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Abstract

We continue the study of counting complexity begun in [11, 14, 13] by
proving upper and lower bounds on the complexity of computing the Hilbert
polynomial of a homogeneous ideal. We show that the problem of computing
the Hilbert polynomial of a smooth equidimensional complex projective variety
can be reduced in polynomial time to the problem of counting the number of
complex common zeros of a finite set of multivariate polynomials. Moreover,
we prove that the more general problem of computing the Hilbert polynomial
of a homogeneous ideal is polynomial space hard. This implies polynomial
space lower bounds for both the problems of computing the rank and the Euler
characteristic of cohomology groups of coherent sheaves on projective space,
improving the #P-lower bound in Bach [1].

1 Introduction

Despite the impressive progress in the development of algebraic algorithms and
computer algebra packages, the inherent computational complexity of even the most
basic problems in algebraic geometry is still far from being understood. In [11] a
systematic study of the inherent complexity for computing algebraic/topological
quantities was launched with the goal of characterizing the complexity of various
such problems by completeness results in a suitable hierarchy of complexity classes.
In this article we continue this study by investigating the complexity of computing
the Hilbert polynomial of a complex projective variety V ⊆ Pn. This polynomial
encodes important information about the variety V , like its dimension, degree and
arithmetic genus.

Algorithms for computing Hilbert polynomials were described in [42, 7, 6]. Some
of these algorithms have been implemented in computer algebra systems and work
quite well in practice. These algorithms are based on the computation of Gröbner
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bases, which leads to bad upper complexity estimates. In fact, the problem of com-
puting a Gröbner basis is exponential space complete [38]. Both the cardinality
and the maximal degree of a Gröbner basis might be doubly exponential in the
number of variables [39, 28]. It is generally believed that these bounds are quite
pessimistic and that for problems with “nice” geometry, single exponential upper
bounds should hold for Gröbner bases. Among the results that are known in this
direction are [24, 18, 5, 38]. However, currently no upper bound better than ex-
ponential space is known for the computation of the Hilbert function or Hilbert
polynomial of a homogeneous ideal.

Based on a lower bound on the homogeneous polynomial ideal membership prob-
lem in [38] we are able to show that the problem of computing the Hilbert polynomial
is FPSPACE-hard, where FPSPACE denotes the complexity class of functions that
can be computed in polynomial space by a Turing machine. As a corollary, we
obtain an FPSPACE-lower bound for the problem of computing the rank of coho-
mology groups of coherent sheaves on projective space as well as for the problem of
computing the corresponding Euler characteristic (Corollary 4.11), thus improving
the #P-lower bound in Bach [1].

The bound on the Castelnuovo-Mumford regularity for the vanishing ideal of
a smooth projective variety in [5, Thm. 3.12(b)] suggests that the computation of
the Hilbert polynomial might actually be possible in polynomial space for smooth
varieties. The main goal of this article is to prove a stronger result: we show that
the problem Hilbertsm of computing the Hilbert polynomial of a smooth equidi-
mensional complex projective variety V ⊆ Pn can be reduced in polynomial time
to the problem #HNC of counting the number of complex common zeros of a finite
set of complex multivariate polynomials. (The input specification for Hilbertsm

involves some subtleties, see §4.) Such reduction can be established in the Turing
as well as in the Blum-Shub-Smale model of computation [9, 8]. In particular, in
the Turing model we obtain an FPSPACE-upper bound for the discrete version of
Hilbertsm, where the inputs are integer polynomials.

These results are interpreted in the framework of counting complexity. In [11]
Valiant’s counting complexity class #P [48, 49] was extended to the framework of
computations over C in the sense of [8]. Thus #PC is the class of functions from
the space C∞ of finite sequences of complex numbers to N ∪ {∞} which, roughly
speaking, count the number of satisfying witnesses for an input of a problem in NPC.
The problem #HNC of counting the number of complex common zeros of a given
finite set of complex polynomials (returning ∞ if this number is not finite) turns
out to be complete for the class #PC. The main results of [11, 13] state that both
problems to compute the geometric degree and the topological Euler characteristic
of complex varieties are polynomial time equivalent to #HNC ([11] also contains a
corresponding result for the computation of the Euler characteristic of semialgebraic
sets). Hereby, “polynomial time equivalent” is meant in the sense of computations
over C. However, when restricting the inputs to integer coefficient polynomials, the
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corresponding discrete problems are also equivalent in the Turing model of computa-
tion (for Turing reductions). The complexity of these discrete problems is captured
by the Boolean part GCC of #PC, which is obtained by restricting the functions in
#PC to bit strings. Is is known that #P ⊆ GCC ⊆ FPSPACE [11]. One can show
along the lines of [11, §8.3] that the problem of computing the number of connected
components of a complex affine algebraic variety (given by integer coefficients poly-
nomials) is FPSPACE-complete. This implies that the problem of computing the
topological Euler characteristic is strictly easier than the problem of computing the
number of connected components, unless GCC collapses with FPSPACE, which we
believe to be unlikely.

The class #PC captures the complexity of counting the number of solutions to
systems of polynomial equations. It is therefore not surprising that some of the
ideas and tools of intersection theory, enumerative geometry, and Schubert calculus
are salient for our purposes.

Our reduction from Hilbertsm to #HNC consists of the following three steps:

1. We interpret the value pV (d) of the Hilbert polynomial of V ⊆ Pn on d ∈ Z as
the Euler characteristic χ(OV (d)) of the twisted sheaf OV (d).

2. The Hirzebruch-Riemann-Roch Theorem [27] gives an explicit combinatorial
description of χ(OV (d)) in terms of certain determinants ∆λ(c) (related to
Schur polynomials) in the Chern classes ci of the tangent bundle of V .

3. The homology class corresponding to the cohomology class ∆λ(c) can be re-
alized up to sign by a degeneracy locus, which is defined as the pullback of a
Schubert variety under the Gauss map (cf. Fulton [21, Ex. 14.3.3]). We call
the geometric degree of such a degeneracy locus a projective character.

This allows to express (certain integer multiples of) the coefficients of the Hilbert
polynomial as integer linear combinations of projective characters. We now use
the fact that the computation of the geometric degree of varieties is possible in
the complexity class Gap

∗
C
, and that the class Gap

∗
C

is closed under exponential
summation (Lemma 3.8). Here Gap

∗
C

is a class of functions slightly larger than
#PC, which is closed under “generic parsimonious reductions” [13].

Organization of the article. In §2 we present all the necessary definitions and
facts needed in order to state a formula for the coefficients of the Hilbert polynomial
in terms of projective characters. While the formula is given in §2, the proof is
postponed to §5. Section 3 contains background from (counting) complexity theory
over C. In §4 we present the main results of this article, the upper and lower bounds
on the complexity of computing the coefficients of the Hilbert polynomial. Finally,
§5 contains the derivation of the relationship between the Hilbert polynomial and
degeneracy loci, using the Hirzebruch-Riemann-Roch theorem. In order to facilitate
reading, the proofs of two technical lemmas from §2 and of a result used in §4 are
postponed to the appendix.
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2 Preliminaries from algebraic geometry

Throughout this article, unless otherwise stated, the term variety will mean a com-
plex, projective, not necessarily irreducible variety. By a subvariety we will always
understand a closed subvariety. We will say that a property holds for almost all
points in a variety, if the set of points satisfying the given property is a dense subset
with respect to the Zariski topology.

2.1 The Hilbert polynomial

Let S := C[X0, . . . ,Xn] denote a polynomial ring and let M be a finitely generated,
graded S-module. Denote byMk the k-th graded part ofM . The function hM : Z →
N, defined by hM (k) = dimCMk is called the Hilbert function of M . A proof of the
following theorem can be found in [26, I.7].

Theorem 2.1 (Hilbert-Serre) Let M be a finitely generated, graded S-module.
Then there exists a unique polynomial pM (T ) ∈ Q[T ] such that hM (ℓ) = pM(ℓ)
for sufficiently large ℓ. Furthermore, the degree of pM equals the dimension of the
projective zero set of the annihilator {s ∈ S | sM = 0} of M .

The polynomial pM (T ) is called the Hilbert polynomial of M . Of special interest
is the case M = S/I, where I ⊆ S is a homogeneous ideal. If I = I(V ) is the
homogeneous ideal of a complex projective variety V ⊆ Pn, then we write pV := pS/I
and call this the Hilbert polynomial of V . We thus have deg pV = dimV .

Example 2.2 1. The Hilbert polynomial of V = Pn is pV (T ) =
(T+n

n

)
.

2. Let f ∈ C[X0, . . . ,Xn] be homogeneous and irreducible of degree d and let
V = Z(f) be its projective zero set. Then pV (T ) =

(
T+n
n

)
−

(
T+n−d

n

)
.

Let V ⊆ Pn be an m-dimensional projective variety with Hilbert polynomial
pV (T ) = pmT

m + · · · + p1T + p0. The geometric degree deg V of V is defined as
deg V := m! pm. The degree counts the number of intersection points of V with
a generic linear subspace of complementary dimension [25, Lect. 18]. It is additive
on the irreducible components of maximal dimension. The arithmetic genus of V is
defined as ga(V ) := (−1)m(p0 − 1). While the degree depends on the embedding in
projective space, the arithmetic genus is a birational invariant (cf. [26, Ex. III.5.3]).
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2.2 Projective characters

General references for the material presented in this section are [20, 37]. In the
following we assume 0 ≤ m ≤ n. The Grassmann variety

G(m,n) := {A | A ⊆ Pn linear subspace of dimension m}

is an irreducible smooth projective variety of dimension (m+1)(n−m) [25, Lect. 6].
The flag variety F is defined as the set of all complete flags F of linear subspaces

F0 ⊂ . . . ⊂ Fn−1 ⊂ Fn = Pn, such that dimFi = i for 0 ≤ i ≤ n. It is an irreducible
smooth projective variety [20, III.9.1].

For A ∈ G(m,n) and a flag F ∈ F we consider the weakly increasing sequence
of dimensions (dim(A ∩ Fj))0≤j≤n and denote by 0 ≤ σ0 < σ1 < · · · < σm ≤ n the
positions where the “jumps” occur, that is, dim(A∩Fj) = i for σi ≤ j < σi+1 (using
the conventions dim ∅ = −1 and σ−1 := 0, σm+1 := n). The sequence (σi) can be
encoded by the sequence of integers n−m ≥ λ1 ≥ λ2 ≥ . . . ≥ λm+1 ≥ 0 defined by
λi+1 := n−m+ i− σi.

Generally, a partition λ = (λ1, . . . , λr) is a weakly decreasing sequence of natural
numbers. The length of λ is defined as the number of nonzero components of λ.
The size of λ is defined as |λ| := λ1 + · · · + λr, and we call λ a partition of k, if
|λ| = k. We say that a partition µ contains a partition λ, λ ⊆ µ, if λi ≤ µi for all i
(we set λi = 0 for all i exceeding the length of λ).

To a partition λ of length at most m+1 with λ1 ≤ n−m (in which case we call
λ admissible) we associate a strictly increasing sequence 0 ≤ σ0 < · · · < σm ≤ n by
setting σi := n −m + i − λi+1 for 0 ≤ i ≤ m. The σi are used to select a subflag
Fσ0 ⊂ . . . ⊂ Fσm with dimFσi

= σi. For such a partition λ and a flag F ∈ F the
Schubert variety Ωλ(F ) is defined as follows:

Ωλ(F ) := {A ∈ G(m,n) | dim(A ∩ Fσi
) ≥ i for 0 ≤ i ≤ m}.

For A ∈ G(m,n) we always have dim(A ∩ Fσi
) ≥ i − λi+1, so that λi+1 measures

the excess in dimension of the intersection. It is known that Ωλ(F ) is an irreducible
variety of codimension |λ| in G(m,n) [20, III.9.4]. (Note that since λ is admissible,
we have |λ| ≤ dimG(m,n).) In general, Schubert varieties are singular [37, §3.4].

For a flag F ∈ F and an admissible partition λ the Schubert cell eλ(F ) is defined
as follows (put F−1 = ∅)

eλ(F ) := {A ∈ Ωλ(F ) | dim(A ∩ Fσi−1) = i− 1 for 0 ≤ i ≤ m}. (1)

Thus eλ(F ) consists of those elements A ∈ Ωλ(F ) for which dimA∩Fj increases at
exactly the positions j = σi. The Grassmann variety G(m,n) is the disjoint union
of the Schubert cells eλ(F ) over all admissible partitions λ. Moreover, it is known
that

Ωλ(F ) =
⋃

λ⊆µ

eµ(F ), (2)
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where the union is over all admissible partitions µ containing λ, cf. [20, III.9.4,
Ex. 13] or [37, §3.2]. The Schubert cell is a complex analytic submanifold of G(m,n)
of codimension |λ|. It is open and dense in Ωλ(F ). Moreover, eλ(F ) is contained in
the smooth part of Ωλ(F ), cf. [37, §3.4].

Example 2.3 (i) In the case λ = (k) = (k, 0, . . . , 0) the degeneracy conditions
reduce to the single condition A ∩ Fσ0 6= ∅ on Fσ0 ∈ G(n−m− k, n).

(ii) In the case λ = (1k) = (1, . . . , 1, 0, . . . , 0) the degeneracy conditions reduce to
the single condition dim(A ∩ Fσk−1

) ≥ k − 1 on Fσk−1
∈ G(n−m+ k − 2, n).

(iii) We have Pn = G(0, n) = Ω0(F ) = ∪n
i=0e(i), where e(i) = Fi−Fi−1

∼= Ci, which
is just the usual decomposition of Pn as a disjoint union of affine spaces.

Let V ⊆ Pn be a smooth projective variety of pure dimensionm. The Gauss map
ϕ : V → G(m,n) maps x ∈ V to the projective tangent space TxV ⊆ Pn at x. For
an admissible partition λ and a flag F ∈ F we define the generalized polar variety

Pλ(F ) := ϕ−1(Ωλ(F )) = {x ∈ V | dim(TxV ∩ Fσi
) ≥ i for 0 ≤ i ≤ m} (3)

to be the preimage of the Schubert variety Ωλ(F ) under the Gauss map. The well-
known polar varieties

Pk(F ) := P(1k)(F ) = {x ∈ V | dim(TxV ∩ Fn−m+k−2) ≥ k − 1}

correspond to the special case λ = (1k) = (1, . . . , 1, 0, . . . , 0), see [45, 10]. We remark
that a different concept of generalized polar varieties has been previously used for
algorithmic purposes, see [2, 3].

Note that the case where V is a linear space is degenerate: then dimϕ(V ) = 0
and thus Pλ(F ) is empty for almost all F ∈ F , provided |λ| > 0. A result by Zak,
cf. [23, §7], states that this is the only degenerate case. Namely, if V ⊆ Pn is a
nonlinear irreducible smooth projective variety, then the Gauss map ϕ : V → ϕ(V )
is finite. In particular, we have dimϕ(V ) = dimV in this case.

We recall now the important notion of transversality. For x ∈ V we denote by
TxV the Zariski tangent space and by dxϕ : TxV → Tϕ(x)G(m,n) the differential
of ϕ at x, respectively. The Gauss map ϕ meets the Schubert cell eλ(F ) transversely
at x ∈ ϕ−1(eλ(F )), written ϕ ⋔x eλ(F ), if

Tϕ(x)G(m,n) = dxϕ(TxV ) + Tϕ(x)eλ(F ).

Moreover, ϕ meets eλ(F ) transversely, written ϕ ⋔ eλ(F ), if ϕ ⋔x eλ(F ) holds for
all x in ϕ−1(eλ(F )).

Remark 2.4 If ϕ ⋔ eλ(F ) then it is well known that ϕ−1(eλ(F )) is a smooth
complex submanifold of codimension |λ| in V , unless it is empty. (Recall that eλ(F )
has the codimension |λ| in G(m,n).)
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We can extend the notion of transversality to Schubert varieties in the following
natural way, exploiting their stratification (2) by Schubert cells.

Definition 2.5 We say that ϕ meets Ωλ(F ) transversely, written ϕ ⋔ Ωλ(F ), if for
every admissible µ ⊇ λ we have ϕ ⋔ eµ(F ).

The following lemma is proved in Appendix A.1.

Lemma 2.6 Let V ⊆ Pn be a smooth projective variety of pure dimension m such
that not all irreducible components of V are linear. Let ϕ : V → G(m,n) be the
Gauss map of V and λ be an admissible partition with |λ| ≤ m. Then we have

(i) ϕ ⋔ Ωλ(F ) for almost all flags F ∈ F ,

(ii) if ϕ ⋔ Ωλ(F ), then dim(ϕ(V ) ∩ eλ(F )) = m− |λ| and codimV Pλ(F ) = |λ|,

(iii) there exists an integer dλ, such that degPλ(F ) = dλ, provided ϕ ⋔ Ωλ(F ).

We call degPλ := dλ the projective character of V corresponding to λ. These
quantities were studied by Severi [46], see also [21, Ex. 14.3.3]. Note that the degree
of V equals the projective character for λ = 0.

Example 2.7 Let V ⊆ P2 be a smooth curve. Then degP1 counts the number
of points on the curve whose tangents go through a generic point in P2. Bézout’s
theorem implies that this number equals d(d−1), where d is the degree of the curve.

The following will be used later. Again, the proof is postponed to the Appendix.

Lemma 2.8 Let W be a quasiprojective variety and let ψ : W → G(m,n) be a
morphism. Let λ be an admissible partition. For F ∈ F set Rλ(F ) := ψ−1(Ωλ(F )).
Then for almost all F ∈ F we have dimRλ(F ) ≤ dimW − |λ| if |λ| ≤ dimW , and
Rλ(F ) = ∅ otherwise.

2.3 Expressing the Hilbert polynomial by projective characters

Our goal is to express the coefficients of the Hilbert polynomial of V in terms of its
projective characters. We first introduce some notation.

To any sequence c = (ci)i∈N of elements of a commutative ring such that c0 = 1
and to a partition λ = (λ1, . . . , λr) we assign the ring element ∆λ(c) as follows:

∆λ(c) := det ((cλi−i+j)1≤i,j≤r)

= det




cλ1 cλ1+1 · · · cλ1+r−1

cλ2−1 cλ2 · · · cλ2+r−2

· · · · · · · · · · · ·
cλr−r+1 cλr−r+2 · · · cλr


 , (4)
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using the convention ci = 0 for i < 0. Note that the value of this determinant does
not change if we extend the partition λ by zeros.

In the following let b be the coefficient sequence of the power series

∑

i≥0

bit
i :=

t

1− e−t
= 1 +

t

2
+
∑

j≥1

(−1)j−1 Bj

(2j)!
t2j , (5)

where the Bj are the Bernoulli numbers. E.g., B1 =
1
6 , B2 =

1
30 , B3 =

1
42 .

Remark 2.9 It is known that Bn = (−1)n−1
∑2n

k=1
1

k+1

∑k
r=1(−1)r

(k
r

)
rn [51]. This

implies that (2n+1)!Bn is an integer, hence i!(i+1)!bi is an integer for all i. Taking
into account that for a partition λ = (λ1, . . . , λr) of size M and length r we always
have λ1+r−1 ≤M , we conclude that [(M+1)! · · · (M−r+2)!]2 ∆λ(b) is an integer.

To a pair (λ, µ) of partitions of length at most m we assign the following deter-
minant of binomial coefficients

dmλµ := det

((
λi +m+ 1− i

µj +m+ 1− j

))

1≤i,j≤m

.

Now let 0 ≤ k ≤ m and µ be a partition with |µ| ≤ m− k. To this data we assign
the rational number

δm,k
µ := (−1)|µ|

∑

µ⊆λ
|λ|=m−k

∆λ(b)d
m
λµ, (6)

where the sum is over all partitions λ of size m− k that contain µ as subpartition.
The following crucial statement will be proved in §5.

Theorem 2.10 Let V ⊆ Pn be a smooth complex projective variety of pure dimen-
sion m and 0 ≤ k ≤ m. Then the k-th coefficient pk(V ) of the Hilbert polynomial
of V is given by

pk(V ) =
1

k!

∑

|µ|≤m−k
µ1≤n−m

δm,k
µ degPµ,

where degPµ is the projective character introduced in §2.2. In particular, [(m− k+
1)! · · · 2!1!]2 k! pk(V ) is an integer.

Example 2.11 1. The above formula yields pm(V ) = 1
m! δ

m,m
0 degP0 =

1
m! degV ,

as expected (check that ∆0(b) = 1, dm0,0 = 1).

2. In the case where V ⊆ Pn is a smooth curve (n ≥ 2), the above formula implies
that p0 = δ1,00 degP0 + δ1,01 degP1 = deg V − 1

2 degP1, where degP1 = #{x ∈
V | TxV ∩ L 6= ∅} for a generic linear subspace L ⊂ Pn of codimension 2.

8



3. In the special case of a smooth planar curve V (see Example 2.7), we have
p0(V ) = d − 1

2d(d − 1) = 1
2d(3 − d), which implies the well known formula

1− p0(V ) = 1
2(d− 1)(d − 2) for the arithmetic genus.

4. Consider the rational normal curve V ⊆ Pn, which is defined as the projective
closure of {(t, t2, . . . , tn) | t ∈ C}. The Hilbert polynomial of V satisfies
pV (T ) = nT + 1. It is not too hard to verify directly that degP1 = 2(n− 1).

3 Counting complexity over the complex numbers

We will consider BSS-machines over C as they are defined in [9, 8]. Roughly speak-
ing, such a machine takes an input from C∞, performs a number of arithmetic
operations and tests for zero following a finite list of instructions, and halts return-
ing an element in C∞ (or loops forever). The computation of a machine on an input
x ∈ C∞ is well-defined and notions such as a function being computed by a machine
or a subset of C∞ being decided by a machine easily follow. A machine M over C is
said to work in polynomial time if there is a constant c ∈ N such that for every input
x ∈ C∞, M reaches its output node after at most size(x)c steps. Hereby, we define
size(x) to be the smallest n ≥ 0 such that x ∈ Cn. The complexity classes PC and
NPC are defined as usual, as well as the notions of reduction and completeness. The
class coNPC consists of all subsets of C∞ whose complement lies in NPC. In a com-
pletely analogous fashion we can also consider machines over R and corresponding
classes PR and NPR.

In [9] it was shown that the following fundamental problems is NPC-complete.

HNC (Hilbert’s Nullstellensatz) Given a finite set of complex multivariate poly-
nomials, decide whether these polynomials have a common zero.

For our convention on coding polynomials as elements of C∞ we refer to §4, see also
[32, 1.2] for a discussion.

3.1 Counting complexity classes

In classical complexity theory, Valiant [49] introduced the counting class #P as the
class of functions which count the number of accepting paths of nondeterministic
polynomial time Turing machines. One of his main results [48] was that the problem
of counting the number of perfect matchings in a bipartite graph, or equivalently,
computing the permanent of its adjacency matrix, is #P-complete. For a compre-
hensive account to counting complexity we refer to [44, Chapter 18] and [19].

We now recall the definition of counting classes over C from [11, 13], which
follows the lines used in discrete complexity theory to define #P and GapP [19].
We denote by Ẑ := Z ∪ {−∞,∞,nil} the union of the set Z with three additional
symbols −∞,∞, and nil (the latter standing for undefined). For the arithmetic in
Ẑ, we refer to [13, §4.3].
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Definition 3.1 (i) A function ϕ : C∞ → N ∪ {∞} belongs to the class #PC if
there exists a polynomial time machine M and a polynomial p such that
ϕ(x) = |{y ∈ Cp(n) |M accepts (x, y)}| holds for all x ∈ Cn and all n ∈ N.

(ii) The class GapC consists of all functions γ : C∞ → Ẑ of the form γ = ϕ− ψ for
ϕ,ψ ∈ #PC.

We next define notions of reduction and completeness for counting classes.

Definition 3.2 1. Let ϕ,ψ : C∞ → Ẑ. We say that π : C∞ → C∞ is a parsimo-
nious reduction from ϕ to ψ if π can be computed in polynomial time and, for
all x ∈ C∞, ϕ(x) = ψ(π(x)).

2. Let ϕ,ψ : C∞ → C∞. We say that ϕ Turing reduces to ψ if there exists an
oracle machine which, with oracle ψ, computes ϕ in polynomial time.

Let C be either #PC, or GapC. We say that a function ψ is hard for C if for every
ϕ ∈ C there is a parsimonious reduction from ϕ to ψ. We say that ψ is C-complete
if in addition ψ ∈ C. The notions of Turing-hardness and Turing-completeness are
defined similarly.

In [11] it was shown that the following basic problem is #PC-complete with
respect to parsimonious reductions.

#HNC (Algebraic point counting) Given a finite set of complex multivariate poly-
nomials, count the number of complex common zeros, returning ∞ if this
number is not finite.

In an analogous fashion, the problem ∆HNC (as introduced in [13, §4.3]), which
counts the difference in the the number of solutions of two given systems of polyno-
mial equations, is seen to be complete for the class GapC.

There are algorithms solving #HNC in single exponential time (or even parallel
polynomial time). A key point for showing this is the fact that a Gröbner basis of
a zero-dimensional ideal can be computed in single exponential time [18, 34, 35].
The number of solutions can then be determined using linear algebra techniques, as
described for example in [16, Chapter 2].

We remark that a corresponding counting class #PR over the reals has been
introduced by Meer [40] and was further explored in [11].

3.2 Polynomial hierarchy over the reals

The constant-free polynomial hierarchy over the reals will be needed in the next
section for extending the notion of a parsimonious reduction. It is important to
work over the reals since the polynomial hierarchy over the complex numbers has
not enough expressive power for our purposes.

For what follows, we call a machine (over R or C) constant-free, if its only
machine constants are 0 and 1. The following definition is from [8, Chapter 21].

10



Definition 3.3 A relation R ⊆ R∞ is said to be in Σ0
k for k ∈ N, if there exists a

relation A ⊆ (R∞)k+1, decidable in polynomial time by a constant-free machine M
over R, and polynomials p1, . . . , pk, such that for x ∈ Rn:

x ∈ R⇔ Q1x1 ∈ Rp1(n) . . . Qkxk ∈ Rpk(n) (x1, . . . , xk, x) ∈ A

where Q1 = ∃ and the quantifiers Qi ∈ {∃,∀} alternate. We define the constant-free
polynomial hierarchy PH0

R to be the union PH0
R = ∪kΣ

0
k.

We next observe that the dimension and local dimension of semialgebraic sets
can be expressed in PH0

R
. We study this in the general situation of a family of

semialgebraic sets Su depending on a parameter u ∈ R∞ such that the property
x ∈ Su is expressible in PH0

R
. We denote by dimx Su the local dimension of Su

at x ∈ Su (defined to be −1 if x 6∈ Su).

Lemma 3.4 Let R ⊆ R∞ × R∞ be a relation in PH0
R, p be a polynomial, and

consider for u ∈ Rn the semialgebraic set Su := {x ∈ Rp(n) | (u, x) ∈ R}. Then both
decision problems {(u, d) ∈ R∞ × N | dimSu ≥ d} and {(u, x, d) ∈ R∞ × R∞ × N |
dimx Su ≥ d} are in PH0

R.

Proof. We have dimSu ≥ d if and only if there exists a d-dimensional coordinate
subspace such that the projection of Su on this subspace has a nonempty interior.
Writing this condition as a first order formula over R yields the claim for the di-
mension. (For a more economic description, see [33].)

Let Bǫ(x) denote the open ball with radius ǫ centered at x. We have dimx Su ≥ d
if and only if dim(Su ∩ Bǫ(x)) ≥ d for sufficiently small ǫ > 0, cf. [4]. Writing this
as a first order formula over R implies the claim about the local dimension. ✷

3.3 Generic parsimonious reductions

The concept of generic parsimonious reduction, as introduced in [13] and implicit in
[11], allows to make “general position” arguments as part of a reduction algorithm.
A paradigmatic example is that of reducing the problem of computing the geometric
degree of a variety V to HNC by intersecting V with a generic linear subspace of
complementary dimension. We are interested in problems where it is possible to
compute in polynomial time a list of candidates for generic parameters, among
which the majority is in fact “generic” (see the notion of partial witness sequences
introduced in [11]). This can be achieved by only requiring the genericity condition
to be describable in terms of the constant-free polynomial hierarchy over the reals.

In the following, we are concerned with relations R ⊆ C∞ ×C∞. It makes sense
to say that such a relation is in PH0

R by representing points in Cn as points in R2n

in the obvious way.
We call a relation R ⊆ C∞ × C∞ balanced if there is a polynomial p such that

R(u, a) implies size(a) ≤ p(size(u)) for all (u, a) ∈ C∞ × C∞. In this case we say
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that p is associated to R. Moreover, we will write ∀∗a ∈ CnR(a) in order to express
that Zariski almost all points a ∈ Cn satisfy a relation R.

Definition 3.5 Let ϕ,ψ : C∞ → Ẑ. A generic parsimonious reduction from ϕ to ψ
consists of a pair (π,R), where π : C∞ × C∞ → C∞ is computable in polynomial
time over C by a constant-free machine, and R ⊆ C∞ × C∞ is a balanced relation
(with associated polynomial p) in PH0

R such that for all m ∈ N the following holds:

(i) ∀u ∈ Cm ∀a ∈ Cp(m) (R(u, a) ⇒ ϕ(u) = ψ(π(u, a))),

(ii) ∀u ∈ Cm ∀∗a ∈ Cp(m) R(u, a).

We write ϕ �∗ ψ if there exists a generic parsimonious reduction from ϕ to ψ.
In [13] it was shown that this is a transitive relation. The following important fact
is shown in [13, Theorem 4.4].

Theorem 3.6 Let ϕ,ψ : C∞ → Ẑ. If ϕ �∗ ψ then ϕ Turing reduces to ψ .

The closures of #PC and GapC with respect to generic parsimonious reductions
defined below seem to capture more accurately the kind of counting problems en-
countered in algebraic geometry.

Definition 3.7 (i) The class #P∗
C consists of all functions ϕ : C∞ → N∪{∞} such

that there exists ψ ∈ #PC with ϕ �∗ ψ.

(ii) The class Gap
∗
C

consists of all functions ϕ : C∞ → Ẑ such that there exists
ψ ∈ GapC with ϕ �∗ ψ.

The functions in Gap
∗
C can also be characterized as the differences of two functions

in #P∗
C .

Similar as GapP (cf. [19]), the classGap
∗
C is closed under exponential summation.

Lemma 3.8 Let ϕ : C∞ × {0, 1}∞ → Z be a function in Gap
∗
C
, q be a polynomial,

and g : {0, 1}∞ → Z be in GapP. Define ϕ̃ : C∞ → Z by setting for u ∈ Cm

ϕ̃(u) =
∑

y∈{0,1}q(m)

g(y)ϕ(u, y)

Then ϕ̃ belongs to Gap
∗
C . A similar statement holds for GapC.

Proof. The function C∞ × {0, 1}∞ → Z, (u, y) 7→ g(y)ϕ(u, y) is in Gap
∗
C since the

product of two finite valued functions inGap
∗
C
is inGap

∗
C
[13, Lemma 4.9]. The claim

now follows from the fact that Gap
∗
C

is closed under exponential summation [13,
Lemma 4.10]. ✷
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In [11] the problem of computing the geometric degree of the zero set Z ⊆ Cn

of given complex polynomials was Turing reduced to HNC. An analysis of the proof
reveals that this reduction is generic parsimonious except for the computation of
the dimension of Z at the beginning. Therefore, the following slight modification of
the degree problem is in #P∗

C : given Z as above and d ∈ N such that dimZ ≤ d,
compute the geometric degree of the d-dimensional part of Z.

We can even extend this to the situation, where Zu ⊆ Cn is a constructible set
depending on a complex parameter vector u and membership of x in Zu can be
decided by a polynomial time machine. (By the degree of a constructible set we
understand the sum of the degrees of its components of maximal dimension.)

Lemma 3.9 Let M be a polynomial time machine over C, p : N → N be a polyno-
mial and consider for u ∈ Cn the constructible set

Zu := {x ∈ Cp(n) | M accepts (u, x)}.

Then there is a function ϕ in #P∗
C such that for all u ∈ C∞, d ∈ N the value ϕ(u, d)

equals the degree of the d-dimensional part of Zu, provided dimZu ≤ d.

Proof. The proof is completely analogous to the case where Zu is given as the zero
set of polynomials [11], see also [12, Theorem 7.2]. ✷

Example 3.10 Let F be a matrix with entries in C[X1, . . . ,Xn], k, d ∈ N such that
Z := {x ∈ Cn | rankF (x) ≤ k} has dimension at most d. Then, by Lemma 3.9,
the degree of Z can be computed in #P∗

C . This follows since the rank condition
can be tested in polynomial time using linear algebra. (However, writing down the
rank condition in terms of non-vanishing of minors would lead to a representation
of exponential size.)

3.4 Boolean parts

If L is one of the computational problems studied in this paper, we denote by LZ its
restriction to input polynomials with integer coefficients. These discrete problems
will be studied in the Turing model of computation. For doing so, we introduce the
notion of the Boolean part of a complexity class over C. For more details on the
following we refer to [11, 13].

Let C be a class of functions C∞ → Ẑ. We define its Boolean part BP(C) as
the class of functions {0, 1}∞ → Ẑ obtained from functions in C by restriction to
{0, 1}∞. In [11], the class GCC of geometric counting complex problems was defined
as the Boolean part of #PC. The discrete version #HN

Z

C
of the problem #HNC is

GCC-complete [11]. Both GCC and the Boolean part BP(Gap
∗
C
) are closed under

parsimonious reductions and (cf. [13])

#P ⊆ GCC ⊆ BP(Gap
∗
C) ⊆ FPSPACE.
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The class BP(Gap
∗
C) is closely related to GCC in the sense that any ϕ ∈ BP(Gap

∗
C)

can be parsimoniously reduced to ∆HNC in a randomized sense, cf. [13, Remark 6.7].
It is a challenging open problem to characterize GCC and BP(Gap

∗
C) in terms of

previously studied classical complexity classes.

4 Complexity of computing the Hilbert polynomial

Our goal is to show that the problem of computing the Hilbert polynomial of a
smooth equidimensional projective variety lies in the class Gap

∗
C . When trying to

formally define the problem under consideration, the question arises whether the
smoothness condition can be tested at all within these resources. The obvious idea
of checking the Jacobian criterion at all points in the variety V (which is possible in
coNPC) will fail if the given polynomials f1, . . . , fr describing the variety V do not
generate a radical ideal and thus differ from the vanishing ideal I(V ) of V . Indeed,
it is not known whether a set of generators of I(V ) can be computed from f1, . . . , fr
in parallel polynomial time or even weaker, in single exponential time.

We overcome these difficulties by requiring an input specification, which, on the
one hand, can be checked in coNPC, and on the other hand guarantees that the
highest dimensional part of the variety is smooth. The goal is then to compute the
Hilbert polynomial of the highest dimensional part.

Thus in the following, we will assume that the projective variety V ′ ⊆ Pn is given
as the zero set of a family f1, . . . , fr of homogeneous polynomials in C[X0, . . . ,Xn]
satisfying the following input condition:

∀x ∈ Z(f1, . . . , fr)−{0} dim{z ∈ Cn+1 | dxf1(z) = 0, . . . , dxfr(z) = 0} ≤ m+1 (7)

for some m ∈ N. Here and in the following, we assume that the given poly-
nomials f are encoded as strings in C∞ using the sparse encoding. Thus f =∑

e∈I aeX
e0
0 · · ·Xen

n is represented by a list of pairs (ae, e), where the coefficients ae
are given as complex numbers, while the exponent vector e is given by a bit vector
of length at most O(n log deg f).

We remark that the input condition (7) can be tested in coNPC.

Lemma 4.1 Assume that the input condition (7) is satisfied. Then V ′ = V ∪W is a
disjoint union of a smooth variety V ⊆ Pn of pure dimensionm (possibly empty) and
a subvariety W ⊆ Pn with dimW < m. In particular, the irreducible components of
the m-dimensional part V of V ′are pairwise disjoint. A point x ∈ V ′ is in V if and
only if dimx V

′ = m. Moreover, n −m ≤ r and for all x ∈ V the Jacobian matrix
( ∂fs
∂Xi

(x)) has rank n−m.

Proof. For all x ∈ V ′ we have TxV
′ ⊆ P(∩r

i=1 ker dxfi), where TxV
′ is the projective

tangent space of V ′ at x. The input condition implies that for all x ∈ V ′, dimx V
′ ≤

dimTxV
′ ≤ m holds. Therefore, all points x ∈ V ′ of local dimension m are smooth.
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The first claim follows since there is exactly one irreducible component passing
through a smooth point. The remaining claims are clear. ✷

We give now a formal definition of our main problem under investigation. In
order to make sure that the output is an integer, we require to compute a certain
multiple of the k-th coefficient of the Hilbert polynomial.

Hilbertsm (Hilbert polynomial of smooth equidimensional varieties) Given inte-
gers 0 ≤ k ≤ m ≤ n and a family f1, . . . , fr of homogeneous polynomials in
C[X0, . . . ,Xn] satisfying the input condition for m, compute the integer mul-
tiple N(k,m) pk(V ) of the k-th coefficient pk(V ) of the Hilbert polynomial of
the m-dimensional part V of V ′, where N(k,m) := [(m− k + 1)! · · · 2!1!]2.

Here is the main result of this article.

Theorem 4.2 The problem Hilbertsm is in Gap
∗
C
. In particular, the problem

Hilbertsm Turing reduces (over C) to HNC.

This theorem immediately implies the following corollary, cf. Section 3.4. Recall
that Hilbert

Z
sm denotes the restriction of Hilbertsm to input polynomials with

integer coefficients.

Corollary 4.3 The problemHilbert
Z
sm is in BP(Gap

∗
C
). In particular, the problem

Hilbert
Z
sm Turing reduces to HN

Z
C
(in the sense of classical Turing machines).

4.1 Upper bounds

The upper bound on Hilbertsm is based on Theorem 2.10. We therefore first study
the problem to compute projective characters (recall Lemma 2.6 for their definition).

ProjChar (Projective characters) Given 0 ≤ m ≤ n, homogeneous polynomials
f1, . . . , fr in C[X0, . . . ,Xn] satisfying the input condition for m and a partition
λ such that λ1 ≤ n−m and |λ| ≤ m, compute the projective character degPλ

of the m-dimensional part V of V ′ = Z(f1, . . . , fr).

Proposition 4.4 The problem ProjChar is in #P∗
C .

Using this proposition, we can immediately proceed to prove the main Theo-
rem 4.2.

Proof of Theorem 4.2. Put N(k,m) := [(m − k + 1)! · · · 2!1!]2. Consider the

function g : {0, 1}∞ → Z mapping (m,k, µ) to N(k,m)δm,k
µ , where m,k ∈ N, µ

a partition with |µ| ≤ m− k, µ1 ≤ n −m and δm,k
µ is defined in Equation (6), i.e.,

δm,k
µ := (−1)|µ|

∑
µ⊆λ,|λ|=m−k ∆λ(b)d

m
λµ. By Remark 2.9, the values of g are integers.

The functions mapping (m,k, µ, λ) to ∆λ(b)d
m
λµ and to N(k,m), respectively, are
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clearly polynomial time computable, if we think of (m,k, µ) as being encoded in
unary. It then follows from elementary properties of GapP (closure under exponential
summation and product, cf. [19]) that g is in GapP. Let ϕ : C∞ × {0, 1}∞ → Z ∪
{−∞,∞} be the function corresponding to the problem ProjChar, where the
first argument contains the description of the polynomials and the second argument
the partition λ. According to Proposition 4.4, ϕ ∈ #P∗

C , so we can apply the
Summation Lemma 3.8 to the main formula in Theorem 2.10 to conclude that
Hilbertsm ∈ Gap

∗
C
. ✷

We prove Proposition 4.4 using a generic parsimonious reduction from ProjChar

to a certain auxiliary problem, which we describe next. Consider an instance of
ProjChar. Write ψ(x) := P

(⋂r
i=1 ker dxfi

)
for x ∈ V ′ and define for a flag F ∈ F

the following constructible set (recall that σi = n−m+ i− λi+1)

Qλ(F ) := {x ∈ V ′ | dim(ψ(x) ∩ Fσi
) ≥ i for 0 ≤ i ≤ m}. (8)

We will represent a flag F ∈ F by a matrix a ∈ Cn×(n+1) such that Fσi
is the

projective zero set of the linear forms corresponding to the first δi := n − σi =
m− i+ λi+1 rows of a, for 0 ≤ i < m.

Lemma 4.5 There is a function Φ in #P∗
C which takes as input an instance of

ProjChar and a flag F ∈ F and outputs the degree of the (m− |λ|)-dimensional
part of Qλ(F ), provided dimQλ(F ) ≤ m− |λ|.

Proof. Suppose we have an instance of ProjChar and a flag F ∈ F given by the
matrix a ∈ Cn×(n+1). Let Mi(x, a) ∈ C(δi+r)×(n+1) denote the matrix obtained by
taking the submatrix of a consisting of the first δi rows of a and adding the Jacobian
matrix (∂fs/∂Xj(x))1≤s≤r,0≤j≤n at the bottom. Then we have for all x

dim(ψ(x) ∩ Fσi
) ≥ i⇐⇒ rankMi(x, a) ≤ n− i.

This condition can be tested in PC, since the rank of a matrix can be computed
in polynomial time, e.g., using Gaussian elimination (compare Example 3.10). The
claim follows now from Lemma 3.9. ✷

Proof of Proposition 4.4. Suppose we are given an instance of ProjChar. Let
ψ(x) = P

(⋂r
i=1 ker dxfi

)
and Qλ(F ) be defined for a flag F ∈ F as in (8). By the

input condition (7), ψ(x) is a linear subspace of Pn of dimension at most m for every
x ∈ V ′. Let V ′ = V ∪W be as in Lemma 4.1, so that V is smooth of dimension m
and dimW < m. We then have ψ(x) = TxV for all x ∈ V , so that the restriction
ϕ := ψ|V determines the Gauss map ϕ : V → G(m,n). Note that ψ(x) may be
different from the projective tangent space at points x ∈W .

Set Pλ(F ) := Qλ(F ) ∩ V and Rλ(F ) := Qλ(F ) ∩W . Then Pλ(F ) is the gener-
alized polar variety introduced in (3) and we have Qλ(F ) = Pλ(F ) ∪Rλ(F ).
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Consider the following property of an instance I of ProjChar and a flag F ∈ F :

ϕ ⋔ Ωλ(F ) and dimRλ(F ) < m− |λ|. (Π)

According to Lemma 2.6, the condition ϕ ⋔ Ωλ(F ) implies that dimPλ(F ) = m−|λ|
and degPλ(F ) = degPλ, under the assumption that not all components of V are
linear, or λ = 0. (If the latter assumption is violated, then Pλ(F ) = ∅.) We therefore
get

Π is satisfied =⇒ degPλ = degPλ(F ) = Φ(I, F ),

where Φ is the function from Lemma 4.5, i.e., the degree of the (m−|λ|)-dimensional
part of Qλ(F ). This establishes a generic parsimonious reduction from ProjChar

to the function Φ ∈ #P∗
C , once we have shown that Π is definable in the constant-

free polynomial hierarchy over R and that for any fixed instance I of ProjChar,
property Π is satisfied by almost all F ∈ F (cf. Definition 3.5).

Lemma 2.6 tells us that ϕ ⋔ Ωλ(F ) is satisfied for almost all F ∈ F . In order to
show that dimRλ(F ) < m−|λ| for almost all F , we apply Lemma 2.8 to the quasipro-
jective setWj := {x ∈W | dimψ(x) = j} and the map ψj : Wj → G(j, n), x 7→ ψ(x),
for 0 ≤ j ≤ m. It is not hard to identify the set

Rj,λ(F ) := {x ∈Wj | dim(ψ(x) ∩ Fσi
) ≥ i for 0 ≤ i ≤ m}

as the preimage of the Schubert variety corresponding to the flag F and to a partition
µ(j) satisfying |µ(j)| ≥ |λ|. Thus Rj,λ(F ) has dimension dimWj −|µ| ≤ dimWj−|λ|
for almost all F . Since W = W0 ∪ · · · ∪Wm and dimW < m we have Rλ(F ) =
R0,λ(F ) ∪ · · · ∪Rm,λ(F ), and conclude that indeed dimRλ(F ) < m− |λ|.

It remains to be seen that Π can be defined in PH0
R
. According to Definition 2.5,

ϕ ⋔ Ωλ(F ) can be expressed as follows:

∀µ (µ ⊇ λ ∧ µ admissible =⇒ ϕ ⋔ eµ(F )), (9)

where the transversality condition ϕ ⋔ eµ(F ) means that

∀x (x ∈ V ∧ ϕ(x) ∈ eµ(F ) =⇒ ϕ ⋔x eµ(F )).

Lemma A.3 in Appendix A.2 says that the local transversality condition in the
parenthesis is decidable in P0

C
. This implies that condition (9) is expressible in

coNP0
C
and thus in PH0

R
.

In order to express dimRλ(F ) < m − |λ|, we recall that the points x ∈ W can
be characterized among the points of V ′ as those having local dimension smaller
than m, cf. Lemma 4.1. The local dimension of (semi)algebraic sets is expressible
in the constant-free polynomial hierarchy over the reals (compare Lemma 3.4). We
can thus express membership to Rλ(F ) in PH0

R. Finally, using Lemma 3.4 again, we
conclude that the condition dimRλ(F ) < m− |λ| is expressible in PH0

R. ✷
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4.2 Lower bounds

We first complement the upper bound in Corollary 4.3 by a lower bound.

Proposition 4.6 The problem Hilbert
Z
sm is #P-hard.

Proof. We proceed as in [1]. Let ϕ be a Boolean formula in the variables X1, . . . ,Xn

in conjunctive normal form. It is well known that the problem #SAT to count the
number of satisfying assignments of such formulas is #P-complete [49, 48].

For each literal λ put gλ := 1 −Xi if λ = Xi and gλ := Xi if λ is the negation
of Xi. For each clause κ = λ1 ∨ · · · ∨ λk put gκ :=

∏k
i=1 gλi

. Let fκ denote the
homogenization of gκ with respect to the variable X0.

We assign to the Boolean formula ϕ = κ1 ∧ · · · ∧ κs the system of homogeneous
equations

X2
1 −X1X0, . . . ,X

2
n −XnX0, fκ1 , . . . , fκs .

Clearly, the zero set V ′ of this system in Pn corresponds bijectively to the satisfying
assignments of ϕ (there are no solutions at infinity). Moreover, looking at the first
n equations we see that the input condition (7) is satisfied with m = 0. The Hilbert
polynomial of V ′ is constant and equals the number of satisfying assignments of ϕ.
This provides a polynomial time reduction from #SAT to Hilbert

Z
sm. ✷

Remark 4.7 Due to the input condition (7) it is not clear whether Hilbertsm and
Hilbert

Z
sm are #PC-hard and GCC-hard, respectively.

Corollary 4.3 states that the problem Hilbert
Z
sm to compute the Hilbert poly-

nomial of smooth varieties is in BP(Gap
∗
C). We next show that the general problem

to compute the Hilbert polynomial of a homogeneous ideal is presumably more
difficult, namely FPSPACE-hard. Consider the following problems:

HIM (Homogeneous ideal membership problem) Given non-constant homogeneous
polynomials f1, . . . , fr, g ∈ C[X0, . . . ,Xn], decide whether g lies in the ideal
generated by f1, . . . , fr.

Hilbert (Hilbert polynomial) Given a family of non-constant homogeneous poly-
nomials f1, . . . , fr in C[X0, . . . ,Xn] and 0 ≤ k ≤ n, compute the k-th co-
efficient of the Hilbert polynomial of the homogeneous ideal generated by
f1, . . . , fr.

We will use the following simple and well-known lemma to establish a Turing
reduction from HIM

Z to Hilbert
Z, and then invoke a result in Mayr [38, Thm. 17],

which states that HIM
Z is PSPACE-complete.

Lemma 4.8 Let I be a homogeneous ideal such that some Xi is not a zero-divisor
of C[X0, . . . ,Xn]/I. Let g be a non-constant homogeneous polynomial. Then g ∈ I
if and only if I and I + (g) have the same Hilbert polynomial.
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Proof. Assume Xi is not a zero-divisor of C[X0, . . . ,Xn]/I. Let I, g be such that
J := I + (g) and I have the same Hilbert polynomial. This means that J (d) = I(d)

for sufficiently large degree d. Hence, we have Xd
i g ∈ I for sufficiently large d, and

thus g ∈ I. ✷

By introducing a further variable Y we can achieve that Y is not a zero-divisor
of C[X0, . . . ,Xn, Y ]/I , where I = C[X0, . . . ,Xn, Y ]I. Hence we obtain the following
lower bound.

Theorem 4.9 The problem Hilbert
Z is FPSPACE-hard.

Based on this theorem, we can now improve the #P-lower bound in [1] for
the problem to compute the ranks of cohomology groups of coherent sheaves on
projective space. The lower bound is also true for the problem to compute the
corresponding Euler characteristic.

For an introduction to sheaf cohomology we refer to [26, 29]. We encode the
input to our problems as in [1]. Thus we specify a coherent sheaf on Pn by giving
a graded matrix. This is a matrix (pij)1≤i≤s,1≤j≤r of homogeneous polynomials in
S := C[X0, . . . ,Xn] together with two arrays of integers (d1, . . . , ds) and (e1, . . . , er)
such that deg pij = di − ej whenever pij 6= 0. A graded matrix defines a degree-
preserving morphism

γ :
r⊕

j=1

S(ej) →
s⊕

i=1

S(di)

of graded S-modules. (As usual, S(d) denotes S with degrees shifted by d to the
left, so that S(d)0 = Sd.) The cokernel M of γ is a finitely generated, graded S-

module and thus determines a coherent sheaf M̃ on Pn (cf. [26, p. 116]). We study

the task to compute the dimensions of the cohomology C-vector spaces H i(Pn, M̃ )
for i = 0, . . . , n. (It is known that these vector spaces vanish for i > n [26, III.2.7].)

The Euler characteristic of the sheaf M̃ is defined as

χ(M̃) :=
n∑

i=0

(−1)i dimH i(Pn, M̃ ). (10)

The link to the Hilbert polynomial is given by the following proposition, a proof of
which can be found in [29, Section 7.6], see also [26, Ex. III.5.2].

Proposition 4.10 Let I ⊆ S := C[X0, . . . ,Xn] be a homogeneous ideal, M = S/I

and pM(T ) ∈ Q[T ] the corresponding Hilbert polynomial. Then pM (d) = χ(M̃ (d))
for all d ∈ Z.

We now consider the following problems.

RankSheaf (Rank of sheaf cohomology) Given a morphism γ by a graded matrix

as above and given i ∈ N, compute dimH i(Pn, M̃) for M = cokerγ.
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EulerSheaf (Euler characteristic of sheaf cohomology) Given a morphism γ by

a graded matrix as above, compute χ(M̃) for M = cokerγ.

The following result improves the #P-lower bound in [1].

Corollary 4.11 The problems RankSheaf
Z and EulerSheaf

Z are FPSPACE-
hard.

Proof. Clearly, EulerSheaf
Z can be Turing reduced to RankSheaf

Z. The-
orem 4.9 tells us that Hilbert

Z is FPSPACE-hard. It is therefore sufficient to
establish a Turing reduction from Hilbert

Z to EulerSheaf
Z.

An instance of Hilbert
Z is a family of non-constant homogeneous polynomials

f1, . . . , fr in Z[X0, . . . ,Xn]. Let I denote the corresponding homogeneous ideal
in C[X0, . . . ,Xn]. Consider the graded morphism γ : ⊕r

j=1 S(ej) → S given by
f1, . . . , fr, where ej := − deg fj. The cokernel M of γ equals S/I.

By Proposition 4.10 we have pM (d) = χ(M̃(d)) for all d ∈ Z. We can therefore
obtain the values pM (d) for d = 0, . . . , n by n+ 1 calls to EulerSheaf

Z and then
compute the coefficients of pM by interpolation. ✷

Remark 4.12 The algorithm in [6] combined with the upper bounds in [38] implies
that Hilbert

Z is in FEXPSPACE. We do not know of any better upper bound on
this problem. The known algorithms for sheaf cohomology (cf. [50, Chapter 8], [17])
suggest that RankSheaf

Z is in FEXPSPACE.

5 Hilbert polynomial and degeneracy loci

This section is devoted to the proof of Theorem 2.10.

5.1 Chern classes and Riemann-Roch

References for the material presented here are [15, 27, 41]. See also [21] for the
algebraic geometry perspective. Let V be a variety (recall the conventions made
for varieties at the beginning of §2). Chern classes are characteristic cohomology
classes ci(E) ∈ H2i(V ) associated to a complex vector bundle p : E → V . Chern
classes are characterized axiomatically as follows:

1. ci(E) ∈ H2i(V ), c0(E) = 1 and c1(L ) generates H2(Pn), where L is the
canonical line bundle on Pn.

2. Let f : W → V be a morphism of projective varieties. Then ci(f
∗(E)) =

f∗(ci(E)), where f∗(E) denotes the pull-back bundle with respect to f .

3. (Whitney formula.) An exact sequence of bundles 0 → E′ → E → E′′ → 0,
implies ck(E) =

∑
i ci(E

′) ` ck−i(E
′′), where ` denotes the cup-product.
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The total Chern class is the sum c(E) =
∑

i≥0 ci(E) ∈ H∗(V ) of all the Chern
classes. If V is smooth and irreducible of dimension m, then the top Chern class
cm(TV ) of the tangent bundle evaluated at the fundamental class yields the topo-
logical Euler characteristic of V :

χ(V ) = deg(cm(TV ) a [V ]),

see [41, page 170]. Here a denotes the cap-product and deg : H0(V ) → Z is defined
by deg(

∑
p np [p]) =

∑
p np.

We now introduce the necessary terminology needed to state the Hirzebruch-
Riemann-Roch theorem, which relates the Chern classes to the Hilbert polynomial.

Let f(t) = t
1−e−t ∈ Q[[t]] be the formal power series (5) and t1, . . . , tn different

variables. Consider the product

f(t1) · · · f(tn) =
∞∑

i=0

gi(t1, . . . , tn),

where the gi are the i-th graded parts. The gi are symmetric polynomials in the ti, so
there is an expression gn(t1, . . . , tn) = Tn(σ1, . . . , σn), where σi is the i-th elementary
symmetric function in the ti. The Tn ∈ Q[X1, . . . ,Xn] are called Todd polynomials.
Note that Tn is homogeneous of weight n, when we define the weight of a monomial
Xi1

1 · · ·Xin
n to be the sum

∑n
k=1 kik. For example, the first three Todd polynomials

are: T1 =
1
2X1, T2 =

1
12 (X

2
1 +X2), T3 =

1
24X1X2.

If c(TV ) is the total Chern polynomial of the tangent bundle of a smooth vari-
ety V of dimension m, then we define the Todd class of V to be

td(V ) := 1 +

m∑

i=1

Ti(c1, . . . , ci),

where here (and later) we write ci as shorthand for ci(TV ).
Consider the sum

∑n
i=1 e

ti = n +
∑

i≥1 pi(t1, . . . , tn). Again, the pi are sym-
metric, so there is a polynomial Kn(X1, . . . ,Xn) which evaluated at the elementary
symmetric functions in the ti yields pn. If ci(E) are the Chern classes of a vector
bundle E on a variety V , then the class

ch(E) := 1 +
∑

i≥1

Ki(c1(E), . . . , ci(E))

is called the Chern character of E.
To a variety V ⊆ Pn and d ∈ Z one can assign the twisted sheaf OV (d). The

Chern character of the sheaf OV (d) is particularly easy to describe. Since OV (d)
corresponds to a line bundle, we have only a first Chern class, which is c1(OV (d)) =
dc1(LV ). Here, and in what follows, LV denotes the line bundle corresponding to
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the sheaf OV (1) and L ∨
V its dual, i.e., the canonical line bundle on V . For the

Chern character we get

ch(OV (d)) = ec1(OV (d)) =
∑

i≥0

di

i!
c1(LV )

i. (11)

To a vector bundle E on a variety V there corresponds a locally free sheaf E , see
[47, VI.1.3] or [26, Ex. II.5.18]. Thus we can define the Euler characteristic χ(E)
of E to be the Euler characteristic χ(E ) =

∑
i(−1)i dimH i(V,E ) of E with respect

to sheaf cohomology, cf. Equation (10).

Lemma 5.1 Let V ⊆ Pn be a variety and d ∈ Z. Then the Euler characteristic of
the line bundle OV (d) equals the Hilbert polynomial of V evaluated at d, that is,
χ(OV (d)) = pV (d).

Proof. Let i : V → Pn be the inclusion and F be a coherent sheaf on V . Then
H i(V,F ) = H i(Pn, i∗F ) for all i, cf. [26, Lemma III.2.10]. If M = S/I denotes the

homogeneous coordinate ring of V , then i∗OV (d) = M̃(d), so by Proposition 4.10
we have χ(OV (d)) = pV (d). ✷

With all these notions introduced, we can formulate the Hirzebruch-Riemann-
Roch theorem.

Theorem 5.2 (Hirzebruch-Riemann-Roch, [27]) Let E be a vector bundle on
an irreducible smooth variety V of dimension m. Then

χ(E) = deg ((ch(E) ` td(V ))m a [V ]) .

Theorem 5.2 combined with Lemma 5.1 and Equation (11) immediately yields
the following.

Corollary 5.3 Let V ⊆ Pn be an irreducible, smooth variety of dimensionm. Then
the k-th coefficient of the Hilbert polynomial of V is given by

pk(V ) =
1

k!
deg(c1(LV )

k
` Tm−k (c1, . . . , cm−k) a [V ]),

where c1, . . . , cm are the Chern classes of the tangent bundle TV .

5.2 Generalities on symmetric functions

We gather some results from the theory of symmetric functions that will be used
later. Reference for this material are [36, 37], [22, Appendix A] and [21, Appendix
A.9].

For a partition λ, we denote by λ′ its conjugate partition. Recall the definition
of ∆λ(c) in Equation (4). Claims 1 and 2 of the following lemma are easy to verify,
a proof of the third one is given in [21, Lemma A.9.2].
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Lemma 5.4 Let λ be a partition and c = {ci}i∈N be a sequence of elements of a
commutative ring such that c0 = 1.

1. The polynomial ∆λ(c) is homogeneous of weight |λ| in the ci, when ci has
weight i.

2. Let c∨ = {(−1)ici}i∈N. Then ∆λ(c
∨) = (−1)|λ|∆λ(c).

3. Let c−1 = {c′i}i∈N, where the c′i are the coefficients of the inverse power series
(
∑

i≥0 cit
i)−1. Then ∆λ(c

−1) = ∆λ′(c∨).

Example 5.5 We verify claims 2 and 3 of the previous lemma for the special case
λ = (1k). For the partition (k) we have ∆(k)(c) = ck. For the partition (1k) we have
∆(1k)(c) = detMk(c), where Mk(c) is the Toeplitz matrix

Mk(c) =




c1 c2 c3 · · · ck−1 ck
1 c1 c2 · · · ck−2 ck−1

0 1 c1 · · · ck−3 ck−2

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 c1



,

We can expand the determinant as

detMk(c) = −
k∑

i=1

(−1)ici detMk−i(c).

This equation coincides with the recursive formula for the coefficients c′j of the in-

verse power series (
∑

i≥0(−1)ici)
−1. In particular, we obtain ∆(1k)(c) = detMk(c) =

c′k = ∆(k)

(
c−1

)
.

Let γ = (γ1, . . . , γm) be variables and λ be a partition such that |λ| ≤ m. Define
the Schur polynomial associated to λ as

sλ(γ) := sλ(γ1, . . . , γm) =
det(γ

λj+m−j
i )1≤i,j≤m

det(γm−j
i )1≤i,j≤m

. (12)

The polynomial sλ(γ) is symmetric and homogeneous of degree |λ|. Note that sλ
depends not only on the partition λ but also on m.

A proof of the following lemma can be found in [36, I.3] and [22, Appendix A].

Lemma 5.6 (Giambelli’s formula) Let λ be a partition with |λ| ≤ m and c =
{ci}i∈N be given such that

c0 + c1t+ · · ·+ cmt
m =

m∏

i=1

(1 + γit),

i.e., the ci are elementary symmetric functions in the γj . Then ∆λ(c) = sλ′(γ).
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Example 5.7 If λ = (k), then sλ(γ) is the k-th complete symmetric polynomial in
the γi. This is the sum of all distinct monomials of degree k in the γi. If λ = (1k),
then sλ(γ) is the k-th elementary symmetric function in the γi.

We will further need a formula expanding the Schur polynomial of a sum of
variables. The following lemma follows from [21, Example A.9.1] (see also [36,
Example I.3.10]).

Lemma 5.8 Let λ be a partition with |λ| ≤ m. Then

sλ(γ1 + β, . . . , γm+1 + β) =
∑

µ⊆λ

dmλµβ
|λ|−|µ|sµ(γ1, . . . , γm+1),

where

dmλµ = det

(
λi +m+ 1− i

µj +m+ 1− j

)

1≤i,j≤m

Example 5.9 Let λ = (1k). Then any subpartition µ ⊆ λ is of the form (1j) for
some j ≤ k and dmλµ =

(m−j+1
m−k+1

)
. This follows from looking at the coefficients of the

expansion of s(1k)(γ1 + β, . . . , γm+1 + β), using the fact that s(1k) is an elementary
symmetric function (see Example 5.7).

5.3 Proof of Theorem 2.10

In this section we derive Theorem 2.10 from Corollary 5.3 in a series of reductions.
We start by observing a determinantal formula for the Todd polynomials. For what
follows, we will often write Tm(c) as shorthand for Tm(c1, . . . , cm).

Lemma 5.10 Let b = {bi}i∈N be the sequence of rational numbers from Equa-
tion (5), c0 = 1 and let c1, . . . , cm be variables. Then the m-th Todd polynomial is
given by

Tm(c) =
∑

|λ|=m

∆λ′(b)∆λ(c),

where λ = (λ1, . . . , λm) runs over all partitions of m.

Proof. Consider the (formal) factorizations

1 +

m∑

i=1

ci =

m∏

j=1

(1 + γj), 1 +

m∑

i=1

bi =

m∏

j=1

(1 + βj).

This amounts to writing the ci and bi as elementary symmetric functions in the
γj and βj , respectively. For a partition λ of m, let mλ(γ) be the sum of all dif-

ferent monomials arising from γλ1
1 · · · γλm

m by permutation of the γi (for example,
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m(1m)(γ) = γ1 · · · γm). Also, let σλ = σλ1 · · · σλm
denote the product of the elemen-

tary symmetric functions indexed by the partition. By definition, Tm(c) is the m-th
graded component of f(γ1) · · · f(γm), where f(γi) =

∑
j≥0 bjγ

j
i . It follows that

Tm(c) =
∑

i1+···+im=m

bi1 · · · bimγ
i1
1 · · · γimm

=
∑

|λ|=m

bλ1 · · · bλm
mλ(γ) =

∑

|λ|=m

σλ(β)mλ(γ).

By [36, I.4(4.2’-3’)] we have

∑

|λ|≤m

σλ(β)mλ(γ) =
∏

1≤i,j≤m

(1 + βjγi) =
∑

|λ|≤m

sλ′(β)sλ(γ), (13)

where sλ is the Schur polynomial of the partition λ. Giambelli’s formula (Lemma 5.6)
expresses the Schur polynomials as determinants:

sλ(γ) = ∆λ′(c).

Noting that deg sλ(γ) = degmλ(γ) = |λ| and taking the degree m parts in (13)
completes the proof. ✷

What makes this formula useful is the fact that if c denotes the total Chern class
of the tangent bundle of a smooth variety, the cohomology classes ∆λ(c) can be put
in relation to homology classes [Pλ] of the generalized polar varieties.

To a smooth variety V ⊆ Pn of dimension m we can associate a vector bundle
T̃ V of rank m+ 1 such that for all x ∈ V , TxV = P(T̃xV ).

The proof of the following proposition uses a result of Kempf and Laksov [30,
Theorem 10], see also [21, Theorem 14.3].

Proposition 5.11 Let V ⊆ Pn be an irreducible, smooth variety of dimension m
and let λ be a partition with |λ| ≤ m. Then

∆λ′(c(T̃ V )) a [V ] =

{
(−1)|λ|[Pλ] if λ1 ≤ n−m

0 else.

Proof. Let E be the trivial (n+1)-bundle on V , ÑV := E/T̃V and π : E → ÑV be
the projection map. Let λ be a partition with |λ| ≤ m and λ1 ≤ n−m. A flag F ∈ F
determines a partial flag A of trivial subbundles of E with Ai corresponding to Fσi−1

for 1 ≤ i ≤ m. Thus rank(Ai) = σi−1+1 = n−m+ i−λi. The determinantal locus

Ωλ(A;π) = {x ∈ V | dim(ker π(x) ∩Ai(x)) ≥ i, 1 ≤ i ≤ m}
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studied in [21, Chapter 14] coincides with the generalized polar variety Pλ(F ). Here,
by dim(ker π(x) ∩ Ai(x)) we mean the affine dimension. The statement of [21,
Theorem 14.3] implies that

∆λ(c(ÑV )) a [V ] = [Ωλ(A;π)] = [Pλ(F )],

provided Ωλ(A;π) is of pure codimension |λ|. For justifying this, note that in [21],
Ωλ(A;π) is interpreted as a subscheme of V and its class is an element of the
Chow group A∗(Ωλ(A;π)). However, for generic F ∈ F , the scheme Ωλ(A;π) is
multiplicity-free and of the right codimension, cf. Lemma 2.6. Moreover, there is a
cycle map A∗(Ωλ(A;π)) → H∗(Ωλ(A;σ)) [21, Chapter 19], which is compatible with
the action of Chern classes.

Let s(T̃ V ) := 1/c(T̃ V ) and T̃ V ∨ denote the dual bundle. We have c(ÑV ) =
s(T̃ V ) and ci(T̃ V

∨) = (−1)ici(T̃ V ) [21]. Using Lemma 5.4, we thus get

∆λ(c(ÑV )) = ∆λ(s(T̃ V )) = ∆λ′(c(T̃ V ∨)) = (−1)|λ|∆λ′(c(T̃ V )).

This shows the assertion in the case λ1 ≤ n − m. If λ1 > n − m, then since
ÑV is an (n −m)-bundle, we have cj(ÑV ) = 0 for j ≥ λ1, which in turn implies

∆λ(c(ÑV )) = 0. This completes the proof. ✷

We now turn attention to the tangent bundle TV .

Lemma 5.12 Let V ⊆ Pn be an irreducible, smooth variety of dimension m and
let λ be a partition with |λ| ≤ m. For the tangent bundle TV we have

∆λ′(c(TV )) a [V ] =
∑

µ⊆λ
µ1≤n−m

(−1)|µ|dmλµc1(LV )
|λ|−|µ|

a [Pµ],

where dmλµ is defined as in Lemma 5.8.

Proof. It is well known (compare [25, Chapter 16]) that the tangent bundle TV

of a smooth variety is given by TV ∼= Hom
(
L ∨

V , T̃ V/L
∨
V

)
. Taking the direct sum

with the trivial bundle E = Hom(L ∨
V ,L

∨
V ) we get

TV ⊕ E ∼= Hom
(
L

∨
V , T̃ V/L

∨
V

)
⊕ E ∼= Hom(L ∨

V , T̃ V ) ∼= LV ⊗ T̃V.

By the Whitney product formula (see §5.1) and the fact that c(E) = 1 we obtain

c(TV ) = c(TV ⊕ E) = c(LV ⊗ T̃ V ).

Let c(T̃ V ) =
∏m+1

i=1 (1 + γi) be the formal factorization and set β := c1(LV ). By
Giambelli’s formula (Lemma 5.6) we have for a partition µ with |µ| ≤ m

∆µ′(c(T̃ V )) = sµ(γ1, . . . , γm+1). (14)
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On the other hand, it is known that (see [21, Remark 3.2.3b])

c(LV ⊗ T̃ V ) =
m+1∏

i=1

(1 + γi + β).

Using Lemma 5.6 again, we get for any partition λ with |λ| ≤ m

∆λ′(c(TV )) = ∆λ′(c(LV ⊗ T̃ V )) = sλ(γ1 + β, . . . , γm+1 + β).

By Lemma 5.8 we have

sλ(γ1 + β, . . . , γm+1 + β) =
∑

µ⊆λ

dmλµβ
|λ|−|µ|sµ(γ1, . . . , γm+1).

Proposition 5.11 and (14) now imply for a partition µ with |µ| ≤ m:

sµ(γ) a [V ] = ∆µ′(c(T̃ V )) a [V ] =

{
(−1)|µ|[Pµ] for µ1 ≤ n−m

0 else.

This finishes the proof. ✷

Example 5.13 Let λ = (1k). Then ∆λ′(c) = ck(TV ), the k-th Chern class of the
tangent bundle. By Example 5.9 we have dmλµ =

(m−j+1
m−k+1

)
, where µ = (1j). Plugging

this into the formula of Lemma 5.12, we get

ck(TV ) a [V ] =
k∑

j=0

(−1)j
(
m− j + 1

m− k + 1

)
c1(LV )

k−j
a [Pj ],

where the [Pj ] are the homology classes of the polar varieties. This formula is just
the known expression for Chern classes in terms of polar classes, see for example
[45, 10].

Proof of Theorem 2.10. Assume first that V is irreducible and write c = c(TV ).
We express the Poincaré dual of the Todd polynomials in terms of the degeneracy
loci, using Lemma 5.10 and Lemma 5.12:

Tm−k(c) a [V ] =
∑

|λ|=m−k

∆λ(b)∆λ′(c) a [V ]

=
∑

|λ|=m−k

∆λ(b)
∑

µ⊆λ
µ1≤n−m

(−1)|µ|dmλµc1(LV )
m−k−|µ|

a [Pµ]

=
∑

|µ|≤m−k
µ1≤n−m

(−1)|µ|




∑

µ⊆λ
|λ|=m−k

∆λ(b)d
m
λµ




︸ ︷︷ ︸
=:δm,k

µ

c1(LV )
m−k−|µ|

a [Pµ]
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(Recall the definition of δm,k
µ in Equation (6).) By Corollary 5.3 we obtain for the

k-th coefficient pk(V ) of the Hilbert polynomial of V

pk(V ) =
1

k!
deg

(
c1(LV )

k
` Tm−k (c) a [V ]

)

=
∑

|µ|≤m−k
µ1≤n−m

δm,k
µ deg

(
c1(LV )

m−|µ|
a [Pµ]

)
.

Since capping with c1(LV )
m−|µ| corresponds to an intersection with a generic linear

subspace of codimension |µ| in V , we have deg
(
c1(LV )

m−|µ| a [Pµ]
)
= degPµ. This

proves the claim for irreducible V .
Now let V = V1∪· · ·∪Vs be the decomposition of V into irreducible components

of the same dimension. Let P i
µ denote the degeneracy locus of Vi corresponding

to µ and a generic flag F . Since V is smooth, the Vi are pairwise disjoint and
Pµ = P 1

µ ∪ · · · ∪P s
µ , from which degPµ =

∑
i degP

i
µ follows. On the other hand, the

Hilbert polynomial is additive on the Vi, which finishes the proof. ✷

Appendix

A.1 Proofs of Lemmas 2.6 and 2.8

For Lemma 2.6 we need the following result of Kleiman [31], see also [26, III.10].

Lemma A.1 Let ϕ : V → Y be a morphism of smooth irreducible varieties and let
X ⊆ Y be a quasiprojective smooth subvariety. Assume that Y is a homogeneous
space, with a connected algebraic group G acting transitively on it. Then for almost
all g ∈ G, ϕmeets gX transversely. Moreover, if δ := dimϕ(V )+dimX−dimY ≥ 0,
then ϕ(V ) ∩ gX is of pure dimension δ, for almost all g ∈ G.

Recall that a partition λ was named admissible if λ1 ≤ n−m and |λ| ≤ m+ 1.

Corollary A.2 Let Z ⊆ G(m,n) be a quasiprojective irreducible subvariety and λ
be an admissible partition. Then, for almost all F ∈ F , the intersection Z ∩Ωλ(F )
has codimension |λ| in Z if |λ| ≤ dimZ, and it is empty otherwise.

Proof. Recall from (2) the cell decomposition Ωλ(F ) = ∪λ⊆µeµ(F ). The Grass-
mannian G(m,n) is a homogeneous space with respect to the natural action of
the linear group G := GL(n + 1,C). The group G also acts transitively on the
flag variety F (in fact, we can define F as a quotient of G, cf. [37, §3.6]) and we
have geλ(F ) = eλ(gF ). Decompose Z as finite disjoint union of smooth irreducible
quasiprojective varieties Zj . We can then apply Lemma A.1 to the inclusion of Zj in
G(m,n) and to a Schubert cell X := eµ(F ) in order to obtain that, for almost all F ,
the intersection Zj ∩ eµ(F ) has the expected dimension (namely dimZj − |µ| if this
is nonnegative, otherwise the intersection is empty). This implies the assertion. ✷
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Proof of Lemma 2.6. Without lack of generality we may assume that V is irre-
ducible and not linear. (Note that for linear V , ϕ(V ) consists of one point only and
thus the transversality condition ϕ ⋔ Ωλ(F ) is equivalent to ϕ(V ) ∩ Ωλ(F ) = ∅,
except for the trivial case λ = (0). We may thus safely ignore linear components
and restrict attention to a single nonlinear component.)

In this case, a result of Zak [23, §7] says that the Gauss map ϕ : V → G(m,n) is
finite, hence dimϕ(V ) = dimV = m. Since we are dealing with projective varieties,
we have dim(ϕ(V ) ∩ Ωλ(F )) ≥ dimϕ(V ) + dimΩλ(F )− dimG(m,n) = m− |λ| for
any partition λ with |λ| ≤ m by a standard dimension argument, cf. [25, Thm.17.24].

(i) Let µ ⊇ λ be an admissible partition. Lemma A.1 implies that for almost all
flags F ∈ F , ϕ meets eµ(F ) transversely. Looking at the cell decomposition (2) of
Ωλ(F ), the claim follows (recall Definition 2.5).

(ii) We proceed by induction on the size of λ. Assume that the claim is true for
all partitions µ such that |λ| < |µ| ≤ m. Suppose ϕ ⋔ Ωλ(F ). The cell decomposi-
tion (2) of Ωλ(F ) implies that

ϕ(V ) ∩ Ωλ(F ) =
⋃

µ⊇λ

ϕ(V ) ∩ eµ(F ).

We are going to show that ϕ(V ) intersects the cell eλ(F ). If this were not the
case, we had dim(ϕ(V ) ∩ Ωλ(F )) = maxµ⊃λ(m − |µ|) < m − |λ|, since we have
dim(ϕ(V ) ∩ eµ(F )) = m − |µ| by induction hypothesis. However, this contradicts
the fact that dim(ϕ(V ) ∩ Ωλ(F )) ≥ m− |λ|.

Now note that Pλ(F ) = ∪µ⊇λϕ
−1(eλ(F )). By Remark 2.4, ϕ−1(eµ(F )) is either

empty or of codimension m− |µ| in V . Moreover, we just showed that ϕ−1(eλ(F ))
is nonempty. This show the induction claim. The induction start where |λ| = m is
proved similarly.

(iii) We fix a flag F 0 ∈ F and set Ω := Ωλ(F 0), e := eλ(F 0), ∂e := Ω − e.
Consider the map

δ : G→ N, g 7→ degϕ−1(gΩ).

It is easy to see that the fibers of δ are constructible. Since G is irreducible, there
exists a unique integer dλ such that δ(g) = dλ for almost all g ∈ G. We have to
show that

∀g ∈ G (ϕ ⋔ gΩ =⇒ δ(g) = dλ).

Fix g′ ∈ G such that ϕ ⋔ g′Ω holds and write N := δ(g′). By (ii) we know that
ϕ−1(g′Ω) is of codimension |λ| in V . It is sufficient to show that the function δ is
constant in a Euclidean neighborhood of g′.

Let A ⊆ Pn be a linear subspace of dimension k := n−m+ |λ| such that

A ∩ ϕ−1(g′∂e) = ∅ and A ⋔ ϕ−1(g′e). (15)

Then the intersection A ∩ ϕ−1(g′Ω) consists of exactly N elements, say x1, . . . , xN ,
cf. [43, §5A]. It is therefore sufficient to show that for all g in some neighborhood
of g′ condition (15) holds with g instead of g′ and |A ∩ ϕ−1(gΩ)| = N .
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Fix a point xi. Since ϕ−1(g′e) is smooth and of codimension k in Pn, it can
be defined locally around xi by k equations h1(x, g

′), . . . , hk(x, g
′). Moreover, these

equations can be chosen such that h1, . . . , hn−m are local equations for V around xi
(not depending on g′) and hn−m+1, . . . , hk are obtained by pulling back local equa-
tions for g′e at the smooth point ϕ(x). Note that these last |λ| equations are
polynomials in x as well as in the parameter g′. Suppose that A is the zero set of
linear forms a1, . . . , an−k. The transversality condition A ⋔xi

ϕ−1(g′e) implies that
dxh1(xi, g

′), . . . , dxhk(xi, g
′), a1, . . . , an−k are linearly independent. We are thus in

the situation of the implicit function theorem: there is a Euclidean neighborhood U
of g′ and a Euclidean neighborhood Vi of xi such that for each g ∈ U the set
A ∩ ϕ−1(gΩ) ∩ Vi consists of exactly one point xi(g).

It remains to be seen that for g sufficiently close to g′, the set A∩ϕ−1(gΩ) cannot
have more than N elements. Suppose by contradiction that there is a sequence gν
in G converging to g′ such that for all ν, A∩ϕ−1(gνΩ) contains a point yν different
from x1(gν), . . . , xN (gν). Since V is compact, by passing to a subsequence, we may
assume that yν converges to a point y ∈ V . By continuity, y ∈ A∩ ϕ−1(g′Ω), hence
y = xi for some i. We conclude that yν = xi(gν) for ν sufficiently large, contradicting
our assumption. ✷

Proof of Lemma 2.8. We may assume without loss of generality that W is irre-
ducible and that dimψ−1(ψ(x)) is constant for x ∈W , say equal to δ. (Decompose
W into the locally closed subsets Wi := {x ∈ W | dimψ−1(ψ(x)) = i} and apply
the assertion to the irreducible components of Wi.) By [47, §I.6.3 Thm. 7] (see also
[25, Thm. 11.12]) we have

dimW = dimZ + δ, dimRλ(F ) ≤ dimψ(Rλ(F )) + δ,

where we have set Z := ψ(W ). Assume first that |λ| ≤ dimZ. By Corollary A.2,
we have dim(Z ∩ Ωλ(F )) = dimZ − |λ| for almost all F ∈ F . Since ψ(Rλ(F )) =
Z ∩ Ωλ(F ), we obtain for almost all F

dimRλ(F ) ≤ dimψ(Rλ(F )) + δ = dimZ − |λ|+ δ = dimW − |λ|.

If |λ| > dimZ we have Z ∩ Ωλ(F ) = ∅ and therefore Rλ(F ) = ∅ for almost all F .
The inequality dimRλ(F ) ≥ dimW − |λ| follows from [25, Thm. 17.24]. ✷

A.2 Expressing transversality

In this section we conclude the proof of Proposition 4.4. We consider input data
of the form (f, n,m, µ, F , x) where f = (f1, . . . , fr) is a sequence of homogeneous
polynomials in C[X0, . . . ,Xn] satisfying the input condition (7) form ∈ N and x is in
the projective zero set V ′ of these polynomials. Moreover, F is a flag in F encoded
by a matrix a ∈ Cn×(n+1) and µ = (µ1, . . . , µm+1) is an admissible partition with
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respect to n and m. Recall from Lemma 4.1 the decomposition V ′ = V ∪W , where
V is smooth of pure dimension m and dimW < m.

Let u ∈ C∞ be an encoding of (f, n,m, µ), let a ∈ C∞ be an encoding of F and
define the relation trans ⊆ C∞ × C∞ × C∞ by

trans(u, a, x) :⇐⇒
(
x ∈ V ∧ ϕ(x) ∈ eµ(F ) =⇒ ϕ ⋔x eµ(F )

)
,

where ϕ is the Gauss map of V .

Lemma A.3 The relation trans is decidable in polynomial time by a constant-free
machine over C.

Before going into the proof, we recall some facts concerning the manifold struc-
ture and cell decomposition of Grassmannians. For a comprehensive account, we
refer to [20, III.9] and [37].

Dual to our usual encoding a ∈ Cn×(n+1) of a flag F ∈ F (where the Fi are zero
sets of row forms of a), we can represent the flag F by a basis ℓ = (ℓ0, . . . , ℓn) of
Cn+1 such that Fi is spanned by (ℓ0, . . . , ℓi) for 0 ≤ i ≤ n. Clearly, this basis is
uniquely determined by F up to scaling and can be computed from a in polynomial
time.

Let µ be an admissible partition and let σ denote the associated sequence 0 ≤
σ0 < · · · < σm ≤ n defined by σi := n −m+ i− µi+1. To a fixed basis ℓ and µ we
assign the Schubert cell eµ := eµ(ℓ) := eµ(F ) according to (1). (To ease notation,
we will usually drop the dependence on ℓ.) It is not hard to see that every subspace
A in eµ has a unique basis, that can be represented with respect to the basis ℓ by
the rows of an (m+1)×(n+1) row echelon matrix, which has a 1 at the intersection
of the i-th row with the σi-th column, and zeros in the i-th row to the right of this
position as well as zeros in the σi-th column below this position, for all 0 ≤ i ≤ m.
In the case m = 3, n = 7, µ = (3, 1, 0), σ = (1, 4, 6, 7) such an echelon matrix looks
as follows: 



∗ 1 0 0 0 0 0 0
∗ 0 ∗ ∗ 1 0 0 0
∗ 0 ∗ ∗ 0 ∗ 1 0
∗ 0 ∗ ∗ 0 ∗ 0 1


 . (16)

In order to describe a covering of G(m,n) in terms of affine charts, consider for
fixed ℓ the subspaces Lµ and Lµ of Cn+1 spanned by ℓσ0 , . . . , ℓσm and {ℓj | j 6∈
{σ0, . . . , σm}}, respectively. We define Uµ := Uµ(ℓ) ⊆ G(m,n) as the set of (m+1)-
dimensional subspaces A ⊆ Cn+1 whose projection to the subspace Lµ along Lµ is
an isomorphism. The open sets Uµ form an open cover of G(m,n). By identifying
A ∈ Uµ with the graph of a linear map from Lµ to Lµ, we get an isomorphism

αµ : Uµ
∼
−→ Hom(Lµ, Lµ)

∼
−→ C(n−m)×(m+1), (17)

where the last isomorphism maps an element of Hom(Lµ, Lµ) to its matrix repre-
sentation with respect to the bases defined by ℓ. The matrix αµ(A) is obtained
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from the echelon matrix in (16) by removing all the σi-columns (thus removing a
unit matrix of size m + 1) and transposing. Taking this into account, we see that
eµ ⊂ Uµ and that the image of eµ under αµ can be described as follows:

αµ(eµ) = {(aij) ∈ C(n−m)×(m+1) | aij = 0 for j ≥ σi − i, 0 ≤ i ≤ m, 0 ≤ j < n−m}.
(18)

In particular, αµ(eµ) is a linear subspace of C(n−m)×(m+1).

Proof of Lemma A.3. Assume that x ∈ V and ϕ(x) ∈ eµ(ℓ). The claim is that the
transversality condition

Tϕ(x)G(m,n) = dxϕ(TxV ) + Tϕ(x)eµ(ℓ). (19)

can be checked in constant-free polynomial time over C.
In order to simplify notation, we will identify V with its affine cone V̂ , x with

an affine representative x̂, and the Gauss map ϕ with the corresponding morphism
ϕ̂ : V̂ − {0} → G(m,n). This causes no problem, since dxϕ(TxV ) = dx̂ϕ̂(Tx̂V̂ ).

Given a basis ℓ and a partition µ, we represent eµ = eµ(ℓ) and the tangent spaces
TAG(m,n) and TAeµ for A ∈ eµ by means of the chart αµ defined in (17). Around
x we extend the Gauss map ϕ into the chart considering

ϕµ : V ∩ ϕ−1(Uµ)
ϕ
−→ Uµ

αµ
−−→ C(n−m)×(m+1)

In this light, Equation (19) translates into

C(n−m)×(m+1) = dxϕµ(TxV ) + αµ(eµ).

Equation (18) gives an explicit and simple description of αµ(eµ). It remains to find
a suitable description of dxϕµ(TxV ).

After a linear coordinate transformation, we may assume that Lµ = Cm+1 × 0
and Lµ = 0 × Cn−m. Thus without loss of generality, we assume that X0, . . . ,Xn

are coordinates adapted to the decomposition Cn+1 = Lµ ⊕ Lµ.
Locally around the point x, the variety V ⊆ Cn+1 is given as the zero set of the

polynomials f1, . . . , fr. Our assumption ϕ(x) ∈ eµ means that TxV lies in eµ and

thus in Uµ. This implies that the matrix ( ∂fs
∂Xt

(x)))1≤s≤r,m<t≤n has rank n−m. After

a permutation, we may assume that ( ∂fs
∂Xt

(x)))1≤s≤n−m,m<t≤n is invertible. It will be
convenient to use the abbreviations X ′ := (X0, . . . ,Xm) andX ′′ := (Xm+1, . . . ,Xn).

By the implicit function theorem there are analytic functions h1, . . . , hn−m in X ′

such that in a neighborhood of x, the variety V is the graph of the analytic function
h := (h1, . . . , hn−m) defined on a neighborhood of x′. In particular, x = (x′, h(x′)).
From this we obtain the following description of the Gauss map:

ϕµ(X
′, h(X ′)) =

( ∂hs
∂Xi

(X ′)
)
1≤s≤n−m,0≤i≤m

∈ C(n−m)×(m+1).
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Hence the vector space dxϕµ(TxV ) is spanned by the matrices

( ∂2hs
∂Xi∂Xj

(x′)
)
1≤s≤n−m,0≤i≤m

for 0 ≤ j ≤ m. It remains to show that these matrices can be computed in constant-
free polynomial time over C. We remark that in the case of a hypersurface (m =
n− 1), this matrix just describes the second fundamental form of V at x.

By taking the derivative with respect to Xi of fs(X
′, h(X ′)) = 0, we obtain

∂fs
∂Xi

(X ′, h(X ′)) +
n∑

t=m+1

∂fs
∂Xt

(X ′, h(X ′))
∂ht
∂Xi

(X ′) = 0 (20)

for 1 ≤ s ≤ n−m, 0 ≤ i ≤ m. From this, ∂ht

∂Xi
(x′) can be computed by inverting the

matrix ( ∂fs
∂Xt

(x)). By taking the derivative of Equation (20) with respect to Xj for
0 ≤ j ≤ m we get

∂2fs
∂Xi∂Xj

+ 2
∑

t>m

∂2fs
∂Xt∂Xj

∂ht
∂Xi

+
∑

t,k>m

∂2fs
∂Xt∂Xk

∂ht
∂Xi

∂hk
∂Xj

+
∑

t>m

∂fs
∂Xt

∂2ht
∂Xi∂Xj

= 0.

From this, the desired second order derivatives ∂2ht

∂Xi∂Xj
(x′) can be computed by

inverting the matrix ( ∂fs
∂Xt

(x)). This finishes the proof. ✷
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Bézout, Betti, and Poincaré. In Jan Krajicek, editor, Complexity of computations and
proofs, Quaderni di Matematica. 2004. To appear.

[13] P. Bürgisser, F. Cucker, and M. Lotz. Counting complexity classes for numeric com-
putations III: Complex projective sets. Foundations of Computational Mathematics.
Accepted.

[14] P. Bürgisser, F. Cucker, and M. Lotz. The complexity to compute the Euler charac-
teristic of complex varieties. C.R. Acad. Sc. Paris, Ser I 339:371–376, 2004.

[15] S-S. Chern. Characteristic classes of Hermitian manifolds. Annals of Mathematics (2),
47:85–121, 1946.

[16] A. M. Cohen, H. Cuypers, and H. Sterk. Some tapas of computer algebra, volume 4 of
Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, 1999.

[17] W. Decker and D. Eisenbud. Sheaf algorithms using the exterior algebra. In Computa-
tions in algebraic geometry with Macaulay 2, volume 8 of Algorithms Comput. Math.,
pages 215–249. Springer, Berlin, 2002.

[18] A. Dickenstein, N. Fitchas, M. Giusti, and C. Sessa. The membership problem for
unmixed polynomial ideals is solvable in single exponential time. Discrete Appl. Math.,
33(1-3):73–94, 1991.

[19] L. Fortnow. Counting complexity. In Complexity theory retrospective, II, pages 81–107.
Springer, New York, 1997.

[20] W. Fulton. Young tableaux, volume 35 of London Mathematical Society Student Texts.
Cambridge University Press, Cambridge, 1997.

[21] W. Fulton. Intersection Theory, volume 2 of Ergebnisse der Mathematik und ihrer
Grenzgebiete. Springer-Verlag, Berlin, 1998.

[22] W. Fulton and J. Harris. Representation Theory. Number 129 in GTM. Springer Verlag,
1991.

[23] W. Fulton and R. Lazarsfeld. Connectivity and its applications in algebraic geometry.
In Algebraic geometry (Chicago, Ill., 1980), volume 862 of Lecture Notes in Math.,
pages 26–92. Springer, Berlin, 1981.

[24] M. Giusti. Some effectivity problems in polynomial ideal theory. In EUROSAM 84
(Cambridge, 1984), volume 174 of Lecture Notes in Comput. Sci., pages 159–171.
Springer, Berlin, 1984.

34



[25] J. Harris. Algebraic Geometry: A First Course. GTM. Springer Verlag, New York,
1992.

[26] R. Hartshorne. Algebraic Geometry. GTM. Springer Verlag, 1977.

[27] F. Hirzebruch. New Topological Methods in Algebraic Geometry. Die Grundlehren der
Mathematischen Wissenschaften, Band 131. Springer Verlag, 1966.

[28] D.T. Huyn. A superexponential lower bound for Gröbner bases and Church-rosser
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