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A NUMERICAL METHOD FOR CONSTRUCTING THE

HYPERBOLIC STRUCTURE OF COMPLEX HÉNON MAPPINGS

SUZANNE LYNCH HRUSKA

Abstract. For complex parameters a, c, we consider the Hénon mapping
Ha,c : C2

→ C2, given by (x, y) 7→ (x2 + c−ay, x), and its Julia set, J . In this
paper, we describe a rigorous computer program for attempting to construct
a cone field in the tangent bundle over J , which is preserved by DH, and a
continuous norm in which DH (and DH−1) uniformly expands the cones (and
their complements). We show a consequence of a successful construction is a
proof that H is hyperbolic on J . We give several new examples of hyperbolic
maps, produced with our computer program, Hypatia, which implements our
methods.

1. Introduction

The Hénon family, Ha,c(x, y) = (x2 + c − ay, x), has been extensively studied
as a diffeomorphism of R2, with a, c real parameters. For example, Benedicks and
Carleson show the existence of chaotic behavior in the form of a strange attractor for
some real Hénon maps in [8]. Here we consider Ha,c as a diffeomorphism of C2, and
allow a, c to be complex. Foundational work on the dynamics of the complex Hénon
family has been done by Bedford and Smillie ([2, 3, 7, 4]), Hubbard ([22, 23, 21]),
and Fornaess and Sibony ([14]). However, basic questions remain unanswered.

A natural class of maps to study are the hyperbolic maps, since hyperbolic
maps generally have nontrivial (chaotic) dynamics, but are amenable to analysis.
A Hénon mapping Ha,c is hyperbolic if its Julia set, Ja,c, is a hyperbolic set for
Ha,c. (Hyperbolicity and Julia set are defined in Section 2.) For Hénon mappings,
hyperbolicity implies Axiom A, which implies shadowing on J , i.e., ǫ-pseudo orbits
are δ-close to true orbits, and structural stablity on J , i.e., in a neighborhood in
parameter space the dynamical behavior is of constant topological conjugacy type.
Thus for a hyperbolic mapping, the dynamics on J should be able to be understood
using combinatorial models. These properties make hyperbolic diffeomorphisms
amenable to exploration via computers.

Motivated by careful computer investigations, Oliva ([32]) provides a combina-
torial model of the dynamics of some Hénon mappings, including for example, the
mapping of Figure 1. The proposed model presupposes that the mapping is hyper-
bolic. Hubbard and Papadantonakis ([1, 20]) have more recently generated pictures
of slices of the Hénon parameter space, which attempt to sketch either the locus
of maps with J connected, or the locus of maps with J having no interior (see
Figure 2). These and other computer investigations suggest that the dynamical
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Figure 1. The filled Julia set for a Hénon mapping Ha,c(x, y) =
(x2+c−ay, x), restricted to the unstable manifold of a saddle fixed
point, with its natural parameterization. Here a = .3, c = −1.17,
and the map has attracting cycles of periods one and three, which
is impossible for quadratic polynomial maps of C.

Figure 2. A slice of Hénon parameter space, the c-plane, with
a = .3. The innermost dark set is an attempt to sketch the set of
maps with connected Julia sets, while the exterior is an attempt
to sketch the maps with filled Julia set having empty interior (in-
cluding complex horseshoes). These regions have features reminis-
cent of the parameter regions of one-dimensional polynomial maps.
This is an intriguing parallel, suggesting that the Hénon parameter
space may be an equally rich arena of study.
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behavior of the complex Hénon family is rich and subtle. If certain of these map-
pings could be shown to be hyperbolic, then this would serve as a first step toward
showing mathematically that these apparent phenomena actually occur.

However, there are very few complex Hénon mappings known to be hyperbolic.
Let us summarize what is known. First, if

(1) |c| > 2(1 + |a|)2,

then Ha,c|J is conjugate to the full 2-shift (so Ja,c is a Cantor set), and the map is
hyperbolic (compare Devaney and Nitecki [12], Oberste-Vorth [31], Morosawa, et
al. [28]). In this case the mapping is called a (complex) horseshoe. The exterior
in Figure 2 contains the set of horseshoes (among other types of maps). Second,
Hubbard and Oberste-Vorth ([23]) show that if Pc(x) = x2 + c is a hyperbolic
polynomial, then there exists an A(c) such that if

(2) 0 < |a| < A(c),

then Ha,c|J is topologically conjugate to the function induced by Pc on the inverse
limit lim←(J, Pc), hence Ha,c is hyperbolic. Ishii and Smillie ([24]) have worked
to obtain explicit estimates for the constant A(c) in (2), but these estimates are
relatively small.

Our broad goal is to develop computer algorithms with which we can rigorously
describe the dynamics of any hyperbolic complex Hénon mapping. In this paper
we make a key step in that process, by developing a computer program which
can establish if a complex Hénon mapping is hyperbolic, and if so, the program
produces explicit information about how the map is hyperbolic; in particular, it
builds two complementary cone fields in the tangent bundle over J (the unstable
and stable cones), and constructs a norm in which DH (DH−1) preserves and
unifomly expands the unstable (stable) cones.

Since hyperbolicity is structurally stable, a computer program with infinite re-
sources should be able to prove hyperbolicity for any hyperbolic map. However,
non-hyperbolicity is an unstable condition, thus a computer program cannot be
expected to recognize when a map is not hyperbolic. (For example, P (z) = z2−1.5
is presumably, but not provably, non-hyperbolic.)

This paper builds on the results of [18] (cf [25, 11, 33, 34, 13]). There we describe
an algorithm, called the box chain construction, which given ǫ > 0 finds a compact
neighborhood, B, containing a δ = δ(ǫ)-neighborhood of J , and creates a finite
graph, Γ, which models the ǫ-dynamics of H on B. In this paper, we need only
know the following about Γ.

Definition 1.1. Let Γ = Γ(V,E) be a directed graph, with vertex set V = {Bk}Nk=1

a finite collection of closed boxes in C2, having disjoint interiors, and such that the
union of the boxes B = ∪N

k=1Bk contains J . Suppose there is a δ > 0 such that Γ
contains an edge from Bk to Bj if the image H(Bk) intersects a δ-neighborhood of
Bj , i.e.,

E ⊃ {(k, j) : H(Bk) ∩N(Bj , δ) 6= ∅}.

Further, assume Γ is strongly connected, i.e., for each pair of vertices Bk, Bj , there
is a path in Γ from Bk to Bj , and vice-versa. Then we call Γ a box chain model of
H on J .
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In [18], we describe how the box chain construction builds strongly connected
graphs modeling every basic set ofH , for example, J and any attracting periodic or-
bits. In this paper, we let Γ be the strongly connected graph component containing
J , and we mostly ignore the others.

Our first task in this paper is to develop a discrete condition on Γ we call box
hyperbolicity, and show this condition implies hyperbolicity of H :

Theorem 1.2. Let Γ be a box chain model of H on J . If Γ is box hyperbolic, then
H is hyperbolic on J .

Our definition of box hyperbolicity is inspired by our work in numerically estab-
lishing hyperbolicity in one complex dimension (see [19]). The difference is that
in one dimension, hyperbolicity simply means expansion on J , whereas for Hénon
mappings, hyperbolicity means a saddle property, i.e., expansion, contraction, and
transversality. The notion of box hyperbolicity is made precise in Section 4. Let
us briefly describe this property here. We begin with the cone field criterion for
hyperbolicity. In a more general setting, Newhouse and Palis ([29, 30]) show that
an f -invariant set Λ is hyperbolic for f iff there is a field of cones in the tangent
bundle over Λ such that Df maps the cone field inside itself, and such that in some
norm, Df uniformly expands the cones, and Df−1 uniformly expands the comple-
ments of the cones. Moreover, the field of cones need not be continuous in x ∈ Λ;
hence the cone field criterion for hyperbolicity yields a natural way to study the
hyperbolic structure of a diffeomorphism using a computer (i.e., discretely). Here,
we build cones which are constant on each box vertex of Γ.

To use the cone field criterion, we must find both a field of cones preserved by
DH and a norm in which DH expands the cones. We cannot expect that DH
expands vectors in each cone with respect to the euclidean norm. For example,
in the euclidean norm, DH may be small for some cones over a pseudo-cycle, but
larger in others, so that only the total cycle multiplier is larger than one. Thus
given a model Γ of a map H , we attempt to build a discretized norm on the tangent
bundle over Γ, which is designed to factor out the differences in DH along cycles,
so that in this new norm, DH is expanding on every cone. Then we show that
hyperbolicity in the discrete norm implies hyperbolicity for some continuous norm.

In order to test for box hyperbolicity on a given Γ, we have developed a com-
puter algorithm we call the Axis Metric Algorithm, designed to either prove that a
given Γ is box hyperbolic, or describe which parts of Γ are obstructions to proving
box hyperbolicity. If a Γ fails to be box hyperbolic, then either the map is not
hyperbolic, or the boxes of Γ are too large. Thus our approach is to attempt to
prove box hyperbolicity on a sequence of models Γ(n) with decreasing box size.
If Γ(n − 1) fails to be box hyperbolic, then to create Γ(n) we could decrease the
size of all the boxes, or use output of the Axis Metric Algorithm on Γ(n − 1) in
choosing which boxes need to be decreased in order to create a Γ(n) more likely to
be box hyperbolic. If some Γ(n) is found to be box hyperbolic, then f is hyperbolic,
and the program terminates. Thus a “successful” run of an implementation of our
procedure gives a mathematical proof of hyperbolicity: if we can construct a Γ
which the Axis Metric Algorithm shows to be box hyperbolic, then that mapping
is mathematically proven to be hyperbolic, by Theorem 1.2.

In designing the Axis Metric Algorithm for verifying box hyperbolicity of some
Γ, we build on the one-dimensional procedure described in [19]. There we prove
hyperbolicity of polynomial maps of C by creating a piecewise continuous (box
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constant) metric, under which the map is expanding on a neighborhood of J . To
move up to two dimensions, and saddle-type hyperbolicity, we break down the
problem into one dimensional pieces, then reassemble. In particular, we build
approximately invariant, box constant unstable and stable line fields, which will
serve as axes for our cones. Then we use the one dimensional algorithm twice, to
attempt to build a metric which is contracted on the stable directions, and another
metric which is expanded on the unstable directions. These metrics and line fields
then determine a cone field with an induced metric, which we use to test for box
hyperbolicity. The Axis Metric Algorithm is described in detail in Section 5.

Finally, we have implemented our methods into a computer program called Hypa-
tia, and used the program to prove hyperbolicity of several Hénon mappings which
were not previously known to be hyperbolic:

Theorem 1.3. The complex Hénon mappings, Ha,c(x, y) = (x2 + c− ay, x), with:

(c, a) = (−0.3, 0.1), (0,−0.22), (−3,−0.25), and (1.5, 0.5),

are hyperbolic.

Computer pictures suggest that the first two mappings of Theorem 1.3, Ha,c

with (c, a) = (−.3, .1) and (c, a) = (0,−.22), are in the main cardioid, with the
only recurrent dynamics consist of a connected J and one attracting fixed point,
and that the latter two mappings are horseshoes, with Ja,c with c = −3, a = −.25
appearing to lie in R2, and Ja,c, with c = 1.5, a = .5 appearing not to be contained
in R2. Whether or not that is the case, each of the maps of Theorem 1.3 lies outside
of the known regions defined by (1) and (2) with the Ishii-Smillie estimates.

All of the computations involved in proving Theorem 1.3 were run on a Sun
Enterprise E3500 server with 4 processors, each 400MHz UltraSPARC (though the
multiprocessor was not used) and 4 GB of RAM. 1 When computations became
overwhelming, memory usage was the limiting factor. The C++, unix program,
Hypatia, may be obtained from the author.

To conclude the introduction, we sketch the organization of the paper. We
give background on the dynamics of the Hénon family in Section 2. In Section 3,
we briefly discuss interval arithmetic with directed rounding, the method used to
maintain rigor in our computer computations. In Section 4, we define box hyper-
bolicity, and we prove Theorem 1.2, establishing that box hyperbolicity implies
hyperbolicity. In Section 5, we describe our computer procedure for verifying box
hyperbolicity, including the Axis Metric Algorithm. Finally, in Section 6 we provide
some data on how we used Hypatia to prove hyperbolicity of each of the maps of
Theorem 1.3.

Acknowledgements. These results were primarily accomplished as my PhD
thesis at Cornell University ([17]). I am grateful to John Smillie for providing
guidance on the project, John Hubbard for inspiration, Greg Buzzard, and Warwick
Tucker for many helpful conversations, Eric Bedford, James Yorke, and John Milnor
for advice on the preparation of this paper, and Robert Terrell for technical support.
I would also like to thank the referees and editors for providing comments which I
helped me to significantly increase the clarity of the presentation.
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Mathematics at Cornell University.
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2. Background

2.1. The Hénon Family. Polynomial diffeomorphisms ofC2 necessarily have poly-
nomial inverses, thus are often called polynomial automorphisms. Friedland and
Milnor ([15]) showed that polynomial automorphisms of C2 break down into two
categories. Elementary automorphisms have simple dynamics, and are polynomi-
ally conjugate to a diffeomorphism of the form (x, y) 7→ (ax+b, cy+p(x)) (p polyno-
mial, a, c 6= 0). Nonelementary automorphisms are all conjugate to finite composi-
tions of generalized Hénon mappings, which are of the form f(x, y) = (p(x)−ay, x),
where p(x) is a monic polynomial of degree d > 1 and a 6= 0.

To clarify the situation, one can define a dynamical degree of a polynomial au-
tomorphism of C2. If deg(f) is the maximum of the degrees of the coordinate
functions, the dynamical degree is

d = d(f) = lim
n→∞

(deg(fn))1/n.

This degree is a conjugacy invariant. Elementary automorphisms have dynamical
degree d = 1. A nonelementary automorphism is conjugate to some automorphism
whose polynomial degree is equal to its dynamical degree. Without loss of gen-
erality, we assume such f are finite compositions of generalized Hénon mappings,
rather than merely conjugate to mappings of this form.

Thus, the quadratic, complex Hénon family Ha,c(x, y) = (x2 + c − ay, x) rep-
resents the dynamical behavior of the simplest class of nonelementary polynomial
automorphisms; those of dynamical degree two. In this paper, we usually use the
letter f for a polynomial diffeomorphism of C2 with d(f) > 1, and H for a (degree
two) Hénon mapping. We state results in Section 4 for the more general f , but in
explaining the procedure for verifying hyperbolicity in Section 5, we concentrate on
the case of Ha,c.

2.2. Drawing Meaningful Pictures. For a polynomial map P of C, the filled
Julia set, K, is the set of points whose orbits are bounded under P ; the Julia set,
J , is the topological boundary of K. For a polynomial diffeomorphism f , like Ha,c,
there are corresponding Julia sets:

• K+(K−) is the set of points whose orbits are bounded under f(f−1)
and K = K+ ∩K− is called the filled Julia set ;

• J± = ∂K± (topological boundary)
and J = J+ ∩ J− is called the Julia set.

Filled Julia sets are the (chaotic) invariant sets which can be easily sketched
by computer, on any two-dimensional slice. Hubbard has suggested the following
method for drawing a dynamically significant slice of the Julia set, by parame-
terizing an unstable manifold. This method has been implemented by Karl Pa-
padantonakis in FractalAsm ([20, 1]). Figures 1, 4, and 5 were generated using
FracalAsm.

Let f be a diffeomorphism of C2. If p is a periodic point of period m, and
the eigenvalues λ, µ of Dpf

m satisfy |λ| > 1 > |µ| (or vice-versa), then p is a
saddle periodic point. The large (small) eigenvalue is called the unstable (stable)
eigenvalue. If p is a saddle periodic point, then the stable manifold of p is W s(p) =
{q : d(fn(q), fn(p)) → 0 as n → ∞}, and the unstable manifold of p is Wu(p) =
{q : d(f−n(q), f−n(p)) → 0 as n → ∞}. If p a saddle periodic point of f , then
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Wu(p) (W s(p)) is biholomorphically equivalent to C, and on Wu(p) (W s(p)), f is
conjugate to multiplication by the unstable (stable) eigenvalue of Dpf .

When |a| 6= 1, except on the curve of equation 4c = (1+a)2, the map Ha,c has at
least one saddle fixed point, p, ([20]). The unstable manifold Wu(p) has a natural
parametrization γ : C → Wu(p) given by

γ(z) = lim
m→∞

γm(z) = lim
m→∞

Hm

(

p+
z

λm
1

v1

)

,

where λ1 is the unstable eigenvalue of DpH and v1 is the associated eigenvec-
tor. This parametrization has the property that H(γ(z)) = γ(λz), and any two
parametrizations with this property differ by scaling the argument.

Observe that since Wu(p) ⊂ K−, to get a picture of K in Wu(p) we need
only color pixels black which are guessed to be in K+. To sketch the picture, we
approximate γ by say g = γ100 in a region in the plane, B = {z = x + iy : a ≤
x ≤ b, c ≤ y ≤ d}. Then an escape threshold is chosen, like 10, and then for each
z ∈ B, if ‖Hn(g(z))‖ < 10 for all n < 100, we say g(z) ∈ K+ and color it black.
Otherwise, color according to which iterate ‖Hn(g(z))‖ first surpassed 10.

2.3. Hyperbolicity. In this subsection, let f be a diffeomorphism of a manifold
M , and let Λ be a compact, f -invariant set. First we recall the standard definition
of hyperbolicity (see [36]).

Definition 2.1. Λ is hyperbolic for f if at each x in Λ, there is a splitting of the
tangent bundle TxM = Es

x ⊕Eu
x , which varies continuously with x ∈ Λ, such that:

(1) f preserves the splitting, i.e., Dxf(E
s
x) = Es

fx, and Dxf(E
u
x ) = Eu

fx, and

(2) Df (Df−1) expands on Eu (Es) uniformly, i.e., there exists a constant
λ > 1 and a norm ‖·‖x on TΛM , continuous for x ∈ Λ, for which

‖Dxf(w
u)‖f(x) ≥ λ ‖wu‖x , for wu ∈ Eu

x , and
∥

∥Dxf
−1(ws)

∥

∥

f−1(x)
≥ λ ‖ws‖x , for ws ∈ Es

x.

As noted in the Introduction, Newhouse and Palis ([29, 30]) show hyperbolicity
can be described using a cone field. To define a cone Cx for each point x in Λ, we
need a splitting TxM = E1x ⊕ E2x, and a positive real-valued function ǫ(x) on M .
Then define the ǫ(x)-sector Sǫ(x)(E1x, E2x) by

Sǫ(x)(E1x, E2x) = {(v1,v2) ∈ E1x ⊕ E2x : ‖v2‖ ≤ ǫ(x) ‖v1‖}.

Then Cx = Sǫ(x). Newhouse and Palis show that Λ is hyperbolic for f iff there is
a field of cones {Cx ⊂ TxM : x ∈ Λ}, a constant λ > 1, and a continuous norm ‖·‖,
such that Df preserves the cone field, i.e., Dxf(Cx) ⊂ Cfx, and such that in this
norm, Dxf (Dxf

−1) uniformly expands vectors in Cx (TxM − Cx); moreover, the
field of cones x → Cx need not be continuous. Our computer algorithm for verifying
hyperbolicity actually combines these two notions, as we will see in Section 4.

Bedford and Smillie ([6]) have shown that for f a polynomial diffeomorphism
of C2, with d(f) > 1, f is hyperbolic on its Julia set, J , iff f is hyperbolic on its
chain recurrent set, R, iff f is hyperbolic on its nonwandering set, Ω. Thus we say
f is hyperbolic if any of these conditions holds. In fact, in [5] Bedford and Smillie
show that if f is hyperbolic, then R and Ω are both equal to J union finitely many
attracting periodic orbits. Thus for hyperbolic polynomial diffeomorphisms of C2,
the basic sets are J and the attracting periodic orbits.



8 S.L. HRUSKA

3. Interval arithmetic

In order to genuinely prove dynamical properties, we use in Hypatia a method
of controlling round-off error in the computations, called interval arithmetic with
directed rounding (IA). This method was recommended by Warwick Tucker, who
used it in his recent computer proof that the Lorenz differential equation has the
conjectured geometry ([37]).

In fact we use IA not only to control error, but we take advantage of the structure
of this method in our algorithms and implementation. We thus give a very brief
description of IA below, and refer the interested reader to [26, 27, 9].

On a computer, we cannot work with real numbers, rather we work over the
finite space F of numbers representable by binary floating point numbers no longer
than a certain length. For example, since the number 0.1 is not a dyadic rational,
it has an infinite binary expansion. The computer cannot encode this number
exactly. Instead, the basic objects of arithmetic are not real numbers, but closed
intervals, [a, b], with end points in some fixed field K. Denote this space of intervals
by IK. The operation of addition of two intervals [a, b], [c, d] ∈ IK is defined by:
[a, b]+[c, d] = [a+ c, b+ d] .Hence if x ∈ [a, b] and y ∈ [c, d], then x+y ∈ [a, b]+[c, d].

The other operations are defined analogously, for example:

[a, b]− [c, d] = [a− d, b − c] , and

[a, b]× [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

However, an arithmetical operation on two numbers in F may not have a result
in F. Thus to implement rigorous IA we use the idea of directed rounding to round
outward the result of any operation. For example,

[a, b] + [c, d] = [↓a+ c↓ , ↑b+ d↑] ,

where ↓x↓ is the largest number in F strictly less than x (i.e., x rounded down),
and ↑x↑ is the smallest number in F strictly greater than x (i.e., x rounded up).
For any x ∈ R, let Hull(x) be the smallest interval in IF which contains x. Thus, if
x ∈ F, then Hull(x) = [x, x]. If x ∈ R \ F, then Hull(x) = [↓x↓ , ↑x↑].

Thus, if the user is interested in a computation involving real numbers, then
IA with directed rounding performs the computation using intervals in IF which
contain those real numbers, and gives the answer as an interval in IF which contains
the real answer. In higher dimensions, IA operations can be carried out component-
wise, on interval vectors.

One must think carefully about how to use IA in each arithmetical calculation.
For example, it can create problems by propagating increasingly large error bounds.
Iterating a polynomial diffeomorphism like Ha,c on an interval vector which is not
very close to an attracting period cycle will give a tremendously large interval vector
after only a few iterates. That is, suppose B = [a, b]× [c, d] is an interval vector in
C, and one attempts to compute a box containing P 10

c (B), for Pc(z) = z2 + c, by:

for j from 1 to 10 do
B = Pc(B)

then the box B will likely grow so large that its defining bounds become machine
∞, i.e., the largest floating point in F. Similarly, one would also never want to try
to compute DBn

H ◦ · · · ◦DB1
H ◦DB0

H(u), for a vector u ∈ C2, since the entries
would blow up (see Algorithm 5.1, Step 1).
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Our construction involving boxes in C2 as the basic numerical objects is designed
to be efficiently manipulated with IA. For all of our rigorous computations, we use
IA routines provided by the PROFIL/BIAS package, available at [35].

4. Characterizing box hyperbolicity

In this section we define box hyperbolicity for a box chain model Γ, in Defini-
tion 4.1, and show that if Γ is box hyperbolic, then f satisfies the standard definition
of hyperbolicity, proving Theorem 1.2. Further, we show in Proposition 4.11 that
box hyperbolicity is equivalent to a simple condition in linear algebra. Throughout
this section, assume f is a polynomial diffeomorphism of C2, with d(f) > 1, and
let Γ = (V,E) be a box chain model of f on J .

Definition 4.1. Suppose for each box Bk in V, we have some nondegenerate in-
definite Hermitian form, Qk : C

2 → R. Define Cu
k := {w : Qk(w) ≥ 0}, as the

unstable cones, and define their complements as the stable cones: Cs
k := C2 \Cu

k =
{v : Qk(v) < 0}.

We say that Γ is box hyperbolic if Df (Df−1) preserves and expands the unstable
(stable) cones, with respect to {Qk}, i.e., for every edge (k, j) ∈ E(Γ), and every
z ∈ Bk:

(1) if w ∈ Cu
k , then Dzf(w) ∈ Cu

j and Qj(Dzf(w)) > Qk(w);

(2) if v ∈ Cs
j , then [Dzf ]

−1 (v) ∈ Cs
k and −Qk

(

[Dzf ]
−1 (v)

)

> −Qj(v).

In fact, a given cone Cu
k determines an associated Hermitian form Qk up to

scaling. Finding an appropriate choice of scaling for each Qk is how we determine a
metric for which H is hyperbolic. To prove Theorem 1.2, we first use a partition of
unity argument to smooth out the forms {Qk}

N
k=1 into a continuous field of forms

{Qz}z∈J (Definition 4.8), then define a riemannian metric induced by {Qz}z∈J
(Definition 4.10), and show that H is hyperbolic on J in this new riemannian
metric.

4.1. Box hyperbolicity implies hyperbolicity. Here our goal is to prove Theo-
rem 1.2, that if Γ is box hyperbolic, then f is hyperbolic on J , as in Definition 2.1.
Part of the proof is very similar to the one dimensional analog, proved in [19], in
that we use a partition of unity to smooth out a discrete norm. But before we
deal with the norm, we verify that box hyperbolicity implies the existence of a
continuous splitting preserved by the map.

Lemma 4.2. If Γ is box hyperbolic, then there exists a splitting of the tangent
bundle TzC

2 = Es
z ⊕ Eu

z , for each z in J , which varies continuously with z in J ,
such that f preserves the splitting, i.e., Dzf(E

s
z) = Es

fz, and Dzf(E
u
z ) = Eu

fz.
Further, for each z ∈ Bk, E

u
z ( Cu

k , and Es
z ( Cs

k.

Proof. Recall that Newhouse and Palis show that a diffeomorphism f is hyperbolic
if there is a field of cones Cz (not necessarily continuous) which is preserved and
expanded by Df , such that the complements are expanded by Df−1. In their proof
([30]), they first show that the existence of a cone field preserved by Df implies
the existence of a continuous splitting preserved by f , with the unstable (stable)
directions lying inside the unstable (stable) cones. Box hyperbolicity gives a cone
field preserved by Df . Thus we have cones Cz = Cu

k , if z is in box Bk (make
some consistent choice of box Bk containing z, for the benefit of points on the
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boundaries of the closed boxes). Thus by the proof in [30], we have the existence
of the continuous splitting preserved by Df . �

It is more natural for computer calculations to use the L∞ metric on R2n = Cn,
rather than euclidean. Thus, throughout the rest of this paper, ‖·‖ will denote this
norm, i.e., if x = (x1, . . . , xn), then

‖x‖ = max{|Re(xk)| , |Im(xk)| : 1 ≤ k ≤ n}.

If B is a set of points in C2, we denote by N(B, δ) the δ-neighborhood of the set B
in this metric.

When we say box, we mean a ball about a point in this norm. Thus a box is
also a vector of intervals, so boxes are neighborhoods which are easily manipulated
with interval arithmetic.

We will need to measure the angle between pairs of lines in C2, like Eu
z and Es

z ,
or Eu

z and Eu
x . To do so, we view the set of lines through the origin in C2 as the

projective space CP1 = Ĉ. Then the spherical metric on CP1 induces the following
metric.

Definition 4.3. If v =
[

v1
v2

]

,w =
[

w1

w2

]

are vectors in C2, define the distance between
the directions Cv,Cw to be

σ(v,w) = sin−1
(

|v1w2 − v2w1|

‖v‖ ‖w‖

)

.

Note that σ(v,w) ∈ [0, π/2], and for any complex numbers α, β,

σ(v,w) = σ(αv, βw).

Think of this metric as measuring the angle between the complex lines. If v is a
vector andW is a collection of vectors in C2, we define σ(v,W) = inf{σ(v,w) : w ∈
W}.

In the next two lemmas, we quantify how, in the metric σ, the unstable (stable)
lines from the splitting of Lemma 4.2 are strictly inside the unstable (stable) cones.

Lemma 4.4. Let Γ be box hyperbolic. Then there exist d1 > 0 and δ1 > 0 such
that if z ∈ J ∩N(Bk, δ1), then σ(Eu

z , C
s
k) ≥ d1 and σ(Es

z , C
u
k ) ≥ d1.

Proof. First, note that by compactness of J and the fact that the line fields are
contained in the interior of the cones, there exists a d0 > 0 such that

d0 ≤ min{σ(Eu
z , C

s
k) : z ∈ J ∩Bk} and d0 ≤ min{σ(Es

z , C
u
k ) : z ∈ J ∩Bk}.

Let d1 = d0/2. Next, by compactness of J and continuity of the splitting, there
exists a δ1 > 0 such that for any x, z ∈ J with ‖x− z‖ < δ1, we have σ(E

u
z , E

u
x ) < d1

and σ(Es
z , E

s
x) < d1.

Now let z ∈ J ∩ N(Bk, δ1). Since z is not necessarily in Bk, let m be such that
z ∈ Bm, and x is a point satisfying x ∈ J ∩ Bm ∩ Bk and ‖x− z‖ < δ1. Then
σ(Eu

z , E
u
x ) < d1 and σ(Es

z , E
s
x) < d1. Since x ∈ Bk we have σ(Eu

x , C
s
k) ≤ d0 and

σ(Es
x, C

u
k ) ≤ d0. Hence, σ(E

u
z , C

s
k) ≥ d0 − d1 = d1, and σ(Es

z , C
u
k ) ≥ d1. �

Lemma 4.5. Let Γ be box hyperbolic. If Bk, Bj ∈ V and z ∈ J satisfies z ∈
N(Bk, δ1) and f(z) ∈ N(Bj , δ1), then σ(Eu

fz , C
s
j ) ≥ d1 and σ(Es

fz , C
u
j ) ≥ d1.

Proof. This lemma follows directly from Lemma 4.4 applied to f(z) instead of z. �

Before the next step, we need a lemma from [18].
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Lemma 4.6 ([18]). There exists an η > 0 so that if Bk, Bj ∈ V, with z ∈ N(Bk, η)
and f(z) ∈ N(Bj , η), then there is an edge from Bk to Bj in Γ.

To prove this lemma, we used the assumption that f was a polynomial mapping
of degree d > 1, and the fact that by Definition 1.1, there is a δ > 0 such that there
is an edge from Bk to Bj if a δ-neighborhood of f(Bk) intersects Bj . Now, we get:

Lemma 4.7. Let Γ be box hyperbolic. Then there is a τ > 0 such that for any
Bk, Bj ∈ V and any z ∈ J such that z ∈ N(Bk, τ) and f(z) ∈ N(Bj , τ), we have

(1) if w ∈ Eu
z , then Qj (Dzf(w)) > Qk(w);

(2) if v ∈ Es
fz, then −Qk

(

[Dzf ]
−1 (v)

)

> −Qj(v).

Proof. Among additional requirements given below, let τ be less than η from
Lemma 4.6. Then for any z ∈ J such that z ∈ N(Bk, τ) and f(z) ∈ N(Bj , τ),
there is an edge in Γ from Bk to Bj, i.e., (k, j) ∈ E.

Since J is compact, and by Lemmas 4.4 and 4.5, there exists d2 ≥ 0 such that:

d2 ≤ min{Qj(Dxf(ux))−Qk(ux) : x ∈ Bk, (k, j) ∈ E,ux ∈ Eu
x , ‖ux‖ = 1}.

Let ǫ = d2/3. By continuity of Dxf and the splitting, there is a τ < η so that
for any x, z ∈ J with ‖x− z‖ < τ , z ∈ N(Bk, τ), and f(z) ∈ N(Bj , τ), we have

|Qk(uz)−Qk(ux)| < ǫ,

|Qj(Dxf(ux))−Qj(Dxf(uz))| < ǫ, and

|Qj(Dxf(uz))−Qj(Dzf(uz))| < ǫ.

Then Qj(Dzf(uz))−Qk(uz) ≥ d2 − 3ǫ > 0.

Now since Q(w) is a Hermitian form, Q(αw) = |α|2 Q(w) for any α ∈ C. Thus
by linearity of Df , the above result for uz implies the same result for any w ⊂ Eu

z .
Hence we have Condition (1).

The proof of (2) is analogous. Let d3 > 0 satisfy:

d3 ≤ min{Qj(sfz)−Qk(Dzf
−1(sfz)) : x ∈ Bk, (k, j) ∈ E, sfz ∈ Es

fz, ‖sfz‖ = 1}.

Let ǫ′ = d3/3. Then further restrict τ so that for any x, z ∈ J with ‖x− z‖ < τ ,
z ∈ N(Bk, τ), and f(z) ∈ N(Bj , τ), we have

|Qj(sfz)−Qj(sfx)| < ǫ′,
∣

∣Qk(Dxf
−1(sfx))−Qk(Dxf

−1(sfz))
∣

∣ < ǫ′, and
∣

∣Qk(Dxf
−1(sfz))−Qk(Dzf

−1(sfz))
∣

∣ < ǫ′.

Thus (2) follows from Qj(sfz)−Qk(Dzf
−1(sfz)) ≥ d3 − 3ǫ′ > 0. �

Now we use a partition of unity to smooth {Qk}Nk=1 on the invariant line fields.

Definition 4.8. Let Γ be box hyperbolic. Let τ > 0 be as in Lemma 4.7. Define a
partition of unity on B by choosing continuous functions ρk : C2 → [0, 1] for each
box Bk ∈ V, such that supp(ρk) ⊂ N(Bk, τ) and

∑

k ρk(z) = 1, for any z ∈ B.
Let z ∈ J . Then we define Qz : E

u
z ∪ Es

z → R by

Qz(w) =
∑

k

ρk(z)Qk(w).

Note that Qz(w) is a continuous function of w since Qk is continuous, and
further a continuous function of z due to the partition of unity.
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Proposition 4.9. Let Γ be box hyperbolic. Let {Qz} be given by Definition 4.8.
Then for any z ∈ J we have:

(1) if w ∈ Eu
z , then Qfz (Dzf(w)) > Qz(w);

(2) if v ∈ Es
fz, then −Qz

(

[Dzf ]
−1 (v)

)

> −Qfz(v).

Proof. Let uz ∈ Eu
z be such that ‖uz‖ = 1. If we set

quf,z = min{Qj(Dzf(uz)) : f(z) ∈ supp(ρj)}, and

quz = max{Qk(uz) : z ∈ supp(ρk)},

then by Lemma 4.7 we know that quf,z > quz . Thus we need only use that the
partition functions sum to one to get

Qfz(Dzf(uz)) =
∑

j

ρj(f(z))Qj(Dzf(uz)) ≥
∑

j

ρj(f(z))q
u
f,z = quf,z

> quz =
∑

k

ρk(z)q
u
z ≥

∑

k

ρk(z)Qk(uz) = Qz(uz).

Hence (1) follows since Df is linear, and for any α ∈ C, Q(αw) = |α|2 Q(w).
Establishing (2) is analogous. Let sfz ∈ Es

fz be such that ‖sfz‖ = 1. If we set

−qsz = min{−Qk([Dzf ]
−1 (sfz)) : z ∈ supp(ρk)}, and

−qsf,z = max{−Qj(sfz) : f(z) ∈ supp(ρj)},

then by Lemma 4.7 we know that −qsz > −qsf,z. Thus we need only use that the
partition functions sum to 1 to get

−Qz([Dzf ]
−1

(sfz)) = −
∑

k

ρk(z)Qk([Dzf ]
−1

(sfz)) ≥ −
∑

k

ρk(z)q
s
z = −qsz

> −qsf,z = −
∑

j

ρj(f(z))q
s
f,z ≥ −

∑

j

ρj(f(z))Qj(sfz) = −Qfz(v).

�

Definition 4.10. Let Γ be box hyperbolic. Let z ∈ J . We define the norm ‖·‖ρ,z
on TzC

2 using Qz and the spaces Eu
z , E

s
z as a basis, i.e., for w ∈ TzC

2,

‖w‖ρ,z = max
(

∣

∣Qz(P
uz

sz (w))
∣

∣

1/2
,
∣

∣Qz(P
sz
uz
(w))

∣

∣

1/2
)

,

where P az

bz
denotes the projection onto Ea

z with Eb
z as its Null space.

This is a continuous norm for z ∈ J . Robinson ([36]) notes in his construction of
an adapted metric for hyperbolic sets that the maximum of two norms on subspaces
defines a norm, which is very similar to the above.

Finally, we establish Theorem 1.2, by showing that for a box hyperbolic Γ, we
have f is hyperbolic on J with respect to the norm ‖·‖ρ,z on TzC

2, for z ∈ J :

Proof of Theorem 1.2. Suppose Γ is box hyperbolic. We want to show f is hyper-
bolic over J , as in Definition 2.1, i.e., there is a constant λ > 1, and for each z
in J there is a continuous splitting of the tangent bundle TzC

2 = Es
z ⊕ Eu

z , and a
continuous norm ‖·‖ρ,z such that:

(1) f preserves the splitting, i.e., Dzf(E
s
z) = Es

fz, and Dzf(E
u
z ) = Eu

fz, and

(2) Df (Df−1) expands on Eu
z (Es

z) uniformly, i.e.,
(a) if w ∈ Eu

z then ‖Dzf(w)‖ρ,fz ≥ λ ‖w‖ρ,z, and
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(b) if w ∈ Es
z then

∥

∥Dzf
−1(w)

∥

∥

ρ,f−1(z)
≥ λ ‖w‖ρ,z .

We have (1) by Lemma 4.2. Let z ∈ J and ‖·‖ρ,z be given by Definition 4.10.

We show that (2) follows easily from Proposition 4.9.

First suppose w ⊂ Eu
z . Then Dzf(w) ⊂ Eu

fz. Hence ‖w‖2ρ,z = Qz(w) and

‖Dzf(w)‖2ρ,fz = Qfz(Dzf(w)). Thus Condition 1. of Proposition 4.9 implies that

‖Dzf(w)‖ρ,fz > ‖w‖ρ,z .

Now consider w ⊂ Es
z . Then Dzf(w) ⊂ Es

fz. Hence ‖w‖2ρ,z = −Qz(w) and

‖Dzf(w)‖2ρ,fz = −Qfz(Dzf(w)). Then Condition (2) of Proposition 4.9 applied to

v =
(

Dzf
−1(w)

)

implies
∥

∥Dzf
−1(w)

∥

∥

ρ,f−1(z)
> ‖w‖ρ,z.

Finally, by compactness of J the strict inequalities imply the existence of some
constant λ > 1, proving (2). �

4.2. Using linear algebra to characterize box hyperbolicity. First recall
that a Hermitian form Q : C2 → R is associated to a Hermitian matrix A, so that
Q(w) = w∗Aw. Note that if (k, j) ∈ E is any edge in the graph Γ, then for any
z ∈ Bk, (Qj ◦Dzf) is also a Hermitian form, given by

(3) Qj(Dzf(w)) = w∗((Dzf)
∗Aj(Dzf))w.

Proposition 4.11. Suppose {Qk} are Hermitian forms with Cu
k = {w : Qk(w) ≥

0} and Cs
k = {v : Qk(v) < 0}, for each box Bk in V. Then Γ is box hyperbolic

(using {Qk}) iff for every Bk ∈ V, every z ∈ Bk, and every edge (k, j) ∈ E, we
have ((Qj ◦Dzf)−Qk) is positive definite.

Proof. (⇐) We begin with the reverse implication. Let z ∈ Bk and Bj be a box
such that (k, j) ∈ E. Then Qj(Dzf)(w) > Qk(w), for all z ∈ Bk and all w ∈ C2.

First consider the unstable cones. Suppose w ∈ Cu
k , so by definition 0 < Qk(w).

But then by hypothesis, we get

0 < Qk(w) < Qj(Dzf(w)).

Thus Dzf(w) ∈ Cu
j , so the unstable cones are preserved by Dzf , and we have

established Condition 1 of box hyperbolicity.
Next consider the stable cones. First, we show that stable cone preservation

follows from unstable cone preservation, since they are complementary. Indeed,
above we showed thatDf preserves the unstable cones, i.e., Dzf(C

u
k ) ⊂ Cu

j . Hence,

Cu
k ⊂ [Dzf ]

−1(Cu
j ). But by definition, Cs = C2 \Cu. Thus Cs

k ⊃ [Dzf ]
−1(Cs

j ) and

so the stable cones are preserved by Df−1.
Now let v ∈ Cs

j , so that

0 < −Qj(v) = −(Qj ◦Dzf)
(

[Dzf ]
−1(v)

)

.

Then since we have stable cone preservation under Df−1, we also know that

0 < −Qk([Dzf ]
−1(v)).

Combining this with the negative of the hypothesis establishes Condition 2 of
box hyperbolicity, i.e.,

−Qk([Dzf ]
−1(v)) > −Qj(v).
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(⇒) Now we prove the forward implication. Suppose Γ is box hyperbolic, i.e.,
we have Conditions 1 and 2 of Definition 4.1. Let (k, j) ∈ E, and z ∈ Bk. We
consider w in each of three regions to show ((Qj ◦Dzf)−Qk) is positive definite.

Case 1: Suppose w ∈ Cu
k . Then by definition 0 < Qk(w).

Since box hyperbolicity implies the unstable cones are preserved by Df , we have
that Dzf(w) ∈ Cu

j , so 0 < Qj(Dzf(w)).
Then Condition 1 of box hyperbolicity gives us

Qj(Dzf(w)) > Qk(w),

hence ((Qj ◦Dzf)−Qk) is positive on Cu.
Case 2: Suppose w ∈ [Dzf ]

−1(Cs
j), i.e., v = Dzf(w) ∈ Cs

j . Then by definition
Qj(Dzf(w)) < 0.

Now by stable cone preservation, we know w ∈ Cs
k, hence Qk(w) < 0.

Condition 2 of box hyperbolicity says that

−Qj(v) < −Qk

(

[Dzf ]
−1(v)

)

for all vectors v ∈ Cs
j , hence it applies to v = Dzf(w). Thus we get

−Qj (Dzf(w)) < −Qk(w),

and negating yields

Qj(Dzf(w)) > Qk(w),

so ((Qj ◦Dzf)−Qk) is positive on [Dzf ]
−1(Cs).

Case 3: For the remaining w, we have w /∈ Cu
k and w /∈ [Dzf ]

−1(Cs
j ). Then

Qk(w) < 0 and Qj(Dzf(w)) ≥ 0. Hence,

Qj(Dzf(w)) ≥ 0 > Qk(w).

Thus we easily get Qj(Dzf(w))−Qk(w) > 0. �

5. Verifying box hyperbolicity: the Axis Metric Algorithm

In this section, we explain in detail the Axis Metric Algorithm for testing box
hyperbolicity of a box chain model Γ of a Hénon mapping, H , by attempting to
construct a cone field and norm for which the map is hyperbolic.

But first, before we can test box hyperbolicity, we must start with a Γ which
seems to model H reasonably well. Thus we now summarize how we use the box
chain construction of [18] to obtain separate strongly connected graphs modeling
J and any other invariant sets of recurrent dynamics, for example, sink cycles
(attracting periodic orbits). Recall from Section 2.3 that if H is indeed hyperbolic,
then the only recurrent dynamics are J and a finite number of attracting periodic
orbits. The construction is an iterative process. We begin by defining a large box
B0 = [−R,R]4 in R4 = C2, such that all the recurrent dynamics of the map is
contained in B0 (in [18] we give a simple formula for R in terms of the parameters
a, c). Then for some n > 1, we place a 2n × 2n × 2n × 2n grid of boxes on B0. The
construction then builds strongly connected graphs Γ1,Γ2, . . . ,ΓN , each consisting
of a subcollection of these grid boxes, and such that J is covered by the boxes of Γ1,
and each sink cycle is covered by the boxes of some Γk. Then Γ = Γ1 is a box chain
model of J , as in Definition 1.1. Using smaller boxes in the construction produces
a more accurate box chain model.

To prove hyperbolicity, we need each sink cycle in a different model from J , i.e.,
in some Γk for k 6= 1. If there seems to be a sink cycle together with J in Γ1, then we
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subdivide and repeat the above process. That is, place a grid of boxes inside of each
box of Γ1, and use these smaller boxes to obtain a refinement, Γ1,1,Γ1,2, . . . ,Γ1,M ,
such that Γ = Γ1,1 contains J . If in this refinement, the sink cycle is in some Γk,1

for k > 1, then we can stop and study Γ. Otherwise, repeat the subdivision process,
until computational resources are exhausted, or a Γ containing only J is produced.

We can check our accuracy at each level in the iterative process by producing
pictures of the current Γ’s boxes intersected with an unstable manifold of a saddle
periodic point. As discussed in Section 2.2, we can parametrize an unstable manifold
by a plane, then to determine the coloration of a pixel, we check whether the pixel
intersects some boxes of Γ. Since the picture is a parametrization of a manifold
which does not line up with the axes in C2, a pixel may hit more than one box,
and in more than one strongly connected component Γk. The user may also decide
to lighten the pixels which are heuristically found to be in K+, to check visually
how close the model is to J . For example, for the Hénon mapping Ha,c, with
(c, a) = (−.3, .1), Figure 3 shows a parameterized unstable manifold intersected
with the boxes in models Γ1,Γ2,Γ3, with Γ1 containing J , Γ2 containing the fixed
sink, and Γ3 containing pseudo-recurrence but no true recurrence (thus Γ3 would
be eliminated for smaller box size). In this figure each Γk is shaded differently, and
pixels heuristically found to be in K+ are lightened.

Now assume we have obtained a model Γ which appears to contain J but no other
recurrent dynamics. We outline below the Axis Metric Algorithm for verifying box
hyperbolicity on Γ, then describe each step in detail.

Algorithm 5.1 (Axis Metric Algorithm). (1) Define an approximately invari-
ant splitting; specifically, a pair of “unstable” and “stable” vectors, uk, sk,
for each box, Bk ∈ V(Γ).

(2) Build an “unstable” metric which is (approximately) uniformly expanded
by DH on the set of unstable directions, {Cuk}, and a “stable” metric
which is (approximately) uniformly expanded by DH−1 on the set of stable
directions, {Csk}.

(3) Use the directions and their metrics to define the cones as Hermitian forms.
(4) Finally, check whether H preserves the cone field, and whether with respect

to the Hermitian forms, DH (DH−1) is expanding on the unstable (stable)
cones.

In this algorithm, we will need to move around on the graph Γ using the following:

Definition 5.2. A directed graph Γ0 is an arborescence if there is a root vertex v0
so that for any other vertex v, there is a unique simple path from v0 to v. Such a
graph is a tree, and must have exactly one incoming edge for each vertex v 6= v0.

If Γ is strongly connected, then for each vertex v0 in Γ, there is a minimum span-
ning tree Γ0 with root vertex v0 which is an arborescence (simply perform a depth
first or breadth first search from v0). We call such a Γ0 a spanning arborescence.
(See [10] for a discussion of implementation of basic graph theory).

Step 1 (Setting stable and unstable directions). Recall from Section 2.2, that when
|a| 6= 1, except on the curve of equation 4c = (1 + a)2, the map Ha,c has at least
one saddle fixed point, p. If H has no saddle fixed point, it should be possible to
instead use a saddle periodic point of period greater than one, but this was not
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Figure 3. Shown above is the unstable manifold parameterization
for a saddle fixed point of Ha,c, with c = −.3, a = .1, intersected
with three box models Γ1,Γ2,Γ3, containing pseudo-recurrent dy-
namics of H . The two islands in the large interior on the left are
in Γ2, the model of the fixed sink. The right hand band is Γ1,
containing J . The lighter band on Γ1 is approximately contained
in K+. The darkest spots overlapping Γ1 show Γ3, which con-
tains pseudo-recurrence but no true recurrence. Thus Γ3 would
be eliminated for smaller box size. Here boxes are of side length
(2 × 1.43)/27 = 0.022, and Γ1 contains 32,000 boxes. This Γ1 is
box hyperbolic.
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necessary for any of the maps we were interested in studying. The Hénon mapping
(x, y) → (x2 + c − ay, x) has two fixed points. Note first that fixed points of H
must be on the diagonal, i.e., x = y. Then the two fixed points are:

x± =
1

2

(

(1 + a)±
√

(1 + a)2 + 4c
)

.

By substituting the IA Hull of a and c into the above formula, and performing
operations in IA, we compute x± as complex intervals (interval vectors in R2)
containing the actual fixed points. Next, the eigenvalues of DxH for the fixed point
(x, x) are:

λ, µ = x±
√

x2 − a.

Thus we test to see whether each interval vector x± is a saddle, by computing two
real intervals containing the moduli of the eigenvalues, and then testing whether
one interval is entirely greater than one, while the other is entirely less than one.
So now assume H has a saddle fixed point p = (x, x). Bedford and Smillie have
shown J contains all saddle periodic points, hence p ∈ J , thus there is a box, B0,
in Γ, containing p. Let u0 (s0) be the eigenvector of unit length corresponding to
the unstable (stable) eigenvalue. These are natural unstable and stable directions
in the box B0. Since we will just use the uk’s and sk’s as axes for cones, we need
only know them approximately, so here interval arithmetic is not needed.

Now let Γ0 be a spanning arborescence of Γ, with root vertex B0. To define
unstable directions in each box Bk, sucessively push u0 across the edges of Γ0 by
DH . To be precise, fix a point zk in Bk, say the center point of the box, and for
each edge (k, j) ∈ E(Γ0), starting with k = 0, define

uj :=
DzkH(uk)

‖DzkH(uk)‖
.

As noted above, we need only an approximation to the uk’s, so interval arith-
metic is not used here. In fact, were we to attempt to use IA, we may encounter a
computational difficulty. This is due to the recursive definition of the uk’s. Suppose
we desired to compute “more” of the potential unstable directions in each box, by
starting with an interval vector U0 in C2 guaranteed to contain the unstable eigen-
vector of DpH , and then pushing this interval vector across Γ0 to define interval
vectors Uk in each box Bk. More precisely, a box B is an interval vector in C2, so
B = (X,Y ), with X,Y complex intervals (interval vectors in R2 = C). Then

DpH =

[

2p −a
1 0

]

and DBH =

[

2X −Hull(a)
Hull(1) Hull(0)

]

,

so DBH has entries complex intervals. Then DBk
H(Uk) is an interval vector.

Suppose (1, 2, . . . , n) is a path in Γ0 (this should be (k1, . . . , kn), but we wish to
avoid too many nested subscripts). Then Un = DBn

H ◦ · · · ◦DB1
H(U1). However,

since the Bk’s are near J , due to the dynamical properties of H on J , this type
of iteration will (in experiment, very quickly) lead to intervals Un to huge to be
useful.

Define the stable directions similarly, keeping in mind that stable cones should
be expanded and preserved by DH−1. The transpose of a graph Γ, ΓT , is the graph
formed by reversing the edge directions of Γ. Thus to define sk, we use a spanning
tree Γ0 of ΓT with B0 as root vertex (note that Γ0 6= ΓT

0 ), and push s0 across
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successive edges of Γ0 by DH−1. Specifically, if (j, k) ∈ E(Γ0), then

sk =
DzkH

−1(sj)

‖DzkH
−1(sj)‖

,

where zk ∈ Bk as in the definition of uk.

Proposition 5.3. Let {uk}, {sk} be unstable and stable directions for each box Bk

of Γ, defined as above.

(1) Let Cu
k be any box constant cone field preserved by DzH, for each z ∈ Bk.

Then for each Bk, we must have uk ⊂ Cu
k .

(2) Let Cs
k be any box constant cone field preserved by DzH

−1, for each z ∈ Bk.
Then for each Bk, we must have sk ⊂ Cs

k.

Note that for edges (k,m) in Γ but not in the spanning arborescence Γ0, DH
does not map uk into Cum. It is helpful in establishing invariance of the cone field
if DH(uk) is close to Cum, and in addition, if DzH does not vary greatly as z
varies within one box.

Thus before performing the next step, we take some measurements on the sepa-
ration of the stable and unstable directions in each box, to get an idea of whether
it might be possible to prove box hyperbolicity using these directions, and store
(for later scrutiny) which boxes might be obstructions. In order to measure the
difference between directions, we view a direction in C2 as a complex line in C2,
and thus use the spherical metric, σ. Then, for each box Bk in V(Γ), let

Udiam[k] = diamσ{DzjH(uj) : (j, k) ∈ E(Γ)}, and

Sdiam[k] = diamσ{[DzkH ]−1(sj) : (k, j) ∈ E(Γ)}.

We do not measure the variation within one box, i.e., between DzH and DzkH
for different z in box Bk, since it seems that would be much smaller than among
images from different boxes.

Proposition 5.3 suggests that a clear separation between Udiam[k] and Sdiam[k]
is needed in order for a computer program to verify cone preservation under DH ,
thus we will not confidently progress to the next step unless we have

σ(uk, sk)− (Udiam[k] + Sdiam[k]) > 0

in each box Bk. Finally, we record in which boxes the either Udiam or Sdiam is
large, or σ − (Udiam + Sdiam) is negative.

Step 2 (Building a metric on the directions). Consider the unstable directions
{Cuk}Nk=1. As discussed above, DH does not quite preserve these directions, so
first we take that into account. Let Pu

s be the projection onto Cu with Cs as its
Null space. Given the vectors u = (u1, u2) and s = (s1, s2) in C2, this projection
is:

Pu
s

[

v1
v2

]

=
v1s2 − v2s1
u1s2 − u2s1

[

u1

u2

]

.

Then for each edge (k, j) ∈ E(Γ), we have P
uj

sj ◦DzkH maps Cuk to Cuj. If the
unstable directions are a good approximation to an invariant unstable line field,
then Pu

s ◦DH is close to DH on these unstable directions.
In [19], we describe a method for proving hyperbolicity of polynomial maps of

one complex variable, by building a metric for which the map is expanding by some
L > 1 on a neighborhood of the Julia set. The neighborhood of J is a collection
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of boxes in C, and the metric in each box is defined by a constant times the L∞

metric in R2 = C. Say ϕk ‖·‖ is the metric on box Bk, then the constants ϕk are
called metric handicaps.

In two variables, we use this same algorithm twice: once for the unstable direc-
tions and once for the stable directions. For example, for the unstable direction
field, we will attempt to build a metric for which Pu

s ◦ DH is box expansive by
some amount L > 1. This metric will be defined in each unstable direction Cuk by
a constant times our L∞ metric in R4 = C2, say ϕu

k ‖·‖. Following the algorithm in
[19], we call the ϕu

k unstable metric handicaps, and define ϕu
0 = 1 in box B0, then

want to build handicaps satisfying

ϕu
j

∥

∥P
uj

sj ◦DzkH(v)
∥

∥ ≥ L ϕu
k ‖v‖ ,

for each edge (k, j) ∈ E(Γ), and each v ∈ Cuk. But then v = αuk for some α ∈ C,
so since Pu

s ◦DH is linear and ‖uk‖ = 1, the above equation is equivalent to

(4) ϕu
j ≥

L ϕu
k

∥

∥P
uj

sj ◦DzkH(uk)
∥

∥

.

If we set ξk,j = L/
∥

∥P
uj

sj ◦DzkH(uk)
∥

∥, then we can use Algorithm 4.4 of [19] to
attempt to find metric handicaps satisfying ϕu

j ≥ ξk,jϕ
u
k , hence Equation 4, on

each edge (k, j) ∈ Γ. This is of course not always possible, but the intuition is that
it should be possible if the box model is sufficiently small in the right places. If it
is not possible, then the user can try a smaller L, or start over with smaller boxes.

We use interval arithmetic in Equation 4 as in [19]. The ϕu
k ’s will be chosen in

F (machine knowable numbers, note ϕu
0 = 1 ∈ F). Then replace each number in

the left hand side with it’s Hull (the smallest interval in IF containing it). Then
perform the operations in IA, and test whether the upper endpoint of the resulting
interval is less than ϕu

j .
To attempt to define stable metric handicaps, use the method analogous to

that for the unstable metric handicaps. That is, try to find an M > 1 and build
handicaps {ϕs

k} so that

(5) ϕs
j ≤

ϕs
kM

∥

∥P
sj
uj ◦DzkH(sk)

∥

∥

,

for each edge (k, j) ∈ E(Γ). Then the stable directions are box-contracted by
P s
u ◦DH . Again, if this step fails to produce a contracted metric, then the user can

try a larger M , or start over with smaller boxes.
As we will see below, the ratio of stable to unstable metric handicaps in each

box, ϕs
k to ϕu

k , determines the width of the cones. Hence it is necessary to find
values for L and M which yield comparable metrics. Lyapunov exponents give us
some intuition. For a polynomial automorphism of C2, there are two Lyapunov
exponents, λ±, which measure expansion and contraction of tangent vectors. Ac-
cording to [7], if f is a polynomial diffeomorphism of C2 with d = d(f) > 1, then
λ+ ≥ log d, λ− ≤ − log d, and

(6) λ+ + λ− = log(detDf).

Note that for Hénon mappings, det(Df) = a. Thus λ+ + λ− = log(a). Since
λ+ ≥ log d, we have the inequality: λ− ≤ log(a) − log d. In the case |a| < 1, we
have log(a) < 0, hence the inequality for λ− is stronger than the inequality for λ+.
Thus in general we expect stronger contraction than expansion of tangent vectors
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under Hénon mappings. Equation 6 implies that a good rule of thumb for choosing
L and M is LM = |a|. In practice, for any Γ we tested, the algorithm for setting
the stable metric handicaps given any M always completed in much less time than
the algorithm for setting unstable metric handicaps given an L (perhaps due to
the strong contraction). Thus after experimenting with various options, we have
adopted the following strategy. First find the smallest working M using simple
bisection (0 < M < 1), then test expansion on the unstable directions using a value
of L near |a| /M .

In experiment we have observed that finding a working L > 1 and M < 1 is
almost always possible when a box model Γ has been found for J which does not
contain any sinks of H . Rather, the difficult step is the next one: checking whether
the cone field defined by these metrics is preserved and expanded by DH .

Step 3 (Defining a cone field). If Step 2 successfully constructed expanded and
contracted metrics on the unstable and stable directions, respectively, then the
metrics and directions always define cones in each box, as follows.

In each box, Bk, define the unstable cone, Cu
k , so that a vector w is in the

unstable cone if it is closer to uk than sk, relative to the unstable and stable
metrics. That is, w ∈ Cu

k iff

ϕu
k

∥

∥Puk
sk

(w)
∥

∥ ≥ ϕs
k

∥

∥P sk
uk
(w)

∥

∥ .

Then the stable cones are just the complements, Cs
k := C2 \ Cu

k .
We define the Hermitian form Qk : C

2 → R, by

Qk(w) =
(

ϕu
k

∥

∥Puk
sk

(w)
∥

∥

)2
−
(

ϕs
k

∥

∥P sk
uk
(w)

∥

∥

)2
.

Thus the unstable cone, Cu
k , is simply the set of vectors for which Qk is nonnegative,

and the stable cone, Cs
k, is the set of vectors for which the form is negative.

We can construct a Hermitian matrix, Ak, which encodes the information of Qk,
following standard linear algebra as in [16]. A Hermitian form Q defines a sesquilin-
ear form g : C2×C2 → R, such that g(w,w) = Q(w), where we can recover g using:

g(v,w) =
1

4
Q(v +w)−

1

4
Q(v −w) +

i

4
Q(v + iw)−

i

4
Q(v − iw).

A sesquilinear form g can be represented by a matrix A so that g(v,w) = w∗Av,
with am,n = g(en, em) for an ordered basis {e1, e2}, like {(1, 0), (0, 1)}. Now g
Hermitian implies that A is also Hermitian, and the range of Q is R. Thus, Q(w) =
w∗Aw, where am,n = 1

4Q(en+em)− 1
4Q(en−em)+ i

4Q(en+ iem)− i
4Q(en− iem).

We easily calculate that for u = (u1, u2), s = (s1, s2), if we set

b11 = (ϕu |s2| ‖u‖)
2 − (ϕs |u2| ‖s‖)

2, b22 = (ϕu |s1| ‖u‖)
2 − (ϕs |u1| ‖s‖)

2,

b12 = 1
4

[

(ϕu ‖u‖)2(|s2 − s1|
2 − |s2 + s1|

2 + i |is2 − s1|
2 − i |is2 + s1|

2)

− (ϕs ‖s‖)2(|u2 − u1|
2 − |u2 + u1|

2
+ i |iu2 − u1|

2 − i |iu2 + u1|
2
)
]

,

and b21 = b̄12, then am,n = bm,n/|u1s2 − u2s1|
2.

In implementation, we use the above formulas to calculate, for each box Bk in
Γ, an interval valued matrix Ak, representing the form Qk defining the cone Cu

k .
Note that since Ak is Hermitian, the main diagonal entries are real intervals, and
the other entries are (complex conjugate) complex intervals. As noted above, the
vectors uk and sk and the handicaps ϕu

k , ϕ
s
k are chosen to be machine knowable
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numbers. Thus before the formulas defining Ak are computed, these terms are
converted to their interval Hulls, then the arithmetic operations are performed in
IA to obtain Ak with interval entries (of length greater than zero).

Remark 5.4. Note that the ratio of the metric handicaps determines the angle
width of the cones. Thus if ϕu

k and ϕs
k are several orders of magnitude different

then the cones will be very thin, even if the unstable and stable directions are far
apart, thus the cones will be difficult for the computer to work with. This is why
it is necessary in Step 2 to find values of L and M which yield a comparable pair
of metric handicaps in each box.

Step 4 (Checking whether cones are preserved and expanded). For the last step
of testing box hyperbolicity, we need to test whether DH (DH−1) expands the
unstable (stable) cones, with respect to {Qk}. For this step we simply use Propo-
sition 4.11, in which we showed that in order to get preservation and expansion
of the unstable cones, and contraction of the stable cones, we need precisely that
((Qj ◦DzH)−Qk) is positive definite for every edge (k, j) ∈ E(Γ), and every z ∈ Bk.
Thus in this step, we simply compute this form defined for each edge in the graph,
and test whether it is positive definite.

In Step 3, for each box Bk in Γ, we computed an interval matrix Ak representing
Qk, in that Qk(w) = w∗Akw. Thus by Equation 3, the interval matrix representing
(Qj ◦DzH)−Qk is

Tk,j = ((DBk
H)∗ Aj DBk

H)−Ak.

Using the formula for the interval matrix DBk
H from Step 1, it is straightforward

to compute the interval matrix Tk,j . Now we need to check whether this matrix is
positive definite. But since T is Hermitian, the trace and determinant are real, and
T is positive definite iff its trace and determinant are positive (see [16]). The trace
and determinant of T are real intervals, so we simply compute them with IA and
check whether their lower endpoints are positive.

If the above test succeeds (positive definite for each edge), then the model Γ is
box hyperbolic, hence H is hyperbolic. If not, then we may record boxes which are
obstructions, that is, boxes Bk, Bj for which Tk,j fails to be positive definite.

This is the stopping point of the Axis Metric Algorithm for testing box hyper-
bolicity for a given Γ. If box hyperbolicity fails, the user may refine Γ by choosing
to subdivide either all the boxes, or some subset of the boxes which seem to be
obstructing the hyperbolicity testing (for example, boxes marked in Steps 1 or 4
above), then test the new Γ with the Axis Metric Algorithm. Two of the Hénon
mappings of Theorem 1.3, Ha,c with (c, a) = (0,−.22) and (1.5, .5), were proven
hyperbolic for a model constructed by straight subdivision to a certain box size,
then by subdividing twice only boxes marked in Step 4 (see next section).

6. Results of running Hypatia on Hénon mappings

Running Hypatia for a Hénon mapping is not quite as simple as inputting the
parameters a, c and awaiting the results, since the user must make decisions as to
how to build the best Γ for testing with the Axis Metric Algorithm. In this section,
we describe the specific process we followed and results obtained for the mappings
of Theorem 1.3.
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Figure 4. A FractalAsm picture of Wu
p ∩K+ for Ha,c, with c =

−3, a = −.25. This set appears to be a real Cantor set.

Theorem 1.3 follows from Theorem 1.2, that box hyperbolicity of some Γ, a
box chain model of J , implies hyperbolicity of H on J , and from the fact that for
each mapping mentioned in the theorem, using our computer program Hypatia, we
constructed a box chain model of J and verified box hyperbolicity with the Axis
Metric Algorithm. Below, we discuss the process for each of these mappings in
increasing order of the computational difficulty of proving hyperbolicity.

The quickest map to be proven hyperbolic was Ha,c, with c = −.3, a = .1. We
simply used a box chain model of J with boxes selected from an evenly subdivided
(27)4 grid on B0 = [−1.43, 1.43]4. Figure 3 shows the box hyperbolic Γ. This is a
map seemingly in the main cardioid, with recurrent dynamics J and a fixed sink.

For Ha,c, with c = −3, a = −.25, we also proved hyperbolic relatively quickly.
The box chain model Γ of J from an evenly subdivided (27)4 grid on B0 =
[−2.57, 2.57]4 is box hyperbolic. This mapping appears to be a real horseshoe
(i.e., a horseshoe contained in R2). Figure 4 is a FractalAsm picture of the Julia
set. This kind of picture is really the most useful for a Cantor set.

We proved the map Ha,c, with c = 0, a = −.22, is hyperbolic by starting with a
model of J from an evenly subdivided (27)4 grid onB0 = [−R,R]4, forR = 1.32, but
then additionally performing three hyperbolicity tests, and each time subdividing
only boxes in which the cone check of Step 4 of the Axis Metric Algorithm failed
(to end with boxes of size ranging from 2R/27 to 2R/210). This map also seems to
be in the main cardiod. The picture of the Julia set is similar to Figure 3.

Using nearly the same method as the previous mapping, we proved Ha,c, with
c = 1.5, a = .5, is hyperbolic. Here, we started with the even (28)4 grid on
B0 = [−R,R]4, for R = 2.286, then twice subdivided only boxes in which the
cone check (Step 4 of the Axis Metric Algorithm) failed (yielding boxes of size
2R/28 to 2R/210). The resulting box chain model is box hyperbolic. FractalAsm
pictures (see Figure 5) suggest this map is a complex horseshoe, with Julia set not
contained in R2.

Table 1 contains more data for all of the mappings discussed in this section. In
the table, Γ denotes the box chain model of J , for the map Ha,c(x, y) = (x2 +
c − ay, x). R is the bound such that the boxes are contained in B0 = [−R,R]4 ⊂
R4 = C2. The box grid depth for a box is the number n such that the box is of size
2R/2n. If a box chain model contains boxes of multiple sizes, then multiple box
grid depths are listed.
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