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Abstract

We consider approximation of linear multivariate problems defined over weighted
tensor product Hilbert spaces with finite-order weights. This means we consider func-
tions of d variables that can be represented as sums of functions of at most ¢* variables.
Here, ¢* is fixed (and presumably small) and d may be arbitrarily large.

For the univariate problem, d = 1, we assume we know algorithms A; . that use
O(eP) function or linear functional evaluations to achieve an error ¢ in the worst
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case setting. Based on these algorithms A; ., we provide a construction of polynomial-
time algorithms A4, for the general d-variate problem with the number of evaluations
bounded roughly by € Pd?" to achieve an error € in the worst case setting.

1 Introduction

There is a host of practical problems that deal with functions of very many variables. In
many cases, the required error tolerance, €, for such problems is not too small. The classical
estimates on approximation errors are asymptotic in the number, n, of evaluations and for
the number, d, of variables fixed. They are usually of no practical value if n is fixed and d
is very large. For instance, the classical discrepancy bounds are of the form n !(log n)¢ !
and become meaningful only when the number n of evaluations significantly exceeds exp(d).
This is why, since its introduction in 1994, see [43], there has been an increasing interest in
the study of tractability of multivariate problems. The definition of tractability is recalled
in the next section. Here we only mention that a problem is tractable if approximation
errors go to zero with n, and are bounded by a polynomial in d and n~! for every d and n.
Equivalently, a problem is tractable if it is possible to reduce the initial error € times by
using a polynomial number of evaluations in ¢! and d; and it is strongly tractable, if this
number is independent of d. We stress that the upper bound on the number of evaluations
should hold for all € € (0,1) and all d = 1,2, ..., including the case of huge d and relatively
large €, say ¢ = 107!, Algorithms that compute an e-approximation and use a polynomial
number of evaluations in e~ and d are called polynomial-time algorithms, and if this number
does not depend on d they are called strongly polynomial-time algorithms.

There are many results on tractability of multivariate problems; however, quite a few of
them are not constructive, see the survey paper [22] and many papers cited there. The results
are obtained for problems defined over general tensor product spaces, mostly for reproducing
kernel Hilbert spaces but some of the results are also for Banach spaces, see e.g., [15].

As observed in a number of papers, see, e.g., [4, 27, 34, 35|, there are important problems,
including problems in mathematical finance and physics, that deal with functions which only
depend on groups of few variables. That is, the function depends on all d variables; however,
it is given as the sum of terms each of which depends only on few, say ¢, variables. For
some finance applications, the number ¢* is fairly small, e.g., ¢* = 1 or 2. An example of
such functions in physics with ¢* = 6 is provided by a sum of Coulomb pair potentials where
f(X) = Yicicj<a | — Z;]| 7" for vector x = [Z41, %5, . . ., Z4] with #; € IR®, and the Euclidean
norm || - ||, see e.g., [10]. Since this function is not defined for Z; = Z;, we can modify it by
taking a small positive o and consider f,(x) = 1< j<a(||Z — ;||*+)~'/%. That is, f and



fo only depend on groups of two variables each being a 3-dimensional vector, see Section 7.4
where we discuss how such functions f, can be efficiently approximated.

Functions of d variables can be represented as the sum of functions of groups x, of vari-
ables with u varying through all subsets of the index set {1,2,...,d}. Probably, the first such
representation was the ANOVA (for ‘analysis of variance’) decomposition of functions from
a specific space as the sum of lower-dimensional terms, see [9, 29]. For functions belonging
to a general tensor product reproducing kernel Hilbert space, and for x = [z1, 2, ..., 4] we
may decompose the function f as

fx) = > vaufulx) (1)

uC{1,2,...,d}

for some functions f, depending only on z; for j € u, and non-negative weights v4,. The
essence of the example with the Coulomb potential function is that we can set 74, = 0 for
all w with |u| # 6 and 4, = 1 for all v with |u| = 6. If functions f from a given space
satisfy (1) with 74, = 0 for all » with the cardinality greater than, say, ¢*, then we say that
the space is equipped with finite-order weights; see the next section for the formal definition
as well as the paper [8] where finite-order weights were introduced, and the paper [27] where
finite-order weights were studied for multivariate integration. The concept of finite-order
weights is related to the concept of effective dimension which has been studied in a number
of papers, see e.g., [4, 34, 35] as well as a discussion at the end of the introduction and
Remark 2 in Section 3.

For some spaces with finite-order weights we are able to obtain efficient algorithms that
are polynomial-time or even strongly polynomial-time algorithms in the worst case. In-
deed, it has been recently shown in [8, 27] that this is the case for approximating integrals
Jio,1j2 f (x) dx for Sobolev and Korobov spaces of functions equipped with finite-order weights.
In this case, the quasi-Monte Carlo algorithms based on such classical low discrepancy points
as Halton, Niederreiter, Sobol, as well as lattice rules and shifted lattice rules are polynomial
or even strongly polynomial-time algorithms.

More general problems, including weighted L,-approximation, were studied in a recent
paper [42]. It was shown there that, under assumption (5) stated in Section 2, these problems
are tractable or even strongly tractable for reproducing kernel Hilbert spaces equipped with
finite-order weights. More specifically, an upper bound on the number of evaluations needed
to compute an e-approximation was shown to be independent on d and of order €72 or e *;
the former dependence for algorithms that use properly chosen linear functional evaluations,
and the latter for algorithms that use only function evaluations at properly chosen points.
For some problems these bounds are not sharp; however, in full generality, the bound of
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order ¢° cannot be improved. The bound €™* is probably not sharp. We stress that the
proof of the latter result is non-constructive.

The present paper may be viewed as a continuation of [42]. Indeed, under slightly different
assumptions and using different proof techniques, we provide constructions of polynomial-
time algorithms that use either only function evaluations or arbitrary linear functionals for
approximating linear problems over reproducing kernel Hilbert spaces equipped with finite-
order weights. These algorithms are derived for arbitrary d > 2 in terms of tensor products
of algorithms for d = 1 in a way similar to weighted tensor product algorithms studied in
[38], see also [28]. Upper bounds on the number of evaluations needed to compute an e-
approximation for general d are practically the same as for d = 1 as far as the dependence
on 71 is concerned. Hence, these upper bounds are sharp in e ! if we use optimal algorithms
for d = 1. The dependence on d is polynomial and the degree of this polynomial depends on
the order of the weights, i.e., on the largest cardinality of w for which ~,, is still non-zero.

We stress that our algorithms are based on a modified Smolyak’s construction, see [28].
This construction is also known in the literature as sparse grid, hyperbolic cross, and Boolean
blending. Smolyak’s construction and its variants proved very efficient for many problems
including, in particular, differential and integral equations, integration and approximation
of multivariate functions, and wavelets construction, see e.g., [2, 3, 6, 7, 12, 13, 14, 19, 21,
24, 25, 30, 31, 37, 38] and papers cited therein. This is especially the case when d is not very
large. The case of large d and polynomial-time properties of algorithms based on Smolyak’s
construction have also been studied in some of the papers cited above.

We now explain our results in a more technical terms for the following simplified version
of weighted approximation problem, where one wants to recover f with the error measured
in a weighted Lo-norm,

\//Dd £ (x) = (Af) (%)% pa(x) dx.

Here Dy = D x---x D with D C IR, pg = [1¢_, p(z) is a probability density function on Dy,
and Af is an approximation given by an algorithm A. We assume that functions f belong
to a reproducing kernel Hilbert space F; whose formal definition is presented in the next
section. For d = 1, we assume that functions from F; can be approximated with an error
¢ in the worst case setting using O(¢7?) function or linear functional evaluations for some
positive p. For many spaces F}, the smallest exponent p is known. Typically, p depends on
the smoothness of functions from Fj. For example, if Fj is a space of r times differentiable
functions then p = 1/r. This is the case for problems studied in Section 7. In general, under
assumption (5), the exponent p < 4. If (5) does not hold then p can be arbitrary large, see
Remark 1 of Section 2.



We construct a polynomial-time algorithm A, for arbitrary d and for finite-order weights
whose order is ¢*, i.e., y4, = 0 for all w C {1,2,...,d} with |u| > ¢*. This algorithm
computes an e-approximation in the worst case setting and uses roughly

ed? (In(d/e))T P Vd,e (2)

function or linear functional evaluations. The essence of (2) is that we have essentially the
same dependence on €~! for all d, and a polynomial dependence on d with the exponent
given by the order ¢* of finite-order weights. We refer the reader to Theorem 1 in Section 3
for more details and all assumptions.

The algorithms A4, have the following additional property. Suppose that, as in the case
of effective dimension, the function f is only approximately equal to a sum of functions of at
most ¢* variables. That is, f = fi1 + f2, where f1 = 3, ju/<g* Vaufu is of the form required by
finite-order weights, and fa = >, ju|>¢* Vdufu i the remaining part of the decomposition of f,
see (1), and has small || f2||r,- We show in Remark 2 of Section 3 that, due to assumption (12),

Ad,ef2 = 0.

Hence f — Ay f = (fi — Aacfi) + f2, and the error of the algorithm A;, may increase only
by the norm of fs.

We now comment on the results concerning algorithms that may use arbitrary functional
evaluations. As already mentioned, general results with constructive proofs have been ob-
tained in [42] with the exponent p = 2. In Section 4, under an additional assumption (12)
and using different proof techniques, we construct optimal algorithms A4, that compute
an e-approximation and use the number of evaluations as in (2). Hence, we may have the
exponent p much smaller than 2. We also show that this bound is sharp in both e~! and d.

In Section 5, we study strong tractability of multivariate approximation. We present
a necessary and sufficient condition for strong tractability. Due to optimality of A,,, this
condition is also necessary and sufficient for the strong polynomial-time property of A;.. We
also show that there is sometimes a tradeoff between the minimal exponents of ¢ ! and d.
Indeed, strong tractability may require a larger exponent in e ! than the exponent p for the
univariate case d = 1. On the other hand, the exponent p can be always obtained at the
expense of a polynomial dependence on d.

Some of the assumptions in Sections 2-5 are made to simplify the presentation and proofs.
In Section 6, we discuss how some of these assumptions can be removed and explain how the
results can be extended. In particular, we discuss more general problems than the weighted
Ly-approximation problem. Finally, in Section 7 we illustrate the results by applying them
to a number of specific problems including approximation of perturbed Coulomb potentials.



2 Problem Formulation

In this paper we study efficient algorithms for linear problems defined over spaces F; of
multivariate functions. These spaces are defined by tensor products of basic spaces, and
therefore we begin with the definition of these basic spaces of functions.

For an arbitrary (and fixed) positive integer m, let D C IR™ be a Lebesgue measurable
set and let p: D — IR, be a Lebesgue integrable function such that

p>0 and / p(t)dt =11
D

Let H(K) be a separable reproducing kernel Hilbert space of Lebesgue measurable real
functions defined on D with the kernel K : D x D — IR. For a definition and properties of
reproducing kernel Hilbert spaces we refer the reader to [1]. Here we only recall that

K(,o)€e HK) and  (f,K(,2)yg = fl@) VzeD VfeHK).

To simplify the presentation and derivation of the results, we assume up to Section 6
that the constant function f(z) =1 does not belong to H(K),

1 ¢ H(K). (3)

This assumption is without any loss of generality; in Section 6 we explain how the results of
this paper can be used for problems that do not satisfy (3).
Let Ly ,(p) be the space of functions with norm

1l 0y = (/D (1) F2(t) dt>1/2 < oo.

We also assume that
| f||z2,(D)
sup —— =

ren(x) || fllm)
which means that H(K) is continuously embedded into L, ,(D). Note that the condition

< 00, (4)

/D p(t) K(t,1)dt < oo, (5)

!This assumption is made only for simplicity of presentation; all results hold as long as | pp(t)dt < co.




that has been assumed in [42], is sufficient for (4). Indeed, for any f € H(K) we have
F2(t) < I f Il x) K (¢, 1) and, hence,

1/2

ior = ([, o0 2@ 1) " < 1l ([ o060 at < oc,

as claimed. However, (5) is not necessary for (4) as illustrated in Remark 1 that concludes
this section.

We are ready to define the multivariate problems studied in this paper. For a given
integer d > 1, define

Dy :=DxDx---xDcIR™ and pa(t) = H p(t;),

where t = [t1,1o,...,tq] with t; € D. Clearly, 5 p(t)dt = 1.

In what follows, we assume that u is a subset of indices from the set {1,2,...,d}. By
|u| we denote the cardinality of u. Let v = {y4,} be a non-zero sequence of non-negative
numbers, called weights, indexed by d and w. That is, for each d we have 2¢ non-negative
weights vq,. As in [8, 27|, we say that v = {74} are finite-order weights if there exists an
integer ¢ such that

Yau = 0 for all (d,u) with |u| > g. (6)

Finite-order weights 7 are of order ¢* if ¢* is the smallest integer ¢ satisfying (6). Let Uy
denote the set of nonempty subsets u with positive v4,, i.e.,

Uy == {uC{1,2,...,d} : u#0, vyau > 0}.

It should be clear that for weights of order ¢* the cardinality of U, is proportional to d? .
Actually, by a simple induction on ¢* it can be shown that

Us| < 2-d% Vd, (7)

and |Uy| < d? /(¢* — 1)! when d > 2¢".
Consider now the following weighted reproducing kernel Hilbert space

Fd = H(Kd)
of real functions with dm variables defined on D, with the kernel

Ka(x,¥) = vap + Y Yau [ K(2j,v5) Vx,y € Dy. (8)

u€Uy jEu

7



We now characterize functions from H(Kg). Let Kq4(X,y) = [ljey K(2j,y;) for x,y € Dy
denote a term in (8). Clearly, K, is the reproducing kernel of the Hilbert space H(Kj,,) of
functions f(t1,%s,...,ts) defined on Dy which do not depend on ¢; for all j ¢ u, and is the
tensor product space with respect to the spaces H(K) of functions depending on variables
t; with ¢ € u. Since the constant function f(x) = 1 does not belong to H(Kj,), we have
H(K4u) N H(Ky,) = {0} for all distinct » and v form U,. This also means that the Hilbert
space Fy is the direct sum of Hilbert spaces H(K,,) for all subsets of u. Here K 3 = 1
and H(1) = span(1). Moreover the subspaces span(1) and H(K,,) for u € U, are pairwise
orthogonal. Hence, any f € Fy can be uniquely decomposed as

f = f(?) + Z fu = ’Yd,@fd,(?) + Z ’Yd,ufd,u with f'u. = ’Yd,u.fd,u S H(Kd,u)

uEU, ucly

and with fy = constant, where fp = 0 if 749 = 0. Moreover,

(f; g>H(Kd) = ’Yd_,q}fﬁ 90 + Z 711_,11 <fUagu>H(Kd7u)
u€EUy

= ’Yd,@.fd,(l) 94,0 + Z Yd,u <fd,u: gd7u>H(Kd B
uEUy ’

for all f,g € H(K,). (Here, for 749 = 0 we take 0/0 = 0.)

We stress that the term f;,, is a function of m - |u| variables, i.e., it depends on |u| points
tr € D C IR™ with k € u. For finite-order weights of order ¢*, there are only O(d?") such
terms.

Observe also that the assumption (4) implies a continuous embedding Fy C Lo ,,(Dy).

Consider now linear multivariate operators defined over the spaces Fy; = H(K,). More
precisely, for d =1,2,..., let

Sd : Fd — Gd

be a continuous linear operator and G4 a separable Hilbert space. Similarly as in [42, 43],
we assume that the operator Sy is also continuous with respect to the norm of the space
Ly ,,(Dyg). That is, there exists a non-negative number Cy such that

1Saflles < Callflles, 0 VF € Fa 9)

For instance, the multivariate weighted integration problem with G4 = IR and S; = INTy,

Saf = INTuf = [ F(6) palt) at,

d



satisfies (9) with Cy = 1. The multivariate weighted approzimation problem is yet another
example of an important problem satisfying (9) with Cyq = 1. It is defined by G4 = Lo ,,(Dq)
and Sd = APPd,

Saf = APPdf = f VfeF,

Note that APP, is a continuous linear operator due to (4).

Our goal is to approximate elements Sy f for f € F;. We approximate S;f by computing a
number of values L(f) of continuous linear functionals belonging to a class A of permissible
functionals. We study two classes of A. The first class, A = A*! = F} consists of all
continuous linear functionals. The second class, A = A9, consists of function evaluations
only.? That is, L € A®4 iff there exists t € Dy such that L(f) = f(t) for all f € Fy.
Obviously, L is also continuous since L(f) = (f, Ka(-,t))p, and ||L[| = |/ Ka(t, t).

For problems considered in this paper, it is known that adaptive choice of linear func-
tionals as well as nonlinear algorithms do not help, see [11, 33]. Hence, we can restrict our

attention to linear algorithms,
n

Af = > Li(f) a;,
j=1
where L; € A and a; € G4 for j = 1,2,...,n. The number n of functional evaluations is
called the cardinality of A and is denoted by card(A),

card(4) = n.
The worst case error of the algorithm A (with respect to the space Fy) is defined as

—A
ewor(A; Fd) := sup ”Sdf f||Gd.
rern fllz,

Due to linearity of Sy and A we obviously have e"*"(A; Fy) = ||Sq — A||. Here the operator
norm is from Fy to G4. This implies that

|Saf — Aflley < ||fllry - e (A5 Fy) VYV f € Fy

For n = 0, we formally set A =0 and then e"*"(A; Fy) = ||S4|| is the initial error which can
be obtained without sampling the functions f from F;. We want to reduce this initial error
by a factor € € (0,1) and we are interested in finding the smallest number n of evaluations
for which it is possible. Let

n(e, Sq, A) := min{card(A) : Auses L; € A and e"(4; Fy) < ¢S4}

2A = A®*d is considered only for simplicity of presentation; see Section 6 for a more general case.

9



Since we are using different spaces and different operator norms, we will sometimes write
IS4l = ||SallF,—c, to make it clear what spaces are involved in the operator norm.

As in many papers dealing with tractability, we say that the multivariate problem {S;}
is tractable in the class A if there exist non-negative numbers C, p and ¢ such that

n(e,Sqe, A) < Ce™d?  Vee(0,1), Vd=1,2,.... (10)

Algorithms A4, are called polynomial-time algorithms if for every d and e, the algorithm
Aqg e uses at most C'e P d? functional evaluations and has the error bounded by ¢||S4]|, i-e.,

card(Aq.) < Ce?d? and e (Aae; Fa) < €|S4l|- (11)

If ¢ = 0 in (10) then we say that the multivariate problem {S;} is strongly tractable
in the class A. Moreover, algorithms A, are called strongly polynomial-time algorithms
if (11) holds with ¢ = 0. The infimum of p satisfying (11) with ¢ = 0 over all strongly
polynomial-time algorithms is called the exponent of strong tractability.

The algorithms proposed in this paper will have cardinality bounds that are slightly
different than (11). They will be of the form

card(Aqe) < Ce™?d? In*(d/e)

for some positive number « independent of d and €. Such bounds imply polynomial-time
property since for every § > 0 there exists a number Cj such that

Ce™d? In*(d/e) < C5e P+ qel+0)  ye g,

We stress that for many applications, m = 1, i.e., the basic space H(K) consists of
univariate functions. However, there are important problems with m > 2, see e.g., [16, 17,
18, 19] as well as the second and fourth problems in Section 7. Of course, if H(K) is by itself
a tensor product of spaces of univariate functions, the problem with m > 2 can be easily
treated as a tensor product problem with m = 1 and d replaced by d m. However, this is not
the case when, for instance, H(K) is an isotropic reproducing kernel Hilbert space and/or
D is not a Cartesian product of subsets of IR, e.g., D is a ball.

We end this section with the following remark.

Remark 1 As mentioned in the introduction, the assumption (5) implies that the expo-

nent p in (10) is at most 2 for the class A®!. This assumption is not necessary for the
weighted approximation problem to be well defined and to satisfy the assumptions of this

10



paper. However, without (5), the exponent p in (10) can be arbitrarily large (including
infinity) even for the scalar case d = 1. To see this, consider the following problem.

Let D = [0,1) and p = 1. Consider an arbitrary ordered sequence {\;} of positive
numbers, \; > A1 > 0, and the following sequence a; = i/(i + 1) for : = 0,1, . ... Define

ei(x) == \Ji(i +1)1g_,0y(x) and n(z) := \//\71'61'(.’1;) for i1=1,2,...

and the following kernel
K(z,t) =3 mi(@) - mi(t).
i=1

Here 1,,_, q;) is the characteristic function of the interval [a;_1, a;). Hence e; are piece-wise
constant and orthonormal functions in Ly([0,1)) (similar construction can be also done for
smooth functions).

Of course, K is a well-defined reproducing kernel. It follows from the general results
concerning reproducing kernel Hilbert spaces that the corresponding space H(K) has {n;}
as its orthonormal system. Moreover, as can be easily verified, ();,7;) are the eigenpairs of
the operator W := APP] APP, : H(K) — H(K),

1

Aimi(-) = Wai(*) mi(t) K (-, t) dt.

0

This means that (4) holds since

| fllz.
sup o/ = ||APP1|| = /\1.
rer(x) || fllax) \/7

However, if 33,_; A; = 0o then (5) does not hold since

1 o0
/ K(z,z)dz = )\
0 i=1

It follows from general facts, see, e.g., [33] and/or Section 4, that
n(e, APPy, A™) = inf{k : A\py1 < 2N}

Hence, depending on the choice of the eigenvalues );, the function n(-, APP;, A*) may
increase to infinity very rapidly when ¢ — 0. For instance, for an arbitrary positive p and
for \; = i~%/? we have n(e, APP;, F}) = O(¢™?). Moreover, if A; do not converge to zero then

n(e, APPq, F1) = co whenever € < y/lim; \;/ ;.

11



3 Polynomial-Time Algorithms for A** or Al

We provide a construction of polynomial-time algorithms A4, under the following additional

assumption
K(a,a) = 0 for some a € D. (12)

This assumption implies that K(t,a) = 0 for any ¢ € D, and hence it is equivalent to
assuming that every function from H(K) vanishes at a. It can be replaced by another two
assumptions as explained in Section 6.3.

The construction is based on a sequence of algorithms B; for the basic case d = 1.
More specifically, let {B;}°, be a sequence of algorithms using functionals from the class
A € {A®% A} for approximation of functions from the space H(K). We assume that the
algorithms B; have the following properties:

By, = 0, }H&”APPl - Bi”H(K)—)Lg,p(D) =0, (13)
| Bi — Bi—1||a(k)—L.,0) < Eo 27 Vi>2, (14)

and '
card(B,-) S D() 2" Vi 2 1, (15)

for positive numbers Fy, Dy and p. We also assume that the algorithms B; use “nested”
information, i.e., functionals used by B;_; are also used by B;. Of course, we can assume that
such algorithms exist since, otherwise, the problem would require more than a polynomial
number of evaluations in e ! even for d = 1.

For f € H(1 + K), consider now

Aif = f(a) and Aif == Bi1(f — f(a)) fori>2.

Here and in the rest of this paper, we use multi-indices i. For instance, i € IN’jL means
that i is a k-dimensional vector [i1,. .., 4] whose components 7, are positive integers. By |i|
we denote E'Zzl 1g, and we write i > j to denote that i, > j, forall £ =1,2,... k.

For a subset u € U; and a multi-index i € ]N'f | whose all components are greater than 1
(i.e., 1> 2), define

) :
. _ ) A fk )
Aui = @ Gr(u,i)  with  G(u,i) == { A1 — Aip 1 ;fk iz

k=1 r |

ik

12



For the empty set u = 0,

Ay = éAl, ie, Ag(f) = f(a) with a = [a,...,qa].
k=1

Since A;(1) = 0 for ¢ > 2, and A;(K(-,t)) = 0 for any ¢t € D, the operators A have the
following important properties:

Ag1) =1 and  Ag(H(Kay) = {0} Vu#0,

as well as
Aui(H(Kay)) = {0} Vu#0,Vi>2 Vv #u. (16)

We are ready to define algorithms for approximation of functions from the space Fj.
These algorithms will depend on the parameters d, e, and . We suppress the dependence
on 7 in the definition of the algorithms and we list only the dependence on d and . Hence,
we have the algorithms A4, defined by

Ad,sf = f(a) + Z Z Au,l(f) (17)

u€ly i€Q(u)
The sets Q(u) = Q(u, ¢) defining the algorithm are of the form
Qu) == {ie NM :i>2and [i| <m(u)} (18)

with the integer numbers m(u) = m(u, €) that will be specified later. Of course, to guarantee
that the set Q(u) # 0 we will choose m(u) > 2|u|.
Let Q°(u) denote the complement of Q(u)

Q(u) := {i e INI" : i>2and |i| > m(u) + 1} :
We now estimate the error of f — A4, f. From (13), we easily conclude that f = f(a) +
Yucty L'l A, ;(f). Hence

|
d
f=Aacf =2 Y QGk(u,i)(f)
wEUy i€Q< (u) k=1

Using the representation f = fy(c) + Xyey, fu With fu € H(Kg,) and (16), we conclude

f_Ad,ef = Z Z ®(Bik71 _Bik72)(fu)a

u€ly i€Qc(u) k€u

13



and
| f = AaefllLs,, D)

<> 2 lfudrx..,

u€ly i€Qc(u)

= Z vV Yd,u ||fu||Fd Z H ”Bikfl - Bik*2||H(K)—>L2,p(D)‘

u€Uy ieQe(u) keu

Q) (Bi,—1 — Bi,—2)

k€u

H(Kd,u)—L2,p4(Da)

Due to (14),

Z H ||Bik*1_Bik72||H(K)aL2’P(D) < E(|)u| Z 9 lil+|ul
i€Qe(u) keu g ()

The last sum is given in [26, Lemma 2] and therefore we have

Ju|—1
U o—(m(u)—|u mu) — |u
1 = Aacfllin, 0w < 3 vam [ full By 2~ "Z( () "). (19)

u€Uy j=0 J

We estimate the sum of these binomial coefficients in the following lemma.

Lemma 1 The following inequality holds

u]—1 _ _ Jul
> (m ol ) < cpr (%ﬂ“') Viul < ¢, Vm > 2|y (20)

j=0 J

ce = e -y/qr et/ 121 . max (1 , (In2)” \/2%)

Proof: In what follows, we will represent m as m = x |u| with > 2. Consider first the case

z € [2,3]. The largest value of ( m; [l ) is for j = [(m — |u|)/2] and the sum in (20) can

i (i )

Using Stirling’s formula, n! = (n/e)"v/27n ef/(12") for some 6, € (0,1), it is easy to show

that
n n\k n n—k n el/(6n)
< (= o —_—. 21
<k> - (k) (n—k) 2rk(n — k) (21)

14
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We use the last estimate for n = (z — 1)|u| and k£ = [(z — 1)|u|/2]. If n =1 then £ = 1 and
( Z = 1. If n is odd and at least equal to 3, i.e., n =2p+ 1 with p > 1, then k =p+1

and we estimate
(E) k ( n )n—k n el/(6n) < 2p+1 P 2p+ 1\ | (2p + 1)el/(6n)
k n—k 2nk(n—k) — \ p+1 D 2r(p+1)p

p 1/(6n) 14+1/(6n)
<o 1+i (2+1/pe < o 3e '
2p 2n(p+1) ™

The last estimate is also true if n is even. Therefore for (z — 1)|u| > 2 we have

(x —1)|ul (@—1)[u] 3eld/12 (@—1)]ul
< oz u N A ul, [3g*eld/12 /.,
[ ( (@ —ul2) ) S T Vgt /m

Since 227! /(z — 1) < eIn 2, we obtain (20).
Consider now the remaining case z > 3. The terms of the sum in (20) are now increasing

since j < (m — |u|)/2 — 1. Therefore the sum in (20) is smaller than |u| < (@ —‘u1‘)|u| )

Applying (21) for n = (x — 1)|u| > 2 and k = |u| we easily conclude that

o ((CT0) < Ve @ e < el e

which implies (20) and completes the proof of the lemma. O

We continue to estimate the error ||f — Agcfl|L,,, (py)- Since m(u) > 2|u| we can apply
Lemma 1 to (19), and obtain

ul
Ul g—(m(u)—|u mu) —|u
1 = Aaellmimn < 5 v/as | fullrcy B2 tmio-w) (M) .
u€Uy
Since || f||%, = Zuew, [Ifullz, < 1, we conclude that

aful\ 1/2
Ul o—2(m(u)—|u m\u) — |u

ucUy

15



Consider the function f(z) = (z — 1)27Y) for z > 2. Tt is easy to check that
maxg>s f(z) = f(1+1/In2) = 1/(eln 2), and that f is decreasing to zero for z >
1+1/In2=244...

We are ready to define m(u) as

m(u) = [ulul], (23)

where x,, is the smallest number z > 1+ 1/1n 2 for which

|u

(@—-n2@)" < v (24)

with

1/(14p/2
e |appy? [ i\ 1
o Yau B Soert, (vau B2 Do

Here p and Dy are the numbers from (15). That is, if y, > (e In 2)72¥/ then 2, = 14+1/1n 2,
and if g, < (e In 2)72%l then z,, is the unique solution of the non-linear equation

(z — 1)2-ED = yu/eu),

Clearly, [z,|u|] can be computed exactly by using just a few steps of Newton’s iterations.

This concludes the definition of the algorithms A, for the approximation problem APP,.
We stress that m(u) depends on all parameters d, e, and . From the definition of m(u) and
(22) we obtain that

||f - Ad,e

1/2
|L2,Pd(Dd) S cq* (Z Wd,uE(?'uyu) = €||APPd||.

u€Uy

Hence, the error of Ay, is at most ¢||APP]|. R
For the general linear problems {S;}, we define the algorithms A, . by

i _ _ cllSal

Age := Sg0 Ao ith s —— 25
d, d © Ag, W1 € Cd||APPd|| ( )

with the numbers Cy from (9). It is clear that the error of A4, is bounded by ¢ [|Sy||. We
summarize this analysis in the following lemma.

16



Lemma 2 Let (12-15) hold. The algorithms Aq. given by (17), (18), and (28), and Ay,
given by (25) have errors satisfying

€™ (Age; Fy) < €||APPy|| and e (Aq; Fy) < €||S4]| VdeINL, Ve e (0,1).

The definitions of the algorithms A;, and A\d,g formally require the knowledge of all
weights 4, as well as the norm ||APP,|| which are used in the definition of m(u). Note
that m(u) is a decreasing function of | APPy4||, and therefore we can use a lower bound on
||APP,|| in the definition of m(u). Hence, if this norm is unknown, it can be replaced by the
following lower bound obtained through the integration problem, see [42, Theorem 1],

IAPPA? > [INTJP = 720+ 3 7auc®,
u€Uy
with
ci= [ o0 p(@) K (t,2)d(t,2).

Lemma 2 as well as the next theorem hold for the algorithms with ||[APP,|| replaced by
||IINT,|| as above.

We now estimate the cardinalities of the algorithms Ad,g and Ag.. The cardinality of
A does not exceed the cardinality of A,., and the latter cardinality can be estimated by
the sum of cardinalities of the corresponding algorithms A, ;. That is,

card(Ag.) < 1+ ) card(u) with card(u) := Y card (® G (u, 1))

ueUy iEQ(u) k=1

As in [37], card(u) < Yicqu) card (®keu Bi—1) < Yieqm) [keu card(Bj,—1). Therefore due
to (15),

m(u)—|u| B
card(u) < 3 Dplari-l) = pli 3 2,,£< (-1 )
€t t=ul

The binomials in the last sum are increasing, so we can estimate them by the largest one
obtained for £ = m(u) — |u|. We then get

Dy’ pim)—Juj+1) [ m(u) = |u| =1
card(u) < 51 2 uf — 1 :

17



Using (20) we finally obtain
g 2% lul o p(m(u)—lul) m(u) — |ul
Card(u) S ﬁ ‘DO 2 T
From (23) we have m(u) — |u| = [(z, — 1)|u|] <1+ (2, — 1)|u| and
|ul
op(m(u)—|u) (m(u|) |_ |U|) < 2p(:cu71)|u\(xu _ 1)|u|2pel/(azu71) < 2p+12p($u71)‘u|(xu _ 1)|u\
T al < <
since 1/(z, — 1) < In2. From this we obtain

2p+1
Cq* 2

b T(Aa)  with  T(4g.) = 3 Dl gp@a=Dlul (g, 1)lul,

u€Uy

card(Age) < 1+

(26)
To estimate T'(A4.) we need the following inequality which is easy to check. For any p > 0,
z>landa>1

1)—(p+1) .

z < ¢ ? (ln (2“‘ x_a))p+l with Cp = (ln(2) —e (27)

Then letting z = z, — 1 and a = |u|, we obtain

e < 3 60" () n (20 7))

u€EUy 1)|U|

9(zu—1) 21l 1
Ty — 1 2

where z, = min (yu, (e In 2)_2‘“|). Hence,

From the definition of x, we have

R ul —pja (1 . (p+1)lul
T(Aa:) < > (6Do)"™ z,* (Eln zu>

uEUy

—p/2 (p+1)|ul ~ —(p+1) |l —p/2
< g (220 3 (BD 0) Ay
~ ~ q*
Cp Cp —p/2 (p+1)|ul lul _—p/2
< max (pp—“’ <pp—+1) ) max <ln 2, ) UEEUd Dy'z,Pre.

18



We estimate the logarithmic factor as follows:

_pj2y\ @Dl lul _—p/2y luly\ @F+D)]ul
max (ln(z P )) = max (ln(DO 2, 77%) — In(Dy ))
(p+1)g*
< (ln (Z D} zup/z) + max (ln(Dal), q ln(Dol))) :
uEUy

To estimate the sum of D{*'z?/2 note that
27P/? = max (y;p/Q, (e In 2)”'“') < y;?? 4 (e ln 2)PM.
We have

/(2+p)
ch. 07 g2\ "
DM -p/2 _ q D|“| d;u 0
2, i S TAPPF 2,

uEU, u€ly

/2
Z 2+
% ( ()d,'u E02‘v|)p/( 7 D(|)U|/(1+p/2))

vEUY

e

/(2+2) e
_ ¢  E2eNPIETP) plul/(4p/2) 98
e? || APP4]|? (ugd (vau ™) 0 (28)

p/2 ul il
CZ* ud| Z Va EUEUd D(|) |E(|) v
e? |APPy|l? \ S Uy

IN

/2
N Ual (Zuer, vaw\’
» P\q ‘ d u€ly /d,
< b max (DOEOa (DoEg) ) P ( ||APP,]|? '

Since >,e, (Do(e In 2)7) < max (Do(e In 2)?, (Dy(e In 2)1”)‘1*) \Uy|, we conclude that

U > . p/2
card(Age) < 145 (b2 |€$| ( ”A%’{l‘;;yﬁz ) + bs|Uy| (29)

(p+1)g*
by [Us| (S, Vo \"
x((ln( o ||APE’d||2 + bs|Uy| | + bs

19




with the numbers b; given by

Cqr 221 @ & \*
by = ;p —7 max (ppf—l , (ppil) ) (30)
by = cf max (DoEL, (DoEE)" ), (31)
by = max (Dy(eln2)?, (Do(el2)?)"), (32)
by = max(In(Dy'), ¢* In(Dyh)). (33)

We are ready to prove the following theorem.

Theorem 1 Let (12-15) hold and let v = {v4.} be arbitrary finite-order weights with the
order q*.

Then the weighted approximation problem is tractable and the algorithms {A4.} defined
by (17), (18), and (23) are polynomial-time algorithms.
The general linear problem {S4} is tractable if, in addition to (9), there exists a number

k such that
Cal|APPallpy1,,,(Da)

d=1,2... dk ||Sd||Fd—)Gd

(34)

Then the algorithms {jm} defined by (25) are polynomial-time algorithms.
More precisely, the following bounds hold.

(1) If [p2 p(t) p(z) K(t,z) d(t,x) > O then there exists constants a; such that for every d and
every € € (0, 1),

card(Ag.) < ay [Ugle P (1+ In(Uhy|/e)) DT

< 2ad” e (1+n(2d? /o))" (35)
card(Aq.) < ag [Ug' e P (14 In(jUy| /)@t

< 2a,d?0H P (14 1n(2a7 /)" (36)

(ii) [p2 p(t) p(z) K(t,z)d(t,z) = O then there exists constants a; such that for every d and
every € € (0, 1),

card(Aqe)
card(Aq,)

asd9 (P2 P (1+ ln(d/s))(pﬂ)q* ) (37)
ag d9 0P+ =P (1 4 In(d/e)) @D (38)

ININ
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Proof: The theorem follows immediately from Lemma 2, (29), (7), (25), and the following
estimates on ||APPy||. If ¢ = [p2 p(2)p(t) K (z,t) d(z, t) is positive then, as already mentioned
after Lemma 2, |APP4||? > [[INT4||? = yap + Xueu, Yauc®. Therefore,

Eﬂ.eud r)/d;u g ’Vd,(b + E’U,Eud de,u g max(l’ ch*);
|APP 4] Va0 + Xty VauC®

so they are uniformly bounded in d.
Otherwise, if [p2 p(z)p(t) K (z,t)d(z,t) = 0 then

AP = max (vag, max s [WI]")
uEUy

where ||W|| is the norm of W : H(K) — H(K) given by W (f) = [p f(t)K(t,-)p(t) dt, see [42,
Lemma 2], as well as Remark 1. In this case, >,cy, Va,u/||APP4||? are at most proportional
to d?. 0

The essence of Theorem 1 is that we have polynomial-time algorithms for arbitrary finite-
order weights. For some specific cases, these algorithms might be even strongly polynomial-
time. For instance, (35) implies the strong polynomial-time property of {A44.} for the ap-
proximation problem if the cardinalities of the sets U,; are uniformly bounded for all d.

In general, when the cardinality of U, increases like d?, the cost of the algorithms Ag.
is essentially as large as d9 ¢ P which could be very large when d and ¢* are large and ¢ is
small. However, under an additional assumption on the weights, we can propose algorithms
Ay, whose cardinalities are essentially bounded by |[Uy| + e~? for some p’ > p.

To define the algorithm A, ., we first observe that the algorithms A4, and fld,e depend
on all parameters of the problem S;. In particular, they depend on p which is used in the
definition of y, and effects m(u) given by (23). The parameter p bounds the cardinality
of the algorithms B;, see (15). Obviously if we replace p by a larger number p’ then (15)
holds and the analysis of this section goes through. That is how new algorithms are defined.
Namely, the algorithms A4, and fld,s,p: are defined as A4, and /id,s with the parameter p
replaced by p' with p’ > p. For simplicity we now only analyze the algorithm A, , for the
case when [ p(t) p(x) K(t,z) d(t, z) is positive.

Theorem 2 Let [p: p(t) p(z) K(¢t,z)d(¢t,z) > 0. Let

1/r
r* :=sup|r>1:sup Zoucty 7d,u1/r
(Zueud ’deu)

< o
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If r* > 1 then for any

p' > max(p, 2/(r" — 1))
(or any p' > max(p, 2/(r* — 1)) if the infimum for r* is attained) the algorithms {Agep} are
polynomial-time algorithms and there exist positive numbers a; such that

card(Agep) < ay[Ug| +age? (In 1)@+ Vd, €. (39)

Proof: The proof is the same as the proof of Theorem 1 up to (28). That is, we differently

estimate Y, DIy —#'/2. More specifically, by using p' instead of p, and keeping in mind
that ||[APP,||? > mln(l c?) Yueu, Yau With ¢ = [p2 p(t) p(z) K (¢, ) d(¢, ), we have

! '/(2+p") 1+p'/2 ! g
02* EuEUd 'Ys ma‘X(DO E(I)) ’ (DO E(I)) )q )

DM /2 < 9
L oS YT min(1, o7 )7

(Eueud Yd,u

Then denoting (2 + p')/p’ by r we see that 7 < r* and hence

1+p'/2 1+p'/2
2
ZuEUd 75 e _ Zueud ’yd/u
p'/(2+p') - i/r
(Eueud ’yd,u) (Zueud ,yd,u)
is bounded independently of d. The rest of the proof is the same as before. O

Although the bound (39) does not imply strong polynomial-time property, it exhibits a
weaker dependence on d than (35) since it it separates the dependence on d from the one on
1/e. We end this section with the following remark.

Remark 2 The error of the algorithm A, is derived under the finite-order weights assump-
tion, i.e., for functions f belonging to @, <, H(K). It is interesting to check what happens
with the error of A, if the algorithm is applied to functions with ‘small’ components outside
the space @y < H (K,), as in the case of small effective dimension. That is, let f be of the
form

f=fi+f, with fi€ @ H(Kiu), f2€ @ H(K4,) and ||f2||HKd,u is ‘small’.

|u[<q* Ju|>g*+1

Since fo(a) = 0, the property (16) implies that the algorithm A, . vanishes on fo. In fact

Ae( @ H(Kuw) = {0}

lu|>g*+1
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Hence its error,
[ —Awef = (fi — Adehr) + fo
increases at most by || fallg, < ||APP4|| - || f2l| 5, -

4 Polynomial-Time Algorithms for A*! when
[ p(2)p(t) K (z,t) d(t,z) = 0

In this section, we describe polynomial-time algorithms A, . that use information functionals
from A®', and lead to better tractability bounds in d. As mentioned in the introduction,
general results for A?! have been obtained in [42] under the assumption (5). Here we do not
assume (5) and strengthen the results of [42] under the following assumption:

/D p(@)p() K (z,8) d(t,2) = 0. (40)

As explained in [42], this is equivalent to assuming that [, f(z)p(z)dz = 0for any f € H(K).
As in the last part of the proof of Theorem 1, consider the operator W : H(K) — H(K),

W) = [ FO K pl)dt

We assume that the operator W is compact. This assumption is without loss of generality
since otherwise the complexity of the approximation problem would be infinite for small
even for d = 1, see e.g., [33]. Let {(\;, (;) }iew, be the eigenpairs of W with orthonormalized
(; and ordered so that

W =X >-->X > XNy >---> 0.

Then {¢;} forms an ON (orthonormal) system in H(K). Moreover
(G Gy, = W(G), Gy = Midiy Vi j € INL. (41)

It is well-known, see e.g., [33], that v/A, 1 is the minimal error for solving the basic, d = 1,
problem APP; among all algorithms that use at most n evaluations from A#!. To guarantee
tractability we must assume that \; goes polynomially fast to zero with n=!. Hence, we

assume that

3B>0, 3Ip>0, Vi=1,2,..., wehave X < Bi 2P (42)
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which corresponds to assumptions (14) and (15) from Section 3.
For a nonempty set u, define

Gu(x) == [l Gi(ze) and Ay = ] A for ie ]N'f:'.

k€u k€u

It is easy to see that for any u # 0, {Ci,u}i€N|u| is an ON system in H(Kg,). Due to
+

orthogonality between H(Kg,,) and H(Kg,) for u # v, the set containing 1 and all (;,’s
forms an orthogonal system in the space Fy. Of course, the 7;,’s given by

MNiu = Ci,u\/ Yd,u (43)

together with the normalized 1 yield an ON system in F,;. That is,

f = <f51>Fd\/w+ Z Z <fa77i,u>Fd'ni,u-

u€EUy iE]l\I‘_f‘
Consider now the operator W, : Fy; — F,; defined by
Wy = APPj 0 APP,

Then (40) implies that (Yau Aiu; i) are the eigenpairs of Wy, see [42, Lemma 1].
We study the algorithms A, . defined by

Ad,sf = <f7 1>Fd : \/’}’T,(Z)"' E Z <f, 77i,u>Fd * N (44)

u€EUg i€ P(u)
with the sets P(u) = P(e,u) given by
P(u) = {i e N} 1 74, M0 > €2 [|APP4}. (45)

As in Section 3, for the general problem {S;} we assume (9) and define the algorithms

3 - € ||Sall
A= Spodge  with e o= SISl
d, d0 d, w1 19 Cd ||APPd||

We have the following lemma.
Lemma 3 Let (40) hold. For every d and ¢ € (0,1), the algorithms Aq. and Aq, satisfy

e"(Age; Fy) < €||APPy||  and e (A4 Fy) < €Sy
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with
card(Ay,) < card(Ag.) = 1+ Y |P(e,u)|. (46)

u€Uy

Moreover, if also (42) holds then

_ . /2
alnt2a+1) ifa>1 Yau B® \°
< - = = .
[Ple;u)l < { 0 otherwise, where o e? ||APP,4||? (47)

Proof: We begin by estimating the error. Of course,
.f _Ad,s.f = Z Z <fa ni,u>H(Kd) *Miu-

u€ly i¢ P(u)

Therefore

1 = A (D)1,
=Y XX T Fmade Fomiade, [ G0 (x)m0(x,) dx

u€EUy i¢ P(u) vEU4 j¢ P(v) d

= Z Z <.f7 ni,u>?:'d *Ydu - )\i,ua

u€Uy i¢ P(u)

with the last equality due to (41) and (43). Since || f||Z, = Z.; (f, ni,uﬁ?d, this implies that

" (Age; Fg) = max max /7Vau - Aiu < €||APP4]|,

u€ly i¢ P(u)
as claimed. For the general {S;}, note that for || f||r, <1,
1Saf = Adeflle, < Cae™ (Aaer) < CallAPPy||le* = ||Sall,

which completes the first part of the proof.

We now estimate the cardinalities of both algorithms. For that end, observe that (46) is
obvious since the functionals (f,7iu), are linearly independent for all u € Uy and i € P(u).
The sharp estimates on the cardinality of the set P(u) can be found in [23, Lemma A.1] and
[44, Lemma 4.1]. Here, we opt for simplicity and present a simple proof which gives a sharp
estimate on € but not sharp with respect to the asymptotic constant.

Let p(a, k) denotes the cardinality of a set on multi-indices i € IN® with H;?:l i; < a.
Then

p(a,k) < aln*'(2a+1)fora>1 and p(a,k) =0 fora€]0,1). (48)
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Indeed, (48) holds for k = 1, and by induction for a > 1,

la] la]
pla,k+1) = Y plafik) <aln*'(2a+1) Y i
i=1 i=1
Let f(z) = 1/z. Then for every i and € [i — 1/2,i + 1/2] we have f(z) =i ' — i ?*(z —
i)+ (3 (x —4)? for some (; € [i —1/2,i41/2]. Hence i * < f.zfll/; f(z) dz and consequently

7

la]+1/2
p(a,k+1) <aln**(2a+1) // z7'dr < a1nf(2a+ 1),
1/2

as claimed. Clearly, (48) implies (47) since P(u) = p(a, |u|). This completes the proof. O

We are ready to state the following theorem which easily follows from Lemma 3 and the
proof of part (ii) of Theorem 1.

Theorem 3 Let (40) and (42) hold. Let v = {yaun} be arbitrary finite-order weights with
the order q*.

The weighted approzimation problem {APP.} is tractable, and the algorithms {Aq4.}
defined by (44) and (45) are polynomial-time algorithms. More precisely, there exists a
number a, such that

card(Age) < are Ul (In(Ual/e))” " < 2016 7d” (In(2d” /g))q*’1 Vd,e.

The general problem {Sy} is tractable if, in addition to (9), there exists a number k such

that
Ca |[APPa|| 7,1, ,,(00)
sup

d=1,2... dk ||Sd||Fd—>Gd

Then the algorithms {ﬁd,e} defined by (25) are polynomial-time algorithms. More precisely,
there exists a number ay such that

card(Aq.) < aze Pd* (In(d/e))? ' Vd,e.

We now show that the upper bound for the approximation problem presented in Theo-
rem 3 is essentially sharp. To see this, we consider

o= 7P
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for some positive p. Then |[W]| = 1. We estimate from below the cardinalities of the
sets P(e,u) given by (45) by counting only multi-indices of the form i = [i;,1,...,1] with
i /7 > || APPy|[? /74, Hence |P(e,u)| > | (Yau/(e2|APP,]?))""?| and

Yd p/2
. reu . 4
(eznAPPdn?) (49)

Consider now the finite-order weights with vz, = 1 if |u| < ¢*. Then ||[APPy4|| =
max (Ya,g, MaXuers, Vdul W|||“|) =1 and

card(Age) > (677 —1) - Uyl

card(Ag.) > Z

u€Uy

Since the cardinality of U, is proportional to d?", this proves that the bound from Theorem
3 is sharp modulo the logarithmic factor.

It follows from the general results, see e.g., [33], that the algorithms A, . are complezity
optimal, i.e., they have the smallest cardinality among all algorithms that solve the approxi-
mation problem with error at most € || APP,||. Hence, whenever the bound on the cardinality
of Ag is sharp, it becomes a sharp complexity bound.

5 Strong Tractability for A

In this section we show necessary and sufficient conditions on finite-order weights to guaran-
tee strong tractability of the weighted approximation problem. Due to complexity optimality
of the algorithms A, these conditions are equivalent to {A4.} being strongly polynomial-
time.

We need to assume the exact order of behavior of the eigenvalues A; for the basic case
d = 1. Therefore we assume that p in (42) is best possible, or more precisely that

A= 0 (i), (50)

Theorem 4 Let (40) and (50) hold. Then the approzimation problem {APP,} equipped
with finite-order weights is strongly tractable iff there exists a positive number s such that

~ . ~ Yd,u
sup > Viw < 00 Wwith Fg, = Tk (51)
uEUy UE{@} Uy ,Yd,ﬂ

If this holds then the exponent of strong tractability is

p* = max(p,2s"),
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where s* is the infimum over s satisfying (51).
Moreover, if (51) holds then the algorithms {Aqac} are strongly polynomial-time algorithms
and for every § > 0 there exists as such that

card(Ag,) < age P (149,

Proof: Due to complexity optimality of A4, it is enough to verify when the cardinality of
Ay does not depend on d. Suppose that (51) holds for some s > s*. When s > p/2 then
(46) and (47) imply

card(Ayg, < +c TS ST
© " e, \E2|APP||?
csmax(1, B*7) Vdu ’
< 1+ 2s Z W ||l
€ ueld maX('Yd,(ba ma’X’UEUd 'Yd,v || || )
for some positive c,. Since
Yd,u ;)\/d,u
max (74,0, MaXeey, Yaol[W ") — min(L, [W]*)’

we conclude that

¢, max(1, B57) s o
e? min(1, [[W{|s7") ugd o =0

card(Age) < 1+

for some positive ¢; independent of d. Of course, when (51) holds for s < p/2 then it also
holds for s > p/2, and the previous analysis applies. This proves that the problem is strongly
tractable with the exponent at most max(p, 2s*).

To complete the proof, assume that the problem is strongly tractable with the exponent
of strong tractability p*; hence the algorithms A, are strongly polynomial-time. Then there
exist positive o and ¢ such that

card(Agq.) < e ® Ve, d. (52)

Here o > p*, and can be made arbitrarily close to p*. Obviously, p* > p since for d = 1 we
have card(4;.) = O(e7?).
Recall that (49) states card(Aq.) > Yyey, [('yd,u/(e2 ||APPd||2))p/2J for all € and d. Since

Yd,u > ;)\/d,u
max(Ya,, maxey, Yoo [W[") ~ max(1, [W

q*)’
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we conclude that

<ce * Ve,d.

2, K )

uEUy

From this we obtain

{uels: Fau > e max(L, [W]7)} < ce™® Ve,d. (53)
For s > /2 we have
o0
Vau = 2 > V-
u€Uy =0 weuy: 2-G-1 <7, <27

Setting €2 = 277/ max(1,

) we obtain from (53)

o

sup Y T < 32 <,

u€Uy j=0

Hence (51) holds with 2s > «. This implies that 2s* < «, and since « can be arbitrarily
close to p*, we have 2s* < p*, as needed. This completes the proof. O

It is interesting to compare conclusions of Theorems 3 and 4. Theorem 3 states that
weighted approximation is tractable for arbitrary finite-order weights and

card(Aqe) = O (a_p(H‘s) dq*) . (54)

Theorem 4 states that for finite-order weights satisfying (51) with the smallest s denoted
by s*, the weighted approximation problem becomes strongly tractable and

card(Aq.) = O (e (1+9) (55)

with the exponent of strong tractability p* = max(p, 2s*).

Consider two cases. First, assume that s* < p/2. Then p* = p and, modulo §, the
weighted approximation problem for arbitrary d is roughly as hard as for d = 1. In this case,
Theorem 4 is a clear improvement of Theorem 3 since the factor d¢ present for arbitrary
finite-order weights is eliminated for finite-order weights satisfying (51) with s &~ s*, and
with roughly the same dependence on 1.

The second case, s* > p/2, is more interesting. The exponent of strong tractability is
now p* = 2s* > p, and the weighted approximation problem, although strongly tractable, is
more difficult for d > 2 than for d = 1. Furthermore, we have a tradeoff:

card(Aq.) = O (min (e—p(1+6) dq*’s—p*(1+5)))
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since both bounds (54) and (55) hold. Hence, for a fixed ¢ and varying d, we conclude that the
bound (55) is better and we solve the weighted approximation problem with cost depending
on the increased power of e ! independent of d. If, however, we fix d and vary ¢, the opposite
is true. The bound (54) is now better and we solve the weighted approximation problem with

cost depending on the non-increased power of e ! at the expense of a polynomial dependence
in d.

6 Extensions

In the previous sections we made some assumptions/restrictions to simplify the presentation.
We now briefly comment how they can be relaxed.

6.1 Removing Assumption (3)

Suppose now that
1 € HK).

Due to separability of H(K), there exist functions (i, (s, ... € H(K) that form an orthonor-
mal system of the orthogonal complement of span(1) in H(K). This means that
B B dim(H (K))—1 B
K(z,t) = ¢g+ K(z,t) with K(z,t) := > Gx)G(t) and 1¢ H(K),

i=1

where ¢y = ||1||;12(K). Note that

Ka(x,t) = a0+ D YauKau(x,t) = a0+ Y Yau [[(co + K(z,t5))

u€Uy u€Uy jEu
= Y49 + Z Yau cl})u\ + Z CI@u\—|U| dev(x, t) = Yag + Z Y ?d,y(x, t),
u€Uy 0A£vCu vEUY
where
Vap = Vap+ D Vau e
u€Uy
and for v # 0,

Wd,'u = Z Yd,u C|@u\—|’u| with ud,v = {U €Uy :vC U,}
u€EU
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We stress that if {74, } are finite-order weights of order ¢* then {%,,} are also finite-order
weights with the same order ¢*. This means that tractability of the problem with K and
{74} is equivalent to tractability of the problem with K replaced by K and ~4, replaced
by 74,- Moreover, using the construction presented in this paper for the kernel K and the
weights 7y, , we obtain linear algorithms which are polynomial-time for the kernel K and the
weights 7,4,. More precisely, the results of Section 3 hold if K (a, a) = 0 for some a € D, and

the results of Sections 4 and 5 hold if [, p(z) p(t) K (z,t) d(z,t) = 0.

6.2 Assumption on A

In Section 3, we restricted the class A of permissible functionals to the class A%*d or to the class
AL, However, all the results easily carry over for a more general class A as long as A enjoys
the following tensor product property: if Ly,...L; are from A for d =1 then L; ® --- ® Lq4
are from A for the d-dimensional case, and that evaluation of f at a is permissible for d = 1.

6.3 Replacing Assumption (12)

In Section 3, we assumed that there exists a point a € D for which K(a,a) = 0. Recall that
this assumption is equivalent to assuming that all functions form H(K) vanish at a. We now
show how this assumption can be replaced by two others: (56) and (58) introduced below.

As in Section 3 we can assume, without loss of generality, the existence of algorithms
{B;}$2, satisfying (13)—(15). Additionally, we now assume that the algorithms B; are exact
for constant functions, i.e.,

B;i(1) =1 Vie IN,. (56)
Consider the algorithm A, defined as in Section 3 with A;’s replaced by B;’s. That is,
Ad,ef = f(a) + Z Z Au,l(f) (57)

u€ly ieQ(u)

with 4
. ) . B if k ,
Aui = QGi(u,i)  with  Gy(u,i) = { Bl — B, _, if}g zz
k=1 T ’

ik

for non-empty sets u, and Ay := ®%_, B;. As before, the sets Q(u) = Q(u,¢) are of the
form
Qu)={ie N : i>2and [i| <m(u)};
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however, now with a slightly changed m(u) = m(u,¢) due to the fact that A; = B; (and not
B; 1 as before). That is, m(u) is given by (23) and (24) with E, replaced by FEy/2 in the
definition of y,, i.e., now

2
cq*

1/(1+p/2
Yo B Sveta (Yan(Bo/2)20)7/ &9 D2/

Due to representation f = fy(a) + X ,ey, fo We have

f_Ad,sf: Z Z Z A(’U,,i)fv

vEUG u€ly i€cQc(u)

Due to (56) we have
Ayife =0 when wu\v#0.

This means that in the expression for f — A4, f, we can restrict the sum over v € U, to the
sum over u C v, i.e.,

f=Aacf =3 Y Auif +E(f),

vEUG IEQ°C (’U)

where

E(f) = > > Y Auifo with Uz, = {uecly : uCv,u+#v}.

vEUq ueﬁd,v iEQC(u)
We are ready to state the second assumption:

Vde N, Vu,vely, if wCwv then u=w. (58)

ie.,
Zjd,v = @ Vd, Yve U;.

Clearly, under this assumption, the term E(f) above is zero and, therefore,

-1 lu| o—(m(u)—|u|) e m(u) — [ul
If = Aaefllta,, 0 < Do vVAau | full 2 (27" Eo)™ 2 > j ;
u€U, Jj=0

and, as in Section 3, we conclude that for all d and € € (0,1) we have

€™ (Age; Fy) < €||APPy|| and " (Ay.; Fy) < e]|S4l- (59)
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Of course, Ad,e is obtained from A4, as in Section 3. The rest of the analysis is very similar
to the one in that section. This is why all the conclusions of Theorem 1 hold with the
assumption (12) replaced by (56) and (58).

Note also that if 1 € H(K), the modification discussed in Section 6.1 does not destroy
the property (58) and gives new weights 7, , that are very simple:

Yoo = Yag+ O Yaucy!  and Yy, = Yau for u#0. (60)

u€Uy

We stress that although the assumption (58) puts restrictions on the weights {v4,}, it is
satisfied by some interesting problems, including problems dealing with the Coulomb force
and Coulomb potential functions, see Section 7.4.

6.4 More General Solution Operators than APP,

The main results are obtained for the approximation problem {APP,} and for problems
{S4} that are related to the approximation via the assumption (9), i.e., that ||Sqf|lg, <
CallflL,,,(py) for all f in Fy. Note that the embedding operators APP, have a tensor
product form, a property that was heavily used in all the proofs, whereas S; does not need
to have such a form.

We now show that the choice of APP, as a basic problem is not necessary. The weighted
approximation APP; can be replaced by another tensor product problem as follows. As
before, we assume without loss of generality that 1 ¢ H(K). Consider a linear operator

T : span(l) @ H(K) — Gy
with a Hilbert space G1. For d > 1, define

d d
Te = QT and Gy := Q)G (61)
k=1 k=1

with the norm of G given by

d
= I llgslle: Vgr € Gi.

Gy k=1

d
X g
k=1

We can now modify (9) by assuming that the operators S, are related to Ty by
1Saflles < CallTaflles V€ Fu (62)
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Observe that for 77 = APP; the assumption (62) reduces to (9). In general, the choice
of T7 is arbitrary. Note, however, that if 7} is a functional, e.g., 77 = INT, then all Ty
are functionals, and S; satisfying the assumption (62) must be also a functional (possibly
nonlinear).

We show how the assumption (62) can be used to obtain polynomial-time algorithms. As
in Section 3, assume that K(a,a) = 0, and that there exist algorithms {B;} satisfying the
assumptions (13), (14) and (15), of course with APP; replaced by 7. Define the algorithms
A; as before with the only difference that now

Arf = f(a)-Th(1),

where 1 above stands for the constant function f = 1. For finite-order weights of order g¢*,
we can assume without loss of generality that 77(1) # 0, i.e.,

Co == |Ta(1)[le, > 0,
since otherwise Ty(Fy) = {0} for d > ¢*. Observe that now
A < CEt gl g (i-lu),

Consider now the algorithm A, given by (17) (18), and (23) with ||T}|| instead of || APP4|
and C4(E,/Cy)"l instead of E" in the definition of y,. That is, m(u) is given by (23) and
(24) and

1/(1+p/2
L B S 1
’ Cg O3 \Yau (Eo/Co)?™ 2 veuy (’Yd,u(Eo/Co)2|”|)p/(2+p) D(‘)W(Hp/z)

Then

e (Aae; Fa) < e||T4]] (63)
and
/2
Ua| (Suer, Vau\’
card(Age) < 14 (bz - TP + bs |U| (64)

(p+1)g*
by |U . P2
X (ln( 2lpd| (E”e;{:”’;/d’ ) +b3|Ud|) +b4) .
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The constants b; are given as in Section 3; however with Ej replaced by Ey/Cy. Since

2(d— 2
ITal? > max 0G0 ™ 1Tl

we conclude as in Theorem 1 (ii) that
card(Ag.) < agd? P2 ¢ P (In(d/e))PTH
Moreover, if there exists a positive number C; such that

d—|u
1T > Y G ™ 1T o (65)
ueldU{0}

then, as in Theorem 1 (i),
card(Aq.) < ay Uyl e (In(|thy) /)P . (66)

It can be shown that (65) holds with C; = 1 when T} is a functional. Hence (66) holds for
all functionals T} .

Of course, the modifications discussed in Sections 6.1-6.3 are also applicable to such
general problems 7.

Theorems 3 and 4 can also be extended for for A = A®! assuming that 7;(1) is orthogonal
to T1(H(K)) which corresponds to and replaces the assumption (40). Then the eigenpairs
of

Wd = T;OTd : Fd—)Fd

can be expressed in terms of the eigenpairs of W =T o T} : H(K) — H(K) similarly as it
was done in Section 4. Indeed, let {);, (;}; be the sequence of eigenpairs of W, with ordered
A; and orthogonal ;. Then

d Czk if k € u,
G = Qm with 7, =
k=1 T]_(l) if k ¢ u,

and (p = ®4%_, T1(1) are the eigenvectors of W, corresponding to the eigenvalues

)‘i,u = ’7d,u Cg(d_w‘) H Az

k€u
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Another extension of the results of this paper could be obtained by allowing the operators
APP, and/or T, to be tensor products of operators that need not be identical, say

d
Td = ®Td,k with Td,k : H(Kd,k) — Gd,k-
k=1

Here H(K,y) for k = 1,2,...,d are reproducing kernel Hilbert spaces, with possibly dif-
ferent kernels for different k, and G4 are possibly different Hilbert spaces. Of course, the
eigenvalues A;, are products of the corresponding eigenvalues of operators T, o Ty;. This
extension does not make the analysis more difficult; however, it does result in a cumbersome
notation. This intractability of the notation is the only reason why we have assumed the
identical operators APP; (or T}).

7 Applications

We illustrate results of this paper by a number of specific examples.

7.1 Weighted Approximation of Smooth Functions

Using the notation of Section 2, we now take m = 1 and D = IR. The kernel K is defined
as in [39, 41]. That is, for a positive integer k, consider the following reproducing kernel

|z — )% (y[ - D
((t) (k= 1)!)?
where ¢ : IR — IR . Here 1r, denotes the characteristic function of IR, which implies that

K(z,y) = 0if zy < 0. Clearly K(0,0) = 0. The corresponding reproducing kernel Hilbert
space is

K(z,y) = 1]R+(xy)/0 ( dt Vz,y € IR,

H(K) = {f:IR—>IR : f(0)=...= f%D(0) =0,
f® 1 is abs. cont., and f®y e Lz(IR)}
with the inner product given by

Do = [ SV W @) @) de Vg€ HE).

The function 9 allows to have general spaces H(K). For instance, letting ¢ be the char-
acteristic function of [0,1] corresponds to the classical Sobolev space H(K) = W¥([0,1]).
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When #(z) converges sufficiently fast to zero with |z| — oo then H(K) is a much bigger
space than when v (z) converges slowly or does not converge at all, see again [39, 41], for
more details.

Let p be a probability density function defined as in Section 2 for which (5) holds.
Clearly, [g2p(z)p(t)K(z,t)d(z,t) > 0. Under some additional conditions on (k, 1, p), see
[41] for details®, we know that algorithms B; based on a piecewise polynomial interpolation of
degree k — 1, satisfy the assumptions of Theorem 1 with p = 1/k. Hence, the corresponding
algorithms {A,.} are polynomial-time algorithms and

card(Aq.) < ad? e V/* (In(d/e))T FTI/E

7.2 Weighted Integration with Isotropic Kernel K

We now present an example with an isotropic kernel K and m > 2. To illustrate the approach
outlined in Section 6, we discuss a multivariate integration problem with 77 = INT};.
More specifically, let m > 2,

|zll2 + [lyll2 — [l — yll2

D = [0,1]™ and  K(z,y) = | 5 :

where ||- |2 is the £5 norm in IR™. The corresponding reproducing kernel Hilbert space H(K)

was characterized in [5], see also [20]. Here we only mention that K is also a covariance kernel

of the Brownian motion in Lévy’s sense or, as it is sometimes called, of the isotropic Wiener

stochastic process. Note that now H(K) is an isotropic space of functions of m variables

and it cannot be represented as a tensor product of m spaces of univariate functions.
Using the notation of the previous section, let

Ty(f) = INT,(f) := /Df(m) dz.

Of course, G; = IR, and p = 1. Moreover, [p. K(t,z)d(t,z) > 0.
For d > 2, we want to approximate

Ti(f) = INTo()) == [ fx)dx

with f € Fd.
3For instance, this holds when p(z) = p(—z), ¥(z) = ¥(—=z), ¥(0) > 0, ¢ is non-increasing on IR and
- 1/k
continuous on it’s support, as well as [; <\/p(m)/¢(m)) dz < o0.
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Since T, is a functional, it makes sense to consider only A4, Tt follows from [36] that
there exists a family of algorithms B; satisfying (14) and (15) with p = 2m/(m + 1). We
know that (65) holds since

INTA? = 90+ 3 vl TP with TP = [ K(t2)d(9).

uEUy

Hence, as in Theorem 1 (i), we conclude that the corresponding algorithms {A,.} are
polynomial-time and

card(Aq.) < ad? ™D (n(d/e))d Em/nY)

7.3 Weighted Approximation in the Supremum Norm

The range spaces of the operators defining specific problems were so far Hilbert spaces. We
now show how some of the results can be extended to the case when the range space G is
the Banach space C'(D,) of continuous functions.

More specifically, consider the problem of approximating f € Fy by an algorithm A with
the error measured in the following weighted supremum semi-norm,

£ = Aflla, = sup 160 = AF(x)| pa(x).

The space Fj is as before, F; = H(K,) with K  given by (8) and satisfying (12). It is easy
to prove that the initial error ||[APPy]| is given by

|APP,|| = sup pa(x)y/ Ka(x, x).

XEDd

This is why we assume that the supremum above is finite. We only consider algorithms using
information from As*d.

Suppose now that H(K) and p are such that they admit a sequence of algorithms B;
satisfying (15) and the following modified (14):

Im [APPy — Billax)»e, = 0 and  ||Bi = Biallax)»a < Fo 270 Vi>2, (67)
There is a number of results that guarantee the existence of such algorithms, of course
under some assumptions on K and p. For instance, for m = 1, K given in Subsection 6.1 with
D; = R?, 1 and p satisfying certain assumptions, see [39] for details?, the conditions (67)

4This holds, for instance, if o, + min(1/2,01/4) > k —1/2 and 0,,01/4 < 00, where o, := sup{8 € R :
lim;_, g(t) ? = 0} measures the behavior of g at infinity.
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and (15) hold with p = 1/(k—1/2). Note also that the same bounds hold for an interpolation
problem, where instead of the function f, one wants to approximate the value of f at a fixed
point . Of course, the interpolation problem is an instance of problems discussed in the
previous section with the range space being a Hilbert space, more specifically just IR. Since
this holds for an arbitrary z, we conclude that the corresponding algorithms {A,.} are
polynomial-time and

card(Ag.) < ad? e 1/ (k=1/2) (ln(d/g))q*(2k+1)/(2k—1)

7.4 Perturbed Coulomb Potential

As mentioned in the introduction, we now consider the approximation problem for functions
given as small perturbation of the sum of Coulomb pair potentials,

falfy @) = % 1

—— for #; € Q C R
1<i<ize JIIF — F|12 + a

That is, f, only depends on groups of two variables each being a 3-dimensional vector
r; € IR3. Letting x = |71, ..., T], we can view f, as a function of 3 - £ scalar variables, i.e.,

d =3¢

(Note that the perturbed Coulomb force go(x) = 1<« j<o(||Z; — Z;]|* + )~ is even simpler
than f,, and the analysis of this section may also be applied to g,.)

For simplicity of presentation, we consider only bounded domain 2 and constant p.
Since the function g(t1,. .., %) := (@ + X5, (t; — tir3)?) Y2, t; € IR, is infinitely many times
differentiable, so is f,. Therefore, the (perturbed) Coulomb potential function can be viewed
as a member of spaces for many different reproducing kernels of various smoothness.

In what follows, for the sake of brevity, we will illustrate the results of this paper using
a relatively low degree smoothness, although extensions to higher smoothness is straightfor-
ward. We will focus on two different approaches depending on the form of the domain (2.
The first is applicable if €2 is a Cartesian product of three identical subsets of IR, e.g., 2 is
a cube in IR3. The second approach is applicable for general domains Q. As we will see,
approximation of the Coulomb potential function is easier when 2 is a cube.

7.4.1 Approach 1: Q = D3

Let Q@ = D x D x D, where, for simplicity of presentation, we assume that D = [0,1]. As
for the kernel K we choose
K(z,t) = 1+ min(z,1).
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Recall that then H(K) = W;[0,1] is the Sobolev space and (f,9)yx) = f(0)g(0) +

Jo £1(t) g/ (¢) .
The (perturbed) Coulomb potential function f, belongs to Fy = H(K,) for

Kd(x,y) = Z Kd,u(xa y)

u€EUy

with d = 34, m = 1, and the set U; consisting of subsets
v ={3—-2,3—1,3(,3j — 2,35 — 1,35} for i<y,

i.e., u contains indices of coefficients corresponding to two different vectors #; and Z;. More-
over, we can set yq, = 1 for u € Uy, and 4, = 0 for u ¢ U;. Of course, such weights are

finite-order with ¢* = 6 and

- @
Uy = 5 <13

Note also that U, satisfies (58).

It is well-known that for the d = 1 case, the algorithms B; based on piecewise constant
interpolation at equally spaced points satisfy the assumptions (56) and (13)—(15) with p =1
and Dy = Ey = 1. Due to (60), the initial error is at least as large as the cardinality of
U,. Therefore, due to (29), the corresponding algorithm A4, approximates f, with error not
exceeding ¢ ||[APPy|| || follr, and cost bounded by

card(Ag.) < ay Ul e n'?([Uy|/e) < azd®e™ In'?(d/e)

for positive constants a;

We now estimate the norm || f,||r,- For that end, consider g(%, %) = (|7 — 7]|* + «)
Let Z = [z,..., 2] with z; = x; for i < 3 and z; = y;_3 for i > 3. It is easy to verify that for
a non-empty subset u of {1,2,...,6}, we have

-1/2.

8‘u|g u|-1 H . (.’E — y) H . (y.73 _ $.73)
A = (—1 | . 1/2 jEu:j<3\YJ J JjeEu:j>3\J) J
Mjeu 07 (%) (=1) J—Hl (J+1/2) (1Z = 7|2 + o)lu+172 ’

with the convention that the product over the empty set is taken as one. Consider now
uw={1,...,6} and

66 2 (2’1 - 24)4(22 — 25)4(23 — 26)4
= ——q(2)| dZ= dz.
“ Joar < azﬂ(z)) 70 (/u (2 — 20)2 + (22 — 2)2 + (25 — 26)% + a)lg) ’
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By changing variables z; = t;4/a we immediately conclude that a = ©(a™) as o — 0. This
implies that
| falle, = d-O(a™?) as a—0

with the factor in the ©-notation independent of d.
Hence, for € = ¢|| fol| 7, we obtain ||fo — Agefall < € ||APP4|| with

d3
Card(Ad,g) S as 5? ln12(d/€)
for a positive number as.

7.4.2 Approach 2: General (2

Let Q C IR? be Lebesgue measurable and bounded. Without loss of generality, we can
assume that its Lebesgue measure is one. For the kernel K we choose

[€]l2 + 17]l2 = [1£ — &l
2

- =

K(Zy) = 1+ for Z € Q.

Then f, belongs to Fy = H(K,) for

Ka(x,y) = Y Kau(x,y)

u€Uy
with d = £ and m = 3. The set U, consists of sets u = {i,j} for 1 <i < j </, ie.,

-1 @
Ua| = 5 <73

We again take the weights v4, = 1 for u € Uy, and 74, = 0 otherwise. They are finite-order
weights with ¢* = 2, and U, satisfies (58).

As follows from Section 7.2 of [36], there exist piecewise constant algorithms B; that
satisfy the assumptions (56) and (13)—(15) with p = 3/2 and Dy = 1, however now E, =
Eo () depends on . As in Section 7.4.1, the initial error is proportional to the cardinality
of U,. Therefore, the corresponding algorithm A, . approximates f, with error not exceeding
e [|[APPg]| || fallr, and cost bounded by, see (29),

card(Ag.) < ay|Us| e 32 In®(|Uy|/e) < agd?e™®? In®(d/e)

for a positive constants a;.
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We now estimate the norm || f,||,- For that end, we need to recall the following result
from [5, 20]. Let H be the Hilbert space of functions defined on IR™ generated by the
reproducing kernel K where K is the natural extension of K from Q2 to IR?™. Then for
g € H(K) we have

lgllixy = cminf {L(f) : f€H, fla=2g).
Here L(f) = ||A(m+1)/4f||L2 with the Laplacian operator A and a positive constant ¢, =

cm(§2). Since in our case m = 3, the norm ||g||z(x) of g € H(K) is proportional to the Ly(£2)
norm of Ag. Consider now g(Z, %) = (|| — #||2 + @) ~Y/2. It can be checked that

3o 4
A:E‘A_'g fvg = 150!( —_— - P ) :
#9(%,9) F=dE+a”  (F-dE+ )P

Using a similar change of variables as in the previous section, it is easy to show that
182859117 ,(q2) equals ©(a~?) as o — 0. Therefore

| fallr, = d-@(a’l) as a—0

with the factor in ©-notation depending only on €.
Hence, for € = € || fal|5,, we obtain || fo — Aqefall < € ||APPy|| with

d3.5 5
Cal'd(Ad,g) S as W In (d/é’)

with a3 = a3(€2) depending on €.
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