Skip to main content
Log in

Computing the First Betti Number of a Semi-Algebraic Set

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper we describe a singly exponential algorithm for computing the first Betti number of a given semi-algebraic set. Singly exponential algorithms for computing the zeroth Betti number, and the Euler–Poincaré characteristic, were known before. No singly exponential algorithm was known for computing any of the individual Betti numbers other than the zeroth one. As a consequence we also obtain algorithms for computing semi-algebraic descriptions of the semi-algebraically connected components of any given real algebraic or semi-algebraic set in singly exponential time, which improves on the complexity of the previously published algorithms for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Basu, On bounding the Betti numbers and computing the Euler characteristics of semi-algebraic sets, Discrete Comput. Geom. 22 (1999), 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Basu, On different bounds on different Betti numbers, Discrete Comput. Geom. 30(1) (2003), 65–85.

    MathSciNet  MATH  Google Scholar 

  3. S. Basu, Computing the first few Betti numbers of semi-algebraic sets in singly exponential time, J. Symb. Comput. 41(10) (2006), 1125–1154.

    Article  MATH  Google Scholar 

  4. S. Basu, R. Pollack, and M.-F. Roy, On the combinatorial and algebraic complexity of quantifier elimination, J. ACM 43 (1996), 1002–1045.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Basu, R. Pollack, and M.-F. Roy, Computing roadmaps of semi-algebraic sets on a variety, J. Am. Math. Soc. 3(1) (1999), 55–82.

    MathSciNet  Google Scholar 

  6. S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry, Springer, New York, 2003. Updated version available electronically at: www.math.gatech.edu/ saugata/bpr-posted1.html.

    MATH  Google Scholar 

  7. S. Basu, R. Pollack, and M.-F. Roy, Betti number bounds, applications and algorithms, in: Current Trends in Combinatorial and Computational Geometry: Papers from the Special Program at MSRI, MSRI Publications, Vol. 52, pp. 87–97, Cambridge University Press, Cambridge, 2005.

    Google Scholar 

  8. J. Bochnak, M. Coste, and M.-F. Roy, Géométrie algébrique réelle, Springer, Paris, 1987. Real Algebraic Geometry, Springer, New York, 1998.

    MATH  Google Scholar 

  9. P. Burgisser and F. Cucker, Counting complexity classes for numeric computations II: Algebraic and semi-algebraic sets, J. Complex. 22(2) (2006), 147–191.

    Article  MathSciNet  Google Scholar 

  10. J. Canny, Computing road maps in general semi-algebraic sets, Comput. J. 36 (1993), 504–514.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Collins, Quantifier elimination for real closed fields by cylindric algebraic decomposition, in: Second GI Conference on Automata Theory and Formal Languages, Lecture Notes in Computer Science, Vol. 33, pp. 134–183, Springer, Berlin, 1975.

    Google Scholar 

  12. A. Gabrielov and N. Vorobjov, Betti numbers of semialgebraic sets defined by quantifier-free formulae, Discrete Comput. Geom. 33 (2005), 395–401.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Gournay and J.J. Risler, Construction of roadmaps of semi-algebraic sets, Appl. Algebra Engrg. Comm. Comput. 4(4) (1993), 239–252.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Grigor’ev and N. Vorobjov, Counting connected components of a semi-algebraic set in sub-exponential time, Comput. Complex. 2 (1992), 133–186.

    Article  MathSciNet  MATH  Google Scholar 

  15. R.M. Hardt, Semi-algebraic local triviality in semi-algebraic mappings, Am. J. Math. 102 (1980), 291–302.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Heintz, M.-F. Roy, and P. Solernò, Description of the connected components of a semi-algebraic set in single exponential time, Discrete Comput. Geom. 11 (1994), 121–140.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. McCleary, A User’s Guide to Spectral Sequences, 2nd ed., Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2001.

    MATH  Google Scholar 

  18. J. Milnor, On the Betti numbers of real varieties, Proc. Am. Math. Soc. 15 (1964), 275–280.

    Article  MathSciNet  MATH  Google Scholar 

  19. O.A. Oleĭnik, Estimates of the Betti numbers of real algebraic hypersurfaces, Mat. Sb. (N.S.) 28(70) (1951), 635–640 (in Russian).

    MathSciNet  Google Scholar 

  20. O.A. Oleĭnik and I.B. Petrovskii, On the topology of real algebraic surfaces, Izv. Akad. Nauk SSSR 13 (1949), 389–402.

    MathSciNet  Google Scholar 

  21. J. Renegar, On the computational complexity and geometry of the first-order theory of the reals, J. Symb. Comput. 13 (1992), 255–352.

    Article  MathSciNet  MATH  Google Scholar 

  22. Rotman, J.J.: An Introduction to Algebraic Topology, Springer, New York, 1988.

    MATH  Google Scholar 

  23. R. Thom, Sur l’homologie des variétés algébriques réelles, in: Differential and Combinatorial Topology, pp. 255–265, Princeton University Press, Princeton, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saugata Basu.

Additional information

Communicated by Felipe Cucker

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, S., Pollack, R. & Roy, MF. Computing the First Betti Number of a Semi-Algebraic Set. Found Comput Math 8, 97–136 (2008). https://doi.org/10.1007/s10208-007-9001-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-007-9001-1

Keywords

Mathematics Subject Classification (2000)

Navigation