no accumulation
point. On the other hand we have O = ω(Di) for any i ∈ N. Therefore(
ω(Di)

)
i∈N

is a sequence of elements of the object class O which converges
to the point O. Since ω is by assumption a robust encoding in the sense of
Definition 2, we conclude that (Di)i∈N must contain an accumulation point
in D. This contradicts the choice of the sequence (Di)i∈N. Thus we conclude
r = 0.

From the Theorem of Fibers we deduce now that dimW = dimV holds
and that C(W ) →֒ C(V ) is a finite field extension. Following [Lan58, Chap-
ter V] (see also [Sha84, Chapter II, 5.2]) we may choose a finite morphism

of irreducible affine varieties ψ : W̃ → W such that the coordinate ring
C[W̃ ] is isomorphic to the integral closure of C[W ] in C[V ]. Observe that

there exists a unique morphism of affine varieties ω̃ : V → W̃ such that the
diagram

W̃

ψ

��

V

ω̃
88qqqqqqqqqqqqq

ω

&&NNNNNNNNNNNNN

W

commutes. Since ω is dominant we conclude that ω̃ is dominant too. Thus
ω̃ induces an injective C–algebra homomorphism C[W̃ ] → C[V ] which maps

C[W̃ ] onto a subring of C[V ] which is integrally closed in C[V ]. In this sense

we shall say that C[W̃ ] is integrally closed in C[V ].

Let now P ∈ W̃ be an arbitrary point with ψ(P ) = O (observe that
such a point exists since ψ is surjective). Since ω̃ is dominant, we conclude

that ω̃(U) contains a nonempty Zariski open subset of W̃ . Hence ω̃(U) is

dense in the strong topology of W̃ . Therefore we may choose a sequence
(Di)i∈N of elements of U ⊂ D such that

(
ω̃(Di)

)
i∈N

converges in the strong

topology of W̃ to the point P . Thus the sequence
(
ω(Di)

)
i∈N

is a sequence
of elements of the object class O which converges to the object O ∈ O. Since
by assumption the encoding ω : D → O is robust in the sense of Definition 2,
we conclude that there exists an accumulation point D ∈ D of the sequence
(Di)i∈N. Without loss of generality we may assume that (Di)i∈N converges
to D. This implies D ∈ V and ω̃(D) = P .

Thus the fiber ω̃−1(P ) has nonnegative dimension. Suppose now that
the dimension of ω̃−1(P ) is positive. Then Lemma 1 implies that ω̃−1(P )
is unbounded. Therefore we may choose a sequence (Qn)n∈N of points of
ω̃−1(P ) which has no accumulation point. Since U is dense in the strong

topology of V there exists a family (D
(n)
i )n,i∈N of elements of U such that for

any n ∈ N the sequence (D
(n)
i )i∈N converges to the point Qn. Without loss of

generality we may suppose that this convergence is uniform in the parameter
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n. Observe that we have ω(Qn) = ψ(P ) = O for any index n ∈ N. Therefore

we may assume without loss of generality that the sequence (ω(D
(n)
n ))n∈N

converges to the object O. From the robustness of ω we infer now that the

sequence (D
(n)
n )n∈N has an accumulation point Q in D. Since for any index

n ∈ N the convergence of the sequence (D
(n)
i )i∈N to Qn is uniform in n, we

conclude that Q is an accumulation point of the sequence (Qn)n∈N. This
contradicts the choice of the sequence (Qn)n∈N.

Therefore we have dim ω̃−1(P ) = 0. Let mP be the maximal ideal of

C[W̃ ] which defines the point P and consider C[V ] as a C[W̃ ]–module. Since

C[W̃ ] is integrally closed in C[V ], we deduce now from Zariski’s Main The-
orem (see e.g. [Ive73, IV.2]) that

C[V ]mP
= C[W̃ ]mP

(3)

holds. Consider C[V ]m as a C[W̃ ]m–module and observe that the maximal

ideals of C[W̃ ]m correspond bijectively to the maximal ideals of C[W̃ ] of

the form mP with P ∈ W̃ and ψ(P ) = O. From (3) one deduces now

C[V ]m = C[W̃ ]m. Since by definition of W̃ the coordinate ring C[W̃ ] is a
finite C[W ]–module, this implies that C[V ]m is a finite C[W ]m–module.

Let notations and assumptions be as before. From Lemma 2 and its
proof we infer that the encoding ω satisfies the following conditions:

(i) for any object O ∈ O there are only finitely many encodings D ∈ D
with ω(D) = O (in this sense we shall call the ambiguity of ω finite).

(ii) for any object O ∈ O with maximal defining ideal m in C[O], the local
ring C[D]m is a finite C[O]m–module.

If the algebraic variety D is irreducible then O is irreducible too and we
may replace condition (ii) by the following equivalent one:

(iii) Let O be an arbitrary object ofO. Then any place ϕ : C(D) → C∪{∞}
whose valuation ring which contains the local ring of the variety O at
the point O, takes only finite values on C[D].

Although somewhat weaker and limited to the case D irreducible, con-
dition (iii) is the genuine algebraic–geometric counterpart of the notion of
robustness given by Definition 2. This indicates that the following definition
of robustness for holomorphic encodings (not simply continuous ones) cap-
tures the intuitive meaning of the previous Definition 2 in case of a ground
field k of arbitrary characteristic with arbitrary algebraic closure k.

Definition 3 (Robustness of holomorphic encodings)
Let ω : D → O be a k–definable holomorphic encoding of a k–constructible
object class O by a k–constructible data structure D. Then we call ω robust if
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for any object O ∈ O with maximal defining ideal m in k[O] the localization
ring k[D]m is a finite k[O]m–module.

In case that a k–definable holomorphic encoding ω : D → O induces a
finite morphism of affine varieties which maps D onto O, we conclude that
the encoding ω is robust in the sense of Definition 3.

We are now going to show that in case k := Q, k := C and ω holomorphic,
Definition 2 and Definition 3 represent the same notion of robustness.

Lemma 3 Let k := Q, k := C, and let D and O be a Q–constructible
data structure and object class respectively. Let ω : D → O a Q–definable,
holomorphic encoding. Then ω is robust in the sense of Definition 2 (as a
continuous encoding with respect to the strong topologies of D and O) if and
only if ω is robust in the sense of Definition 3 (as a holomorphic encoding).

Proof.– Suppose that ω is robust in the sense of Definition 2. Then, from
the statement (ii) above, we deduce that ω is a robust encoding in the sense
of Definition 3.

Suppose now that ω is robust in the sense of Definition 3. Let be given
a sequence (Di)i∈N of elements of the data structure D which encodes a
sequence (Oi)i∈N of objects of O. Let be given an accumulation point O ∈ O
of the sequence (Oi)i∈N with respect to the strong topology O. For the sake
of simplicity we shall assume that (Oi)i∈N converges to O. Let m be the
maximal defining ideal of O in C[O].

Let us consider an arbitrary element f of C[O]. In case that f(Oi) = 0
holds for infinitely many indices i ∈ N, we conclude f(O) = 0. Therefore,
if f does not belong to the maximal ideal m, then f vanishes on all but
finitely many entries of the sequence (Oi)i∈N. Since ω is robust in the sense
of Definition 3, we may now conclude that there exists an element g of C[O]
with the following properties:

(a) g(O) 6= 0 and g(Oi) 6= 0 for all but finitely many indices i ∈ N.

(b) C[D]g is a finite C[O]g–module.

For the sake of simplicity we shall suppose g(Oi) 6= 0 for any i ∈ N.
Consider now an arbitrary element h of C[D]. Let Y be an indeterminate.
From properties (a) and (b) above we deduce that there exists a monic

polynomial P ∈ C[O]g[Y ] with P (h) = 0 and such that P can be specialized
for the object O and any index i ∈ N into well–defined elements P (O)
and P (Oi) of the polynomial ring C[Y ]. Without loss of generality we may
suppose that P is the minimal polynomial of h over C(O). Thus for any
i ∈ N we have P (Oi)(h(Di)) = 0. Therefore the sequence (h(Di))i∈N has
an accumulation point which is a zero of the polynomial P (O)(Y ) ∈ C[Y ].
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Since P is the minimal polynomial of h over C(O) we deduce from property
(b) above that there exists an element Q ∈ D with g(Q) 6= 0 and ω(Q) = O

such that h(Q) is an accumulation point of the sequence (h(Di))i∈N.
Generalizing this argument to a finite set of generators of the C[O]g–

module C[D]g we conclude that the sequence (Di)i∈N has an accumulation
point in D. Therefore the encoding ω is robust in the sense of Definition 2.

Remark 3 Let k := Q and k = C. Then, in terms of algebraic geometry,
Lemma 2 and Remark 2 imply the following folkloric statement:

let V and W be closed, equidimensional subvarieties of suitable complex
affine spaces and let ϕ : V →W be a morphism of affine varieties mapping
V onto W . Suppose that ϕ is a proper continuous map with respect to
the strong topologies of V and W . Then ϕ is a finite morphism of affine
varieties.

3.3 Correct test and identification sequences.

3.3.1 Correct test and identification sequences for holomorphic

encodings.

We are now going to develop the fundamental technical tools we shall need
in Section 3.4 for the formulation and proof of the first main result of this
paper, namely Theorem 1.

The following statement generalizes [HS82, Theorem 4.4].

Lemma 4 Let O be a k–constructible object class of polynomial functions
belonging to k[Y1, . . . , Yt]. Let ∆ ∈ N be an upper bound for the degree of the
polynomials contained in O. Suppose that there is given a k–constructible
data structure D ⊂ AL and a k–definable holomorphic encoding ω : D → O.
Suppose that there exists a quantifier–free first–order formula which defines
the data structure D and whose equations involve only K distinct polynomials
of degree at most ∆1 in L indeterminates over k. Moreover, assume that
the encoding ω is definable by polynomials of degree at most ∆2 ≥ 1 in L

indeterminates over k. Then the degrees of the algebraic varieties D and O
satisfy the estimates

degD ≤ (1 +K∆1)
L

and
degO ≤ (L+ 1)∆L

2 degD ≤ (L+ 1)
(
(1 +K∆1)∆2

)L
.

For O equidimensional this estimate may be improved to

degO ≤ ∆L
2 degD ≤

(
(1 +K∆1)∆2

)L
.

26



Let M be a finite subset of k having at least two elements. Suppose
#M ≥ ∆2(degO)

1
L (observe that this is the case if

#M ≥ ∆2(1 + L)
1
L (1 +K∆1)∆2

holds). Let m ≥ 2L+2. Then there exist points γ1, . . . , γm of M t such that
γ := (γ1, . . . , γm) is a correct test sequence for the object class O (and hence
for O).

Suppose that the points of the finite set M t are equidistributed. Then the
probability of finding inMmt by a random choice such a correct test sequence
is at least 1− 1

#M ≥ 1
2 .

Proof.– The proof is subdivided in three parts. Let us start with the
first one. With the terminology introduced before, suppose that the object
class O is given as a k–constructible subset of some affine space AN . Let
Z1, . . . , ZL be the coordinate functions of the affine space AL. By hypothesis
there exists a quantifier–free definition of D whose equations involve only
K distinct polynomials G1, . . . , GK ∈ k[Z1, . . . , ZL] of degree at most ∆1.
Observe that for any irreducible component C of D there exists a subset
G of {G1, . . . , GK} such that C is an irreducible component of the closed
subvariety {G = 0;G ∈ G} of AL. From [JS00, Theorem 2] (see also [Hei83,
Corollary 1]) one deduces now easily the estimate

degD ≤
L∑

h=0

(
K

h

)
∆h

1 ≤ (1 +K∆1)
L.

By assumption there exist polynomials Ω1, . . . ,ΩN ∈ k[Z1, . . . , ZL] of
degree at most ∆2 such that Ω := (Ω1, . . . ,ΩN ) defines a polynomial map
Ω : AL → AN with Ω|D = ω. Observe that Ω induces a morphism of
(possibly reducible) affine varieties D → O which we denote also by ω. From
ω(D) = O we deduce that ω is dominant. This implies dimO ≤ dimD ≤ L.

Let 0 ≤ h ≤ L and let Eh be the union of the irreducible components
of O of dimension h. Suppose that Eh is nonempty. Let T1, . . . , TN be the
coordinate functions of AN . Since the morphism ω is dominant, we may
choose a nonempty, Zariski open subset U of Eh which is contained in the
image ω(D) (see e.g. [Mum88, I.8, Theorem 3]). On the other hand, we may
choose N − h generic affine–linear equations H1, . . . ,Hn−h ∈ k[T1, . . . , TN ]
such that Eh ∩ {H1 = 0, . . . ,HN−h = 0} consists of degEh points, all con-
tained in U and therefore in ω(D) (see [Hei83], Remark 2). Each of these
points is the image of a k–irreducible component of the closed subvariety

ω−1(Eh) = D ∩ {H1(Ω) = 0, . . . ,HN−h(Ω) = 0}
of AL. From the Bézout Inequality (in the variant of [HS82, Proposition
2.3]) we conclude now

degEh ≤ degω−1(Eh) ≤ degD ·∆dimD
2 ≤ degD ·∆L

2 .
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Thus, if O is equidimensional of dimension h, we have O = Eh and therefore

degO ≤ degD ·∆L
2 ≤

(
(1 +K∆1)∆2

)L
.

In the general case we obtain the following estimate:

degO =

L∑

h=0

degEh ≤ (L+ 1)∆L
2 degD ≤ (L+ 1)

(
(1 +K∆1)∆2

)L
.

This proves the first statement of the Lemma.
In the second part of the proof we consider the closed subvariety

V = {(F, y(1), . . . , y(m));F ∈ O, y(1), . . . , y(m) ∈ At,

F (y(1)) = · · · = F (y(m)) = 0}

of the affine space AN × Amt and the morphisms of algebraic varieties
π1 : V → AN and π2 : V → Amt induced by the canonical projections
of AN ×Amt onto AN and Amt.

Since any polynomial of O has degree at most ∆, we deduce from the
Bézout Inequality the estimate

deg V ≤ degO ·∆m. (4)

Let C1, . . . , Cs be the irreducible components of V whose π1–image con-
tains at least one nonzero polynomial of O. Let V ∗ :=

⋃
1≤j≤s Cj . Thus

π2(V
∗) =

⋃
1≤j≤s π2(Cj) is the set of all “incorrect” test sequences of length

m for the object class O. From (4) we deduce the estimate

degV ∗ ≤ degO ·∆m. (5)

Let 1 ≤ j ≤ s. There exists a polynomial F ∈ O with F 6= 0 and
F ∈ π1(Cj). Observe that the fiber π−1

1 (F ) is isomorphic to the equidimen-
sional algebraic variety

{(y(1), . . . , y(m)) ∈ Amt; y(1), . . . , y(m) ∈ At, F (y(1)) = · · · = F (y(m)) = 0}.

Thus F 6= 0 implies dimπ−1
1 (F ) = m(t − 1). Applying the Theorem of

Fibers (see e.g. [Mum88, I.8, Corollary]) to the morphism of irreducible
affine varieties

π1|Cj : Cj → π1(Cj)
we deduce

dim Cj − dimπ1(Cj) ≤ m(t− 1).

Since π1(Cj) is contained in the affine variety O we conclude dimπ1(Cj) ≤
dimO and therefore dim Cj − dimO ≤ m(t− 1). This implies

dim Cj ≤ m(t− 1) + dimO. (6)
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By assumption the data structure D encodes the object class O holo-
morphically by means of the encoding ω. This means that the encoding
determines a morphism of affine varieties D → O which contains O in its im-
age. Therefore this morphism is dominant and this implies dimO ≤ dimD.
From (6) we conclude now

dim Cj ≤ m(t− 1) + dimD.

Since 1 ≤ j ≤ s was arbitrary, we obtain the estimate

dimV ∗ ≤ m(t− 1) + dimD. (7)

This implies dimπ2(V ∗) ≤ m(t− 1) + dimD ≤ m(t− 1) + L.

Before continuing with the proof, observe that by assumption m ≥ 2L+
2 > L and therefore mt > m(t − 1) + L holds. Hence π2(V ∗) is a proper
closed subset of Amt. Thus any element γ := (γ1, . . . , γm) of the Zariski
open, dense subset U := Amt \ π2(V ∗) of Amt with γ1, . . . , γm ∈ At is a
correct test sequence for the object class O.

Let us finally pass to the third and final part of the proof. For
1 ≤ k ≤ m and 1 ≤ ℓ ≤ t let Yke be a new indeterminate and let
Hke :=

∏
µ∈M (Ykℓ − µ). Thus Hkℓ is a univariate polynomial of degree

#M belonging to the polynomial ring k[Ykℓ]. We consider the indetermi-
nates Ykℓ with 1 ≤ k ≤ m, 1 ≤ ℓ ≤ t as coordinate functions of the affine
space Amt. Observe that Mmt = {Hkℓ = 0; 1 ≤ k ≤ m, 1 ≤ ℓ ≤ t} holds
and that the set of “incorrect” test sequences contained in Mmt, namely
π2(V

∗) ∩ Mmt = π2 (V
∗ ∩ {Hkℓ = 0; 1 ≤ k ≤ m, 1 ≤ ℓ ≤ t}), is a finite k–

definable (and hence Zariski closed) subset of Amt.
From [HS82, Proposition 2.3] (i.e. from the Bézout Inequality) and from

(5), (7) we conclude now

#
(
π2(V

∗) ∩Mmt
)

= #π2 (V
∗ ∩ {Hkℓ = 0; 1 ≤ k ≤ m, 1 ≤ ℓ ≤ t})

≤ deg(V ∗ ∩ {Hkℓ = 0; 1 ≤ k ≤ m, 1 ≤ ℓ ≤ t})

≤ deg(V ∗) (#M)dim V ∗

≤ deg(O)∆m (#M)m(t−1)+dimD

≤ deg(O)∆m (#M)m(t−1)+L.

Suppose now that the points of the finite set M t are equidistributed. By
assumption we have m ≥ 2L+ 2, #M ≥ ∆2(degO)

1
L and ∆ ≥ 1. From the

estimate #
(
π2(V

∗) ∩Mmt
)
≤ deg(O)∆m (#M)m(t−1)+L we deduce that

the probability of finding in Mmt by a random choice an “incorrect” test
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sequence for the object class O is at most

deg(O)∆m

(#M)m−L
≤ deg(O)∆m

#M
(
∆2(degO)

1
L

)m−L−1

=
deg(O)∆2(L+1)

#M ∆m (degO)
1
L
(m−L−1)

≤ deg(O)

#M
(
deg(O)

)1+ 1
L

≤ 1

#M
≤ 1

2

(recall that by assumption M has at least two elements). Hence the proba-
bility of finding in Mmt by a random choice a correct test sequence for the
object class O is at least

1− 1

#M
≥ 1

2
.

Since this probability is positive, we conclude that Mmt really contains
a correct test sequence γ = (γ1, . . . , γm) with γ1, . . . , γm ∈ At for the object
class O.

Corollary 1 Let notations and assumptions be as in Lemma 4. Let M
be a finite subset of k of cardinality at least max{∆2(degO)

1
L , 2} and let

m ≥ 4L + 2. Then there exist points γ1, . . . , γm of M t such that γ :=
(γ1, . . . , γm) is an identification sequence for the object class O (and hence
for O). Suppose that the points of the finite setM t are equidistributed. Then
the probability of finding in Mmt by a random choice such an identification
sequence is at least 1− 1

#M ≥ 1
2 .

Proof.– We use the same notations and assumptions as in the proof of
Lemma 4. Let ω : D → O be the given k–definable holomorphic encoding
of the object class O. Let D∗ := D × D, O∗ := {F1 − F2;F1, F2 ∈ O}
and let ω∗ : D∗ → O∗ be the encoding of the object class O∗ defined by
ω∗(D1,D2) = ω(D1)− ω(D2) for (D1,D2) ∈ D∗.

One verifies immediately that the data structure D∗ and the object class
O∗ are k–constructible subsets of A2L and AN respectively and that ω∗ is
a k–definable holomorphic encoding of the object class O∗. In particular
O∗ turns out to be a k–constructible object class in the sense introduced
before. Furthermore ∆ is an upper bound for the degree of the t–variate
polynomials over k contained in the object class O∗. From [Hei83], Propo-
sition 2 and Lemma 2 we deduce the estimate degO∗ ≤ (degO)2. Hence

#M ≥ ∆2(degO)
1
L implies #M ≥ ∆2(degO∗)

1
2L .
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Suppose now that the points of the finite set M t are equidistributed.
From Lemma 4 we deduce that the probability of finding in Mmt by a
random choice a correct test sequence for the object class O∗ is at least
1− 1

#M ≥ 1
2 .

Let γ = (γ1, . . . , γm) ∈ Mmt with γ1, . . . , γm ∈ M t such a correct test
sequence and let F1, F2 be given elements of O (thus F1 and F2 are t–variate
polynomials over k). Suppose that F1(γ1) = F2(γ1), . . . , F1(γm) = F2(γm)
holds. Hence, for F := F1 − F2, we have F (γ1) = · · · = F (γm) = 0. Since
F belongs to the object class O∗ and γ is a correct test sequence for O∗ we
infer F = 0. This implies F1 = F2.

In conclusion, we see that γ is an identification sequence for the object
class O. Since the probability of finding such identification sequences in
Mmt is positive, we infer that Mmt contains at least one of them.

Let O be k–definable object class of polynomial functions and ω : D →
O be a k–definable holomorphic encoding of O by a k–constructible data
structure of size L. By means of the data structure D we are able to answer
the value question about the object classO holomorphically. In this sense, an
identification sequence γ of length m allows to answer the identity question
about the object class O holomorphically. From Corollary 1 we conclude
that there exist always short identification sequences (of length m linear in
L) and that they are easy to find by means of a suitable random choice.
This means that the identity question about the object class O can always
be answered “efficiently”.

3.3.2 Correct test and identification sequences for circuit encod-

ings.

In order to exemplify the ideas behind Lemma 4 and Corollary 1 of Section
3.3.1 we are now going to apply the concept of identification sequence to
circuit encoded object classes of polynomial functions.

Let ε be a new indeterminate and let us consider ε as a parameter and
Y1, . . . , Yt as variables. Let F ∈ k[Y1, . . . , Yt]. We denote by L(F ) the
minimal nonscalar size over k of all totally division–free arithmetic circuits
with inputs Y1, . . . , Yt and scalars in k which evaluate the polynomial F .
Moreover we denote by L(F ) the minimal nonscalar size over k(ε) of all es-
sentially division–free arithmetic circuits which evaluate a rational function
of the form F + εQ with Q belonging to k[ε, Y1, . . . , Yt]ε. Obviously we have
L(F ) ≤ L(F ). We call L(F ) the nonscalar (sequential time) complexity of
F over k and L(F ) the corresponding approximative complexity. Let L ∈ N

and let WL,t := {F ∈ k[Y1, . . . , Yt];L(F ) ≤ L}. From [BCS97, Chapter 9,
Exercise 9.18] (see also [HS82, Theorem 3.2]) we deduce that all polynomi-
als contained in WL,t have degree bounded by 2L and that WL,t forms a
k–constructible object class which has a k–definable holomorphic encoding
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by the data structure A(L+t+1)2 . Moreover any polynomial F ∈ k[Y1, . . . , Yt]
with L(F ) ≤ L has degree at most 2L.

Let N ∈ N with N ≥ 2L. Then WL,t can be considered as a k–
constructible subset of AN . From [Ald84], Lemma 2 and Satz 4 one deduces
easily the following statement:

WL,t := {F ∈ k[Y1, . . . , Yt];L(F ) ≤ L}.

In this sense the Zariski closure of the object class WL,t has a natural inter-
pretation as the set of polynomials of k[Y1, . . . , Yt] which have approximative
nonscalar (sequential time) complexity over k at most L.

Finally observe that WL,t and WL,t are cones and contain the zero poly-
nomial. In particular any identification sequence ofWL,t orWL,t is a correct
test sequence.

Corollary 2 (compare [HS82, Theorem 4.4] and [GH01, Lemma 3]) Let no-
tations be as before and let L, m, t be natural numbers with m ≥ 4(L+ t+
1)2 + 2. Let M be a finite subset of k of cardinality at least 24(L+1). Then
there exist points γ1, . . . , γm of M t such that γ := (γ1, . . . , γm) is an identifi-
cation sequence for the object class WL,t of all polynomials F ∈ k[Y1, . . . , Yt]
which have approximative nonscalar (sequential time) complexity over k at
most L.

Suppose that the points of the finite set M t are equidistributed. Then
the probability of finding in Mmt by a random choice such an identification
sequence is at least 1− 1

#M ≥ 1
2 .

Proof.– Let N ≥ 2L, r := (L + t + 1)2 and let Z1, . . . , Zr be new inde-
terminates. From [BCS97, Chapter 9, Exercise 9.18] (compare also [Sch78,
Theorem 2.1]) we deduce that there exist N polynomials of k[Z1, . . . , Zr]
having degree at most L 2L+1 + 2 which induce a k–definable holomorphic
encoding ω : Ar → WL,t of the object class WL,t which we consider as a
k–constructible subset of AN .

Taking into account that WL,t = ω(Ar) is irreducible, we deduce from
Lemma 4 the estimate degWL,t ≤ (L 2L+1 + 2)r. This implies

(degWL,t)
1
r ≤ L 2L+1 + 2. (8)

Observe that by hypothesis m ≥ 4(L+ t+ 1)2 + 2 = 4r + 2 holds and that
any polynomial contained in WL,t has degree at most ∆ := 2L. From the

assumption #M ≥ 24(L+1) and (8) we deduce #M ≥ ∆2(degWL,t)
1
r . The

statement to prove follows now immediately from Corollary 1.
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3.4 Encodings of polynomial functions by values.

In this subsection we are going to prove the first main result of this paper.

Let O be a k–constructible object class of polynomial functions, D a
k–constructible data structure and ω : D → O a k–definable holomorphic
encoding. Our first main result (Theorem 1 below) may be stated succinctly
as follows:

assume that O is a class of polynomial functions and that its encoding by
D is holomorphic. Suppose furthermore that the ambient space of O is
affine and contains O as a cone (i.e. we assume that O is closed under
multiplication by scalars). Then there exists a k–definable data structure
D which encodes the closure class O of O continuously (with respect to the
Zariski topologies of D and O) and unambiguously. In particular, O and
D are homeomorphic topological spaces. Moreover the size of D (i.e. the
dimension of its ambient space) is linear in the size of D.

In other words, we may always replace efficiently the given data structure
D by an unambiguous one, say D, if we are only interested in a topological
characterization of the object class O (or O). By means of D we are able
to answer efficiently the identity question about O, but not necessarily the
value question. The assumption that the object class forms a cone in case
that O has affine ambient space is not restrictive in the context of this paper,
since O will be typically a class of functions closed under multiplication by
scalars. On the other hand, this assumption guarantees that the encoding
of the object class O by the data structure D is not only continuous, but
also a closed map with respect to the Zariski topologies of D and O.

In the Appendix of this paper (Section A.1) we shall formulate a slight
generalization of Theorem 1 below.

First we synthesize the essence of the technical Lemma 4 and its Corol-
lary 1 of Section 3.3.1 in terms of continuous encodings.

Let O ⊂ k[Y1, . . . , Yt] be a k–constructible object class of polynomial
functions and let γ = (γ1, . . . , γm) ∈ kmt with γ1, . . . , γm ∈ kt and m ≥ 1 be
an identification sequence for O (from Corollary 1 one deduces easily that
for m ∈ N sufficiently large such an identification sequence always exists).

Suppose now that O is a cone in k[Y1, . . . , Yt]. Then O is a cone too. Let
σ : O → Am be the map defined by σ(F ) :=

(
F (γ1), . . . , F (γm)

)
for F ∈ O.

Observe that σ is the restriction of a k–definable linear map AN → Am,
where AN with N ≥ 1 is a suitable affine ambient space which contains
O and O as cones. Thus σ is homogeneous of degree one and represents
an injective, k–definable morphism of affine varieties. Therefore σ(O) is a
k–definable subset of Am. Since σ is homogeneous of degree one and O is a
cone, the image σ(O) is a cone too. Hence the Zariski closure D∗ of σ(O)
in Am is a k–definable cone of Am and σ induces a dominant morphism of

33



affine varieties which maps O into D∗ and is again homogeneous of degree
one. We denote this morphism by σ : O → D∗.

Lemma 5 Let notations and assumptions be as before. Then σ : O → D∗

is a finite, bijective, k–definable morphism of affine varieties. Let C be an
arbitrary k–definable irreducible component of O. Then σ|C is a birational,
k–definable (finite and bijective) morphism of C onto the Zariski closed set
σ(C).

Proof.– Let Z1, . . . , ZN be the coordinate functions of AN . There exist
linear polynomials S1, . . . , Sm ∈ k[Z1, . . . , ZN ] such that σ is the restriction
of the linear map (S1, . . . , Sm) to the closed subvariety O of AN . Since O
and D∗ are k–definable Zariski closed cones of the affine spaces AN and
Am respectively, they are definable by homogeneous polynomials over k.
Moreover O and D∗ contain the origins of the affine spaces AN and Am

respectively. From the injectivity of σ : O → D∗ we deduce therefore that
O ∩ {S1 = 0, . . . , Sm = 0} contains only the origin of AN . This implies
that the homogeneous map σ induces a finite morphism between the closed
projective subvarieties of PN−1 and Pm−1 associated to the cones O and
D∗ respectively. In fact, the standard proof of this classical result implies
something more, namely that also the morphism σ : O → D∗ is finite (see
[Sha84], I.5.3, Theorem 8 and proof of Theorem 7). In particular, σ is
a surjective closed map. Since σ is also injective we conclude that σ is
bijective.

Let C be an arbitrary k–definable irreducible component of O. Since
σ is a closed map we conclude that σ(C) is a closed irreducible subvariety
of D∗. Since σ is injective we infer that σ|C : C → σ(C) is a bijective,
k–definable morphism of affine varieties. Since for any point y ∈ σ(C) we
have #

(
σ−1(y) ∩ C

)
= 1 we deduce from [Mum88, Proposition 3.17] that

k
(
σ(C)

)
= k(C) holds. Hence σ|C is a birational morphism.

From Lemma 5 we deduce that with respect to the Zariski topologies
of O and D∗, the morphism σ : O → D∗ is a homeomorphism and that
D∗ = σ(O) holds. Consider now D∗ ⊂ Am as a data structure. Then
ω∗ := σ−1 : D∗ → O is an unambiguous encoding of the object class O
which is continuous with respect to the Zariski topologies of D∗ and O.
Suppose that ω∗ allows to answer the value question about the object class
O holomorphically. Then from Remark 1 we deduce that ω∗ : D∗ → O is
a k–definable morphism of algebraic varieties and therefore ω∗ is an unam-
biguous, k–definable and (bi–)holomorphic encoding of the object class O
by the data structure D∗. We shall see later that in general this will not be
the case (see Corollary 5 and Theorem 2). Suppose for the moment k := Q

and k := C. Since σ, the inverse map of the unambiguous encoding ω∗, is a
morphism of algebraic varieties, we conclude that σ is continuous with re-
spect to the strong topologies of O and D∗. If ω∗ is continuous with respect
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to the strong topology, this implies that ω∗ is a robust encoding in the sense
of Definition 2.

However, ω∗ may be not continuous with respect to the strong topologies
of O and D∗. On the other hand, ω∗ induces a map Ω between the projective
subvarieties of Pm−1(C) and PN−1(C) associated to the cones D∗ and O.
The map Ω encodes the projective variety associated to the cone O by the
projective variety associated to the cone D∗ and is continuous with respect
to the corresponding strong topologies.

We may summarize the main results of this section by the following
statement:

Theorem 1 Let O be a k–constructible object class of polynomial functions
belonging to k[Y1, . . . , Yt]. Let ∆ be an upper bound for the degree of the
polynomials contained in O. Suppose that O is a cone in k[Y1, . . . , Yt]. As-
sume that there is given a k–constructible data structure D ⊂ AL and a
k–definable holomorphic encoding D → O. Let m ≥ 4L + 2 and let M be
a finite subset of k of cardinality at least max{∆2(degO)

1
L , 2}. Then there

exist a k–definable, Zariski closed cone D∗ of Am and a continuous encoding
ω∗ : D∗ → O of the object class O by the data structure D∗ which satisfies
the following conditions:

(i) ω∗ is a homeomorphism between the data structure D∗ and the object
class O,

(ii) there exist a point γ := (γ1, . . . , γm) ∈ Mmt with γ1, . . . , γm ∈ M t

such that for any F ∈ O the identity (ω∗)−1(F ) =
(
F (γ1), . . . , F (γm)

)

holds,

(iii) (ω∗)−1 : O → D∗ is a k–definable, bijective and finite morphism of
affine varieties. The morphism (ω∗)−1 is homogeneous of degree one,

(iv) for any k–definable irreducible component C of O the restriction map
(ω∗)−1|C : C → (ω∗)−1(C) is a birational k–definable (finite and surjec-
tive) morphism of C onto the irreducible Zariski closed set (ω∗)−1(C).

In particular ω∗ is an unambiguous continuous encoding of the object class
O by the data structure D∗. The encoding ω∗ is holomorphic if and only
if ω∗ allows to answer holomorphically the value question about the object
class O.

In case k := Q, k := C and ω∗ continuous with respect to the strong
topology, the encoding ω∗ is robust (in the sense of Definition 2).

Suppose that the elements of the finite set M t are equidistributed. Then
the probability of finding by a random choice a point γ := (γ1, . . . , γm) ∈
Mmt with γ1, . . . , γm ∈ M t such that the map σγ : O → Am defined by
σγ(F ) :=

(
F (γ1), . . . , F (γm)

)
for F ∈ O induces a k–definable, bijective

morphism of O onto a Zariski closed cone D∗
γ of Am is at least 1 − 1

#M ≥
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1
2 . Any such morphism σγ : O → D∗

γ defines by ω∗
γ := σ−1

γ a continuous

unambiguous encoding of the object class O by the data structure D∗
γ. This

encoding satisfies conditions (i)–(iv).

The proof of Theorem 1 is an immediate consequence of Corollary 1,
Lemma 5 and the subsequent considerations.

The following statement represents a version of Theorem 1 for object
classes of arithmetic–circuit–represented polynomials.

Corollary 3 [GH01, Lemma 4] Let notions and notations be as in Corol-
lary 2. Let L, m, t be natural numbers with m ≥ 4(L + t + 1)2 + 2. Let
M be a finite subset of cardinality at least 24(L+1). Let WL,t be the object
class of all polynomials F ∈ k[Y1, . . . , Yt] which have approximative non-
scalar (sequential) complexity over k at most L. Then WL,t is a cone and
there exists a k–definable, Zariski closed cone D∗

L,t of A
m and a continuous

encoding ω∗ : D∗
L,t → WL,t of the object class WL,t by the data structure

D∗
L,t which satisfies the conditions (i)–(iv) of Theorem 1. The encoding ω∗

is holomorphic if and only if ω∗ allows to answer holomorphically the value
question about the object class WL,t.

In case k := Q, k := C and ω∗ continuous with respect to the strong
topology, the encoding ω∗ is robust (in the sense of Definition 2).

Suppose that the elements of the finite set M t are equidistributed. Then
we may find by a random choice with probability of success at least 1− 1

#M

a point γ = (γ1, . . . , γm) ∈ Mmt with γ1, . . . , γm ∈ M t such that the map
σγ : WL,t → Am defined by σγ(F ) :=

(
F (γ1), . . . , F (γm)

)
for F ∈ WL,t

produces as in Theorem 1 a k–definable, Zariski closed cone D∗
L,t,γ of Am

and a continuous encoding ω∗
γ : D∗

L,t,γ →WL,t.

Proof.– Since in the nonscalar complexity model k–linear operations are
free, we conclude that WL,t = {F ∈ k[Y1, . . . , Yt];L(F ) ≤ L} is a cone of
k[Y1, . . . , Yt]. Therefore its closure WL,t is a cone too. The statement of
Corollary 3 follows now immediately from Corollary 2 and Lemma 5.

We call a continuous encoding of an object class of polynomial func-
tions as in Theorem 1 and Corollary 3 of this section and Corollary 9 of
Section A.1 an encoding by an identification sequence or simply an encoding
by values. An encoding by an identification sequence allows us to answer
the identity question about the object class O. However, the correspond-
ing value question requires a holomorphic encoding. In the next section we
shall exhibit an example of a Q–constructible object class O of univariate
polynomials which has a Q–definable, holomorphic, robust but ambiguous
encoding by a data structure of small size. However we shall show that any
holomorphic encoding of O by an identification sequence requires a data
structure of (exponentially) big size.
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A given object class of polynomial functions has many, mostly artificial
encodings. However, encodings by values seem particularly natural. This
becomes evident in the situation of Corollary 3. Encodings of object classes
of polynomial functions by arithmetic circuits are typically ambiguous. In
Corollary 3 a given encoding of an object class of polynomial functions by
arithmetic circuits is replaced by an unambiguous continuous and robust
encoding by means of an identification sequence (observe that evaluation is
particularly well–adapted to circuit encoding).

3.5 Unirational encodings.

Let O be a k–constructible object class and let D be a k–constructible data
structure of size L, contained in the ambient space AL or PL. Let ω : D → O
be a k–definable holomorphic encoding of the object class O by the data
structure D. We call ω unirational if D contains a nonempty, Zariski open
set of its ambient space. Suppose that ω is unirational. Then D equals
its ambient space AL or PL and O is an irreducible k–Zariski closed set in
some suitable affine or projective space. We call the encoding ω rational if
it defines a birational map between the ambient space and O.

Let L and t be natural numbers. Then the generic computation scheme
of length L in the nonscalar sequential complexity model (see [BCS97],
Chapter 9, Theorem 9.9 and Exercise 9.18, or [Hei89]) defines a unirational
encoding of the object classes WL,t and WL,t of polynomial functions of
k[Y1, . . . , Yt] having exact or approximative (sequential) nonscalar complex-
ity over k at most L. Analogously, the standard representation of polyno-
mials of k[Y1, . . . , Yt] of degree at most d by their coefficients is a rational

encoding of size

(
d+ t

t

)
. Similarly the L–sparse polynomials of k[Y1, . . . , Yt]

containing only a previously fixed set of L monomials are rationally encoded
by the data structure AL.

One may ask why we do not limit our attention exclusively to unirational
encodings of object classes. A technical reason for this is that such encod-
ings represent only a limited range of object classes. In order to exemplify
this, let us observe that a limitation to unirational data structures would
automatically exclude from our considerations important object classes as
e.g. the set of all k–definable equidimensional projective varieties of dimen-
sion r and degree d contained in a projective space Pn with n ≥ r. The
traditional data structures for these object classes are the Chow varieties
which encode (unambiguously) a given object by its Chow coordinates.

Similarly the Hilbert varieties are data structures which encode unam-
biguously the (reduced) projective subvarieties of a given projective space
with previously fixed Hilbert polynomial. The natural topology of Chow
and Hilbert varieties induces a topology on the object classes they represent
and hence a notion of limit object. Typical Chow varieties, encoding com-
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plete intersection varieties, are unirational and it is not clear whether they
could be also rational. In general, Hilbert varieties cannot be expected to
be unirational.

4 Two paradigmatic object classes.

In this section we are going to exhibit two paradigmatic object classes
of polynomial functions and to discuss different holomorphic encodings of
them. We shall always assume k := Q and k := C.

4.1 First paradigm.

Let d be a natural number, let U and Y be indeterminates over Q and
let Fd :=

∑d
j=0(U

d − 1)U jY j ∈ Q[U, Y ]. We are going to interpret U as
parameter and Y as variable. Let us consider the object class of univariate
polynomials Od := {Fd(u, Y );u ∈ A1} and the encoding ωd : A1 → Od

defined for u ∈ C by ωd(u) := Fd(u, Y ). Representing the polynomials
belonging to Od by their coefficients, we identify the object class Od with
the corresponding subset of Ad+1. With this interpretation ωd becomes a
polynomial map which is defined for u ∈ A1 by

ωd(u) :=
(
ud − 1, (ud − 1)u, . . . , (ud − 1)ud

)
.

Therefore ωd is a finite morphism of algebraic varieties which maps the affine
space A1 onto its image, namely Od. Hence Od is a closed, rational (and
hence irreducible), Q–definable curve contained in the affine ambient space
Ad+1. The coordinate ring of the curve Od is canonically isomorphic to the
Q–algebra Q[Ud − 1, (Ud − 1)U, . . . , (Ud − 1)Ud]. Therefore, the encoding
ωd : A

1 → Od of the object class Od is Q–definable, holomorphic and robust.

Let M := {e 2πi
d
k; 0 ≤ k < d} and denote by 0 := (0, . . . , 0) the origin

of the affine space Ad+1. Observe that the point 0 ∈ Ad+1 belongs to the
curve Od, because ωd maps any point ofM onto the origin of Ad+1. Thus ωd
represents an ambiguous robust encoding of the object class Od. One verifies
easily that the point 0 is the only (ordinary) singularity of the rational curve
Od and that this singularity can be resolved by a single blowing up. Moreover
ωd induces an isomorphism between the affine curves A1 \M and Od \ {0}.

Suppose now that there is given a Q–definable data structure Dd and
a Q–definable holomorphic encoding σd : Dd → Od. Let us denote the
size of Dd by md. Suppose furthermore that there is given a Q–definable
polynomial map θd : A1 → Amd with θd(A

1) ⊂ Dd and σd ◦ θd = ωd.
We interpret the polynomial map θd as a branching–free algorithm which
transforms the encoding ωd into the unambiguous encoding σd (see Section
4.3 for a motivation of this notion of algorithm).

Although the object class Od admits an (ambiguous) robust encoding
by a data structure of size one, namely ωd, any unambiguous holomorphic
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encoding σd of Od, obtained by an algorithmic transformation of ωd, requires
a data structure of large size (of approximately the dimension of the ambient
space of the object class Od). This is the content of the following result:

Proposition 1 Let notations and assumptions be as before. Suppose that
σd : Dd → Od is an unambiguous holomorphic encoding of the object class
Od. Then the size md of the data structure Dd satisfies the estimate

md ≥ d.

Proof.– Let 0 ≤ k1 < k2 < d. Since σd : Dd → Od is injective we

deduce from ωd(e
2πi
d
k1) = ωd(e

2πi
d
k2) = 0 and from σd ◦ θd = ωd that

θd(e
2πi
d
k1) = θd(e

2πi
d
k2) holds. Therefore there exists a code α ∈ Dd sat-

isfying the condition α = θd(e
2πi
d
k) for any 0 ≤ k < d. The encoding

σd : Dd → Od is induced by a polynomial map Amd → Ad+1 which we also
denote by σd.

Let 0 ≤ k < d. Denote by (Dσd)α the derivative of this polynomial

map in the point α ∈ Amd and by θ′d(e
2πi
d
k) ∈ Amd and ω′

d(e
2πi
d
k) ∈ Ad+1

the derivatives of the polynomial maps θd and ωd in the point e
2πi
d
k ∈ A1.

Observe that the encoding ωd is represented by the (d+1)–tuple of univariate
polynomials

(
Ud−1, (Ud−1)U, . . . , (Ud−1)Ud

)
. Deriving this representation

with respect to the parameter U and evaluating the result in the point

e
2πi
d
k ∈ A1, we conclude that

(de
2πi
d
kj;−1 ≤ j < d) = ω′

d(e
2πi
d
k) = (Dσd)α

(
θ′d(e

2πi
d
k)
)

holds.
One sees easily that the matrix A :=

(
d(e

2πi
d
kj)
)
0≤k<d,−1≤j<d

has maxi-
mal rank d. Indeed, the d × d submatrix of the matrix A consisting of the
last d columns of the matrix A is nonsingular, because it is the product of
a d × d nonsingular diagonal matrix by a d × d nonsingular Vandermonde

matrix. Therefore the d tangent vectors ω′
d(e

2πi
d
k), 0 ≤ k < d, of the curve

Od at the point 0 are C–linearly independent. Since (Dσd)α : Amd → Ad+1

is a C–linear map, we conclude that the d points θ′d(e
2πi
d
k), 0 ≤ k < d of the

C–linear space Amd are linearly independent too. This implies md ≥ d.

We observe that the proof of Proposition 1 implies that the local em-
bedding dimension of the curve Od at the point 0 (and hence the global
embedding dimension of Od) is at least d. We are now going to apply the
conclusion of Proposition 1 to the arithmetic circuit complexity model.

Let A := Q[U ] and Bd := Q[Ud− 1, (Ud− 1)U, . . . , (Ud− 1)Ud]. Assume
d ≥ 3. Observe that Fd =

∑
0≤j≤d(U

d − 1)U jY j belongs to the polynomial
rings A[Y ] and Bd[Y ] and that Bd is isomorphic to the coordinate ring of
the curve Od.
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For R ∈ {A,Bd} denote by LR(Fd) the minimal non–scalar size of the
totally division–free arithmetic circuits with single input Y which evaluate
the polynomial Fd using only scalars from R. In case d = 2r+1 − 1 for some
r ∈ N, one infers from the representation

Fd = (Ud − 1)
∏

0≤k≤r

(
1 + (UY )2

k)

the estimate
LA(Fd) = r + 1 = log(d+ 1)

(here by log we denote the logarithm to the base 2).
In a similar way one sees easily that LA(Fd) = O(log d) holds for ar-

bitrary d ∈ N. From the trivial lower bound LA(Fd) ≥ log d (see [BCS97,
Chapter 8, 8.1]) one deduces finally that the functions LA(Fd) and log d
have the same asymptotic growth (in symbols: LA(Fd) = Θ(log d)).

Let us now analyze LBd
(Fd). Since Fd is a polynomial of degree d in the

variable Y we deduce from [BCS97, Chapter 9, Proposition 9.1] the estimate
LBd

(Fd) ≤ 2
√
d. Let Ld := LBd

(Fd). Then there exists a totally division–
free circuit βd of non–scalar size Ld with single input Y which evaluates
the polynomial Fd using only scalars from Bd. From [BCS97, Chapter 9,
Theorem 9.9] we deduce that without loss of generality the circuit βd may

be supposed to use only md := L2
d + 2Ld + 2 scalars θ

(d)
1 , . . . , θ

(d)
md

from
Bd := Q[Ud − 1, (Ud − 1)U, . . . , (Ud − 1)Ud]. Let θd : A1 → Amd be the

polynomial map defined by θd := (θ
(d)
1 , . . . , θ

(d)
md

) and let Dd be the image
of θd. Observe that Dd is a Q–constructible subset of Amd . Again from
[BCS97, Chapter 9, Theorem 9.9] we infer that there exists a polynomial
map σd : A

md → Ad+1 which satisfies the condition

σd(θ
(d)
1 , . . . , θ(d)md

) =
(
Ud − 1, (Ud − 1)U, . . . , (Ud − 1)Ud

)
.

Thus we have σd ◦ θd = ωd and σd(Dd) = Od. Let us denote the restriction
of the polynomial map σd : Amd → Ad+1 to Dd by σd : Dd → Od. Since

θ
(d)
1 , . . . , θ

(d)
md

are polynomials in the coefficients Ud−1, (Ud−1)U, . . . , (Ud−
1)Ud of Fd ∈ Bd[Y ] we conclude that σd : Dd → Od is an unambiguous
holomorphic encoding of the object class Od. From Proposition 1 we deduce
now L2

d+2Ld +2 = md ≥ d. This implies the lower bound LBd
(Fd) = Ld ≥√

d− 2. In summary, we obtain the following complexity result:

Corollary 4 Let notations be as before. Then we have LA(Fd) = Θ(log d)
and LBd

(Fd) = Θ(
√
d).

In terms of [Hei89] this result means that the sequence of polynomials
F := (Fd)d∈N is easy to evaluate in A[Y ], whereas F becomes difficult
to evaluate if we require that for any d ∈ N the univariate polynomial
Fd ∈ Bd[Y ] has to be computed by a totally division–free arithmetic circuit
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whose scalars belong to Bd. In conclusion, the evaluation complexity of a
polynomial depends strongly on the ring of scalars admitted.

We are now going to describe another application of Proposition 1. Let

md be a natural number and let γd := (γ
(d)
1 , . . . , γ

(d)
md

) ∈ Qmd be an identifi-
cation sequence of length md for the Zariski closure Cd of the cone generated
by the object class Od in the (d+1)–dimensional C–linear subspace of poly-
nomials of C[X] having degree at most d. Observe that Cd is a Q–definable,

closed, irreducible subvariety of Ad+1. LetDd := {
(
G(γ

(d)
1 ), . . . , G(γ

(d)
md

)
)
;G ∈

Od} and let τd : Od → Dd be the bijective map defined for G ∈ Od by

τd(G) :=
(
G(γ

(d)
1 ), . . . , G(γ

(d)
md

)
)
. One sees easily that τd : Od → Dd is in-

duced by a Q–definable linear map from Ad+1 to Amd . On the other hand,
this linear map induces an injective, homogeneous morphism from the cone
Cd into the affine space Ad+1. From Lemma 5 we deduce now that this
morphism is closed with respect to the Zariski topologies of Cd and Ad+1.
Therefore Dd = τd(Od) is a closed, Q–definable, irreducible curve contained
in Amd and τd : Od → Dd is a bijective, birational morphism of Q–definable,
irreducible curves. Let σd : Dd → Od be the inverse map of τd. We consider
Dd as a Q–constructible data structure of size md and σd as an encoding by
values of the object class Od in the sense of Section 3.4. In particular σd
is a Q–definable, continuous encoding. With these notations we are able to
state the following result:

Corollary 5 Suppose that the encoding by values σd : Dd → Od is holomor-
phic. Then the size md of the data structure Dd satisfies the estimate

md ≥ d.

Proof.– Since σd and τd are inverse morphisms of Q–definable, irreducible
curves, there exists a polynomial map θd : A

1 → Amd with θd(u) = τd
(
ωd(u)

)

for any u ∈ A1. This implies θd(A
1) ⊂ Dd. Moreover we have σd ◦ θd =

σd ◦ (τd ◦ ωd) = ωd. Since σd : Dd → Od is an unambiguous Q–definable
holomorphic encoding of the object class Od, we deduce from Proposition 1
that md ≥ d holds.

Corollary 5 says that there exists a family of object classes, namely
(Od)d∈N, encoded by a single data structure of size one, namely A1, such
that any holomorphic encoding of these object classes by values becomes
necessarily large, namely of size at least d for any object class Od. Never-
theless in view of Theorem 1, the object class Od admits a continuous robust
encoding of constant length (in fact of length 2).

From Corollary 5 we infer the following general result:

Theorem 2 Let L,m be natural numbers and let γ = (γ1, . . . , γm) ∈ Qm

be an identification sequence for the object class WL,1 of all univariate
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polynomials over C which have approximative non–scalar sequential time
complexity at most L. Let D∗ := {

(
F (γ1), . . . , F (γm)

)
;F ∈ WL,1} and let

τ : WL,1 → D∗ be the bijective map defined by τ(F ) :=
(
F (γ1), . . . , F (γm)

)
.

Then D∗ is a Q–definable closed cone of Am and τ : WL,1 → D∗ is a Q–
definable, bijective, finite morphism of algebraic varieties. Let σ : D∗ →
WL,1 be the inverse map of τ . Consider D∗ as a Q–definable data structure
of size m and suppose that σ : D∗ → WL,1 is a Q–definable, holomorphic
encoding by values of the object class WL,1. Then the size m of the data
structure D∗ satisfies the estimate m ≥ 2cL for a suitable universal constant
c > 0.

Proof.– There exists a constant c′ > 0 such that L(G) ≤ c′ log d holds for
any d ∈ N and any univariate polynomial G belonging to the object class Od

(recall that L(G) denotes the non–scalar time complexity of the polynomial
G).

Let d := ⌊2 L

c′ ⌋ := max{z ∈ Z; z ≤ 2
L

c′ }. Then we have G ∈ WL,1 for
any G ∈ Od. Therefore γ is an identification sequence for the object class

Od. From Corollary 5 we deduce now m ≥ d ≥ 2
L

c′ − 1. Choose now any

constant c > 0 with 2
1
c′ − 1 ≥ 2c. Then we have m ≥ 2cL.

One proves easily a similar complexity result for multivariate polynomi-
als. This question will be reconsidered in a forthcoming paper.

4.2 Second paradigm.

Let n be a fixed natural number and let T , U1, . . . , Un and Y be indetermi-
nates over Q. Let U := (U1, . . . , Un). We are going to consider T , U1, . . . , Un
as parameters and Y as variable. In the sequel we shall use the following no-
tation: for arbitrary natural numbers i and j we shall denote by [j]i the ith
digit of the binary representation of j. Let Pn be the following polynomial
of Q[T,U, Y ]:

Pn(T,U, Y ) :=

2n−1∏

j=0

(
Y − (j + T

n∏

i=1

U
[j]i
i )

)
. (9)

We observe that the dense representation of Pn with respect to the vari-
able Y takes the form

Pn(T,U, Y ) = Y 2n +B
(n)
1 Y 2n−1 + · · ·+B

(n)
2n ,

where B
(n)
1 , . . . , B

(n)
2n are suitable polynomials of Q[T,U ].

Let 1 ≤ k ≤ 2n. In order to determine the polynomial B
(n)
k , we observe,

by expanding the right hand side of (9), that B
(n)
k collects the contribution
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of all terms of the form

k∏

h=1

(
− (jh + T

n∏

i=1

U
[jh]i
i )

)

with 0 ≤ j1 < · · · < jk ≤ 2n − 1. Therefore the polynomial B
(n)
k can be

expressed as follows:

B
(n)
k =

∑

0≤j1<···<jk<2n

k∏

h=1

(
− (jh + T

n∏

i=1

U
[jh]i
i )

)

=
∑

0≤j1<···<jk<2n

(−1)k
k∏

h=1

(
jh + T

n∏

i=1

U
[jh]i
i

)
.

Observe that for 0 ≤ j1 < · · · < jk < 2n the expression

k∏

h=1

(
jh + T

n∏

i=1

U
[jh]i
i

)

can be rewritten as:

j1 · · · jk + T
( k∑

h=1

j1 · · · ĵh · · · jk
n∏

i=1

U
[jh]i
i

)
+ terms of higher degree in T.

Therefore, we conclude that B
(n)
k has the form:

B
(n)
k =

∑

0≤j1<···<jk<2n

j1 · · · jk

+ T


 ∑

0≤j1<···<jk<2n

k∑

h=1

j1 · · · ĵh · · · jk
n∏

i=1

U
[jh]i
i




+ terms of higher degree in T.

(10)

Let us denote by L
(n)
k the coefficient of T in the representation (10),

namely:

L
(n)
k :=

∑

0≤j1<···<jk<2n

k∑

h=1

j1 · · · ĵh · · · jk
n∏

i=1

U
[jh]i
i .

We shall need the following technical result of [GH01]. In order to maintain
this paper self–contained we are going to reproduce its proof here.

Lemma 6 The polynomials L
(n)
1 , . . . , L

(n)
2n are Q-linearly independent in Q[U ].
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Proof.– Let us abbreviate N := 2n− 1 and L1 := L
(n)
1 , . . . , LN+1 := L

(n)
2n .

We observe that for 1 ≤ k ≤ N + 1 and 0 ≤ j ≤ N the coefficient ℓk,j of the

monomial
∏n
i=1 U

[j]i
i occuring in the polynomial Lk can be represented as

ℓk,j =
∑

0≤j1<···<jk−1≤N
jr 6=j for r=1,...,k−1

j1 · · · jk−1.

Claim: For fixed N and k, the coefficient ℓk,j can be written as a polynomial
expression of degree exactly k− 1 in the index j. Moreover, this polynomial
expression for ℓk,j has integer coefficients.

Proof of the Claim. We proceed by induction on the index parameter k.
For k = 1 we have ℓ1,j = 1 for any 0 ≤ j ≤ N and therefore ℓ1,j is a

polynomial of degree k − 1 = 0 in the index j.
Let 1 ≤ k ≤ N + 1. Assume inductively that ℓk,j is a polynomial of

degree exactly k−1 in the index j and that the coefficients of this polynomial
are integers. We are now going to show that ℓk+1,j is a polynomial of degree
exactly k in j and that the coefficients of this polynomial are integers too.
Observe that

ℓk+1,j =
∑

0≤j1<···<jk≤N
jr 6=j for r=1,...,k

j1 · · · jk

=
∑

0≤j1<···<jk≤N

j1 · · · jk − j

( ∑

0≤j1<···<jk−1≤N
jr 6=j for r=1,...,k−1

j1 · · · jk−1

)
.

holds. Since the term ∑

0≤j1<···<jk≤N

j1 · · · jk

does not depend on j and since by induction hypothesis

ℓk,j =
∑

0≤j1<···<jk−1≤N
jr 6=j for r=1,...,k−1

j1 · · · jk−1

is a polynomial of degree exactly k − 1 in j, we conclude that ℓk+1,j is
a polynomial of degree exactly k in j. Moreover, the coefficients of this
polynomial are integers. This proves our claim.

It is now easy to finish the proof of Lemma 6. By our claim there exist

for arbitrary 1 ≤ k ≤ N + 1 integers c
(k)
0 , · · · , c(k)k−1 with c

(k)
k−1 6= 0 such that

for any 0 ≤ j ≤ N the identity ℓk,j = c
(k)
0 + · · · + c

(k)
k−1j

k−1 holds. Hence
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for arbitrary 0 ≤ k ≤ N there exist rational numbers λ
(k)
1 , . . . , λ

(k)
k+1 (not

depending on j) such for any 0 ≤ j ≤ N the condition

jk = λ
(k)
1 ℓ1,j + · · ·+ λ

(k)
k+1ℓk+1,j

is satisfied (here we use the convention 00 := 1). This implies for any index
0 ≤ k ≤ N the polynomial identity

λ
(k)
1 L1 + · · ·+ λ

(k)
k+1Lk+1 =

∑

0≤j≤N

jk
n∏

i=1

U
[j]i
i .

Hence for any 0 ≤ k ≤ N the polynomial Qk :=
∑

0≤j≤N

jk
n∏

i=1

U
[j]i
i belongs

to the Q–vector space generated by L1, . . . , LN+1. On the other hand, we
deduce from the nonsingularity of the Vandermonde matrix

(
jk
)
0≤k,j≤N

that
the polynomials Q0, . . . , QN are Q-linearly independent. Therefore the Q–
vector space generated by L1, . . . , LN+1 in Q[U ] has dimension N + 1 = 2n.
This implies that L1, . . . , LN+1 are Q-linearly independent.

Let us now consider the object class of univariate polynomials O(n) :=
{Pn(t, u, Y ); t ∈ A1, u ∈ An} and the encoding ω(n) : A1×An → O(n) defined
for t ∈ A1, u ∈ An by ω(n)(t, u) := Pn(t, u, Y ). We are going to analyze the
object class O(n) and its encoding ω(n) in the same way as in Section 4.1.

Representing the univariate polynomials belonging to O(n) by their co-
efficients, we identify the object class O(n) with the corresponding subset
of the ambient space A2n . With this interpretation ω(n) becomes a poly-
nomial map over Q which is defined for t ∈ A1, u ∈ An by ω(n)(t, u) :=(
B

(n)
1 (t, u), . . . , B

(n)
2n (t, u)

)
. Thus ω(n) : A1 × An → O(n) is a Q–definable

holomorphic encoding of the object class O(n). Let β(n) := (β
(n)
1 , . . . , β

(n)
2n )

with β
(n)
k :=

∑
0≤j1<···<jk<2n j1 · · · jk for 1 ≤ k ≤ 2n. From (10) one de-

duces immediately that β(n) belongs to O(n) and that Pn(0, u, Y ) = Y 2n +

β
(n)
1 Y 2n−1 + · · ·+ β

(n)
2n holds for any u ∈ An. Hence the fiber (ω(n))−1(β(n))

contains the hyperplane {0} ×An of the affine space A1 ×An. This implies
that the encoding ω(n) is ambiguous and not robust.

Suppose now that there is given a Q–definable, holomorphic encoding
σ(n) : D(n) → O(n). Let us denote the size of D(n) by m(n). Suppose further-
more that there is given a Q–definable polynomial map θ(n) : A1 × An →
Am

(n)
with θ(n)(An) ⊂ D(n) and σ(n) ◦ θ(n) = ω(n). As before, we interpret

the polynomial map θ(n) as a branching–free algorithm which transforms
the encoding ω(n) into the encoding σ(n). Although the object class O(n)

admits a (non–robust) encoding of small size (i.e. small in comparison with
the embedding dimension of the object class O(n)), the requirement of ro-
bustness for the encoding σ(n) entails that the size of the data structure D(n)

must be necessarily large. This is the content of the following result.
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Proposition 2 Let notations and assumptions be as before. Suppose that
σ(n) : D(n) → O(n) is a robust, holomorphic encoding of the object class
O(n). Then the size of the data structure D(n) satisfies the estimate

m(n) ≥ 2n.

Proof.– Since σ(n) is a robust encoding we conclude that (σ(n))−1(β(n))
is a nonempty finite subset of D(n). From {0} × An ⊂ (ω(n))−1(β(n)) and
ω(n) = σ(n)◦θ(n) we infer θ(n)({0}×An) ⊂ (σ(n))−1(β(n)). Since (σ(n))−1(β(n))
is finite and {0}×An irreducible there exists a point α ∈ (σ(n))−1(β(n)) with

θ(n)({0}×An) = {α}. Let u be arbitrary point of An and let γu : A1 → Am
(n)

and δu : A1 → A2n be the polynomial maps defined for t ∈ A1 by γu(t) :=
θ(n)(t, u) and δu(t) := ω(n)(t, u). Then we have γu(0) = α, δu(0) = β(n) and
σ(n) ◦ γu = δu. From (10) we deduce now

(
L
(n)
1 (u), . . . , L

(n)
2n (u)

)
=

∂

∂t
ω(n)(0, u) = δ′u(0) = (Dσ(n))α

(
γ′u(0)

)
.

Lemma 6 implies that there exist points u1, . . . , u2n ∈ An such that the (2n×
2n)–matrix

(
L
(n)
i (uj)

)
1≤i,j≤2n

is nonsingular. Therefore δ′u1(0), . . . , δ
′
u2n

(0)

are linearly independent elements of theC–vector space A2n . Since (Dσ(n))α :

Am
(n) → A2n is a C–linear map, we conclude that γ′u1(0), . . . , γ

′
u2n

(0) are

linearly independent elements of the C–linear space Am
(n)

. This implies
m(n) ≥ 2n.

We observe that the proof of Proposition 2 implies that the local em-
bedding dimension of the closed algebraic variety O at the point β(n) (and
hence the global embedding dimension of O(n)) is exactly 2n.

Let B(n) := Q[B
(n)
1 , . . . , B

(n)
2n ] and let us denote by LB(n)(Pn) the mini-

mal non–scalar size of the totally division–free arithmetic circuit with single
input Y which evaluates the polynomial Pn using only scalars belonging to
the Q–algebra B(n). In the same way as in Section 4.1 we may deduce from
Proposition 2 the following result:

Corollary 6 With the notations introduced before we have

LB(n)(Pn) = Θ(2
n
2 ).

Corollary 6 says that the sequence of polynomials (Pn)n∈N becomes hard
to evaluate, if we require that for any n ∈ N the univariate polynomial
Pn ∈ B(n)[Y ] has to be evaluated by a totally division–free arithmetic circuit
whose scalars belong only to the Q–algebra B(n).
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4.3 Rationality considerations.

In this section we motivate the algorithmic model used in Sections 4.1 and
4.2 for the algorithmic transformation of encodings of a given object class.
For this purpose we are going to discuss the effect of certain rationality
conditions on the encoding of an object class. Our first rationality condition
requires to fix not only the ground field, namely Q, but also its algebraic
closure, namely C.

Let be given a data structure D and an object class O and suppose
that D and O are Q–constructible subsets of the ambient spaces AL and
AN respectively. Let be given an encoding ω : D → O and suppose that
ω is Q–definable and holomorphic. Let us denote by m the maximal local
embedding dimension of the Q–Zariski closure O of the object class O at any
point of O (i.e. m is the maximal C–vector space dimension of the Zariski
tangent space of the algebraic variety O at any point).

The first rationality condition we are going to consider is the following:

for any object β = (β1, . . . , βN ) ∈ O there exists a code α = (α1, . . . , αL) ∈
ω−1(β) with α1, . . . , αL ∈ Q[β].

Suppose now that ω satisfies this rationality condition, that D and O are
Q–definable closed subvarieties of AL and AN and that O is Q–irreducible.
Since the transcendence degree of C over Q is infinite, there exists a generic
element b = (b1, . . . , bN ) of O such that the canonical specialization of the
coordinate ring Q[O] of the irreducible algebraic variety O onto Q[b] is in-
jective. Therefore we have Q[O] ∼= Q[b]. By hypothesis there exists a code
a = (a1, . . . , aL) ∈ ω−1(b) with a1, . . . , aL ∈ Q[b]. Denote by Y1, . . . , YN the
coordinate functions of the affine space AN . Then there exist polynomials
ψ1, . . . , ψL ∈ Q[Y1, . . . , YN ] with ak = ψk(b1, . . . , bN ) for 1 ≤ k ≤ L.

Since O and D are closed subvarieties of AN and AL respectively, this
implies that ψ := (ψ1, . . . , ψL) induces a Q–definable morphism of algebraic
varieties which mapsO into D and which we denote by ψ : O → D. Moreover
we have ω ◦ ψ = idO. Therefore for any β ∈ O the C–linear map Tψ(β)(ω) :
Tψ(β)(D) → Tβ(O) is surjective (here Tψ(β)(D) and Tβ(O) denote the Zariski
tangent spaces of the algebraic varieties D and O at the points ψ(β) and
β respectively and Tψ(β)(ω) denotes the tangent map induced by ω at the
point ψ(β)).

Since the object class O is irreducible and Zariski closed in AN , we may
choose a point β0 ∈ O with dimCTβ0(O) = m (here dimCTβ0(O) denotes
the C–vector space dimension of the Zariski tangent space Tβ0(O)). Since
Tψ(β0)(ω) : Tψ(β0)(D) → Tβ0(O) is a surjective C–linear map, we conclude
L ≥ dimCTψ(β0)(D) ≥ m. Therefore any encoding of the data structure Od

of Section 4.1 or of the data structure O(n) of Section 4.2 which satisfies the
rationality condition above has at least size d or size 2n respectively.
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Now we are going to discuss a second rationality condition which comes
much closer to the usual requirements in the design of practical algorithms.
For the sake of succinctness of exposition we shall omit proofs (they are
based on Hilbert’s Irreducibility Theorem and Lüroth’s Theorem and will
be published in forthcoming paper).

Informally, we may state our second rationality requirement as follows:

suppose that the object class O contains “many” integer objects (i.e. points
which belong to ZN). Then there exist “sufficiently many” integer objects
of O such that for each such object O ∈ O ∩ ZN there exists an integer
code D ∈ D ∩ ZL with ω(D) = O. In order to guarantee the existence
of sufficiently many integer objects in O we require that there is given an
encoding ω∗ : AL

∗ → O of the object class O such that ω∗ is definable by
polynomials with integer coefficients. Thus ω∗ maps integer codes of AL

∗

onto integer objects of O.

For technical reasons we shall need the following additional assumptions:

we suppose that D is a Q–definable, Q–irreducible subvariety of AL and
that the given encoding ω : D → O is definable by polynomials with integer
coefficients. This implies that the closed subvariety O of AN is Q–definable
and Q–irreducible too. Moreover we suppose dimD = dimO. Therefore
there exists a Zariski open subset of O which is contained in O = ω(D),
such that each point of this subset has a nonempty, finite ω–fiber. With
these notations and assumptions we are able to state the following result:

Proposition 3 Suppose that there exists a nonempty Q–definable, Zariski
open subset U of AL

∗

with the following property: for any code D∗ ∈ U ∩ZL
∗

there exists a code D ∈ D ∩ ZL with ω∗(D∗) = ω(D).
Then there exists a Q–definable morphism θ : AL

∗ → D and a subset U0

of U ∩ ZL
∗

such that the following conditions are satisfied:

(i) U0 is Zariski–dense in AL
∗

.

(ii) ω ◦ θ = ω∗.

(iii) θ(D∗) ∈ D ∩ ZL for any D∗ ∈ U0.

Suppose additionally L∗ := 1 and that the leading coefficients of all noncon-
stant polynomials occurring in the definition of ω∗ have greatest common
divisor one. Suppose furthermore that for any integer object O ∈ O ∩ ZN

there exists an integer code D ∈ D∩ZL with O = ω(D). Then ω is a robust
encoding.

We may paraphrase the first part of Proposition 3 as follows:

if the encoding ω : D → O admits for any object of O, which allows an
integer encoding by ω∗, an integer encoding by ω, then the encoding ω∗
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may be transformed into the encoding ω by means of an algorithm in the
sense of Sections 4.1 and 4.2. This motivates the notion of (branching–free)
algorithm which we introduced before and which we shall continue to use in
the remaining part of this paper.

The second part of Proposition 3 says roughly the following: if a given Q–
definable holomorphic encoding of an infinite object class by a data structure
of size one satisfies our second rationality condition, then this encoding is
necessarily robust. Therefore the paradigm of Section 4.1 is representative
for this type of encodings.

5 The complexity of elimination algorithms.

5.1 Flat families of zero–dimensional elimination problems.

Let, as before, k be an infinite and perfect field with algebraic closure k̄
and let U1, . . . , Ur,X1, . . . ,Xn, Y be indeterminates over k. In the sequel we
shall consider X1, . . . ,Xn and Y as variables and U1, . . . , Ur as parameters.
Let U := (U1, . . . , Ur) and X := (X1, . . . ,Xn) and let G1, . . . , Gn and F be
polynomials belonging to the k-algebra k[U,X] := k[U1, . . . , Ur,X1, . . . ,Xn].
Suppose that the polynomials G1, . . . , Gn form a regular sequence in k[U,X]
defining thus an equidimensional subvariety V := {G1 = 0, . . . , Gn = 0} of
the (r + n)–dimensional affine space Ar × An. The algebraic variety V has
dimension r. Let δ be the (geometric) degree of V (observe that this de-
gree does not take into account multiplicities or components at infinity).
Suppose furthermore that the morphism of affine varieties π : V → Ar,
induced by the canonical projection of Ar ×An onto Ar, is finite and gener-
ically unramified (this implies that π is flat and that the ideal generated
by G1, . . . , Gn in k[U,X] is radical). Let π̃ : V → Ar+1 be the morphism
defined by π̃(z) := (π(z), F (z)) for any point z of the variety V . The image
of π̃ is a hypersurface of Ar+1 whose minimal equation is a polynomial of
k[U, Y ] := k[U1, . . . , Ur, Y ] which we denote by P . Let us write degP for
the total degree of the polynomial P and degY P for its partial degree in the
variable Y . Observe that P is monic in Y and that degP ≤ δ degF holds.
Furthermore, for a Zariski dense set of points u of Ar, we have that degY P
is the cardinality of the image of the restriction of F to the finite set π−1(u).
The polynomial P (U,F ) vanishes on the variety V .

Let us consider an arbitrary point u := (u1, . . . , ur) of A
r. For arbitrary

polynomials A ∈ k[U,X] and B ∈ k[U, Y ] we denote by A(u) and B(u) the
polynomials A(u1, . . . , ur,X1, . . . ,Xn) and B(u1, . . . , ur, Y ) which belong to
k(u)[X] := k(u1, . . . , ur)[X1, . . . ,Xn] and k(u)[Y ] := k(u1, . . . , ur)[Y ] re-
spectively. Similarly we denote for an arbitrary polynomial C ∈ k[U ] by
C(u) the value C(u1, . . . , ur) which belongs to the field k(u) := k(u1, . . . , ur).

The polynomials G
(u)
1 , . . . , G

(u)
n define a zero dimensional subvariety V (u) :=
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{G(u)
1 = 0, . . . , G

(u)
n = 0} = π−1(u) of the affine space An. The degree (i.e.

the cardinality) of V (u) is bounded by δ. Denote by π̃(u) : V (u) → A1 the
morphism induced by the polynomial F (u) on the variety V (u). Observe
that the polynomial P (u) vanishes on the (finite) image of the morphism
π̃(u). Observe also that the polynomial P (u) is not necessarily the minimal
equation of the image of π̃(u).

We call the equation system G1 = 0, . . . , Gn = 0 and the polynomial
F a flat family of zero–dimensional elimination problems depending on the
parameters U1, . . . , Ur and we call P the associated elimination polynomial.
An element u ∈ Ar is considered as a parameter point which determines
a particular problem instance. The equation system G1 = 0, . . . , Gn = 0
together with the polynomial F is called the general instance of the given flat
family of elimination problems and the elimination polynomial P is called
the general solution of this flat family. A branching–free algorithm which
in terms of suitable data structures computes from a given representation
of the general problem instance G1 = 0, . . . , Gn = 0, F a representation of
its general solution P is called a Kronecker–like elimination procedure (see
Section 1.2).

The particular problem instance determined by the parameter point u ∈
Ar is given by the equations G

(u)
1 = 0, . . . , G

(u)
n = 0 and the polynomial F (u).

The polynomial P (u) is called a solution of this particular problem instance.
We call two parameter points u, u′ ∈ Ar equivalent (in symbols: u ∼ u′) if

G
(u)
1 = G

(u′)
1 , . . . , G

(u)
n = G

(u′)
n and F (u) = F (u′) holds. Observe that u ∼ u′

implies P (u) = P (u′). We call polynomials A ∈ k[U,X], B ∈ k[U, Y ] and
C ∈ k[U ] invariant (with respect to ∼) if for any two parameter points u, u′

of Ar with u ∼ u′ the respective identities A(u) = A(u′), B(u) = B(u′) and
C(u) = C(u′) hold.

Let us consider the set of parameter points of Ar as data structure

which encodes the object class O := {(G(u)
1 , . . . , G

(u)
n , F (u));u ∈ Ar}. The

corresponding encoding ω : Ar → O is defined for u ∈ Ar by ω(u) :=

(G
(u)
1 , . . . , G

(u)
n , F (u)). Observe that ω is Q–definable and holomorphic. Let

D∗ be a k–constructible data structure of size L∗ which encodes the ob-
ject class O∗ := {P (u);u ∈ Ar} by means of a given k–definable, holo-
morphic encoding ω∗ : D∗ → O∗. Let us consider O as input and O∗

as output object class of a given branching–free Kronecker–like elimination
procedure. Suppose that this elimination procedure is determined by poly-
nomials θ1, . . . , θL∗ ∈ k[U ] such that θ := (θ1, . . . , θL∗) induces a k–definable
map from Ar into D∗ which we denote by θ : Ar → D∗. This means that for
any parameter point u ∈ Ar, the given elimination procedure, which we de-
note also by θ, satisfies the condition ω∗

(
θ(u)

)
= P (u). Suppose furthermore

that the elimination procedure θ is totally division–free (this means that the
general solution P of the given elimination problem belongs to k[θ][Y ]; see
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Section 2.2). We call θ invariant (with respect to the equivalence relation
∼) if θ1, . . . , θL∗ are invariant polynomials. The invariance of the elimina-
tion procedure θ means that for any input code u ∈ Ar the code θ(u) ∈ D∗

of the corresponding output object P (u) depends only on the input object,

namely (G
(u)
1 , . . . , G

(u)
n , F (u)) ∈

(
k(u)[X]

)n+1
and not on its particular rep-

resentation u. Said otherwise, an invariant elimination procedure produces
the solution of a particular problem instance in a way which is independent
of the possibly different representations of the given problem instance.

Since all known Kronecker–like elimination procedures produce for flat
families of zero–dimensional elimination problems a branching and totally
division–free representation of the output polynomial, and since they are
based on the manipulation of the input objects (and not on their particu-
lar representations) by means of linear algebra or comprehensive Gröbner
basis techniques, we conclude that these algorithms are in fact invariant
elimination procedures.

Typical examples of such procedures are furnished by black–box algo-
rithms. With the notations introduced before, we call the elimination pro-
cedure θ a black–box algorithm if for any input code u ∈ Ar, the procedure

θ calls only for evaluations of the input object (G
(u)
1 , . . . , G

(u)
n , F (u)) on spe-

cializations of the variables X1, . . . ,Xn to assignment values which belong
to suitable commutative k[u]–algebras.

A (branching–parsimonious) computer program for elimination tasks
which calls its input polynomials only by their specification as evaluation
procedures, represents necessarily a black–box algorithm.

We are now going to introduce a slight generalization of the notion of
invariance of the elimination procedure θ.

Let Dθ :=
{(
ω(u), θ(u)

)
;u ∈ Ar

}
and let ωθ : Dθ → O be the canonical

first projection of Dθ onto the object class O. One verifies immediately that
Dθ is a Q–definable data structure and that ωθ is a Q–definable holomorphic
encoding of the object class O. Observe that Dθ and O are irreducible closed
subvarieties of their corresponding affine ambient spaces.

Definition 4 Let notations and assumptions be as before. We call the elim-
ination procedure θ robust if the following condition is satisfied:

let u ∈ Ar be a given parameter point determining the input object

(G
(u)
1 , . . . , G

(u)
n , F (u)) ∈ O and let mu be the maximal defining ideal of this

input object in C[O]. Then the local ring C[Dθ]mu is a finite C[O]mu–module.

In other words, the elimination procedure θ is robust if and only if ωθ is
a robust holomorphic encoding.

Observe that an invariant elimination procedure is robust.
If θ is a robust elimination procedure, then one sees easily that the

following condition is satisfied:
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(i) for any parameter point u ∈ Ar, the set

{θ(v); v ∈ Ar, G
(v)
1 = G

(u)
1 , . . . , G(v)

n = G(u)
n , F (v) = F (u)}

is finite.

In case k := Q and k := C, one deduces easily from Lemma 3 that
Definition 4 is equivalent to the following condition:

(ii) let (ui)i∈N be a sequence of parameter points of Ar encoding a sequence

of input objects
(
(G

(ui)
1 , . . . , G

(ui)
n , F (ui))

)
i∈N

. Suppose that there exists

a parameter point u ∈ Ar such that (G
(u)
1 , . . . , G

(u)
n , F (u)) ∈ O is an

limit point of the sequence of input objects
(
(G

(ui)
1 , . . . , G

(ui)
n , F (ui))

)
i∈N

(with respect to the strong topology). Then the sequence (θ(ui))i∈N has
an accumulation point.

Observe that condition (ii) gives an intuitive meaning to the technical
Definition 4.

5.2 Parametric greatest common divisors and their compu-

tation.

Let us now introduce the notion of parametric greatest common divisor of a
given algebraic family of polynomials and let us consider the corresponding
algorithmic problem. We are going to use the same notations as in Sections
2.2 and 5.1.

Suppose that there is given a positive number s of nonzero polynomials,
say B1, . . . , Bs ∈ k[U1, . . . , Ur, Y ]. Let V := {B1 = 0, . . . , Bs = 0}. Suppose
that V is nonempty. We consider now the morphism of affine varieties
π : V −→ Ar, induced by the canonical projection of Ar × A1 onto Ar. Let
S be the Zariski closure of π(V ) and suppose that S is an irreducible closed
subvariety of Ar. Let us denote by k[S] the coordinate ring of S. Since S is
irreducible we conclude that k[S] is a domain with a well defined function
field which we denote by k(S).

Let b1, . . . , bs ∈ k[S][Y ] be the polynomials in the variable Y with coef-
ficients in k[S], induced by B1, . . . , Bs. Suppose that there exists an index
1 ≤ k ≤ s with bk 6= 0. Without loss of generality we may suppose that for
some index 1 ≤ q ≤ s the polynomials b1, . . . , bq are exactly the non–zero
elements of b1, . . . , bs. Observe that each polynomial b1, . . . , bq has positive
degree (in the variable Y ).

We consider b1, . . . , bq as an algebraic family of polynomials (in the vari-
able Y ) and B1, . . . , Bq as their representatives. The polynomials b1, . . . , bq
have in k(S)[Y ] a well defined normalized (i.e. monic) greatest common
divisor, which we denote by h. Let D be the degree of h (with respect to
the variable Y ).
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We are now going to describe certain geometric requirements which will
allow us to consider h as a parametric greatest common divisor of the alge-
braic family of polynomials b1, . . . , bq.

Our first requirement is D ≥ 1. Moreover we require that for any point
u ∈ S and any place ϕ : k(S) → k ∪ {∞}, whose valuation ring contains
the local ring of the variety S at the point u, the values of the coefficients
of the polynomial h ∈ k(S)[Y ] under ϕ are finite and uniquely determined
by the point u. In this way the place ϕ maps the polynomial h to a monic
polynomial of degree D in Y with coefficients in k. This polynomial de-
pends only on the point u ∈ S and we denote it therefore by h(u)(Y ). In
analogy with this notation we write bk(u)(Y ) := Bk(u)(Y ) for 1 ≤ k ≤ q.
Since h is monic one concludes easily that h(u)(Y ) divides the polynomials
b1(u)(Y ), . . . , bq(u)(Y ) (and hence their greatest common divisor if not all
of them are zero).

We say that a polynomial H of k(U1, . . . , Ur)[Y ] with degYH = D repre-
sents the greatest common divisor h ∈ k(S)[Y ] if the coefficients of H with
respect to the variable Y induce well–defined rational functions of the vari-
ety S and if these rational functions are exactly the coefficients of h (with
respect to the variable Y ).

Suppose now that the polynomials B1, . . . , Bs ∈ k[U1, . . . , Ur, Y ] satisfy
all our requirements for any point u ∈ S. Then we say that for the al-
gebraic family of polynomials b1, . . . , bq ∈ k(S)[Y ] a parametric common
divisor exists and we call h ∈ k(S)[Y ] the parametric greatest common di-
visor of b1, . . . , bq. Any polynomial H ∈ k(U1, . . . , Ur)[Y ] which represents
h is said to represent the parametric greatest common divisor associated to
the polynomials B1, . . . , Bs.

A monic squarefree polynomial ĥ ∈ k(S)[Y ] with the same zeroes as h in
an algebraic closure of k(S), is called the generically squarefree parametric
greatest common divisor of the algebraic family b1, . . . , bq ∈ k[S][Y ] if ĥ sat-
isfies the requirements imposed above on h. In this case we say that for the
algebraic family of polynomials b1, . . . , bq ∈ k[S][Y ] a generically squarefree
parametric greatest common divisor exists. The notion of a representative
of ĥ is defined in the same way as for h.

Let us consider Ar as input data structure of size r with S the set of
admissible input instances and let us consider the problem of computing the
parametric greatest common divisor h by means of an essentially division–
free algorithm for any admissible input instance u ∈ S.

Such an algorithm, with output data structure of size m, is represented
by m rational functions θ1, . . . , θm ∈ k(S) such that the parametric greatest
common divisor h belongs to the k–algebra k[θ1, . . . , θm][Y ]. Recall that our
assumptions on h imply that for any input instance u ∈ S the polynomial
h(u)(Y ) ∈ k[Y ] is well defined. Consequently we shall require that for any
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input instance u ∈ S and any place ϕ : k(S) → k ∪ {∞}, whose valua-
tion ring contains the local ring of the variety S at the point u, the values
ϕ(θ1), . . . , ϕ(θm) are finite and uniquely determined by the input instance
u. If this requirement is satisfied we shall say that our algorithm computes
the parametric greatest common divisor h of the algebraic family of poly-
nomials b1, . . . , bq for any admissible input instance u ∈ S. Observe that in
this case the rational functions θ1, . . . , θm belong to the integral closure of
k[S] in k(S).

In concrete situations it is reasonable, however not required by the math-
ematical arguments we will apply in this paper, to include the following
items in the notion of an algorithm which computes the parametric greatest
common divisor h of the algebraic family of polynomials b1, . . . , bq:

• an explicit representation of the rational functions θ1, . . . , θm by nu-
merator and denominator polynomials belonging to k[U1, . . . , Ur],

• an explicit definition of the closed subvariety S of Ar by polynomials
belonging to k[U1, . . . , Ur].

The numerator and denominator polynomials representing the rational func-
tions θ1, . . . , θm and the polynomials of k[U1, . . . , Ur] defining the closed va-
riety S should then be holomorphically encoded by a suitable data structure.

If there exists for the algebraic family of polynomials b1, . . . , bq a gener-

ically squarefree parametric greatest common divisor ĥ, we shall apply the
same terminology to any essentially division–free algorithm which computes
ĥ.

5.3 A particular flat elimination problem.

Changing slightly the notations of Section 5.1 put now r := n+1, T := Un+1,
U := (U1, . . . , Un). Let us consider the following polynomials of Q[T,U,X]:

G1 := X2
1 −X1, . . . , Gn := X2

n −Xn,

Fn :=
n∑

i=1

2i−1Xi + T

n∏

i=1

(
1 + (Ui − 1)Xi

)
. (11)

It is clear from their definition that the polynomials G1, . . . , Gn and F
can be evaluated by a totally division–free arithmetic circuit β of size O(n)
in Q[T,U,X]. Observe that the polynomials G1, . . . , Gn do not depend on
the parameters T,U1, . . . , Un and that their degree is two. The polynomial
Fn is of degree 2n+ 1. More precisely, we have degX Fn = n, degU Fn = n,
and degT Fn = 1. Although the polynomial Fn may be evaluated by a
totally division–free circuit of size O(n), the sparse representation of Fn, as
a polynomial over Q in the variables T,U1, . . . , Un,X1, . . . ,Xn, contains 3

n

54



nonzero monomial terms and, as a polynomial over Q[T,U1, . . . , Un] in the
variables X1, . . . ,Xn, it contains 2

n nonzero terms.

Let us now verify that the polynomials G1, . . . , Gn and Fn form a flat
family of elimination problems depending on the parameters T,U1, . . . , Un.

The variety V := {G1 = 0, . . . , Gn = 0} is nothing but the union of 2n

affine linear subspaces of An+1 × An, each of them of the form An+1 × {ξ},
where ξ is a point of the hypercube {0, 1}n. The canonical projection An+1×
An → An+1 induces a morphism π : V → An+1 which glues together the
canonical projections An+1 × {ξ} → An+1 for any ξ in {0, 1}n. Obviously
the morphism π is finite and unramified. In particular π has constant fibres
which are all canonically isomorphic to the hypercube {0, 1}n.

Let (j1, . . . , jn) be an arbitrary point of {0, 1}n and let j :=
∑

1≤i≤n ji2
i−1

be the integer 0 ≤ j < 2n whose bit representation is jnjn−1 . . . j1. One ver-
ifies immediately the identity

Fn(T,U1, . . . , Un, j1, . . . , jn) = j + T

n∏

i=1

U
ji
i .

Therefore for any point (t, u1, . . . , un, j1, . . . , jn) ∈ V with j :=
∑n

i=1 ji2
i−1

we have

Fn(t, u1, . . . , un, j1, . . . , jn) = j + t

n∏

i=1

u
ji
i .

From this observation we deduce easily that the elimination polynomial
associated with the flat family of zero–dimensional elimination problems
determined by the polynomials G1, . . . , Gn and F is in fact the polynomial

Pn =

2n−1∏

j=0

(Y − (j + T

n∏

i=1

Ui
[j]i))

of Section 4.2. With the notations of Section 4.2, this polynomial has the
form

Pn = Y 2n +
∑

1≤k≤2n B
(n)
k Y 2n−k

≡ Y 2n +
∑

1≤k≤2n(β
(n)
k + TL

(n)
k )Y 2n−k modulo T 2,

(12)

with β
(n)
k :=

∑
1≤j1<···<jk<2n j1 · · · jk for 1 ≤ k ≤ 2n.

Let us consider

On :=
{
F

(t,u)
n ; t ∈ A1, u := (u1, . . . , un) ∈ An,

F
(t,u)
n :=

∑n
i=1 2

i−1Xi + t
∏n
i=1

(
1 + (ui − 1)Xi

)}

as input object class of our flat family of zero–dimensional elimination
problems, the affine space A1 × An as input data structure and the map
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ωn : A1 × An → On defined for (t, u) ∈ A1 × An by ωn(t, u) := F
(t,u)
n as a

Q–definable holomorphic encoding of the input object class On.

Let us consider the set of univariate polynomials

O∗
n :=

{
P

(t,u)
n ; t ∈ A1, u := (u1, . . . , un) ∈ An,

P
(t,u)
n :=

∏2n−1
j=0

(
Y − (j + t

∏n
i=1 ui

[j]i)
)}

as output object class and let be given a Q–constructible output data struc-
ture D∗

n of size m∗
n and a Q–definable, holomorphic encoding ω∗

n : D∗
n → O∗

n.
Finally let be given a totally division–free elimination procedure θn : A1 ×
An → D∗

n (in the sense of Section 5.1) which solves the zero–dimensional
elimination problem determined by the polynomials G1, . . . , Gn and Fn. Ob-
serve that the size of our input data structure is n+ 1. With this notations
we have the following result:

Theorem 3 Assume that the elimination procedure θn is robust in the sense
of Definition 4. Then the size m∗

n of the output data structure D∗
n satisfies

the estimate
m∗
n ≥ 2n.

Proof.– Since the arguments of this proof are similar to those used in
Section 4.2, we shall be concise in our presentation.

Representing the univariate polynomials belonging to O∗
n by their coef-

ficients we may identify the output object class O∗ with the corresponding
subset of the ambient space A2n . With this interpretation the encoding
ω∗
n : D∗ → O∗ becomes induced by a polynomial map from the affine space

Am
∗

n to the affine space A2n . Therefore ω∗
n◦θn : An+1 → A2n is a polynomial

map too.
Let fn :=

∑n
i=1 2

i−1Xi, let

βn := (β
(n)
1 , . . . , β

(n)
2n ) =


 ∑

1≤j1≤···≤jk<2n

j1 · · · jk




1≤k≤2n

and let u be an arbitrary point of An. From (11) and (12) we deduce

F
(0,u)
n = fn and P

(0,u)
n = Y 2n + β

(n)
1 Y 2n−1 + · · · + β

(n)
2n . In particular we

have βn = ω∗
n

(
θn(0, u)

)
. This implies that the fiber (ω∗

n ◦θn)−1(βn) contains
the hypersurface {0} ×An of the affine space A1 ×An. Moreover, since the
elimination algorithm θn is robust, we deduce from condition (i) of Section

5.1 and from F
(0,u)
n = fn that there are only finitely many possible values for

θn(0, u). More precisely, the set {θn(0, v); v ∈ An} is finite. Since {0} × An

is irreducible we conclude now that there exists an output code α ∈ D∗

with θn({0} × An) = {α}. From {0} × An ⊂ (ω∗
n ◦ θn)−1(βn) we deduce

ω∗
n(α) = βn.
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Let γu : A1 → Am
∗

n and δu : A1 → A2n be the polynomial maps defined
for t ∈ A1 by γu(t) := θn(t, u) and δu(t) := ω∗

n

(
θn(t, u)

)
. We have γu(0) := α,

δu(0) = βn and ω∗
n ◦ γu = δu.

The following argumentation is exactly the same as in the proof of Propo-
sition 2 of Section 4.2. First we deduce from (12) that

(
L
(n)
1 (u), . . . , L

(n)
2n (u)

)
= δ′u(0) = (Dω∗

n)α
(
γ′u(0)

)

holds. Then we infer from Lemma 6 that there exist points u1, . . . , u2n ∈ An

such that the (2n × 2n)–matrix
(
L
(n)
i (uj)

)
1≤i,j≤2n

is nonsingular. This im-

plies that δ′u1(0), . . . , δ
′
u2n

(0) are linearly independent elements of the C–

vector space A2n . Since (Dω∗
n)α : Am

∗

n → A2n is a C–linear map, we
conclude that γ′u1(0), . . . , γ

′
u2n

(0) are linearly independent elements of the

C–linear space Am
∗

n and finally that m∗
n ≥ 2n holds.

Suppose that there is given a procedure P which finds for suitable en-
codings of input and output objects the solution for each instance of any
flat family of zero–dimensional elimination problems. Suppose furthermore
that the procedure P, applied to any flat family of zero–dimensional elimi-
nation problems produces a robust (e.g. black box) algorithm in the sense
of Section 5.1 and that P can be applied to the encoding ω : A1 ×An → On

of the input object class of the flat family of zero–dimensional elimination
problems (11). Then Theorem 3 implies that P requires exponential sequen-
tial time on infinitely many inputs. On the other hand one sees easily that
there do exist single exponential time procedures of this kind (see [GH01,
Section 3.4] and the references cited there). Therefore the sequential time
complexity of zero–dimensional (parametric) elimination performed by this
kind of procedures is intrinsically exponential. Observe in particular that
this conclusion is valid for suitable circuit encodings of input and output
objects (see [HMPW98, Theorem 1] and [GH01, Theorem 2]).

The sparse encoding of the object class On, defined by the polynomial
Fn =

∑n
i=1 2

i−1Xi + T
∏n
i=1

(
1 + (Ui − 1)Xi

)
, is of size 3n. Therefore, from

the point of view of “classical” parametric (i.e. branching–free) elimina-
tion procedures (based on the sparse or dense encoding of polynomials by
their coefficients), it is not surprising that the sequential time becomes ex-
ponential in n for the computation of the solution of the general problem
instance (11), even if we change the data structure representing the output
objects (see e.g. [GH93] and [KP94], [KP96] for this type of change of data
structures).

Let us therefore look at the following flat family of zero–dimensional
elimination problems G̃1, . . . , G̃3n−1, F̃ ∈ Q[T,U1, . . . , Un,X1, . . . ,X3n−1] in
the parameters T,U1, . . . , Un and the variables X1, . . . ,X3n−1. This family
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contains only sparse polynomials of at most four monomial terms:

G̃1 := X2
1 −X1, . . . , G̃n := X2

n −Xn,

G̃n+1 := Xn+1 − 21X2 −X1,

G̃n+2 := Xn+2 −Xn+1 − 22X3,
...

G̃2n−1 := X2n−1 −X2n−2 − 2n−1Xn

G̃2n := X2n − U1X1 +X1 − 1 = X2n −
(
1 + (U1 − 1)X1

)
,

G̃2n+1 := X2n+1 − U2X2nX2 +X2nX2 −X2n

= X2n+1 −X2n

(
1 + (U2 − 1)X2

)
,

...

G̃3n−1 := X3n−1 − UnX3n−2Xn +X3n−2Xn −X3n−2

= X3n−1 −X3n−2

(
1 + (Un − 1)Xn

)

F̃n := X2n−1 + TX3n−1.

One sees easily that the solution of the general problem instance
G̃1 = 0, . . . , G̃3n−1 = 0, F̃n is again the polynomial Pn ∈ Q[T,U, Y ] of Sec-
tion 4.2. The polynomials G̃1, . . . , G̃3n−1, F̃n determine, with the notations
of Section 5.1, the input object class

Õn :=
{(
G̃

(t,u)
1 , . . . , G̃

(t,u)
3n−1, F̃

(t,u)
n

)
; (t, u) ∈ A1 × An

}

and the encoding ω̃n : A1 × An → Õn which for t ∈ A1, u ∈ An is defined

by ω̃n(t, u) :=
(
G̃

(t,u)
1 , . . . , G̃

(t,u)
3n−1, F̃

(t,u)
n

)
. Since these polynomials contain

altogether exactly 9n−3 monomials in the variables X1, . . . ,X3n−1, we may
consider the input object class Õn as a Q–constructible subset of the affine
space A9n−3. With this interpretation, the encoding ω̃n : A1 × An → Õn

becomes Q–definable and holomorphic. Applying to this situation the same
argumentation as in the proof of Theorem 3 we conclude again that any
branching– and totally division–free, robust elimination procedure, which
finds from any input code (t, u) ∈ A1 × An the code of the output object

P
(t,u)
n in a given data structure, requires an output data structure of size at

least 2n.

Let us turn back to the polynomial Fn =
∑n

i=1 2
i−1Xi+T

∏n
i=1

(
1+(Ui−

1)Xi

)
of (11), to the object class On :=

{
F

(t,u)
n ; t ∈ A1, u := (u1, . . . , un) ∈

An
}
defined by Fn and to its encoding ωn := A1×An → On. Since the poly-

nomial Fn contains in the variables X1, . . . ,Xn exactly 2n nonzero monomial
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terms we may consider On as a Q–constructible subset of the affine space
A2n and ωn := A1 × An → On as Q–definable, holomorphic encoding of
the object class On. One sees easily that On is a closed, irreducible and
Q–definable subvariety of A2n and that ωn induces a robust encoding of the
object class On \{

∑n
i=1 2

i−1Xi} by the data structure A1×An \
(
{0}×An

)
.

On the other hand {0}×An is an exceptional fiber of the morphism of alge-
braic varieties ωn : A1 ×An → On. Therefore the encoding ωn of the object
class On is not robust. On the other hand, by similar arguments as in Sec-
tion 4.2, we may show that any robust encoding of On has size at least 2n.
Therefore Theorem 3 says only that any branching– and totally division–
free robust elimination procedure necessarily transfers a certain obstruction
hidden in the given encoding of the input object Fn to the encoding of the
output object Pn.

However, Theorem 3 does not say that the process of elimination creates
a genuine complexity problem for the encoding of the output object. In
particular we are not able to deduce from Theorem 3 that the sequence of
polynomials (Pn)n∈N is hard to evaluate. In fact, for n ∈ N the polynomial
Pn admits a short, Q–definable, holomorphic encoding by the data structure
A1 ×An and the sequence of polynomials (Pn)n∈N may in principle be easy
to evaluate. However, in the latter case, no branching– and totally division–
free, robust elimination procedure will be able to discover this fact.

5.4 The hardness of universal elimination.

In this section we are going to show the second main result of this pa-
per, namely Theorem 4 below, which says that there exists no universal
polynomial sequential time elimination algorithm P satisfying the following
condition:

P is able to compute equations for the Zariski closure of any given con-
structible set and the generically square–free parametric greatest common
divisor of any given algebraic family of univariate polynomials (see Sections
2.2 and 5.1 for the computational model).

The following considerations are devoted to the precise statement and
the proof of Theorem 4 below.

Let us suppose again k := Q and k := C. Let n be a fixed natu-
ral number, let m(n) := 4n + 10 and let T,U1, . . . , Un,X1, . . . ,Xn and
S1, . . . , Sm(n), Y be indeterminates over Q. Let U := (U1, . . . , Un), X :=
(X1, . . . ,Xn), S := (S1, . . . , Sm(n)) and let

Rn := Z

(
n∑

i=1

2i−1Xi + T

n∏

i=1

(
1 + (Ui − 1)Xi

)
)

∈ Q[Z, T, U,X].

One sees easily that the polynomial Rn may be evaluated by a totally
division–free arithmetic circuit of size O(n).
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Let Ôn be the Zariski closure of the set

{
R(z,t,u)
n ; (z, t) ∈ A2, u = (u1, . . . , un) ∈ An,

R(z,t,u)
n := z

(
n∑

i=1

2i−1Xi + t

n∏

i=1

(
1 + (ui − 1)Xi

)
)}

in a suitable finite dimensional C–linear subspace of C[X] and let γn :=

(γ
(n)
1 , . . . , γ

(n)
m(n)) ∈ Zm(n)×n be an identification sequence for Ôn. From

Corollary 1 we deduce that such an identification sequence exists and that
we may assume without loss of generality that the absolute values of the
entries of the

(
m(n)× n

)
–matrix γn are bounded by 3n3. Observe that Ôn

is a Q–definable, irreducible, closed cone of dimension at most n + 2. We
shall consider Ôn as object class of n–variate polynomial functions.

Let us now consider the following prenex existential formula Φn(S, Y ) in
the free variables S1, . . . , Sm(n), Y and the bounded variables X1, . . . ,Xn, Z,

T, U1, . . . , Un:

(∃X1) · · · (∃Xn)(∃Z)(∃T )(∃U1) · · · (∃Un)
( n∧

i=1

X2
i −Xi = 0 ∧

m(n)∧

k=1

Sk = Rn(Z, T, U1, . . . , Un, γ
(n)
k ) ∧

∧ Y = Rn(Z, T, U1, . . . , Un,X1, . . . ,Xn)

)
.

Using the previously mentioned arithmetic circuit encoding of the poly-
nomial Rn and the bit encoding for integers, we see that the length |Φn| of
the formula Φn(S, Y ) is O(n2).

Observe that the quantifier free formula

Y = Rn(Z, T, U1, . . . , Un,X1, . . . ,Xn)

is equivalent to the following formula

Πn(Z, T, U1, . . . , Un,X1, . . . ,Xn, Y )

in the free variables Z, T, U1, . . . , Un,X1, . . . ,Xn, Y and the bounded vari-
ables Xn+1, . . . ,X3n−1, i.e. both formulas define the same subset of A2n+2

(compare Section 5.3):
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(∃Xn+1) · · · (∃X3n−1)

(
Xn+1 − 2X2 −X1 = 0 ∧

∧
2n−1∧

j=n+2

Xj −Xj−1 − 2j−nXj−n+1 = 0 ∧X2n − U1X1 +X1 − 1 = 0 ∧

∧
3n−1∧

k=2n+1

Xk − Uk−2n+1Xk−1Xk−2n+1 +Xk−1Xk−2n+1 −Xk−1 = 0 ∧

∧ Y = ZX2n−1 + ZTX3n−1

)
.

Replacing now in the formula Φn(S, Y ) for 1 ≤ k ≤ m(n) the occurren-

cies of the subformulas Sk = Rn(Z, T, U1, . . . , Un, γ
(n)
k ) by Πn(Z, T, U, γ

(n)
k ,

Sk) and the occurrency of Y = Rn(Z, T, U1, . . . , Un,X1, . . . ,Xn) by
Πn(Z, T, U,X, Y ), we obtain another prenex existential formula Φ̃n(S, Y ) in
the free variables S1, . . . , Sm(n), Y and 8n2+20n−9 bounded variables. The

formula Φ̃n(S, Y ) has length |Φ̃n| = O(n2) for the sparse encoding of poly-
nomials and the bit representation of integers. Observe that the formulas
Φn(S, Y ) and Φ̃n(S, Y ) are equivalent and asymptotically of the same length
O(n2). Thus the formulas Φn and Φ̃n are logical expressions of asymptot-
ically the same length which describe the same constructible subset of the
affine space Am(n)×A1. The polynomials occurring in Φn(X,Y ) are given in
arithmetic circuit encoding, whereas the polynomials occurring in Φ̃n(X,Y )
are given in sparse encoding. The formulas Φn(X,Y ) and Φ̃n(X,Y ) will be
the inputs for an elimination problem which we are now going to describe
in detail.

In the sequel we shall restrict our attention to the formula Φn(S, Y ).
Our considerations will be identically valid for the formula Φ̃n(S, Y ).

Let σ̂n : Ôn → Am(n) be the map defined for R ∈ Ôn by σ̂n(R) :=(
R(γ

(n)
1 ), . . . , R(γ

(n)
m(n))

)
and let D̂n be the image of σ̂n. From Lemma 5 we

deduce that D̂n is a Q–definable, irreducible, closed cone of Am(n) and that
σ̂n induces a finite, bijective morphism of algebraic varieties σ̂n : Ôn → D̂n

which is therefore a homeomorphism with respect to the Zariski topologies of
Ôn and D̂n. In particular σ̂n : Ôn → D̂n is a homogeneous, birational map.
We consider D̂n as a Q–definable data structure and (σ̂n)

−1 : D̂n → Ôn as
a Q–definable, continuous encoding of the object class Ôn. From a similar
argument as in the proof of Proposition 2 we deduce that σ̂n : Ôn → D̂n

is not an isomorphism of affine varieties. Thus σ̂−1
n : D̂n → Ôn is not a

holomorphic encoding of the object class Ôn by the data structure D̂n, but
only a continuous one (compare Theorem 1). This circumstance contributes
to a certain technical intricateness of the argumentation which now follows.
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Observe first that the prenex existential formula (∃Y )Φn(S, Y ) describes
a Q–constructible subset of Am(n) whose Zariski closure is D̂n. Observe then
that dim D̂n ≤ dim Ôn ≤ n + 2 < 4n + 10 = m(n) holds. Therefore D̂n is
strictly contained in the affine space Am(n). Thus the formula Φn(S, Y )
introduces an implicit semantical dependence between the indeterminates
S1, . . . , Sm(n). In the sequel we shall consider the indeterminates S1, . . . ,
Sm(n) as parameters and Y as variable.

Let us now consider an arbitrary point s = (s1, . . . , sm(n)) ∈ Am(n) which
satisfies the formula (∃Y )Φn(S, Y ). Then there exist points (z, t) ∈ A2 and
u = (u1, . . . , un) ∈ An such that the n–variate polynomial

R(z,t,u)
n = z

(
n∑

i=1

2i−1Xi + t

n∏

i=1

(1 + (ui − 1)Xi)

)

satisfies the condition

s1 = R(z,t,u)
n (γ

(n)
1 ), . . . , sm(n) = R(z,t,u)

n (γ
(n)
m(n)).

Since γn = (γ
(n)
1 , . . . , γ

(n)
m(n)) ∈ Zm(n)×n is an identification sequence for

the object classOn, we conclude that the polynomial R
(z,t,u)
n ∈ C[X1, . . . ,Xn]

depends only on the point s ∈ Am(n) and not on its particular encod-
ing (z, t, u) belonging to the data structure A2 × An. We write therefore

R
(s)
n := R

(z,t,u)
n . Let

P̂ (s)
n :=

∏

(ε1,...,εn)∈{0,1}n

(
Y −R(s)

n (ε1, . . . , εn)
)

and let us write Φn(s, Y ) for the formula of the elementary language of
algebraically closed fields of characteristic zero with constants in C which is
obtained by specializing in the formula Φn(S, Y ) the variables S1, . . . , Sm(n)

into the values s1, . . . , sm(n) ∈ C. Observe that the polynomial P̂
(s)
n is monic

of degree 2n and Φn(s, Y ) contains a single free variable, namely Y . One sees
easily that the formula Φn(s, Y ) is equivalent to the quantifier–free formula

P̂
(s)
n (Y ) = 0.
Observe that for a suitable point s = (s1, . . . , sm(n)) of A

m(n) satisfying
the formula (∃Y )Φn(S, Y ) (e.g. choosing s such that for fn :=

∑n
i=1 2

i−1Xi

the condition s1 = fn(γ
(n)
1 ), . . . , sm(n) = fn(γ

(n)
m(n)) is satisfied) we obtain a

univariate separable polynomial P̂
(s)
n of degree 2n. This implies that there

exists a nonempty Zariski open subset U of the closed, Q–definable, irre-
ducible subvariety D̂n of the affine space Am(n) such that U is contained in
the Q–constructible subset of Am(n) defined by the formula (∃Y )Φn(S, Y )

and such that for any point s ∈ U the polynomial P̂
(s)
n ∈ C[Y ] is monic and
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separable of degree 2n. Since the Q–definable morphism σ̂n : Ôn → D̂n is
finite, bijective and birational, there exists a polynomial R̂n ∈ Q(D̂n)[X]
satisfying the following two conditions:

• for any point s ∈ D̂n, any coefficient ρ of R̂n and any place
ϕ : C(D̂n) → C ∪ {∞} whose valuation ring contains the local ring
of D̂n at the point s, the value ϕ(ρ) is finite and uniquely determined
by s.

• if additionally the point s satisfies the formula (∃Y )Φn(S, Y ), then the
polynomial ϕ(R̂n) ∈ C[X], obtained by specializing the coefficients of

R̂n by means of the place ϕ, satisfies the equation ϕ(R̂n) = R
(s)
n .

With these notations, we shall write R
(s)
n := ϕ(R̂n) also if s does not

satisfy the formula (∃Y )Φn(S, Y ). Let

P̂n :=
∏

(ε1,...,εn)∈{0,1}n

(
Y − R̂n(ε1, . . . , εn)

)
∈ Q(D̂n)[Y ].

One sees easily that P̂n satisfies mutatis mutandis the above two conditions

(note that in the second condition ϕ(R̂n) = R
(s)
n has to be replaced by

ϕ(P̂n) = P
(s)
n ).

In particular the coefficients of P̂n belong to the integral closure of the
domain Q[D̂n] in its function field Q(D̂n).

Since for any s ∈ U the polynomial P̂
(s)
n is separable of degree 2n, we con-

clude that P̂n is a monic, separable polynomial of degree 2n in the variable
Y .

Let us denote by Vn the Zariski closure of the Q–constructible subset of
Am(n)×A1 defined by the formula Φn(S, Y ) and by πn : Am(n)×A1 → Am(n)

the canonical projection which maps each point of Am(n) × A1 on its first
m(n) coordinates. Observe that Vn is nonempty and that the Q–definable,
irreducible variety D̂n is the Zariski closure of πn(Vn) in Am(n). Let C
be any irreducible component of Vn satisfying the condition πn(C) = D̂n

(observe that such an irreducible component exists). Let us now fix a point
s ∈ D̂n which we think chosen generically between the points of D̂n. From
this choice we infer immediately that the set π−1

n (s) ∩ C is not empty and
that its elements satisfy the formula Φn(S, Y ). One now sees easily that
π−1
n (s) ∩ C is a nonempty and finite set. This implies dimC = dim D̂n.

Observe that for any point s ∈ Am(n) satisfying (∃Y )Φn(S, Y ), the for-

mula Φn(s, Y ) is equivalent to the quantifier free formula P̂
(s)
n (Y ) = 0.

Therefore we shall consider from now on P̂n as the canonical output ob-
ject associated to the elimination problem given by the formula Φn(S, Y ) in
the parameters S1, . . . , Sm(n) and the single variable Y . More precisely,
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our elimination task will consists in the computation of the polynomial

P̂
(s)
n ∈ C[Y ] for any input instance s ∈ D̂n. In this sense, we are look-

ing for output data structures which solve problem (ii) of Section 1.2 for
the object class defined by the polynomial P̂n in the parameter instances
defined by the formula (∃Y )Φn(S, Y ).

Suppose now that there is given an elimination procedure P which is
universal and branching–parsimonious in the sense of Section 1.2. Suppose
furthermore that P accepts as inputs prenex existential input formulas of the
elementary theory of algebraically closed fields of characteristic zero, whose
terms are polynomials in arithmetic circuit representation (or alternatively
polynomials in sparse representation). Assume that P is associated with
a suitable output data structure which allows the holomorphic encoding of
polynomials and with a monotone sequential time measure T , and suppose
that P and T satisfy the following conditions:

(1) Let Φ be a given prenex existential formula of the elementary language
L of algebraically closed fields of characteristic zero with constants 0,
1. Suppose that the polynomial terms occurring in the formula Φ are
encoded by the input data structure associated with the elimination
procedure P. Then the elimination procedure P produces a quantifier–
free formula Ψ whose polynomial terms are (holomorphically) encoded
by the output data structure associated with P, such that Φ and Ψ are
equivalent formulas. The length |Ψ| of the output formula Ψ satisfies
the estimate |Ψ| ≤ T (|Φ|).

(2) Let Ξ ∈ L be a quantifier–free formula whose polynomial terms are
encoded by the output data structure associated with P. Then the
procedure P produces from the input Ξ a system of polynomial equa-
tions F , encoded by the output data structure associated with P, such
that F defines the Zariski closure of the Q–constructible set defined
by Ξ. The size |F| of the system of polynomial equations F satisfies
the estimate |F| ≤ T (|Ξ|).

(3) Let B be a system of polynomials encoded by the output data struc-
ture associated with the elimination procedure P. Suppose that B
represents an algebraic family of univariate polynomials, for which a
generically square–free parametric greatest common divisor ĥ in the
sense of Section 2 exists. Then the procedure P produces from the
input B an algorithm in the sense of Section 5.2 which computes for
any admissible input instance of B the generically square–free greatest
common divisor ĥ of the algebraic family of univariate polynomials
represented by B. Here we assume implicitly that ĥ is represented by
a polynomial H which is encoded by the output data structure asso-
ciated with the procedure P. With respect to this data structure the
size |H| of the polynomial H satisfies the estimate |H| ≤ T (|B|).
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Let us remark that condition (1) above characterizes P as a universal
elimination procedure in the usual sense, whereas conditions (2) and (3)
state that P solves suitable elimination problems of type (ii) of Section 1.2.
In principle, input and output formulas mentioned in condition (1) may be
represented by algorithms which admit branchings. If for example P uses as
input and output data structures for the encoding of polynomials arithmetic
circuits, quantifier–free (sub–)formulas in condition (1) may be represented
by arithmetic networks (arithmetic–boolean circuits, see [vzG86], [vzG93]).
Nevertheless we require that the outputs mentioned in conditions (2) and
(3) represent branching–free evaluation procedures. All known universal
elimination procedures satisfy with respect to a suitably defined sequential
time complexity measure conditions (1), (2), (3) above.

Let us now apply the given elimination procedure P to the input for-
mula Φn(S, Y ). Since P satisfies condition (1), the output is a quantifier–free
formula Ψn(S, Y ) of the elementary language L, such that Ψn(S, Y ) is equiv-
alent to Φn(S, Y ). Moreover, the polynomial terms occurring in the formula
Ψ(S, Y ) are represented by the output data structure associated with P.

We apply now the procedure P to the quantifier–free formula Ψn(S, Y ).
Since P satisfies condition (2), the output is a finite set Bn of polynomials
of Q[S, Y ] which define the algebraic variety Vn. Again, the polynomials
contained in Bn are represented by the output data structure associated
with P.

Recall that Vn is the Zariski closure of the Q–constructible subset of
Am(n) × A1 defined by the formula Φn(S, Y ) (and hence by the formula
Ψn(S, Y )), that Vn is nonempty, that D̂n is the Zariski closure of the image
of Vn under the canonical projection πn : Am(n) × A1 → Am(n) and that
any irreducible component C of Vn with πn(C) = D̂n satisfies the condition

dimC = dim D̂n. Let B
(n)
1 , . . . , B

(n)
qn be the elements of Bn which do not

vanish identically on the algebraic variety D̂n×A1. Let b
(n)
1 , . . . , b

(n)
qn be the

univariate polynomials of Q[D̂n][Y ] induced by B
(n)
1 , . . . , B

(n)
qn on D̂n × A1.

Observe that b
(n)
1 6= 0, . . . , b

(n)
qn 6= 0 holds. Since any irreducible component

C of Vn with πn(C) = D̂n satisfies the condition dimC = dim D̂n and
since such an irreducible component exists, we conclude qn ≥ 1. Therefore

b
(n)
1 , . . . , b

(n)
qn is an algebraic family of univariate polynomials in the sense of

Section 5.2.
Let h ∈ Q(D̂n)[Y ] be the greatest common divisor of the polynomials

b
(n)
1 , . . . , b

(n)
qn in Q(D̂n)[Y ]. Since for any point s ∈ U the formula Φn(s, Y )

(and hence the formula Ψn(s, Y )) is equivalent to the formula P̂
(s)
n (Y ) = 0

and since U is a nonempty Zariski open subset of D̂n, we conclude that
the monic polynomials h and P̂n of Q(D̂n)[Y ] have the same roots in any
algebraic closure of the field Q(D̂n).
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Therefore we have deg h ≥ deg P̂n = 2n. Thus the degree of h in the
variable Y is positive.

Since the univariate polynomial P̂n is separable, we conclude, from our

previous considerations concerning the definition of P
(s)
n for arbitrary s ∈

D̂n, that there exists a generically square–free greatest common divisor for

the algebraic family of univariate polynomials b
(n)
1 , . . . , b

(n)
qn and that this

greatest common divisor is P̂n.

Finally we apply the procedure P to the finite set of polynomials Bn.
Since P satisfies condition (3), the output are rational functions θ̂

(n)
1 , . . . , θ̂

(n)
m̂n

of Q(D̂n), such that θ̂n := (θ̂
(n)
1 , . . . , θ̂

(n)
m̂n

) represents an algorithm in the
sense of Section 2.2 which computes the generically square–free parametric
greatest common divisor P̂n of the algebraic family of univariate polynomials

b
(n)
1 , . . . , b

(n)
qn for any admissible input instance (which necessarily belongs to

D̂n). Let us make this statement more precise:

let D∗
n be the Q–constructible output data structure associated with the

procedure P, when P is applied to the input Bn. Then the size of D∗
n is m̂n

and we may suppose without loss of generality that D∗
n is a closed subvariety

of the affine space Am̂n . Then the closure of the image of θ̂n is contained in
D∗
n and therefore we may interpret θ̂n as a dominant rational map from D̂n

to D∗
n.

The output data structure D∗
n encodes a suitable output object class O∗

n

of univariate polynomials by means of a Q–definable, holomorphic encoding

ω∗
n : D∗

n → O∗
n. The object class O∗

n contains the set {P̂ (s)
n ; s ∈ D̂n}. Since θ̂n

is a dominant rational map, the composition ω∗
n◦θ̂n is well defined and ω∗

n◦θ̂n
is a rational map from D̂n to the Zariski closure of the object class O∗

n in a
suitable affine ambient space. By assumption the algorithm θ̂n computes the
generically square–free parametric greatest common divisor P̂n ∈ Q(Dn)[Y ]

of the algebraic family of univariate polynomials b
(n)
1 , . . . , b

(n)
qn for any ad-

missible input instance. Thus for any input instance s ∈ D̂n and any place
ϕ : C(D̂n) → C∪ {∞} whose valuation ring contains the local ring of D̂n at

s, the values ϕ(θ̂
(n)
1 ), . . . , ϕ(θ̂

(n)
m̂n

) are finite and uniquely determined by the
input instance s. With these notations we may therefore consistently write

θ̂
(n)
1 (s) := ϕ(θ̂

(n)
1 ), . . . , θ̂

(n)
m̂n

(s) := ϕ(θ̂
(n)
m̂n

) and θ̂n(s) := (θ̂
(n)
1 (s), . . . , θ̂

(n)
m̂n

(s)).

Since D∗
n is a closed subvariety of Am̂n we have θ̂n(s) ∈ D∗

n for any s ∈ D̂n.
We may therefore interpret θ̂n as a total map from D̂n to D∗

n whose value is
defined for any argument from D̂n. With this interpretation ω∗

n◦ θ̂n is a total

map from D̂n to O∗
n satisfying the condition ω∗

n ◦ θ̂n(s) = ω∗
n

(
θ̂n(s)

)
= P̂

(s)
n

for any s ∈ D̂n.

The above considerations imply that the rational functions θ̂
(n)
1 , . . . , θ̂

(n)
m̂n

belong to the integral closure of the domain Q[D̂n] in its fraction field Q(D̂n).
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Moreover they imply that the rational function θ̂n, which we may suppose
well–defined for the Zariski open subset U of D̂n, represents an essentially
division–free algorithm in the sense Section 5.2 which computes for each

input instance s ∈ U a code θ̂n(s) for the output object P̂
(s)
n and which can

be uniquely extended to the limit data structure D̂n of U .
Observe now, that specializing in the polynomial

Rn = Z

(
n∑

i=1

2i−1Xi + T

n∏

i=1

(
1 + (Ui − 1)Xi

)
)

∈ Q[Z, T, U,X]

the variable Z into the value one, we obtain the polynomial

Fn =

n∑

i=1

2i−1Xi + T

n∏

i=1

(
1 + (Ui − 1)Xi

)
∈ Q[T,U,X]

introduced in Section 5.3. Therefore the object class On := {F (t,u)
n ; t ∈

A1, u ∈ An} is contained in the object class Ôn. Since Ôn is Zariski closed
in its ambient space we have On ⊂ Ôn. Let Dn := σ̂n(On). Since On is a
Q–definable, closed, irreducible subvariety of Ôn and σ̂n : Ôn → D̂n is a Q–
definable, finite, bijective morphism of algebraic varieties, we conclude that
Dn is a (nonempty) Q–definable, closed, irreducible subvariety of D̂n. For
any point s ∈ Dn and any place ϕ : C(D̂n) → C∪{∞} whose valuation ring
contains the local ring of D̂n at s, and any coefficient β of P̂n ∈ Q(D̂n)[Y ], the

values of ϕ(β) and of ϕ(θ̂
(n)
1 ), . . . , ϕ(θ̂

(n)
m̂n

) are finite and uniquely determined

by s. Therefore there exists a monic polynomial P̌n ∈ Q(Dn)[Y ] of degree

2n, rational functions θ̌
(n)
1 , . . . , θ̌

(n)
m̂n

and a nonempty Zariski open subset U0

of Dn such that P̌n and θ̌n := (θ̌
(n)
1 , . . . , θ̌

(n)
m̂n

) are well defined in any point s

of U0 and such that the conditions P̌
(s)
n = P̂

(s)
n and θ̌

(s)
n = θ̂

(s)
n are satisfied.

Since Q[Dn] is a holomorphic image of Q[D̂n] and since the coefficients

of P̂n and θ̂
(n)
1 , . . . , θ̂

(n)
m̂n

belong to the integral closure of Q[D̂n] in Q(D̂n),

we conclude that θ̌
(n)
1 , . . . , θ̌

(n)
m̂n

and the coefficients of P̌n belong to the in-
tegral closure of the domain Q[Dn] in its fraction field Q(Dn). In the same
way one sees that θ̌n represents an essentially division–free algorithm which
computes the polynomial P̌n and which can be uniquely extended to the
limit data structure Dn of U0. For any s ∈ Dn we infer therefore that

θ̌n(s) := (θ̌
(n)
1 , . . . , θ̌

(n)
m̂n

) is a well defined point of D∗
n and that P̌

(s)
n is a well

defined, monic, univariate polynomial of degree 2n satisfying the conditions

θ̌n(s) = θ̂n(s) and P̌
(s)
n = P̂

(s)
n .

Consider now the Q–definable, holomorphic encoding ωn : A1×An → On

of the object class On by the data structure A1 × An, defined for (t, u) ∈
A1 × An by ωn(t, u) := F

(t,u)
n (see Section 5.3).
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Observe that σ̂n ◦ ωn : A1 × An → Dn is a dominant morphism of Q–

definable, irreducible varieties. Therefore θ
(n)
1 := θ̌

(n)
1 ◦ σ̂n ◦ ωn, . . . , θ(n)m̂n

:=

θ̌
(n)
m̂n

◦ σ̂n ◦ ωn are well–defined rational functions belonging to Q(T,U). Ob-
serve that σ̂n ◦ ωn induces a Q–algebra isomorphism which maps the coor-
dinate ring Q[Dn] onto the subdomain

An := Q[Fn(T,U, γ
(n)
1 ), . . . , Fn(T,U, γ

(n)
m(n))]

of the polynomial ring Q[T,U ].

Since the rational functions θ̌
(n)
1 , . . . , θ̌

(n)
m̂n

belong to the integral closure

of Q[Dn] in Q(Dn), we conclude that θ
(n)
1 , . . . , θ

(n)
m̂n

belong to the integral
closure of An in Q(T,U). But Q[T,U ] is integrally closed in its fraction

field. This implies that θ
(n)
1 , . . . , θ

(n)
m̂n

are polynomials belonging to Q[T,U ].

Thus θn := (θ
(n)
1 , . . . , θ

(n)
m̂n

) defines a morphism of algebraic varieties θn :

A1 × An → D∗
n which satisfies for any point (t, u) ∈ A1 × An the identities

ω∗
n

(
θn(t, u)

)
= ω∗

n

(
θ̌n

(
σ̂n
(
ωn(t, u)

)))

= ω∗
n

(
θ̂n

(
σ̂n
(
ωn(t, u)

)))

= P̂
(σ̂n◦ωn)(t,u)
n

=
∏

(ε1,...,εn)∈{0,1}n

(
Y −R(σ̂n◦ωn)(t,u)

n (ε1, . . . , εn)
)
.

Let t ∈ A1 and u = (u1, . . . , un) ∈ An be fixed for the moment. Observe

that R
(σ̂n◦ωn)(t,u)
n is the unique polynomial of the object class Ôn which

satisfies the condition
(
R(σ̂n◦ωn)(t,u)
n (γ

(n)
1 ), . . . , R(σ̂n◦ωn)(t,u)

n (γ
(n)
m(n))

)
= σ̂n ◦ ωn(t, u).

On the other hand we have

σ̂n ◦ ωn(t, u) =
(
F (t,u)
n (γ

(n)
1 ), . . . , F (t,u)

n (γnm(n))
)
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and F
(t,u)
n ∈ Ôn. This implies R

(σ̂n◦ωn)(t,u)
n = F

(t,u)
n and therefore we have

ω∗
n (θn(t, u)) =

∏

(ε1,...,εn)∈{0,1}n

(
Y −R(σ̂n◦ωn)(t,u)

n (ε1, . . . , εn)
)

=
∏

(ε1,...,εn)∈{0,1}n

(
Y − F (t,u)

n (ε1, . . . , εn)
)

=

2n−1∏

j=1

(
Y − (j + t

n∏

i=1

u
[j]i
i )

)
.

Let Pn :=
∏2n−1
j=1

(
Y − (j + T

∏n
i=1 U

[j]i
i )

)
∈ Q[T,U, Y ] be the elimina-

tion polynomial introduced in Sections 4.2 and 5.3. Then we have

ω∗
n

(
θn(t, u)

)
= P

(t,u)
n for any point (t, u) ∈ A1 ×An. Taking now A1 ×An as

input data structure, θn(A
1 × An) as output data structure,

{P (t,u)
n ; t ∈ A1, u ∈ An} as output object class encoded by the restriction

of ω∗
n to the Q–definable subset θn(A

1 × An) of D∗
n, we see now that these

data structures are Q–constructible, that the encoding is Q–definable and
holomorphic and that θn represents a totally division–free algorithm which
computes for each input code (t, u) of A1 × An an output code θn(t, u)

which encodes the output object P
(t,u)
n . Thus θn is a totally division–free

elimination procedure which computes the general solution Pn of the flat
family of zero–dimensional elimination problems given by the equations
X2

1 −X1 = 0, . . . ,X2
n −Xn = 0 and the polynomial Fn (see Section 5.3).

Recall that the polynomials θ
(n)
1 , . . . , θ

(n)
m̂n

belong to the integral closure

of An = Q[Fn(T,U, γ
(n)
1 ), . . . , Fn(T,U, γ

(n)
m(n))] in Q[T,U ] and that the Q–

algebra An is canonically isomorphic to the coordinate ring Q[On] of the
Zariski closure of the object class On. Therefore θn is a robust elimination
procedure in the sense of Definition 4. From Theorem 3 we deduce now the
estimate m̂n ≥ 2n.

Since by assumption the sequential time complexity measure T is mono-
tone, we conclude now that

2n ≤ m̂n = |P̂n| ≤ T (|Bn|) ≤ T 2(|Ψn|) ≤ T 3(|Φn|) ≤ T 3(cn2)

holds for a suitable universal constant c > 0.
Therefore T cannot be a polynomial function. Finally we remark that

the same conclusion is valid if we replace in our argumentation the formula
Φn by the formula Φ̃n. We may now summarize these considerations by the
following general result:
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Theorem 4 Let P be a universal elimination procedure for the theory of
algebraically closed fields of characteristic zero with constants 0, 1 and let T
a sequential time complexity measure for P. Suppose that P accepts as inputs
prenex existential formulas whose polynomial terms are given in arithmetic
circuit or sparse representation. Suppose that P and T satisfy conditions
(1), (2), (3) above. Then T is not a polynomial function.

6 Conclusions.

There exists a general opinion between computer scientists that proving
lower complexity bounds for specific problems defined by existential prenex
formulas (see [Bor93]) is an extremely difficult task which requires tricky
methods or deep mathematical insight. Simple minded algorithmic models
and the absence of operative notions of uniformity make in our opinion
excessively intricate or impossible to prove striking complexity results for
many fundamental algorithmic problems of practical interest. A way out of
this dilemma consists in the restriction of the computational model under
consideration. Thus one may for example think to consider only unbounded
fan–in and fan–out arithmetic circuits of bounded depth for the computation
of polynomials of interest, as e.g. the resultant of two generic univariate
polynomials or more generally, the general solution of a flat family of zero–
dimensional elimination problems.

Asymptotically optimal lower sequential time complexity bounds become
then easy to prove. However the restriction to bounded depth circuits repre-
sents a highly artificial limitation of the computational model (this restric-
tion excludes for example the evaluation of monomials of high degree by
means of iterated squaring) and the complexity result obtained in this way
becomes irrelevant as a guide for future software developers.

The ultimate aim of this paper was not a theoretical but a practical one.
We tried to give a partial answer to the following fundamental question:

what has to be changed in elimination theory in order to obtain practically
efficient algorithms?

We established a list of implicit or explicit requirements satisfied by all
known (symbolic or seminumeric) elimination algorithms. These require-
ments are: universality, no branchings and robustness for certain simple
elimination problems, capacity of computing certain closures (as e.g. equa-
tions for the Zariski closure of a given constructible set or the greatest com-
mon divisor of two polynomials). Moreover, by means of a suitable prepa-
ration of the input equation, all known universal elimination procedures
may be transformed easily into Kronecker–like procedures which are able to
evaluate the corresponding canonical elimination polynomial in any given
argument or to compute its coefficients. In this sense the known elimination
procedures are all able to “compute canonical elimination polynomials”.
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The fulfillment of these requirements and the capacity of computing
canonical elimination polynomials implies the experimentally certified non–
polynomial complexity character of these elimination procedures and ex-
plains their practical inefficiency. The results of this paper demonstrate
that the complexity problem we focus on is not a question of optimization
of algorithms and data structures. There is no way out of the dilemma by
changing for example from dense to sparse elimination or to fewnomial the-
ory. Hybridization of symbolic and numeric algorithms leads us again back
to the same complexity problems we started from.

In this sense the paper is devoted to the elaboration and discussion of a
series of “uniformity” notions which restrict the (mostly implicit) computa-
tional models relevant for the present (and probably also the future) design
of implementable elimination procedures in algebraic geometry. Emphasis
was put on the motivation of these algorithmic restrictions and not on the
mathematical depth of the techniques used in this paper in order to prove
lower complexity bounds. In fact, it turns out that elementary methods of
classical algebraic geometry are sufficient to answer the complexity questions
addressed in this paper. It is not the first time that a refined analysis of the
complexity model produces not only elementary and simpler proofs of lower
bound results in algebraic complexity theory, but also stronger complex-
ity statements. Examples are the “elementarizations” of Strassen’s degree
method [Str73a], due to Schönhage [Sch76] and Baur [BCS97, Theorem 8.5],
and the combinatorial method of Aldaz and Montaña for the certification of
the hardness of univariate polynomials (compare [BCS97, Chapter 9] with
[AHM+98] and [AM+01]).

Nevertheless there are two points addressed in this paper, which call for
the development of deep new tools in mathematics and computer science:
the problem of algorithmic modeling addressed in Section 4.3 calls for the
search of mathematical statements which generalize Hilbert’s Irreducibil-
ity Theorem to (not necessarily unirational) algebraic varieties containing
“many” integer or rational points and to the characterization of unirational
varieties (in the sense of [Kol99]) by means of arithmetic properties.

On the other hand our discussion of the notion of robustness of elim-
ination procedures in Section 5.1 leads to the question in which sense the
concept of programmable function can be distinguished from the notion of
elementarily recursive function (here the concepts of specification and data
type make the main difference). A programmable function appears always
together with a certificate (“correctness proof”) that it meets its specifica-
tion. The existence of such a proof necessarily restricts the syntactical form
of the underlying program and hence the complexity model in which the
running time of the program is measured.
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A Appendix.

A.1 Universal correct test and identification sequences.

In this section we are going to formulate a slight generalization of the main
results of Section 3.3 and 3.3.2 namely Lemma 4, Corollary 1 and Theorem 1.
These generalizations are based on Baire’s Theorem and lead to the concept
of universal correct test and identification sequence.

Corollary 7 Let k := Q, k := C and let L, m, t be given natural numbers
with m > L. Then there exists a subset S ⊂ Rmt satisfying the following
conditions:

(i) S is dense in the strong topology of Rmt.

(ii) any element γ = (γ1, . . . , γm) ∈ S with γ1, . . . , γm ∈ Rt is a correct
test sequence for the Q–Zariski closure of any Q–constructible object
class O of t–variate polynomial functions over C such that for O there
exists a Q–definable holomorphic encoding by a data structure of size
L.

A correct test sequence as in Corollary 7, (ii) is called universal for the
corresponding set of object classes.

Proof.– Observe that there are only countably many Q–definable holo-
morphic encodings of Q–constructible object classes of polynomial functions
in t variables over C by data structures of size L. Therefore we may think
these encodings enumerated as ω1, ω2, . . . . From the second part of the proof
of Lemma 4 of Section 3.3.1 we conclude that there exists for any i ∈ N a
Q–definable, Zariski open, dense subset Ui ⊂ Cmt such that any element
γ = (γ1, . . . , γm) of Ui with γ1, . . . , γm ∈ Ct is a correct test sequence for
the Q–Zariski closure of the object class of t–variate polynomial functions
over C encoded by ωi. Observe now that U∗

i := Ui ∩ Rmt is open and dense
in the strong topology of Rmt. Let S := ∩i∈NU∗

i . From Baire’s Theorem we
deduce that the set S is still dense in the strong topology of Rmt.

Let γ = (γ1, . . . , γm) be an arbitrary element of S with γ1, . . . , γm ∈ Rt

and let O be an arbitrary Q–constructible object class of t–variate polynomi-
als over C such that for O there exists a Q–definable holomorphic encoding
by a data structure of size L. Then there exist an index i ∈ N such that ωi
encodes O. From S ⊂ Ui we deduce that γ is a correct test sequence for the
object class O. In conclusion γ is a universal correct test sequence of length
m for the set of object classes under consideration.

Corollary 8 Let k := Q, k := C and let L, m, t be given natural numbers
with m > 2L. Then there exists a subset S ⊂ Rmt satisfying the following
conditions:
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(i) S is dense in the strong topology of Rmt.

(ii) Any element γ = (γ1, . . . , γm) ∈ S with γ1, . . . , γm ∈ Rt is an identifi-
cation sequence for the Q–Zariski closure of any Q–constructible object
class O of t–variate polynomial functions over C such that for O there
exists a Q–definable holomorphic encoding by a data structure of size
L.

An identification sequence as in Corollary 8, (ii) is called universal for
the corresponding set of object classes.

The proof of Corollary 8 combines the statement of Corollary 7 with the
same arguments employed in the proof of Corollary 1 of Section 3.3.1 and
is omitted here.

In a similar way one may combine Corollary 8 and Lemma 5 of Section
3.4 in order to prove the following statement:

Corollary 9 Let k := Q, k := C and let L, m, t be given natural numbers
with m > 2L. Then there exists a subset S ⊂ Rmt satisfying the following
conditions:

(i) S is dense in the strong topology of Rmt,

(ii) any element γ = (γ1, . . . , γm) ∈ S with γ1, . . . , γm ∈ Rt has the follow-
ing property:

let O be an arbitrary Q–constructible object class of t–variate poly-
nomial functions over C such that for O there exists a Q–definable
holomorphic encoding by a data structure of size L and suppose that
O is a cone. Let σ : O → Am(C) be the map defined by σ(F ) :=(
F (γ1), . . . , F (γm)

)
for F ∈ O and let D∗ := σ(O). Then D∗ is a

cone of Am(C) which is closed in the C–Zariski topology of Am(C)
(and hence also in the strong topology) and σ defines a bijective fi-
nite morphism of O onto D∗. For any C–irreducible component C of
O the restriction map σ : C → σ(C) is a birational (finite and bijec-
tive) morphism of C onto the C–irreducible Zariski closed set σ(C).
The encoding of the object class O by the data structure D∗ defined
by ω∗ := σ−1 is continuous with respect to the C–Zariski topologies
of O and D∗. Moreover ω∗ is holomorphic if and only if ω∗ allows
to answer holomorphically the value question about the object class O.
Finally ω∗ induces an encoding of the projective variety associated to
the cone O by the projective variety associated to the cone D∗ which
is continuous with respect to the strong topology.
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A.2 The VC–dimension of a holomorphically encoded object

class.

Let O be a k–constructible object class of polynomial functions. We say that
a finite set A ⊂ At can be shattered by the object class O if for each subset
A′ ⊂ A there exists an object F ∈ O such that any element a ∈ A belongs
to A′ if and only if F (a) = 0 holds. We define the Vapnik–Chervonenkis
(VC) dimension dimV CO of O as infinite if there exist subsets A of At of
arbitrary cardinality which can be shattered by O. Otherwise we define
dimV CO as the maximal cardinality of such a set (see [Vap00, Chapter
3, 3.6] and [BCS97, Chapter 3, 3.5] for details). The following statement
implies that the VC–dimension of the object class O is finite.

Lemma 7 Let notations and assumptions be as in Lemma 4 of Section
3.3.1. Then dimV CO satisfies the following estimate:

(dimV CO)
1
2 ≤ dimV CO

log dimV CO
≤ L(1 + log∆2)

(here log denotes the logarithm to the base 2).

Proof.– We shall freely use the notations of the proof of Lemma 4. Let
s ∈ N with s ≤ dimV CO. Then there exists a finite set A ⊂ At of cardinality
s which can be shattered by O. Let A = {a1, . . . , as} with a1, . . . , as ∈ At.
From the construction of the ambient space AN of O we deduce that there
exists a k–definable (evaluation) map eval : AN × At → A1 which satisfies
the condition eval(F, y) = F (y) for any polynomial F ∈ O and any point
y ∈ At. This implies that for any a ∈ A there exists a polynomial Ωa ∈
k[Z1, . . . , ZL] of degree at most ∆2 such that for any D ∈ D the identity
Ωa(D) = eval(Ω(D), a) = ω(D)(a) holds.

Let A′ be an arbitrary subset of A. By hypothesis there exists a poly-
nomial F ∈ O with A′ = {a ∈ A;F (a) = 0}. Consider

DA′ := {D ∈ D; Ωa(D) = 0 for a ∈ A′, Ωa(D) 6= 0 for a ∈ A \A′}.

Any codeD ∈ D with ω(D) = F belongs to DA′ . ThereforeDA′ is nonempty.
Thus DA′ is a Ωa1 , . . . ,Ωas–cell in the sense of [Hei83]. From [JS00, Theorem
2] or [Hei83, Corollary 1] one deduces that the number of Ωa1 , . . . ,Ωas–cells
is bounded by (1 + s∆2)

L. Since the set A can be shattered by O and
different subsets of A define disjoint Ωa1 , . . . ,Ωas–cells we conclude

2s ≤ (1 + s∆2)
L.

This implies s
log s ≤ L(1 + log∆2). From s ≤ dimV CO we deduce now

(dimV CO)
1
2 ≤ dimV CO

log dimV CO
≤ L(1 + log∆2).
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Let k := Q and k := C. We are going to consider the data structure
Dreal := D ∩ RL and the object class Oreal := ω(Dreal). Observe that Oreal

is a Q–definable semialgebraic subset of RN . The standard definition of
the VC–dimension of Oreal is slightly different from our definition of the
VC–dimension of O (see [Vap00, Chapter 3, 3.6]). Taking into account the
number of different real cells of a system of s real polynomials of degree at

most ∆2 in L + 1 variables is of order O

((
s∆2
L+1

)L+1
)

(see [PR93]), one

concludes in the same way as in the proof of Lemma 7 that

(dimV COreal)
1
2 ≤ dimV COreal

log dimV COreal
≤ (L+ 1) log∆2 +O

(
1

log dimV COreal

)

(13)
holds.

Let WL,t be the set of all polynomials F ∈ k[Y1, . . . , Yt] which have
approximative nonscalar (sequential) complexity over k at most L. From
Corollary 2 and its proof we conclude that WL,t is a k–constructible object
class which has a k–definable, holomorphic encoding of size 4(L+ t+1)2+2
by means of polynomials over k of degree at most L2L+1 + 2. Thus Lemma
7 implies the estimate

dimV CWL,t ≤ 8(L+ t+ 1)3+ε

for any ε > 0. From [BCS97, Chapter 9, Proposition 9.1] we infer that any

univariate polynomial of k[Y1, . . . , Yt] of degree at most L2

4 belongs to WL,t

and hence to WL,t.

Let A ⊂ At be a subset of s := ⌊L2

4 ⌋ elements of the form A :=

{(ai, 0, . . . , 0); ai ∈ k, 1 ≤ i ≤ s} (here ⌊L2

4 ⌋ denotes the largest integer below
L2

4 ). Then for any subset A′ of A there exists a polynomial F ∈ k[Y1] of de-
gree #A′ such that A′ := {a ∈ A;F (a) = 0} holds. From degF = #A′ ≤ L2

4
we deduce F ∈WL,t. This consideration implies finally

L2

4
− 1 < dimV CWL,t ≤ 8(L+ t+ 1)3+ε

for any ε > 0.
Let k := Q and k := C. We consider the set W real

L,t of all polynomials
of R[Y1, . . . , Yt] which can be evaluated by a totally division–free arithmetic
circuit of nonscalar size at most L using only scalars from R. Thus we have
W real
L,t = (WL,t)real. Taking into account the estimate (13), we conclude in

a similar way as before that

L2

4
− 1 < dimV CW

real
L,t ≤ 8(L+ t+ 1)3+ε +O

(
1

log dimV CW
real
L,t

)
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holds for any ε > 0.
Analogous considerations lead to an upper bound for the set of poly-

nomials of R[Y1, . . . , Yt] which have approximative complexity at most L in
terms of essentially division–free arithmetic circuits using only parameters
from R(ε).
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[GHH+97] M. Giusti, K. Hägele, J. Heintz, J.E. Morais, J.L. Montaña, and L.M. Pardo.
Lower bounds for diophantine approximation. Journal of Pure and Applied
Algebra, 117,118:277–317, 1997.

[GHM+98] M. Giusti, J. Heintz, J.E. Morais, J. Morgenstern, and L.M. Pardo. Straight–
line programs in geometric elimination theory. Journal of Pure and Applied
Algebra, 124:101–146, 1998.

[GHMP95] M. Giusti, J. Heintz, J.E. Morais, and L.M. Pardo. When polynomial equa-
tion systems can be solved fast ? In G. Cohen, H. Giusti, and T. Mora,
editors, Applied Algebra, Algebraic Algorithms and Error Correcting Codes, ‘
Proceedings AAECC-11, volume 948 of Lecture Notes in Computer Science,
pages 205–231, Berlin Heidelberg New York, 1995. Springer.

[GHMP97] M. Giusti, J. Heintz, J.E. Morais, and L.M. Pardo. Le rôle des structures de
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sets. In G. Ritter, editor, Information Processing 89, Proceedings of the IFIP
11th World Computer Congress, San Francisco, USA, August 28 – September
1, 1989, pages 293–298. North-Holland/IFIP, 1989.

[HRS90] J. Heintz, M.-F. Roy, and P. Solernó. Sur la complexité du principe de Tarski–
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Theoretical Computer Science, 133:141–164, 1994.

[SS96] M. Shub and S. Smale. Complexity of Bézout’s Theorem IV: Probability of
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