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DEFORMATION TECHNIQUES FOR SPARSE SYSTEMS

GABRIELA JERONIMO1,2, GUILLERMO MATERA2,3, PABLO SOLERNÓ1,2, AND ARIEL
WAISSBEIN4,5

Abstract. We exhibit a probabilistic symbolic algorithm for solving zero–
dimensional sparse systems. Our algorithm combines a symbolic homotopy
procedure, based on a flat deformation of a certain morphism of affine varieties,
with the polyhedral deformation of Huber and Sturmfels. The complexity of
our algorithm is quadratic in the size of the combinatorial structure of the
input system. This size is mainly represented by the mixed volume of Newton
polytopes of the input polynomials and an arithmetic analogue of the mixed
volume associated to the deformations under consideration.

1. Introduction

Numeric and symbolic methods for computing all solutions of a given zero-
dimensional polynomial system usually rely on deformation techniques, based on a
perturbation of the original system and a subsequent (numeric or symbolic) path-
following method (see, e.g., [1], [3], [6], [24], [32], [35]). The complexity of such
algorithms is usually determined by geometric invariants associated to the family
of systems under consideration (see, e.g., [16], [25], [53], [44], [24], [27], [13], [50],
[31], [39]), typically in the form of a suitable (arithmetic or geometric) Bézout
number (see [36], [25], [33], [46], [26], [23], [43]).

Sparse elimination theory is concerned with finding bounds for such Bézout
numbers in the case of a sparse polynomial system. Its origins can be traced
back to the results by D.N. Bernstein, A.G. Kushnirenko and A.G. Khovanski ([4],
[29], [28]) that bound the number of solutions of a polynomial system in terms
of certain combinatorial invariants. More precisely, the Bernstein–Kushnirenko–
Khovanski (BKK for short) theorem asserts that the number of isolated solutions
in the n–dimensional complex torus (C∗)n of a polynomial system of n equations
in n unknowns is bounded by the mixed volume of the family of Newton polytopes
of the corresponding polynomials.

Numeric (homotopy continuation) methods for sparse systems are typically based
on a family of deformations called polyhedral homotopies ([25], [54], [53]). Poly-
hedral homotopies preserve the Newton polytope of the input polynomials and

Date: June 24, 2017.
1991 Mathematics Subject Classification. Primary 14Q05, 52B20, 68W30; Secondary 12Y05,

13F25, 14Q20, 68W40.
Key words and phrases. Sparse system solving, symbolic homotopy algorithms, polyhedral de-

formations, mixed volume, nonarchimedean height, Puiseux expansions of space curves, Newton–
Hensel lifting, geometric solutions, probabilistic algorithms, complexity.

Research was partially supported by the following grants: UBACyT X112 (2004–2007), UBA-
CyT X847 (2006–2009), PIP CONICET 2461, PIP CONICET 5852/05, UNGS 30/3005 and
MTM2004-01167 (2004–2007).

1

http://arxiv.org/abs/math/0608714v1


2 G. JERONIMO, G. MATERA, P. SOLERNÓ, AND A. WAISSBEIN

yield an effective version of the BKK theorem (see e.g. [25], [26]). More pre-
cisely, suppose that we are given a zero–dimensional (∆1, . . . , ∆n)–sparse system
defined by n polynomials f1, . . . , fn in n variables, where ∆1, . . . , ∆n are the sup-
ports of f1, . . . , fn, and let V ⊂ (C∗)n be the variety defined by the common
zeros of f1, . . . , fn over (C∗)n. Then a polyhedral homotopy consists in an alge-
braic curve W ⊂ (C∗)n+1 such that the projection π : W → C∗ onto the first
coordinate is dominant with generically finite fibers whose degree is the mixed vol-
ume MV

(
conv(∆1), . . . , conv(∆n)

)
of the convex hulls of ∆1, . . . , ∆n, the identity

π−1(1) = {1}×V holds and the first terms of the Puiseux expansions of the branches
of W lying above 0 can be easily computed. Numerical continuation methods com-
pute the first terms of these Puiseux expansions and then follow the branches of
W along the interval [0, 1] to obtain approximations to all the points of the input
variety V .

From the symbolic point of view, a family of homotopy algorithms is based on
a flat deformation of a certain morphism of affine varieties. This deformation,
implicitly considered in the papers [20], [19], is isolated in [24] and refined in [50],
[23], [7], [39], in order to solve particular instances of a parametric system with
a finite generically–unramified linear projection of low degree. More precisely, let
V be a zero–dimensional variety of Cn, defined by a “square” system f1 = · · · =
fn = 0, and let be given an algebraic curve W ⊂ Cn+1 and a (dominant) projection
mapping π : W → C which represent a deformation of V . Then, from a complete
description of a generic fiber of the projection π : W → C, it is possible to compute
a complete description of the input fiber, say π−1(1) = {1}×V . The complexity of
this procedure can be roughly estimated by the product of two geometric invariants:
the degree of the morphism π and the degree of the curve W . The algorithm is
nearly optimal in worst case [13], and has good performance over certain well–posed
families of polynomial systems of practical interest (see [24], [50], [7], [12]).

In this article we combine these symbolic techniques, particularly in the version of
[7], with the polyhedral deformation [25], in order to derive a symbolic probabilistic
algorithm for solving sparse zero–dimensional polynomial systems with quadratic
complexity in the size of the combinatorial structure of the input system. More
precisely, suppose that we are given polynomials f1, . . . , fn of Q[X1, . . . , Xn] such
that the system f1 = 0, . . . , fn = 0 defines a zero–dimensional affine subvariety
V of Cn. Denote by ∆1, . . . , ∆n ⊂ Zn

≥0 the supports of f1, . . . , fn, and assume
that 0 ∈ ∆i for 1 ≤ i ≤ n and the mixed volume D of the Newton polytopes
conv(∆1), . . . , conv(∆n) is nonzero. Then, given a “sufficiently generic” lifting
function ω for (∆1, . . . , ∆n) and the corresponding mixed subdivision, we exhibit
an algorithm which computes a complete description of the solution set V of the
input system f1 = 0, . . . , fn = 0.

The polyhedral deformation under consideration requires that the coefficients of
the input polynomials satisfy certain generic conditions (see Section 3.1). For this
reason, we introduce some auxiliary generic polynomials g1, . . . , gn with the same
supports ∆1, . . . , ∆n and consider the perturbed polynomial system hi := fi + gi

for 1 ≤ i ≤ n. We first solve the system h1 = 0, . . . , hn = 0 and then recover the
solutions to the input system f1 = 0, . . . , fn = 0 by considering a homotopy of type
f1 + (1 − T )g1, . . . , fn + (1 − T )gn (in Section 5).

The system h1 = 0, . . . , hn = 0 is solved by considering the polyhedral homotopy
of [25]. This homotopy introduces a new variable T and deforms the polynomial
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hi by multiplying each nonzero monomial of hi by the power of T determined by
the given lifting function ω. From the genericity of the coefficients of h1, . . . , hn we

conclude that the roots of the resulting parametric system ĥ1 = 0, . . . , ĥn = 0 are
algebraic functions of the parameter T whose expansions as Puiseux series can be
obtained by “lifting” the solutions to certain zero–dimensional polynomial systems

h
(0)
1,γ = · · · = h

(0)
n,γ = 0 associated to the lower facets Ĉγ of the lifted polytopes

conv(∆̂1), . . . , conv(∆̂n) defined by ω. These polynomial systems h
(0)
1,γ = · · · =

h
(0)
n,γ = 0 can be easily solved due to their specific structure, which enables us to use

their solutions as a starting point for our computations (see Section 4.1 for details).
The complexity of our algorithm is mainly expressed in terms of two quanti-

ties related to the combinatorial structure of the input system: the mixed volume
D := M

(
conv(∆1), . . . , conv(∆n)

)
and certain (nonarchimedean) heights E, E′ as-

sociated to our polyhedral deformations. These heights, which are an arithmetic
analogue of the mixed volume D (see [41], [42]), can be bounded in terms of certain
mixed volumes associated to the polyhedral deformation under consideration, with

equality for a generic choice of the coefficients of the polynomials ĥi (see Lemma 2.3
below; compare also with [43, Theorem 1.1]). Therefore, we may paraphrase our
complexity estimate as saying that it is quadratic in the combinatorial structure of
the input system, with a geometric and an arithmetic component. More precisely,
our algorithm requires LnO(1)D max{E, E′} arithmetic operations over Q (up to
polylogarithmic terms), where L is the number of arithmetic operations required

to evaluate the polynomials ĥi and fi + gi, and E and E′ denote the height of the

varieties defined by ĥ1 = 0, . . . , ĥn = 0 and f1+(1−T )g1 = 0, . . . , fn+(1−T )gn = 0
respectively.

This improves and refines the estimate of [7] in the case of a sparse system,
which is expressed as a fourth power of D and the maximum of the degrees of the

varieties ĥ1 = 0, . . . , ĥn = 0 and f1 + (1 − T )g1 = 0, . . . , fn + (1 − T )gn = 0. We
observe that this maximum is an upper bound for the heights E and E′ respectively.
On the other hand, it also improves [44], [45], which solve a sparse system with a
complexity which is roughly quartic in the size of the combinatorial structure of the
input system. Finally, we provide an explicit estimate of the error probability of
all the steps of our algorithm. This might be seen as a further contribution to the
symbolic stage of the probabilistic seminumeric method of [25], which lacks such
analysis of the error probability.

2. Notions and notations

2.1. Sparse Elimination. Here we introduce some notions and notations of con-
vex geometry and sparse elimination theory (see e.g. [18], [25]) that will be used in
the sequel.

Let X1, . . . , Xn be indeterminates over Q and write X := (X1, . . . , Xn). For
q := (q1, . . . , qn) ∈ Zn, we use the notation Xq := Xq1

1 · · ·Xqn
n . Let f :=

∑
q cqX

q

be a Laurent polynomial in Q[X, X−1] := Q[X1, X
−1
1 , . . . , Xn, X−1

n ]. By the support

of f we understand the subset of Zn defined by the elements q ∈ Zn for which cq 6= 0
holds. The Newton polytope of f is the convex hull of the support of f in Rn.
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A sparse polynomial system with respect to a priori fixed finite subsets ∆1, . . . , ∆n

of (Z≥0)
n is defined by polynomials

fi(X) :=
∑

q∈∆i

ai,q Xq (1 ≤ i ≤ n),

with ai,q ∈ C \ {0} for each q ∈ ∆i and 1 ≤ i ≤ n.
For a finite subset ∆ of Zn, we denote by Q := conv(∆) its convex hull in Rn.

The usual Euclidean volume of a polytope Q in Rn will be denoted by volRn(Q).
Let Q1, . . . , Qn be convex polytopes in Rn. For λ1, . . . , λn ∈ R≥0, we use the

notation λ1Q1 + · · · + λnQn to refer to the Minkowski sum λ1Q1 + · · · + λnQn :=
{x ∈ Rn : ∃x1 ∈ Q1, . . . ,∃xn ∈ Qn such that x = λ1x1 + · · · + λnxn}. Consider
the real–valued function (λ1, . . . , λn) 7→ volRn(λ1Q1 + · · · + λnQn). This is a ho-
mogeneous polynomial function of degree n in the λi (see e.g. [14, Chapter 7,
Proposition §4.4.9]). The mixed volume MV (Q1, . . . , Qn) of Q1, . . . , Qn is defined
as the coefficient of the monomial λ1 · · ·λn in volRn(λ1Q1 + · · · + λnQn).

For i = 1, . . . , n, let ∆i be a finite subset of Zn
≥0 and let Qi := conv(∆i) de-

note the corresponding polytope. Let f1, . . . , fn be a sparse polynomial system
with respect to ∆1, . . . , ∆n. The BKK theorem ([4], [29], [28]) asserts that the
system f1 = 0, . . . , fn = 0 has at most MV (Q1, . . . , Qn) isolated common solutions
in the n–dimensional torus (C∗)n, with equality for generic choices of the coeffi-
cients of f1, . . . , fn. Furthermore, if the condition 0 ∈ Qi holds for 1 ≤ i ≤ n,
then MV (Q1, . . . , Qn) bounds the number of solutions in the n–dimensional affine
complex space An := An(C) (see [33]).

Assume that the union of the sets ∆1, . . . , ∆n affinely generate Zn, and consider
the partition of ∆1, . . . , ∆n defined by the relation ∆i ∼ ∆j if and only if ∆i = ∆j .

Let s ∈ N denote the number of classes in this partition, and let A(1), . . . ,A(s) ⊂ Zn

denote a member in each class. Write A := (A(1), . . . ,A(s)). For ℓ = 1, . . . , s,
let kℓ := #{i : ∆i = A(ℓ)}. Without loss of generality, we will assume that
∆1 = · · · = ∆k1 = A(1), ∆k1+1 = · · · = ∆k1+k2 = A(2) and so on.

A cell of A is a tuple C = (C(1), . . . , C(s)) with C(ℓ) 6= ∅ and C(ℓ) ⊂ A(ℓ) for
1 ≤ ℓ ≤ s. We define

type(C) := (dim(conv(C(1))), . . . , dim(conv(C(s)))),

conv(C) := conv(C(1) + · · · + C(s)),

#(C) :=#(C(1)) + · · · + #(C(s)),

volRn(C) := volRn(conv(C)).

A face of a cell C is a cell C = (C(1), . . . , C(s)) of C with C(ℓ) ⊂ C(ℓ) for 1 ≤ ℓ ≤ s
such that there exists a linear functional γ : Rn → R that takes its minimum over
C(ℓ) at C(ℓ) for 1 ≤ ℓ ≤ s. One such functional γ is called an inner normal of C.

A mixed subdivision of A is a collection of cells C = {C1, . . . , Cm} of A satisfying
conditions (1)–(4) below:

(1) dim(conv(Cj)) = n for 1 ≤ j ≤ m,
(2) the intersection conv(Ci)∩ conv(Cj) ⊂ Rn is either the empty set or a face

of both conv(Ci) and conv(Cj) for 1 ≤ i < j ≤ m,
(3)

⋃m
j=1 conv(Cj) = conv(A),

(4)
∑s

ℓ=1 dim(conv(C
(ℓ)
j )) = n for 1 ≤ j ≤ m.

If C also satisfies the condition
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(5) #(Cj) = n + s for 1 ≤ j ≤ m,

we say that C is a fine–mixed subdivision of A. Observe that, as a consequence of

conditions (4) and (5), for each cell Cj = (C
(1)
j , . . . , C

(s)
j ) in a fine–mixed subdivi-

sion the identity dim(conv(C
(ℓ)
j )) = #C

(ℓ)
j − 1 holds for 1 ≤ ℓ ≤ s.

We point out that a mixed subdivision C of A enables us to compute the mixed
volume of the family Q1 = conv(∆1), . . . , Qn = conv(∆n) by means of the following
identity (see [25, Theorem 2.4.]):

(2.1) MV (Q1, . . . , Qn) =
∑

Ci∈C

type(Ci)=(k1 ,...,ks)

k1! . . . ks! · volRn(Ci).

A fine–mixed subdivision of A can be obtained by means of a lifting process
as explained in what follows. For 1 ≤ ℓ ≤ s, let ωℓ : A(ℓ) → R be an arbitrary
function. The tuple ω := (ω1, . . . , ωs) is called a lifting function for A. Once a
lifting function ω is fixed, the graph of any subset C(ℓ) of A(ℓ) will be denoted

by Ĉ(ℓ) := {(q, ωℓ(q)) ∈ Rn+1 : q ∈ C(ℓ)}. Then, for a sufficiently generic lifting
function ω, the set of cells C of A satisfying the conditions:

(i) dim(conv(Ĉ(1) + · · · + Ĉ(s))) = n,

(ii) (Ĉ(1), . . . , Ĉ(s)) is a face of (Â(1), . . . , Â(s)) whose inner normal has positive
last coordinate,

is a fine–mixed subdivision of A (see [25, Section 2]). More precisely, we have the
following result (cf. [25, Section 2]):

Lemma 2.1. The lifting process associated to a lifting function ω yields a fine-
mixed subdivision of A if the following condition holds: for every r1, . . . , rs ∈ Z≥0

with
∑s

ℓ=1 rℓ > n and every cell (C(1), . . . , C(s)) with C(ℓ) := {qℓ,0, . . . , qℓ,rℓ
} ⊂ A(ℓ)

(1 ≤ ℓ ≤ s), if

V (C) :=




q1,1 − q1,0

...
q1,r1 − q1,0

· · ·
· · ·

qs,1 − qs,0

...
qs,rs

− qs,0




and V (Ĉ) :=




q1,1 − q1,0 ω1(q1,1) − ω1(q1,0)
...

...
q1,r1 − q1,0 ω1(q1,r1) − ω1(q1,0)

· · · · · ·
· · · · · ·

qs,1 − qs,0 ωs(qs,1) − ωs(qs,0)
...

...
qs,rs

− qs,0 ωs(qs,rs
) − ωs(qs,0)




,

then
rank(V (C)) = n =⇒ rank(V (Ĉ)) = n + 1.

Proof. Notice that (1)–(3) are automatically satisfied by the set of cells defined by
conditions (i)–(ii). Assume that the condition of the statement of the lemma is
met and consider a cell C = (C(1), . . . , C(s)) of A satisfying conditions (i) and (ii)

above. Being Ĉ a lower facet of A, the identity dim(conv(C(1) + · · · + C(s))) =

dim(conv(Ĉ(1) + · · ·+ Ĉ(s))) must hold. Write C(ℓ) = {qℓ,0, . . . , qℓ,rℓ
} for 1 ≤ ℓ ≤ s.

Then we have that rank(V (C)) = dim(< qℓ,j − qℓ,0 : 1 ≤ ℓ ≤ rℓ, 1 ≤ j ≤ rj >) =

dim(conv(C(1) + · · ·+C(s))) = n and rank(V (Ĉ)) = dim(conv(Ĉ(1) + · · ·+ Ĉ(s))) =
n. Now, the condition stated on ω implies that

∑s
ℓ=1 rℓ ≤ n and, taking into

account that the
∑s

ℓ=1 rℓ many vectors qℓ,j − qℓ,0 (1 ≤ ℓ ≤ s, 1 ≤ j ≤ rℓ) span
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a linear space of dimension n, we conclude that the equality
∑s

ℓ=1 rℓ = n holds,
which shows that condition (5) in the definition of a fine–mixed subdivision is met.
Moreover, as

∑s
ℓ=1 dim(conv(C(ℓ))) ≥ dim(conv(C(1) + · · ·+C(s))) for an arbitrary

cell C, we see that dim(conv(C(ℓ))) = rℓ holds for every 1 ≤ ℓ ≤ s, which implies
that condition (4) is also valid. This finishes the proof of the lemma. �

Note that the condition rank(V (Ĉ)) = n+1 can be restated as the non–vanishing

of the maximal minors of the matrix V (Ĉ). Since rank(V (C)) = n, these maximal
minors are nonzero linear forms in the unknown values ωℓ(qℓ,j) of the lifting func-

tion. Thus, if Nℓ = #A(ℓ) for every 1 ≤ ℓ ≤ s, a sufficiently generic lifting function
can be obtained by randomly choosing the values ωℓ(qℓ,j) of ω at the points of A(ℓ)

from the set {1, 2, . . . , ρ2N1+···+Ns}, with probability of success at least 1− 1/ρ for
ρ ∈ N.

In the sequel, we shall assume that a sufficiently generic lifting function and the
induced fine–mixed subdivision of A are given.

2.2. Complexity model and complexity estimates. In this section we describe
our computational model and briefly mention efficient algorithms for some basic
specific algebraic tasks.

2.2.1. Complexity model. Algorithms in computational algebraic geometry are usu-
ally described using the standard dense (or sparse) complexity model, i.e. encod-
ing multivariate polynomials by means of the vector of all (or of all nonzero) co-
efficients. Taking into account that a generic n–variate polynomial of degree d
has

(
d+n

n

)
= O(dn) nonzero coefficients, we see that the dense representation of

multivariate polynomials requires an exponential size, and their manipulation usu-
ally requires an exponential number of arithmetic operations with respect to the
parameters d and n. In order to avoid this exponential behavior, we are going
to use an alternative encoding of input, output and intermediate results of our
computations by means of straight–line programs (cf. [22], [52], [38], [11]). A
straight–line program β in Q(X) := Q(X1, . . . , Xn) is a finite sequence of ratio-
nal functions (f1, . . . , fk) ∈ Q(X)k such that for 1 ≤ i ≤ k, the function fi is an
element of the set {X1, . . . , Xn}, or an element of Q (a parameter), or there ex-
ist 1 ≤ i1, i2 < i such that fi = fi1 ◦i fi2 holds, where ◦i is one of the arithmetic
operations +,−,×,÷. The straight–line program β is called division–free if ◦i is
different from ÷ for 1 ≤ i ≤ k. A natural measure of the complexity of β is its time

or length (cf. [8], [48]), which is the total number of arithmetic operations per-
formed during the evaluation process defined by β. We say that the straight–line
program β computes or represents a subset S of Q(X) if S ⊂ {f1, . . . , fk} holds.

Our model of computation is based on the concept of straight–line programs.
However, a model of computation consisting only of straight–line programs is not
expressive enough for our purposes. Therefore we allow our model to include de-
cisions and selections (subject to previous decisions). For this reason we shall also
consider computation trees, which are straight–line programs with branchings. Time
of the evaluation of a given computation tree is defined similarly to the case of
straight–line programs (see e.g. [55], [11] for more details on the notion of compu-
tation trees).
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2.2.2. Probabilistic identity testing. A difficult point in the manipulation of multi-
variate polynomials given by straight–line programs is the so–called identity testing

problem: given two elements f and g of C[X ] := C[X1, . . . , Xn], decide whether f
and g represent the same polynomial function on Cn. Indeed, all known determinis-
tic algorithms solving this problem have complexity at least max{deg f, deg g}Ω(1).
In this article we are going to use probabilistic algorithms to solve the identity
testing problem, based on the following result:

Theorem 2.2 ([34], [49]). Let f be a nonzero polynomial of C[X ] of degree at
most d and let S be a finite subset of C. Then the number of zeros of f in Sn is at
most d(#S)n−1.

For the analysis of our algorithms, we shall interpret the statement of Theo-
rem 2.2 in terms of probabilities. More precisely, given a fix nonzero polynomial f
in C[X1, . . . , Xn] of degree at most d, we conclude from Theorem 2.2 that the prob-
ability of choosing randomly a point a ∈ Sn such that f(a) = 0 holds is bounded
from above by d/#S (assuming a uniform distribution of probability on the ele-
ments of Sn).

2.2.3. Basic complexity estimates. In order to estimate the complexity of our pro-
cedures we shall frequently use the notation M(m) := m log2 m log log m. Here and
in the sequel log will denote logarithm in base 2. Let R be a commutative ring of
characteristic zero with unity. We recall that the number of arithmetic operations
in R necessary to compute the multiplication or division with remainder of two uni-
variate polynomials in R[T ] of degree at most m is O

(
M(m)/ log(m)

)
(cf. [56], [5]).

Multipoint evaluation and interpolation of univariate polynomials of R[T ] of degree
m at invertible points a1, . . . , am ∈ R can be performed with O

(
M(m)

)
arithmetic

operations in R (see e.g. [9]).
If R = k is a field, then we shall use algorithms based on the Extended Eu-

clidean Algorithm (EEA for short) in order to compute the gcd or resultant of
two univariate polynomials in k[T ] of degree at most m with O

(
M(m)

)
arithmetic

operations in k (cf. [56], [5]). We use Padé approximation in order to compute
the dense representation of the numerator and denominator of a rational function
f = p/q ∈ k(T ) with max{deg p, deg q} ≤ m from its Taylor series expansion up to
order 2m. This also requires O(M(m)) arithmetic operations in k ([56], [5]).

For brevity, we will denote by Ω the exponent that appears in the complexity
estimate O(nΩ) for the multiplication of two (n × n)–matrices with coefficients in
Q. We remark that the (theoretical) bound Ω < 2.376 is typically impractical and
we prefer to take Ω := log 7 ∼ 2.81 (cf. [5]).

2.3. Geometric solutions. The notion of a geometric solution of an algebraic
variety was first introduced in the works of Kronecker and König in the last years
of the XIXth century. Nowadays, geometric solutions are widely used in computer
algebra as a suitable representation of algebraic varieties, especially in the zero–
dimensional case.

Let K denote an algebraic closure of a field K of characteristic zero, let An(K)

be the n–dimensional space K
n

endowed with its Zariski topology, and let V =
{ξ(1), . . . , ξ(D)} be a zero–dimensional subvariety of An(K) defined over K. A
geometric solution of V consists of
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• a linear form u = u1X1 + · · ·+unXn ∈ K[X ] which separates the points of
V , i.e. satisfying u(ξ(i)) 6= u(ξ(k)) if i 6= k,

• the minimal polynomial mu :=
∏

1≤i≤D(Y − u(ξ(i))) ∈ K[Y ] of u in V

(where Y is a new variable),
• polynomials w1, . . . , wn ∈ K[Y ] with deg wj < D for every 1 ≤ j ≤ n

satisfying

V = {(w1(η), . . . , wn(η)) ∈ K
n

/ η ∈ K, mu(η) = 0}.

In the sequel, we shall be given a polynomial system f1 = · · · = fn = 0 of n–
variate polynomials of Q[X ] defining a zero–dimensional affine variety V ⊂ An :=
An(C). We shall consider the system f1 = · · · = fn = 0 (symbolically) “solved” if
we obtain a geometric solution of V as defined above.

This notion of geometric solution can be extended to equidimensional varieties
of positive dimension. For our purposes, it will be sufficient to consider the case of
an algebraic curve defined over Q.

Suppose that we are given a curve V ⊂ An+1 defined by polynomials f1, . . . , fn ∈
Q[X, T ]. Assume that for each irreducible component C of V , the identity I(C) ∩
Q[T ] = {0} holds. Let u be a nonzero linear form of Q[X ] and πu : V → A2

the morphism defined by πu(x, t) := (t, u(x)). Our assumptions on V imply that

the Zariski closure πu(V ) of the image of V under πu is a hypersurface of A2

defined over Q. Let Y be a new indeterminate. Then there exists a unique (up
to scaling by nonzero elements of Q) polynomial Mu ∈ Q[T, Y ] of minimal degree

defining πu(V ). Let mu ∈ Q(T )[Y ] denote the (unique) monic multiple of Mu with
degY (mu) = degY (Mu). We call mu the minimal polynomial of u in V . In these
terms, a geometric solution of the curve V consists of

• a generic linear form u ∈ Q[X ],
• the minimal polynomial mu ∈ Q(T )[Y ],
• elements v1, . . . , vn of Q(T )[Y ] such that ∂mu

∂Y Xi ≡ vi mod Q(T ) ⊗ Q[V ]
and degY (vi) < degY (mu) holds for 1 ≤ i ≤ n.

We observe that degY mU equals the cardinality of the zero-dimensional variety

defined by f1, . . . , fn over An
(
Q(T )

)
.

In the sequel, we shall deal with curves V := V (f1, . . . , fn) ⊂ An+1 as above.
The complexity of the algorithms for solving the systems f1 = · · · = fn = 0
defining such curves will be expressed mainly by means of two discrete invariants:
the degree and the height of the projection π : V → A1. The degree of π is defined
as the degree deg mu = degY Mu of the minimal polynomial of a generic linear form
u ∈ Q[X1, . . . , Xn] and can be considered as a measure of the “complexity” of the
curve V . On the other hand, the height of π is defined as degT Mu and may be
considered as a measure of the “complexity of the description” of the curve V .

In the sparse setting, we can estimate degY Mu and degT Mu in terms of com-
binatorial quantities (namely, mixed volumes) associated to the polynomial system
under consideration (see also [43]).

Lemma 2.3. Let assumptions and notations be as above. For 1 ≤ i ≤ n, let
Qi ⊂ Rn be the Newton polytope of fi, considering fi as an element of Q(T )[X ].

Let Q̂1, . . . , Q̂n ⊂ Rn+1 be the Newton polytopes of f1, . . . , fn, considering f1, . . . , fn

as elements of Q[X, T ], and let ∆ ⊂ Rn+1 be the standard unitary simplex in the
plane {T = 0}, i.e., the Newton polytope of a generic linear form u ∈ Q[X ]. Assume
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that 0 ∈ Q̂i for every 1 ≤ i ≤ n. Then the following estimates hold:

(2.2) degY Mu ≤ MVn(Q1, . . . , Qn), degT Mu ≤ MVn(∆, Q̂1, . . . , Q̂n).

Furthermore, if there exist c1, . . . , cn ∈ R≥0 such that Q̂i ⊂ Qi×[0, ci] for 1 ≤ i ≤ n,
then the following inequality holds:

(2.3) degT Mu ≤
n∑

i=1

ci MV (∆, Q1, . . . , Qi−1, Qi+1, . . . , Qn).

Proof. The upper bound degY Mu ≤ MVn(Q1, . . . , Qn) follows straightforwardly
from the BKK bound and the affine root count in [33].

In order to obtain an upper bound for degT Mu, we observe that substituting
a generic value y ∈ Q for Y we have degT Mu(T,Y ) = degT Mu(T, y) = #{t ∈
C; Mu(t, y) = 0}. Moreover, it follows that Mu(t, y) = 0 if and only if there exists a
point x ∈ An with y = u(x) and (x, t) ∈ V . Thus, it suffices to estimate the number
of points (x, t) ∈ An+1 satisfying u(x) − y = 0, f1(x, t) = 0, . . . , fn(x, t) = 0. Being
u a generic linear form, the system

(2.4) u(X)− y = 0, f1(X, T ) = 0, . . . , fn(X, T ) = 0

has finitely many common zeros in An+1. Combining the BKK bound with the

affine root count of [33] we see that there are at most MV (∆, Q̂1, . . . , Q̂n) solutions

of (2.4). We conclude that degT Mu ≤ MV (∆, Q̂1, . . . , Q̂n) holds, which shows
(2.2).

In order to prove (2.3), we make use of basic properties of the mixed volume

(see, for instance, [17, Ch. IV]). Since Q̂i ⊂ Qi × [0, ci] holds for 1 ≤ i ≤ n, by the
monotonicity of the mixed volume we have

MV (∆, Q̂1, . . . , Q̂n) ≤ MV (∆, Q1 × [0, c1], . . . , Qn × [0, cn]).

Note that Qi × [0, ci] = Si,0 + Si,1, where Si,0 = Qi × {0} and Si,1 = {0} × [0, ci]
for i = 1, . . . , n. Hence, by multilinearity,

(2.5) MV (∆, Q1 × [0, c1], . . . , Qn × [0, cn]) =
∑

(j1,...,jn)∈{0,1}n

MV (∆, S1,j1 , . . . , Sn,jn
).

If the vector (j1, . . . , jn) has at least two nonzero coordinates, then two of the sets
S1,j1 , . . . , Sn,jn

are parallel line segments; therefore, MV (∆, S1,j1 , . . . , Sn,jn
) = 0.

On the other hand, if ji is the only nonzero coordinate, the corresponding term in
the sum of the right–hand side of (2.5) is

MVn+1(∆, Q1 × {0}, . . . , Qi−1 × {0}, {0}× [0, ci], Qi+1 × {0}, . . . , Qn × {0})

= ci MVn(∆, Q1, . . . , Qi−1, Qi+1, . . . , Qn).

Finally, for (j1 . . . , jn) = (0, . . . , 0) we have MVn+1(∆, Q1 ×{0}, . . . , Qn ×{0}) = 0
since all the polytopes are included in an n-dimensional subspace.

We conclude that the right-hand side of (2.5) equals the right–hand side of (2.3).
This finishes the proof of the lemma. �

From the algorithmic point of view, the crucial step towards the computation of
a geometric solution of the variety V consists in the computation of the minimal
polynomial mu of a generic linear form u which separates the points of V . In the
remaining part of this section we shall show how we can derive an algorithm for
computing the entire geometric solution of a zero–dimensional variety V defined
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over Q from a procedure for computing the minimal polynomial of a generic linear
form u (cf. [2], [21], [50]).

Let Λ := (Λ1, . . . , Λn) be a vector of new indeterminates and let K := Q(Λ).
Denote by IK the ideal in K[X1, . . . , Xn] which is the extension of the ideal I :=
I(V ) ⊂ Q[X1, . . . , Xn] of the zero-dimensional variety V , and denote by B :=
K[X1, . . . , Xn]/IK the corresponding zero–dimensional quotient algebra. Write
V = {ξ(1), . . . , ξ(D)}.

Set U := Λ1X1 + · · · + ΛnXn ∈ K[X1, . . . , Xn] and let mU (Λ, Y ) =
∏D

j=1

(
Y −

U(ξ(j))
)
∈ Q[Λ, Y ] be the minimal polynomial of the linear form U in the extension

K →֒ B. Note that deg mU = D holds, and that ∂mU/∂Y is not a zero divisor
in Q[An × V ]. Furthermore, mU (Λ, U) ∈ I(An × V ) ⊂ Q[Λ, X1, . . . , Xn] holds.
Since I(An × V ) is generated by polynomials in Q[X1, . . . , Xn], taking the partial
derivative of mU (Λ, U) with respect to the variable Λk for 1 ≤ k ≤ n, we conclude
that

(2.6)
∂mU

∂Y
(Λ, U)Xk +

∂mU

∂Λk
(Λ, U) ∈ I(An × V ).

Observe that the degree estimate degY (∂mU/∂Λk) ≤ D − 1 holds.
Assume that a linear form u = u1X1 + · · · + unXn ∈ Q[X1, . . . , Xn] which

separates the points of V is given. Substituting uk for Λk in the polynomial
mU (Λ, Y ) we obtain the minimal polynomial mu(Y ) of u. Furthermore, making
the same substitution in the polynomials (∂mU/∂Y )(Λ, Y )Xk +(∂mU/∂Λk)(Λ, Y )
of (2.6) for 1 ≤ k ≤ n and reducing modulo mu(Y ), we obtain polynomials
(∂mu/∂Y )(Y )Xk − vk(Y ) ∈ I(V ) (1 ≤ k ≤ n). In particular, we have that
the identities

(2.7)
∂mu

∂Y
(u)Xk = vk(u) (1 ≤ k ≤ n)

hold in Q[V ]. Observe that the minimal polynomial mu(Y ) is square–free, since
the linear form u separates the points of V . Therefore, mu(Y ) and ∂mu/∂Y (Y )
are relatively prime. Thus, multiplying modulo mu(Y ) the polynomials vk(Y )
by the inverse of (∂mu/∂Y )(Y ) modulo mu(Y ) we obtain polynomials wk(Y ) :=
(∂mu/∂Y )−1vk(Y ) (1 ≤ k ≤ n) of degree at most D − 1 such that

(2.8) Xk = wk(u)

holds in Q[V ] for 1 ≤ k ≤ n. The polynomials mu, w1, . . . , wn ∈ Q[Y ] form a
geometric solution of V .

Now, suppose that we are given an algorithm Ψ over Q(Λ) for computing the
minimal polynomial of the linear form U = Λ1X1 + · · · + ΛnXn. Suppose further
that we are given a separating linear form u := u1X1 + · · ·+unXn ∈ Q[X1, . . . , Xn]
such that the vector (u1, . . . , un) does not annihilate any denominator in Q[Λ] of
any intermediate result of the algorithm Ψ. In order to compute the polynomials
v1, . . . , vn of (2.7), we observe that the Taylor expansion of mU (Λ, Y ) in powers of
Λ − u := (Λ1 − u1, . . . , Λn − un) has the following expression:

mU (Λ, Y ) = mu(Y ) +
n∑

k=1

(∂mu

∂Y
(Y )Xk − vk(Y )

)
(Λk − uk) mod(Λ − u)2.

We shall compute this first–order Taylor expansion by computing the first–order
Taylor expansion of each intermediate result in the algorithm Ψ . In this way, each
arithmetic operation in Q(Λ) arising in the algorithm Ψ becomes an arithmetic



DEFORMATION TECHNIQUES FOR SPARSE SYSTEMS 11

operation between two polynomials of Q[Λ] of degree at most 1, and is truncated
up to order (Λ − u)2. Since the first–order Taylor expansion of an addition, multi-
plication or division of two polynomials of Q[Λ] of degree at most 1 requires O(n)
arithmetic operations in Q, we have that the whole step requires O(nT) arithmetic
operations in Q, where T is the number of arithmetic operations in Q(Λ) performed
by the algorithm Ψ.

Finally, the computation of the polynomials w1, . . . , wn of (2.8) requires the
inversion of ∂mu/∂Y modulo mu(Y ) and the modular multiplication wk(Y ) :=
(∂mu/∂Y )−1vk(Y ) for 1 ≤ k ≤ n. These steps can be executed with additional
O

(
nM(D)

)
arithmetic operations in Q. Summarizing, we have the following result:

Lemma 2.4. Suppose that we are given:

(1) an algorithm Ψ in Q(Λ) which computes the minimal polynomial mU ∈
Q[Λ, Y ] of U := ΛX1 + · · · + ΛnXn with T arithmetic operations in Q(Λ),

(2) a separating linear form u := u1X1 + · · ·+unXn ∈ Q[X1, . . . , Xn] such that
the vector (u1, . . . , un) does not annihilate any denominator in Q[Λ] of any
intermediate result of the algorithm Ψ.

Then a geometric solution of the variety V can be (deterministically) computed with
O

(
n(T + M(D))

)
arithmetic operations in Q.

3. Statement of the problem and outline of the algorithm

Let ∆1, . . . , ∆n be fixed finite subsets of Zn
≥0 with 0 ∈ ∆i for 1 ≤ i ≤ n

and let D := MV (Q1, . . . , Qn) denote the mixed volume of the polytopes Q1 :=
conv(∆1), . . . , Qn := conv(∆n). Assume that D > 0 holds or, equivalently, that
dim

(∑
i∈I Qi

)
≥ |I| for every non-empty subset I ⊂ {1, . . . , n} (see, for instance,

[37, Chapter IV, Proposition 2.3]).
Let f1, . . . , fn ∈ Q[X ] be polynomials defining a sparse system with respect to

∆1, . . . , ∆n and let d1, . . . , dn be their total degrees. Let d := {d1, . . . , dn}. Suppose
that f1, . . . , fn define a zero–dimensional variety V in An. As in the previous
section, we group equal supports into s ≤ n distinct supports A(1), . . . ,A(s). Write
A := (A(1), . . . ,A(s)) and denote by kℓ the number of polynomials fi with support
A(ℓ) for 1 ≤ ℓ ≤ s.

From now on we assume that we are given a sufficiently generic lifting func-
tion ω := (ω1, . . . , ωs) and the fine–mixed subdivision of A induced by ω. We
assume further that the function ωℓ : A(ℓ) → Z takes only nonnegative values and
ωℓ(0, . . . , 0) = 0 for every 1 ≤ ℓ ≤ s. The lifting function ω and the corresponding
fine–mixed subdivision of A can be used in order to define an appropriate deforma-
tion of the input system, the so-called polyhedral deformation introduced by Huber
and Sturmfels in [25]. Our purpose here is to use this polyhedral deformation to
derive a symbolic probabilistic algorithm which computes a geometric solution of
the input system f1 = 0, . . . , fn = 0.

Since the polyhedral deformation requires that the coefficients of the input poly-
nomials satisfy certain generic conditions, we introduce some auxiliary generic poly-
nomials g1, . . . , gn with the same supports ∆1, . . . , ∆n and consider the perturbed
polynomial system defined by hi := fi + gi for 1 ≤ i ≤ n. The genericity condi-
tions underlying the choice of g1, . . . , gn and h1, . . . , hn are discussed in Section 3.1.
We observe that if the coefficients of the input polynomials f1, . . . , fn satisfy these
conditions then our method can be directly applied to f1, . . . , fn.



12 G. JERONIMO, G. MATERA, P. SOLERNÓ, AND A. WAISSBEIN

Otherwise, we first solve the system h1 = 0, . . . , hn = 0 and then recover the
solutions to the input system f1 = 0, . . . , fn = 0 by considering the homotopy
f1 + (1 − T )g1 = · · · = fn + (1 − T )gn = 0.

3.1. The polyhedral deformation. This section is devoted to introducing the
polyhedral deformation of Huber and Sturmfels.

Let hi :=
∑

q∈∆i
ci,qX

q for 1 ≤ i ≤ n be polynomials in Q[X ] and let V1 denote

the set of their common zeros in An. For i = 1, . . . , n, let ℓi be the (unique) integer
with ∆i = A(ℓi), and let ω̃i := ωℓi

be the lifting function associated to the support
∆i. In order to simplify notations, the n–tuple ω̃ := (ω̃1, . . . , ω̃n) will be denoted

simply by ω = (ω1, . . . , ωn). As before, we denote by Ĉ(ℓ) := {(q, ωℓ(q)) ∈ Rn+1 :
q ∈ C(ℓ)} the graph of any subset C(ℓ) of A(ℓ) for 1 ≤ ℓ ≤ s, and extend this
notation correspondingly. For a new indeterminate T , we deform the polynomials

h1, . . . , hn into polynomials ĥ1, . . . , ĥn ∈ Q[X, T ] defined in the following way:

(3.1) ĥi(X, T ) :=
∑

q∈∆i

ci,qX
qT ωi(q) (1 ≤ i ≤ n).

Let I denote the ideal of Q[X, T ] generated by ĥ1, . . . , ĥn and let J denote the

Jacobian determinant of ĥ1, . . . , ĥn with respect to the variables X1, . . . , Xn. We
set

(3.2) V̂ := V (I : J∞) ⊂ An+1.

We shall show that, under a generic choice of the coefficients of h1, . . . , hn, the
system defined by the polynomials in (3.1) constitutes a deformation of the input

system h1 = 0, . . . , hn = 0, in the sense that the morphism π : V̂ → A1 defined by
π(x, t) := t is a dominant map with π−1(1) = V1 × {1}. We shall further exhibit
degree estimates on the genericity condition underlying such choice of coefficients.
These estimates will allow us to obtain suitable polynomials h1, . . . , hn by randomly
choosing their coefficients in an appropriate finite subset of Z.

According to [25, Section 3], the solutions over an algebraic closure Q(T ) of
Q(T ) to the system defined by the polynomials (3.1) are algebraic functions of the
parameter T which can be represented as Puiseux series of the form

(3.3) x(T ) := (x10T
γ1/γn+1 + h-o t., . . . , xn0T

γn/γn+1 + h-o t.),

where γ := (γ1, . . . , γn, γn+1) ∈ Zn+1 is an inner normal with positive last coordi-

nate γn+1 > 0 of a (lower) facet Ĉ = (Ĉ(1), . . . , Ĉ(s)) of Â of type (k1, . . . , ks), and
x0 := (x10, . . . , xn0) ∈ (C∗)n is a solution to the polynomial system defined by

(3.4γ) h
(0)
i,γ :=

∑

q∈C(ℓi)

ci,q Xq (1 ≤ i ≤ n),

where, as defined before, ℓi is the integer with 1 ≤ ℓi ≤ s and ∆i = A(ℓi). We shall
“lift” each solution x0 to this system to a solution of the form (3.3) to the system
defined by (3.1). This means that, on input x0, we shall compute the Puiseux series
expansion of the corresponding solution (3.3) truncated up to a suitable order.

Let

(3.5) V0,γ := {x ∈ (C∗)n : h
(0)
1,γ(x) = 0, . . . , h(0)

n,γ(x) = 0}.

A particular feature of the polynomials (3.4γ) which makes the associated equation

system “easy to solve” is that the vector of their supports is (C(1))k1×· · ·×(C(s))ks ,
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where (C(1), . . . , C(s)) is a cell of type (k1, . . . , ks) in a fine–mixed subdivision of
A. Therefore, for every 1 ≤ ℓ ≤ s, the set C(ℓ) consists of kℓ + 1 points and hence,
up to monomial multiplication so that each polynomial has a non-zero constant
term, the (Laurent) polynomials in (3.4γ) are linear combinations of n + 1 distinct
monomials in n variables.

Denote Γ ⊂ Zn+1 the set of all primitive integer vectors of the form γ :=
(γ1, . . . ,γn,γn+1) ∈ Zn+1 with γn+1 > 0 for which there is a cell C = (C(1), . . . , C(s))

of type (k1, . . . , ks) of the subdivision of A induced by ω such that Ĉ has inner nor-
mal γ.

Fix a cell C = (C(1), . . . , C(s)) of type (k1, . . . , ks) of the subdivision of A induced
by ω associated with a primitive inner normal γ ∈ Γ with positive last coordinate. In
order to lift the points of the variety V0,γ of (3.5) to a solution of the system defined
by the polynomials in (3.1), we will work with a family of auxiliary polynomials
h1,γ , . . . , hn,γ ∈ Q[X, T ] which we define as follows:

(3.6) hi,γ(X, T ) := T−miĥi(T
γ1X1, . . . , T

γnXn, T γn+1) (1 ≤ i ≤ n)

where mi ∈ Z is the lowest power of T appearing in ĥi(T
γ1X1, . . . , T

γnXn, T γn+1)
for every 1 ≤ i ≤ n. Note that the polynomials obtained by substituting T = 0
into h1,γ , . . . , hn,γ are precisely those introduced in (3.4γ).

3.2. On the genericity of the initial system. Here we discuss the genericity
conditions underlying the choice of the polynomials g1, . . . , gn that enable us to
apply the polyhedral deformation defined by the lifting form ω to the system h1 :=
f1 + g1 = 0, . . . , hn := fn + gn = 0.

The first condition we require is that the set of common zeros of the perturbed
polynomials h1, . . . , hn is a zero–dimensional variety with the maximum number of
points for a sparse system with the given structure. More precisely, we require the
following condition:

(H1) The set V1 := {x ∈ An : h1(x) = 0, . . . , hn(x) = 0} is a zero-dimensional
variety with D := MV (Q1, . . . , Qn) distinct points.

In addition, we need that the system (3.4γ) giving the initial points to our first
deformation for every γ ∈ Γ has as many roots as possible, namely the mixed
volume of their support vectors.

For each cell C = (C(1), . . . , C(s)) of type (k1, . . . , ks) of the induced fine–mixed
subdivision, set an order on the n+1 points appearing in any of the sets C(ℓ), after
a suitable translation so that 0 ∈ C(ℓ) for every 1 ≤ ℓ ≤ s. Assume that 0 ∈ Zn is
the last point according to this order. Denote γ ∈ Zn+1 the primitive inner normal
of C with positive last coordinate. Consider the n× (n+1) matrix whose ith row is

the coefficient vector of h
(0)
i,γ in the prescribed monomial order and set Mγ ∈ Qn×n

and Bγ ∈ Qn×1 for the submatrices consisting of the first n columns (coefficients of
non-constant monomials) and the last column (constant coefficients) respectively.
Then, the coefficients of g1, . . . , gn are to be chosen so that the following condition
holds:

(H2) For every γ ∈ Γ, the (n × n)–matrix Mγ is nonsingular and all the entries
of (Mγ)−1Bγ are nonzero.

Our next results assert that the above conditions can be met with good proba-
bility by randomly choosing the coefficients of g1, . . . , gn in a certain set S ⊂ Z. We
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observe that our estimate on the size of S is not intended to be accurate, but to show
that the growth of the size of the integers involved in the subsequent computations
is not likely to create complexity problems.

Let {Ωi,q : 1 ≤ i ≤ n, q ∈ ∆i} be a set of new indeterminates over Q. For
1 ≤ i ≤ n, write Ωi := (Ωi,q : q ∈ ∆i) and let Hi ∈ Q[Ωi, X ] be the generic
polynomial

(3.7) Hi(Ωi, X) :=
∑

q∈∆i

Ωi,qX
q

with support ∆i and Ni := #∆i coefficients. Let Ω := (Ω1, . . . , Ωn) and let N :=
N1 + · · · + Nn be the total number of indeterminate coefficients.

We start the analysis of the required generic conditions with the following quan-
titative version of Bernstein’s result on the genericity of zero-dimensional sparse
systems (see [4, Theorem B], [25, Theorem 6.1]):

Lemma 3.1. There exists a nonzero polynomial P (0) ∈ Q[Ω] with deg P (0) ≤
3n2n+1d2n−1 such that for any c ∈ QN with P (0)(c) 6= 0, the system H1(c1, X) =
0, . . . , Hn(cn, X) = 0 has D solutions in An, counting multiplicities.

Proof. Due to [25, Theorem 6.1] combined with [33], the system H1(c1, X) = 0, . . . ,
Hn(cn, X) = 0 has D solutions in An counting multiplicities if and only if for every
facet inner normal µ ∈ Zn of Q1 + · · · + Qn, the sparse resultant Res∆µ

1 ,...,∆µ
n

does

not vanish at c := (c1, . . . , cn). Here ∆µ
i denotes the set of points of ∆i where the

linear functional induced by µ attains its minimum for 1 ≤ i ≤ n.
Therefore, the polynomial P (0) :=

∏
µ Res∆µ

1 ,...,∆µ
n
∈ Q[Ω], where the product

ranges over all primitive inner normals µ ∈ Zn to facets of Q1 + · · · + Qn, satisfies
the required condition.

In order to estimate the degree of P (0), we observe that for every facet inner
normal µ ∈ Zn the following upper bound holds:

deg(Res∆µ
1 ,...,∆µ

n
) ≤

n∑

i=1

MV (∆µ
1 , . . . , ∆̂µ

i , . . . , ∆µ
n) ≤ ndn−1,

where d := max{d1, . . . , dn}. On the other hand, it is not difficult to see that
the number of facets of an n-dimensional integer convex polytope P ⊂ Rn which
has an integer point in its interior is bounded by n! volRn(P ). Now, taking P :=
(n + 1)Q, we obtain an integer polytope with the same number of facets as Q
having an integer interior point. Then, the number of facets of Q is bounded by
n! volRn(P ) = n! volRn((n + 1)Q) = (n + 1)n n! volRn(Q) ≤ (n + 1)n(nd)n, since Q
is included in the n-dimensional simplex of size nd. This proves the upper bound
for the degree P (0) of the statement of the lemma. �

The next lemma is concerned with the genericity of a smooth sparse system.

Lemma 3.2. With the same notations as in Lemma 3.1 and before, there exists a
nonzero polynomial P (1) ∈ Q[Ω] of degree at most 4n2n+1d2n−1 such that for any
c ∈ QN with P (1)(c) 6= 0, the system H1(c1, X) = 0, . . . , Hn(cn, X) = 0 has exactly
D distinct solutions in An.
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Proof. Consider the incidence variety associated to (∆1, . . . , ∆n)–sparse systems,
namely

W := {(x, c) ∈ (C∗)n × (AN1 × · · · × ANn) :
∑

q∈∆i

ci,qx
q = 0 for 1 ≤ i ≤ n}.

As in [40, Proposition 2.3], it follows that W is a Q-irreducible variety. Let πΩ :
W → AN1 × · · · × ANn be the canonical projection, which is a dominant map.

By [37, Chapter V, Corollary (3.2.1)], there is a nonempty Zariski open set
U(∆1, . . . , ∆n) ⊂ AN1 × · · · × ANn of coefficients c = (c1, . . . , cn) for which the
polynomials H1(c1, X), . . . , Hn(cn, X) have supports ∆1, . . . , ∆n respectively and
the set of their common zeros in (C∗)n is a non–degenerate complete intersection
variety. Then, the Jacobian JH := det(∂Hi/∂Xj)1≤i,j≤n does not vanish at any

point of π−1
Ω (c) for every c ∈ U(∆1, . . . , ∆n).

Let Q(Ω) →֒ Q(W ) be the finite field extension induced by the dominant projec-
tion πΩ. By the preceding paragraph we have that the rational function defined by
JH in Q(W ) is nonzero. Therefore, its primitive minimal polynomial MJ ∈ Q[Ω, T ]
is well defined and satisfies the degree estimates

degΩ MJ ≤ deg W · deg JH ≤
n∏

i=1

(di + 1) ·
n∑

i=1

di ≤ 2ndn+1n

(see [47], [50]).

Let P (1) := P (0)M
(0)
J , where P (0) is the polynomial given by Lemma 3.1 and

M
(0)
J denotes the constant term of the expansion of MJ in powers of T . We claim

that P (1) satisfies the requirements of the statement of the lemma. Indeed, let
c ∈ QN satisfy P (1)(c) 6= 0. Then P (0)(c) 6= 0 holds and so, Lemma 3.1 implies that

H1(c, X) = · · · = Hn(c, X) = 0 is a zero-dimensional system. Furthermore, M
(0)
J (c)

is a nonzero multiple of the product
∏

x∈π−1
Ω (c) JH(c, x). Thus, the non-vanishing

of M
(0)
J (c) shows that all the points of π−1

Ω (c) are smooth and therefore, from e.g.

[37, IV, Theorem 2.2], it follows that π−1
Ω (c) consists of exactly D simple points

in (C∗)n. Moreover, combining the assumption that 0 ∈ ∆i for 1 ≤ i ≤ n with
[33, Theorem 2.4], we deduce that π−1

Ω (c) consists of D simple points in An. The

estimate deg M
(0)
J ≤ degΩ MJ ≤ 2ndn+1n ≤ n2(n+1)d2n−1 implies the statement of

the lemma. �

Finally, we exhibit a generic condition on the coefficients h1, . . . , hn which implies
that assumption (H2) holds.

Lemma 3.3. With the previous assumptions and notations, there exists a nonzero
polynomial P (2) ∈ Q[Ω] with deg P (2) ≤ n(n + 1)#Γ such that for every c :=
(c1, . . . , cn) ∈ QN with P (2)(c) 6= 0, the polynomials hi := Hi(ci, X) (1 ≤ i ≤ n)
satisfy condition (H2).

Proof. Fix a primitive integer inner normal γ ∈ Γ to a lower facet of Â. Let
Mγ ∈ Q[Ω]n×n and Bγ ∈ Q[Ω]n×1 be the matrices constructed from the generic
polynomials H1, . . . , Hn ∈ Q[Ω][X ] as explained in the paragraph preceding condi-
tion (H2). Let D0,γ ∈ Q[Ω] be the (non-zero) determinant of Mγ , and for every
1 ≤ j ≤ n, let Dj,γ be the determinant of the matrix obtained from Mγ by replac-

ing its jth column with Bγ . Set Pγ :=
∏n

j=0 Dj,γ . Finally, take P (2) :=
∏

γ∈Γ Pγ .
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By Cramer’s rule, whenever P (2)(c) 6= 0, we have that the system h1, . . . , hn with
coefficient vector c = (c1, . . . , cn) meets condition (H2).

The degree estimate for P (2) follows from the fact that deg Pγ ≤ n(n + 1) holds
for every γ ∈ Γ, since each of the entries of the matrices whose determinants are
involved has degree 1 in the variables Ω. �

Now, we are ready to state a generic condition on the coefficients of h1, . . . , hn

which implies that (H1) and (H2) hold.

Proposition 3.4. Under the previous assumptions and notations, there exists a
nonzero polynomial P ∈ Q[Ω] with deg P ≤ 4n2n+1d2n−1 +n(n + 1)D such that for
every c ∈ QN with P (c) 6= 0, the polynomials hi := Hi(ci, X) (1 ≤ i ≤ n) satisfy
conditions (H1) and (H2).

Proof. Set P := P (1)P (2), where P (1) is the polynomial of the statement of Lemma
3.2 and P (2) is the one defined in the statement of Lemma 3.3. The result follows
from Lemmas 3.2 and 3.3, and the upper bound #Γ ≤ D for the cardinality of
the set of the distinct inner normal vectors considered (one for each cell of type
(k1, . . . , ks) in the given fine-mixed subdivision). �

3.3. Outline of the algorithm. Now we have all the tools necessary to give
an outline of our algorithm for the computation of a geometric solution of the
(sufficiently generic) sparse system h1 = · · · = hn = 0.

With notations as in the previous subsections, we assume that a fine–mixed
subdivision of A induced by a lifting function ω is given. This means that we are

given the set Γ of inner normals of the lower facets of the convex hull of Â, together
with the corresponding cells of the convex hull of A. In addition, we suppose that
our input polynomials h1, . . . , hn ∈ Q[X ] satisfy conditions (H1) and (H2) and
denote by V1 ⊂ An the affine variety defined by h1, . . . , hn.

First, we choose a generic linear form u ∈ Q[X ] such that:

• u separates the points of the zero–dimensional varieties V1 and V0,γ for
every γ ∈ Γ. This condition is represented by the nonvanishing of a certain
nonconstant polynomial of degree at most 2D2.

• An algorithm for the computation of the minimal polynomial of u in V0,γ

to be described below can be extended to a computation of a geometric
solution of V0,γ according to Lemma 2.4 for every γ ∈ Γ. This condition is
represented by the nonvanishing of a nonconstant polynomial of degree at
most 4D3

γ for each γ ∈ Γ.

• An algorithm for the computation of the minimal polynomial of u in V̂ to be
described below can be extended to a computation of a geometric solution

of V̂ according to Lemma 2.4. This application of Lemma 2.4 requires that
the coefficient vector of the linear form u does not annihilate a nonconstant
polynomial of degree at most 4D4.

Fix ρ ≥ 2. From Theorem 2.2 it follows that a linear form u satisfying these
conditions can be obtained by randomly choosing its coefficients from the set
{1, . . . , 6ρD4} with error probability at most 1/ρ.

Next we compute the monic minimal polynomial m̂u ∈ Q(T )[Y ] of the linear

form u in the curve V̂ introduced in (3.2). For this purpose, we approximate the

Puiseux series expansions of the branches of V̂ lying above 0 by means of a symbolic
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(Newton–Hensel) “lifting” of the common zeros of the zero–dimensional varieties
V0,γ ⊂ An defined by the polynomials (3.4γ) for all γ ∈ Γ (see Section 4).

This in turn requires the computation of a geometric solution of V0,γ for every

γ ∈ Γ. By means of a change of variables we put the system h
(0)
1,γ = · · · = h

(0)
n,γ = 0

defining the variety V0,γ into a “diagonal” form (see Subsection 4.1 below), which

allows us to compute the minimal polynomial m
(0)
u,γ of u in V0,γ . Since the linear

form u satisfies condition 2 of the statement of Lemma 2.4, from this procedure we
derive an algorithm computing a geometric solution of V0,γ according to Lemma
2.4.

Then we “lift” this geometric solution to a suitable (non–archimedean) approx-

imation m̃γ of a factor mγ (over Q(T )) of the desired minimal polynomial m̂u of
u. In the next step we obtain the minimal polynomial m̂u =

∏
γ∈Γ mγ from the

approximate factors m̃γ , namely, we compute the dense representation of the co-
efficients (in Q(T )) of m̂u, using Padé approximation (see Subsection 4.2 below).
Finally, we apply the proof of Lemma 2.4 to derive an algorithm for computing a

geometric solution of the variety V̂ .
In the last step we compute a geometric solution of the variety V1 by substituting

1 for T in the polynomials that form the geometric solution of V̂ .
The whole algorithm for solving the system h1 = · · · = hn = 0 may be briefly

sketched as follows:

Algorithm 3.5.

• Choose the coefficients of a linear form u ∈ Q[X ] at random from the set
{1, . . . , 6ρD4}.

• For each γ ∈ Γ :
– Find a geometric solution of the variety V0,γ defined in (3.5).
– Obtain a straight-line program for the polynomials h1,γ , . . . , hn,γ de-

fined in (3.6) from the coefficients of h1, . . . , hn and the entries of
γ ∈ Zn+1.

– “Lift” the computed geometric solution of V0,γ to an approximation
m̃γ of the factor mγ of m̂u by means of a symbolic Newton–Hensel
procedure.

• Obtain a geometric solution of the curve V̂ :
– Compute the approximation m̃u :=

∏
γ∈Γ m̃γ of m̂u.

– Compute the dense representation of m̂u from m̃u using Padé approx-
imation.

– Find a geometric solution of V̂ applying the proof of Lemma 2.4.
• Substitute 1 for T in the polynomials which form the geometric solution

of V̂ computed in the previous step to obtain a geometric solution of the
variety V1.

4. Solution of the variety V̂

4.1. Geometric solutions of the starting varieties. In this subsection we ex-
hibit an algorithm that computes, for a given inner normal γ ∈ Γ, a geometric

solution of the variety V0,γ ⊂ (C∗)n defined by the polynomials h
(0)
i,γ (1 ≤ i ≤ n)

for polynomials h1, . . . , hn satisfying assumptions (H1) and (H2). This algorithm
is based on the procedure presented in [25].
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Fix a cell C = (C(1), . . . , C(s)) of type (k1, . . . , ks) of the given fine–mixed subdi-
vision of A and let γ ∈ Γ be its associated inner normal. For 1 ≤ ℓ ≤ s, we denote

by h
(ℓ)
1 , . . . , h

(ℓ)
kℓ

the polynomials in the set {h
(0)
1,γ , . . . , h

(0)
n,γ} that are supported in

C(ℓ). In the sequel, whenever there is no risk of confusion we will not write the
subscript γ indicating which cell we are considering.

Our hypotheses imply that h
(ℓ)
1 , . . . , h

(ℓ)
kℓ

are Q–linear combinations of precisely

kℓ+1 monomials in Q[X ] and, up to a multiplication by a monomial, we may assume
one of them to be the constant term. Denote these monomials by Xαℓ,0 , . . . , Xαℓ,kℓ ,

with αℓ,0 := 0 ∈ Zn. Let M̃(ℓ) be the matrix of Qkℓ×(kℓ+1) for which the following
equality holds in Q[X, X−1]kℓ :

(4.1) M̃(ℓ)




Xαℓ,kℓ

...
Xαℓ,0


 =




h
(ℓ)
1
...

h
(ℓ)
kℓ


 ,

and let M(ℓ) denote the square (kℓ × kℓ)–matrix obtained by deleting the last

column from M̃(ℓ). Set

M :=




M(1) 0 · · · 0
0 M(2) · · · 0

0 0
. . . 0

0 0 · · · M(s)


 ,

where 0 here represents different block matrices with all its entries equal to 0 ∈ Q.
Then M is the matrix defined by the coefficients of the nonconstant terms of the

(Laurent) polynomials h
(0)
1,γ , . . . , h

(0)
n,γ , up to a translation.

Due to condition (H2) we have that the matrix M is invertible, which in turn
implies that the square matrices M(ℓ) are invertible for 1 ≤ ℓ ≤ s. Following [25],

we apply Gaussian elimination to the matrix M̃(ℓ) for 1 ≤ ℓ ≤ s and obtain a set
of kℓ + 1 binomials




1 0 0 . . . −cαℓ,kℓ

0 1 0 . . . −cαℓ,kℓ−1

...
. . .

0 0 . . . 1 −cαℓ,1







Xαℓ,kℓ

Xαℓ,kℓ−1

...
Xαℓ,1


 =




Xαℓ,kℓ − cαℓ,kℓ

Xαℓ,kℓ−1 − cαℓ,kℓ−1

...
Xαℓ,1 − cαℓ,1




that generate the same linear subspace of Q[X, X−1] as the polynomials in (4.1).
Therefore, for 1 ≤ ℓ ≤ s the set of common zeros in (C∗)n of the polynomials

h
(ℓ)
1 , . . . , h

(ℓ)
kℓ

is given by the system Xαℓ,kℓ = cαℓ,kℓ
, . . . , Xαℓ,1 = cαℓ,1

. Putting
these s systems together, we obtain a binomial system of the form

(4.2) Xα1 = p1, . . . , X
αn = pn,

with αi ∈ Zn and pi ∈ Q \ {0} (1 ≤ i ≤ n), that defines the variety V0,γ . Note that
the second part of condition (H2) ensures the non–vanishing of the constants pi for
1 ≤ i ≤ n.

Now, let E denote the (n × n)–matrix whose columns are the exponent vectors
α1, . . . , αn. Using [51, Proposition 8.10], we obtain unimodular matrices K =
(ki,j)1≤i,j≤n, L = (li,j)1≤i,j≤n of Zn×n, and a diagonal matrix diag(r1, . . . , rn) ∈
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Zn×n which give the Smith Normal Form for E , i.e., matrices such that the identity

(4.3) K · E · L = diag(r1, . . . , rn)

holds in Zn×n. We observe that the upper bound

(4.4) log ‖K‖ ≤ (4n + 5)(log n + log ‖E‖)

holds, where ‖A‖ denotes the maximum of the absolute value of the entries of a
given matrix A [51, Proposition 8.10].

Let Z1, . . . , Zn be new indeterminates, and write Z := (Z1, . . . , Zn). We intro-

duce the change of coordinates given by Xi := Z
k1,i

1 · · ·Z
kn,i
n for 1 ≤ i ≤ n. Making

this change of coordinates in (4.2) we obtain the system

ZKα1 = p1, . . . , Z
Kαn = pn,

which is equivalent to the “diagonal” system

Z
rj

j =

n∏

i=1

(ZKαi)li,j =

n∏

i=1

p
li,j

i =: qj (1 ≤ j ≤ n).

Inverting some of the coefficients qj if necessary we may assume without loss of
generality that the integers r1, . . . , rn are positive.

We first describe an algorithm for computing a geometric solution of the variety
V0,γ ⊂ An in the coordinate system of An defined by Z1, . . . , Zn. This algorithm
takes as input the set of polynomials Zr1

1 −q1, . . . , Z
rn
n −qn ∈ Q[Z1, . . . , Zn] defining

V0,γ in the coordinates Z1, . . . , Zn, and outputs a linear form ũ ∈ Q[Z1, . . . , Zn]
which separates the points of V0,γ , the minimal polynomial mũ ∈ Q[Y ] of ũ in V0,γ

and the parametrizations of Z1, . . . , Zn by the zeros of mũ.
For this purpose, assume that we are given a linear form ũ := ũ1Z1+· · ·+ũnZn ∈

Q[Z1, . . . , Zn] which separates the points of V0,γ . Observe that the fact that ũ is a

separating linear form for V0,γ implies that ũi 6= 0 holds for i = 1, . . . , n. Let Y, Ỹ
be new indeterminates and let m1, . . . , mn ∈ Q[Y ] be the sequence of polynomials
defined recursively by:

(4.5) m1 := ũ−r1
1 Y r1−q1, mi := ResỸ

(
ũ−ri

i (Y −Ỹ )ri−qi, mi−1(Ỹ )
)

for 2 ≤ i ≤ n.

We claim that the polynomial mn equals (up to scaling by a nonzero element of
Q) the minimal polynomial mũ ∈ Q[Y ] of the coordinate function induced by
ũ in the Q–algebra extension Q →֒ Q[V0,γ ]. Indeed, for every 2 ≤ i ≤ n, the

polynomial mi(Y ) is a linear combination of ũ−ri

i (Y − Ỹ )ri − qi and mi−1(Ỹ )

over Q[Y, Ỹ ]. Let u(i) := ũ1Z1 + · · · + ũiZi for 1 ≤ i ≤ n. Then, the identity
ũ−ri

i (u(i) − u(i−1))ri − qi = 0 holds in Q[V0,γ ]. Thus, assuming inductively that

mi−1(u
(i−1)) = 0 in Q[V0,γ ], it follows that mi(u

(i)) = 0 in Q[V0,γ ] as well. Taking
into account that deg mn ≤ r1 . . . rn and that mũ is a nonzero polynomial of degree
Dγ := r1 · · · rn = #(V0,γ), we conclude that our claim holds.

In order to compute the polynomial mũ, we compute the resultants in (4.5). Since

the resultant ResỸ

(
ũ−ri

i (Y − Ỹ )ri − qi, mi−1(Ỹ )
)

is a polynomial of Q[Y ] of degree

r1 · · · ri, by univariate interpolation in the variable Ỹ we reduce its computation to

the computation of r1 · · · ri + 1 resultants of univariate polynomials in Q[Ỹ ]. This
interpolation step requires O

(
M(r2

1 · · · r
2
i )

)
arithmetic operations in Q and does not

require any division by a nonconstant polynomial in the coefficients ũ1, . . . , ũn (see,
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e.g., [9], [10]). Each univariate resultant can be computed using the algorithms in
e.g. [5], [56] with M(r1 · · · ri) arithmetic operations in Q. Altogether, we obtain an
algorithm for computing the minimal polynomial mũ which performs O

(
M(D2

γ)
)

arithmetic operations in Q.
Next, we extend this algorithm to an algorithm for computing a geometric solu-

tion of V0,γ as explained in Subsection 2.3. We obtain the following result:

Proposition 4.1. Suppose that the coefficients of the linear form ũ are randomly
chosen in the set {1, . . . , 4nρD3

γ}, where ρ is a fixed positive integer. Then the
algorithm described above computes a geometric solution of the variety V0,γ (in the
coordinate system Z1, . . . , Zn) with error probability at most 1/ρ using O

(
nM(D2

γ)
)

arithmetic operations in Q.

Proof. As proved by our previous arguments, it is clear that the algorithm de-
scribed computes a geometric solution of V0,γ with the stated number of arithmetic
operations in Q. There remains to analyze its error probability.

The only probabilistic step of the algorithm is the choice of the coefficients of
the linear form ũ, which must satisfy two requirements. First, ũ must separate the
points of the variety V0,γ . Since V0,γ consists of Dγ distinct points of An, from
Theorem 2.2 it follows that for a random choice of the coefficients of ũ in the set
{1, . . . , 4nρD3

γ}, the linear form ũ separates the points of V0,γ with error probability
at most 1/4nρDγ ≤ 1/2ρ.

The second requirement concerns the computation of the univariate resultants
of the generic versions of the polynomials in (4.5). This is required in order to
extend the algorithm for computing the minimal polynomial mũ to an algorithm
for computing a geometric solution of the variety V0,γ . We use a fast algorithm
for computing resultants over Q(Λ) based on the Extended Euclidean Algorithm
(EEA for short). We shall perform the EEA over the ring of power series Q[[Λ− ũ]],
truncating all the intermediate results up to order 2. Therefore, the choice of
the coefficients of ũ must guarantee that all the elements of Q[Λ] which have to
be inverted during the execution of the EEA are invertible elements of the ring
Q[[Λ − ũ]].

For this purpose, we observe that, similarly to the proof of [56, Theorem 6.52],
one deduces that all the denominators of the elements of Q(Λ) arising during the
application of the EEA to the generic version of the polynomials ũ−ri

i (α−u(i−1))ri−
qi and mi−1(u

(i−1)) are divisors of at most r1 · · · ri−1 polynomials of Q[Λ] of degree
2r1 · · · ri for any α ∈ Q. This EEA step must be executed for r1 · · · ri distinct
values of α ∈ Q, in order to perform the interpolation step. Hence the product
of the denominators arising during all the applications of the EEA has degree at
most 2nD3

γ. Therefore, from Theorem 2.2 we conclude that for a random choice

of its coefficients in the set {1, . . . , 4nρD3
γ}, the linear form ũ satisfies our second

requirement with error probability at most 1/2ρ.
The lemma follows putting both error probability estimates together. �

Finally, we compute a geometric solution of the variety V0,γ in the original co-
ordinate system defined by X1, . . . , Xn.

For this purpose, we compute the minimal polynomial mu ∈ Q[Y ] of a linear form

u = u1X1 + · · · + unXn ∈ Q[X1, . . . , Xn] in V0,γ . Let V0,γ := {x
(1,γ)
0 , . . . , x

(Dγ ,γ)
0 }.

Then we have mu(Y ) =
∏Dγ

j=1(Y − u(x
(j,γ)
0 )). In order to compute mu, we use
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the polynomials mũ, w̃1, . . . , w̃n which form the previously computed geometric

solution of V0,γ in the variables Z1, . . . , Zn: from the identities Xi := Z
k
(γ)
1,i

1 · · ·Z
k
(γ)
n,i

n

(1 ≤ i ≤ n) we deduce that mu equals the minimal polynomial of the image of

the projection ηu : V0,γ → A1 defined by η
(γ)
u (z1, . . . , zn) :=

∑n
i=1 uiz1

k
(γ)
1,i · · · zn

k
(γ)
n,i .

Now, the identities Zi = w̃i(ũ), which hold in Q[V0,γ ] for 1 ≤ i ≤ n, imply that

(4.6) u =

n∑

i=1

ui

(
w̃1(ũ)

)k
(γ)
1,i · · ·

(
w̃n(ũ)

)k
(γ)
n,i

holds in Q[V0,γ ], from which we easily conclude that mu satisfies the following
identity:

(4.7) mu(Y ) = ResỸ

(
Y −

n∑

i=1

ui

(
w̃1(Ỹ )

)k
(γ)
1,i · · ·

(
w̃n(Ỹ )

)k
(γ)
n,i , mũ(Ỹ )

)
.

We compute the monomials
(
w̃1(ũ)

)
k
(γ)
1,i · · ·

(
w̃n(ũ)

)
k
(γ)
n,i (1 ≤ i ≤ n) in the right–

hand side of (4.6) modulo mũ(Y ), with O
(
n2 log(maxi,j |k

(γ)
i,j |)M(Dγ)

)
additional

arithmetic operations in Q. From (4.4) it follows that

O
(
n2 log(max

i,j
|k

(γ)
i,j |)M(Dγ)

)
= O

(
n3 log(n‖Eγ‖)M(Dγ)

)
,

where Eγ is the matrix of the exponents of the cell corresponding to the inner
normal γ. Observe that all these steps are independent of the coefficients of the
linear form u we are considering and therefore do not introduce any division by a
nonconstant polynomial in the coefficients u1, . . . , un.

In the next step we compute the right–hand side of (4.6) modulo mũ(Y ), with
O

(
nDγ

)
arithmetic operations in Q. Then we compute the resultant (4.7) by

a process which interpolates (4.7) in the variable Y to reduce the question to the
computation of Dγ +1 univariate resultants, in the same way as for the computation
of the resultants in (4.5). This requires O

(
M(Dγ)2

)
arithmetic operations in Q.

If the linear form u separates the points of V0,γ , then we can extend the algorithm
for computing mu(Y ) to an algorithm for computing a geometric solution of V0,γ

with the algorithm underlying the proof of Lemma 2.4. This extension requires that
the coefficients u1, . . . , un of the linear form u do not annihilate the denominators
in Q[Λ] which arise from the application of the algorithm described above to the
generic version Λ1X1 + · · · + ΛnXn of the linear form u. Such denominators arise
only during the computation of the generic version of the resultant (4.7). Hence,
with a similar analysis as in the proof of Proposition 4.1, we conclude that, if
the coefficients of u are chosen randomly in the set {1, . . . , 4ρD3

γ}, then the error
probability of our algorithm is bounded by 1/ρ. In conclusion, we have:

Proposition 4.2. Suppose that we are given a geometric solution of V0,γ in the
coordinate system Z1, . . . , Zn, as provided by the algorithm underlying Proposi-
tion 4.1, and the coefficients of the linear form u are randomly chosen in the set
{1, . . . , 4ρD3

γ}, where ρ is a fixed positive integer. Then the algorithm described
above computes a geometric solution of the variety V0,γ with error probability at
most 1/ρ using O

(
n3 log(n‖Eγ‖)M(Dγ)2

)
arithmetic operations in Q.

Finally, from Propositions 4.1 and 4.2 and the fact that ‖Eγ‖ is bounded by
Q := 2 max1≤i≤n{‖q‖; q ∈ ∆i}, we immediately deduce the following result:
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Theorem 4.3. Suppose that the coefficients of the linear forms ũ and u of the state-
ment of Propositions 4.1 and 4.2 are chosen at random in the set {1, . . . , 4nρD3},
where ρ is a fixed positive integer. Then the algorithm underlying Propositions 4.1
and 4.2 computes a geometric solution of the varieties V0,γ for all γ ∈ Γ with error
probability at most 2/ρ using O

(
n3 log(nQ)M(D)2

)
arithmetic operations in Q.

4.2. The computation of a geometric solution of the first deformation.

The second step of our algorithm consists in the computation of a geometric solution

of the curve V̂ of (3.2). This will be done by “lifting” the geometric solutions of
the varieties V0,γ computed in the previous section for all γ ∈ Γ.

We recall the definition of the variety V̂ . Let I denote the ideal of Q[X, T ] gener-

ated by the polynomials ĥ1, . . . , ĥn of (3.1), which form the polyhedral deformation
of the generic polynomials h1, . . . , hn, and let J denote the Jacobian determinant of

ĥ1, . . . , ĥn with respect to the variables X1, . . . , Xn. Let V (I) be the set of common

zeros in An+1 of ĥ1, . . . , ĥn. Then V̂ := V (I : J∞).
Alternatively, let π : V (I) → A1 be the linear projection defined by π(x, t) = t.

Consider the decomposition of V (I) into its irreducible components V (I) =
⋃r+s

i=1 Ci.
Suppose that the restriction π|Ci

: Ci → A1 of the projection π is dominant for

1 ≤ i ≤ r and is not dominant for r + 1 ≤ i ≤ s. We shall show that V̂ :=
⋃r

i=1 Ci

holds, i.e., V̂ is the union of all the irreducible components of V (I) which project

dominantly over A1. Furthermore, we shall show that V̂ ⊂ An+1 is a curve which
constitutes a suitable deformation of the variety defined by the system h1 = · · · =
hn = 0. For this purpose, we shall use the following technical lemma:

Lemma 4.4. Let F1, . . . , Fn ∈ Q[X, T ] and V := {(x, t) ∈ An+1 : F1(x, t) =
0, . . . , Fn(x, t) = 0}. Set I := (F1, . . . , Fn) ⊂ Q[X, T ] and let J denote the Jacobian
determinant of F1, . . . , Fn with respect to the variables X. Consider the linear
projection π : V → A1 defined by π(x, t) := t. Assume that #π−1(t) ≤ D holds
for generic values of t ∈ A1 and that there exists a point t0 ∈ A1 such that the
fiber π−1(t0) is a zero-dimensional variety of degree D with J(x, t0) 6= 0 for every
(x, t0) ∈ π−1(t0).

Let Vdom be the union of all the irreducible components C of V with π(C) = A1.
Then:

• Vdom is a nonempty equidimensional variety of dimension 1.
• Vdom is the union of all the irreducible components of V having a non-empty

intersection with π−1(t0).
• Vdom = V (I : J∞).
• The restriction π|Vdom

: Vdom → A1 is a dominant map of degree D.

Proof. First we observe that dim(C) ≥ 1 for each irreducible component C of V ,
since V is defined by n polynomials in an (n + 1)-dimensional space.

Let C be an irreducible component of V for which π−1(t0)∩C 6= ∅ holds. Consider
the restriction π|C : C → A1 of the projection map π. Then we have that π|−1

C (t0) is
a nonempty zero-dimensional variety, which implies that the generic fiber of π|C is
either zero-dimensional or empty. Since dim(C) ≥ 1, the Theorem on the Dimension
of Fibers implies that dim(C) = 1 and that π|C : C → A1 is a dominant map with
generically-finite fibers. This shows that C ⊂ Vdom and, in particular, that Vdom is
nonempty.
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Conversely, we have that π−1(t0) ∩ C 6= ∅ holds for any irreducible component C
of Vdom. Indeed, assume on the contrary the existence of an irreducible component
C0 not satisfying this condition. Then, there is a point t1 ∈ A1 having a finite
fiber π−1(t1) such that π|−1

C0
(t1) and π|−1

C (t1) have maximal cardinality for every C

with C ∩ π−1(t0) 6= ∅. This implies that #π−1(t1) > #π−1(t0) = D, leading to a
contradiction.

We conclude that Vdom is the nonempty equidimensional variety of dimension
1 which consists of all the irreducible components C of V with π−1(t0) ∩ C 6= ∅.
Furthermore, this shows that the restriction π|Vdom

: Vdom → A1 is a dominant
map of degree D.

Finally we show that the identity Vdom = V (I : J∞) holds. First, note that the
irreducible components of V (I : J∞) are all the irreducible components of V where
the Jacobian J does not vanish identically. Thus, it is clear that Vdom ⊂ V (I : J∞),
since J does not vanish at the points of π−1(t0)∩C for each irreducible component
C of Vdom. On the other hand, if C is an irreducible component of V for which
the projection π|C : C → A1 is not dominant, then C is the set of common zeros
of the polynomials F1, . . . , Fn, T − tC for some value tC . Since dim(C) ≥ 1, we
have that the Jacobian matrix ∂(F1, . . . , Fn, T − tC)/∂(X1, . . . , Xn, T ) is singular
at every point (x, tC) of C. Hence, its determinant, which equals J , vanishes over
C. �

Now we return to the study of the variety V̂ and show that the assumptions of
Lemma 4.4 hold. Observe that π−1(t) = Vt × {t} holds for every t ∈ A1, where

Vt := {x ∈ An : ĥ1(x, t) = 0, . . . , ĥn(x, t) = 0}. Furthermore, the polynomi-

als ĥ1(X, t), . . . , ĥn(X, t) are obtained by a suitable substitution of the variables
Ω of the generic polynomials H1, . . . , Hn ∈ Q[Ω, X ] with supports ∆1, . . . , ∆n

introduced in (3.7). Indeed, if c = (c1, . . . , cn) is the vector of coefficients of

h1, . . . , hn, the coefficient vector of ĥi(X, t) (1 ≤ i ≤ n) is (ci,qt
ωi(q))q∈∆i

for every

t ∈ A1. By Lemma 3.1, there exists a nonzero polynomial P (0) ∈ Q[Ω] such that
for any c′ = (c′1, . . . , c

′
n) with P (0)(c′) 6= 0 the associated sparse system defines

a zero-dimensional variety. In particular, the coefficients c = (c1, . . . , cn) of our
input polynomials h1 := H1(c1, X), . . . , hn = Hn(cn, X) satisfy P (0)(c) 6= 0. This

shows that the polynomial P
(0)
T ∈ Q[T ] obtained by substituting Ωi,q 7→ ci,qT

ωi(q)

(1 ≤ i ≤ n, q ∈ ∆i) in the polynomial P (0) is nonzero, since it does not vanish at
T = 1. We conclude that Vt is a zero-dimensional variety for all but a finite number
of t ∈ A1. Thus, π−1(t) is finite for generic values of t ∈ A1.

Finally, by condition (H1), the fiber π−1(1) = V (h1, . . . , hn) × {1} is a zero–
dimensional variety of degree D = deg(π) and the Jacobian determinant J :=

det(∂ĥi/∂Xj)1≤i,j≤n does not vanish at any of its points. On the other hand, the
fact that #π−1(t) ≤ D holds for generic values t ∈ A1 follows from the BKK
theorem.

This shows that the variety V (I) and its defining polynomials ĥ1, . . . , ĥn satisfy
all the assumptions of Lemma 4.4. Thus, we have:

Lemma 4.5. The variety V̂ ⊂ An+1 is a curve. Furthermore, every irreducible

component of V̂ has a nonempty intersection with the fiber π−1(1) of the projection

map π : V̂ → A1.
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4.2.1. Generic linear projections of V̂ . In order to compute a geometric solution

of the space curve V̂ , we shall first exhibit a procedure for computing the minimal

polynomial of a generic linear projection of V̂ . Let u ∈ Q[X1, . . . , Xn] be a linear
form which separates the points of the “initial varieties” V0,γ for all the inner
normals γ := (γ1, . . . , γn+1) of the lower facets of the polyhedral deformation under

consideration. Let πu : V̂ → A2 be the morphism defined by πu(x, t) := (t, u(x)).

Since the projection map π : V̂ → A1 defined by π(x, t) := t is dominant, it follows
that the Zariski closure of the image of πu is a Q–definable hypersurface of A2.
Denote by Mu ∈ Q[T, Y ] a minimal defining polynomial for this hypersurface. For
the sake of the argument, we shall assume further that the identity deg(π) = D,
and thus degY Mu = D, hold.

We can apply estimate (2.2) of Lemma 2.3 in order to estimate degT Mu in

combinatorial terms (compare with [43, Theorem 1.1]). Indeed, let Q̂1, . . . , Q̂n ⊂

Rn+1 be the Newton polytopes of the polynomials ĥ1, . . . , ĥn of (3.1), and let ∆ ⊂
Rn+1 be the standard unitary simplex in the plane {T = 0}. Then the following
estimate holds:

(4.8) degT Mu ≤ E := MVn+1(∆, Q̂1, . . . , Q̂n).

Furthermore, equality holds in (4.8) for a generic choice of the coefficients of the

polynomials ĥi and the linear form u.
More precisely, we shall exhibit a procedure for computing the unique monic

multiple in Q(T )[Y ] of Mu of degree D. This polynomial can be alternatively
defined as explained in what follows:

Since the projection map π : V̂ → A1 is dominant, it induces an extension

Q[T ] →֒ Q[V̂ ], where Q[V̂ ] denotes the coordinate ring of V̂ . This variety being

a curve, Q[V̂ ] turns out to be a finitely generated Q[T ]-module. Thus, tensoring

with Q(T ), we deduce that Q[V̂ ]⊗Q(T ) is a Q(T )–vector space of finite dimension.

We claim that Q[V̂ ] ⊗ Q(T ) = Q[V (I)] ⊗ Q(T ) holds. Indeed, since V̂ consists of
the irreducible components of V (I) which are mapped dominantly onto A1 by the
projection π, for each of the remaining irreducible components C of V (I), the set
π(C) ⊂ C is a zero–dimensional Q–definable variety. This implies that I(C)∩Q[T ] 6=
{0} holds.

Let m̂u be the minimal polynomial of u in the extension Q(T ) →֒ Q[V̂ ] ⊗ Q(T ).

The fact that Q[V̂ ]⊗Q(T ) is finite–dimensional Q(T )–vector space shows that the

affine variety V := {x̄ ∈ An(Q(T )∗) : ĥ1(x̄) = 0, . . . , ĥn(x̄) = 0} has dimension zero.
Here Q(T )∗ :=

⋃
q∈N

Q((T 1/q)) denotes the field of Puiseux series in the variable

T over Q (see, e.g., [57]) and ĥ1, . . . , ĥn are considered as elements of Q(T )[X ].

Our hypotheses imply that there exist D distinct n–tuples x(ℓ) := (x
(ℓ)
1 , . . . , x

(ℓ)
n ) ∈

(Q(T )∗)n of Puiseux series such that the following equalities hold in Q(T )∗ for
1 ≤ ℓ ≤ D:

(4.9) ĥ1(x
(ℓ), T ) = 0 , . . . , ĥn(x(ℓ), T ) = 0

(see [25]). Since Q[V̂ ] ⊗ Q(T ) is the coordinate ring of the Q(T )–variety V, from

(4.9) we deduce that the dimension of Q[V̂ ]⊗Q(T ) over Q(T ) equals D . Moreover,
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since as a consequence of our assumptions degY m̂u = D holds, we conclude that

(4.10) m̂u =

D∏

ℓ=1

(
Y − u(x(ℓ))

)
.

Since Mu(T, u(X)) ∈ I(V̂ ), it follows that Mu(T, u(X)) = 0 holds in Q[V̂ ]⊗Q(T ),
from which we conclude that Mu is a multiple of m̂u by a factor in Q(T )[Y ]. Taking
into account that both are polynomials of degree D in the variable Y and that m̂u

is monic in this variable, we deduce that m̂u is the quotient of Mu by its leading
coefficient.

4.2.2. A procedure for computing m̂u. Now we exhibit a procedure for computing
the minimal polynomial m̂u, which is based on the expression (4.10) of m̂u in terms
of the Puiseux expansions (3.3). Then we will apply Lemma 2.4 to this procedure

in order to obtain an algorithm for computing a geometric solution of the curve V̂ .
With notations as in Section 3.1, let Γ ⊂ Zn+1 be the set of primitive integer

vectors of the form γ := (γ1, . . . , γn, γn+1) ∈ Zn+1 with γn+1 > 0 for which there
is a cell C = (C(1), . . . , C(s)) of type (k1, . . . , ks) of the subdivision of A induced

by ω such that Ĉ has inner normal γ. As asserted in Section 3.1, if γ ∈ Γ is the

inner normal of the lifting Ĉ of a cell C of type (k1, . . . , ks), there exist Dγ :=

k1! · · · ks! ·vol(C) vectors of Puiseux series x(j,γ) := (x
(j,γ)
1 , . . . , x

(j,γ)
n ) ∈ An(Q(T )∗)

(1 ≤ j ≤ Dγ) of the form

x
(j,γ)
i :=

∑

m≥0

x
(j,γ)
i,m T

γi+m

γn+1

satisfying (4.9). Considering the projection of the branches of V̂ parametrized by
the Dγ vectors of Puiseux series x(j,γ) for each γ ∈ Γ, we obtain the following

element mγ of Q((T 1/γn+1))[Y ]:

(4.11) mγ :=

Dγ∏

j=1

(
Y − u(x(j,γ))

)
.

From (2.1) we conclude that (4.10) may be expressed in the following way:

(4.12) m̂u =
∏

γ∈Γ

mγ .

Since m̂u belongs to Q(T )[Y ] and its primitive multiple Mu ∈ Q[T, Y ] satisfies
the degree estimate degT Mu ≤ E, in order to compute the dense representation
of m̂u we shall compute the Puiseux expansions of the coefficients of the factors
mγ ∈ Q((T 1/γn+1))[Y ] of m̂u truncated up to order 2E. Using Padé approximation
it is possible to recover the dense representation of m̂u from this data.

Fix γ ∈ Γ and set x
(j,γ)
m := (x

(j,γ)
1,m , . . . , x

(j,γ)
n,m ) for every m ≥ 0 and 1 ≤ j ≤ Dγ .

Since

ĥi

( ∑

m≥0

x
(j,γ)
1,m T

γ1+m

γn+1 , . . . ,
∑

m≥0

x(j,γ)
n,m T

γn+m
γn+1 , T

)
= 0
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holds for 1 ≤ j ≤ Dγ and 1 ≤ i ≤ n, we have

(4.13)

0 = T−miĥi

( ∑
m≥0 x

(j,γ)
1,m T γ1+m, . . . ,

∑
m≥0 x

(j,γ)
n,m T γn+m, T γn+1

)

= T−miĥi

(
T γ1

∑
m≥0 x

(j,γ)
1,m T m, . . . , T γn

∑
m≥0 x

(j,γ)
n,m T m, T γn+1

)

= hi,γ

( ∑
m≥0 x

(j,γ)
m T m, T

)
,

according to (3.6). Therefore the polynomial mγ(T γn+1, Y ) ∈ Q((T ))[Y ] can be

expressed in terms of the power series solutions σ(j,γ) := (σ
(j,γ)
1 , . . . , σ

(j,γ)
n ) :=∑

m≥0 x
(j,γ)
m T m (1 ≤ j ≤ Dγ) of h1,γ , . . . , hn,γ . Indeed, from (4.11) it follows that

(4.14)

mγ(T γn+1, Y ) =
∏Dγ

j=1

(
Y −

∑n
i=1 ui

∑
m≥0 x

(j,γ)
i,m T γi+m

)

=
∏Dγ

j=1

(
Y −

∑
m≥0

∑n
i=1 uix

(j,γ)
i,m T γiT m

)

=
∏Dγ

j=1

(
Y −

∑
m≥0 uγ(x

(j,γ)
m )T m

)

=
∏Dγ

j=1

(
Y − uγ(

∑
m≥0 x

(j,γ)
m T m)

)
=: muγ

(T, Y ),

where uγ :=
∑n

i=1 uiT
γiXi. We conclude that the Laurent polynomial

mγ(T γn+1,Y ) ∈ Q((T ))[Y ] may be considered as the minimal polynomial muγ
(T,Y )

of the projection induced by uγ on the subvariety Vγ of An(Q(T )∗) consisting of

the set of power series {σ(1,γ), . . . , σ(Dγ ,γ)}. This remark will allow us to compute
a suitable approximation to the Laurent polynomial mγ(T γn+1, Y ) in Q((T ))[Y ].

In order to describe this approximation, we introduce the following terminology:

for G, G̃ ∈ Q((T )) and s ∈ Z, we say that G̃ approximates G with precision s in

Q((T )) if the Laurent series G − G̃ has order at least s + 1 in T . We shall use the

notation G ≡ G̃ mod (T s+1). Furthermore, if G, G̃ are two elements of a polynomial

ring Q((T ))[Y ], we say that G̃ approximates G with precision s if every coefficient

ã ∈ Q((T )) of G̃ approximates the corresponding coefficient a ∈ Q((T )) of G with
precision s (in the sense of the previous definition).

Proposition 4.6. Fix γ := (γ1, . . . , γn) ∈ Γ and assume that a geometric solution
of the variety V0,γ is given, as provided by Theorem 4.3. Assume further that the
coefficients of the linear form u of the given geometric solution of V0,γ are randomly
chosen in the set {1, . . . , 4ρD3

γ} for a given ρ ∈ N. Then there is an algorithm
which computes an approximation to the polynomial muγ

∈ Q((T ))[Y ] with precision

2Eγn+1. The procedure requires O
(
(nLγ + nΩ)M(Dγ)

(
M(Mγ)M(Dγ) + Eγn+1

))

arithmetic operations in Q , where Mγ := max{γ1, . . . , γn} and Lγ is the number
of arithmetic operations required to evaluate the polynomials hi,γ of (3.6), and has
error probability at most 2/ρ.

Proof. Let notations and assumptions be as before. In order to compute the re-
quired approximation of the polynomial muγ

we first compute the corresponding
approximation of the polynomials that form a geometric solution of the variety
Vγ := {σ(j,γ); 1 ≤ j ≤ Dγ}. Observe that

{σ(j,γ)(0); 1 ≤ j ≤ Dγ} = {x
(j,γ)
0 ; 1 ≤ j ≤ Dγ}

= V (h
(0)
1,γ , . . . , h(0)

n,γ) ∩ (C∗)n

= V (h1,γ(X, 0), . . . , hn,γ(X, 0)) ∩ (C∗)n = V0,γ
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holds. Since det(∂hi,γ(X, 0)/∂Xk)1≤i,k≤n(x
(j,γ)
0 ) 6= 0 holds for 1 ≤ j ≤ Dγ , we may

apply of the global Newton iterator of [21] (see also [50]) in order to “lift” the given
geometric solution of V0,γ to the geometric solution of the variety Vγ associated to
the linear form u ∈ Q[X ] with any prescribed precision.

Denote m
(0)
u,γ , w

(0)
u,1,γ , . . . , w

(0)
u,n,γ ∈ Q[Y ] the polynomials which form the given

geometric solution of V0,γ , as provided by the algorithm underlying Theorem 4.3.

Recall that m
(0)
u,γ

(
u(x

(j)
0 )

)
= 0 and (x

(j,γ)
0 )i = w

(0)
u,i,γ

(
u(x

(j)
0 )

)
holds for 1 ≤ i ≤ n

and 1 ≤ j ≤ Dγ . The global Newton iterator is a recursive procedure whose kth

step computes approximations m
(k)
u,γ , w

(k)
u,1,γ , . . . , w

(k)
u,n,γ ∈ Q[T, Y ] of the polynomials

mu,γ , wu,1,γ , . . . , wu,n,γ which form the geometric solution of Vγ associated with the
linear form u with precision 2k for any k ≥ 0.

Assume without loss of generality that γi ≥ 0 and 0 = min{γ1, . . . , γn} hold for
1 ≤ i ≤ n. Indeed, if there exists γi < 0, setting γi0 := min{γ1, . . . , γn} we have

T−γi0Dγ mu,γ(T γn+1, T γi0Y ) =

Dγ∏

j=1

T−γi0

(
T γi0Y −

n∑

i=1

ui

∑

m≥0

x
(j,γ)
i,m T γi+m

)

=

Dγ∏

j=1

(
Y − T−γi0

n∑

i=1

ui

∑

m≥0

x
(j,γ)
i,m T γi+m

)

=

Dγ∏

j=1

(
Y −

n∑

i=1

ui

∑

m≥0

x
(j,γ)
i,m T γi−γi0+m

)
.

Since γi − γi0 ≥ 0 holds for 1 ≤ i ≤ n, this shows that the computation of an
approximation muγ

:= mγ(T γn+1, Y ) can be easily reduced to a situation in which
γi ≥ 0 holds for 1 ≤ i ≤ n.

Note that the global Newton iterator cannot be directly applied in order to
compute the geometric solution of {σ(j,γ); 1 ≤ j ≤ Dγ} associated with the linear
form uγ ∈ Q[T ][X ], because the coefficients of uγ are nonconstant polynomials of
Q[T ]. Indeed, two critical problems arise:

(1) Although by hypothesis uγ separates the points of Vγ , it might not separate
the points of V0,γ and it is not clear from which precision on, the corre-
sponding approximations of the points of Vγ are separated by uγ . Requiring
uγ to be a separating form for all the approximations of the points of Vγ is
an essential hypothesis for the iterator of [21] which cannot be suppressed
without causing a significant growth of the complexity of the procedure (see
[30], [31]).

(2) The iterator of [21] makes critical use of the fact that the coefficients of
the linear form under consideration are elements of Q in order to determine
how a given precision can be achieved.

Nevertheless, we shall exhibit a modification of the procedure which computes an
approximation of muγ

(T, Y ) with precision 2γn+1E without changing the asymp-
totic number of arithmetic operations performed.

In order to circumvent (1) we require an additional generic condition to be
satisfied by the coefficients u1, . . . , un defining uγ :=

∑n
i=1 uiT

γiXi. Recall that

uγ(σ(j,γ)) =
∑

m≥0

( ∑n
i=1 uix

(j,γ)
i,m−γi

)
T m for every 1 ≤ j ≤ Dγ , where x

(j,γ)
i,m−γi

:= 0
for m < γi. To state this condition, we need the following claim:
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Claim. Set Mγ := max{γ1, . . . ,γn} and let Λ1, . . . , Λn be indeterminates over
C[T,X ]. Then the following inequality holds for every 1 ≤ j, h ≤ Dγ with j 6= h:

Mγ∑

m=0

( n∑

i=1

Λi x
(j,γ)
i,m−γi

)
T m 6=

Mγ∑

m=0

( n∑

i=1

Λi x
(h,γ)
i,m−γi

)
T m.

Proof of Claim. Suppose on the contrary that there exist j 6= h such that∑Mγ

m=0

(∑n
i=1 Λi x

(j,γ)
i,m−γi

)
T m =

∑Mγ

m=0

(∑n
i=1 Λi x

(h,γ)
i,m−γi

)
T m. Substituting T−γiΛi

for Λi in this identity for i = 1, . . . , n, we have
∑Mγ

m=0

∑n
i=1 Λi x

(j,γ)
i,m−γi

T m−γi =
∑Mγ

m=0

∑n
i=1 Λi x

(h,γ)
i,m−γi

T m−γi, that is

n∑

i=1

Mγ−γi∑

m=0

Λi x
(j,γ)
i,m T m =

n∑

i=1

Mγ−γi∑

m=0

Λi x
(h,γ)
i,m T m.

Substituting 0 for T in this identity, we deduce that
n∑

i=1

Λix
(j,γ)
i,0 =

n∑

i=1

Λix
(h,γ)
i,0 ,

which contradicts the fact that the vectors x
(j,γ)
0 = (x

(j,γ)
1,0 , . . . , x

(j,γ)
n,0 ) (1 ≤ j ≤ Dγ)

are all distinct. This finishes the proof of the claim.

By the claim we see that the polynomial
∑Mγ

m=0

(∑n
i=1 Λi (x

(j,γ)
i,m−γi

−x
(h,γ)
i,m−γi

)
)
T m

of Q[Λ][T ] is nonzero, and therefore has a nonzero coefficient aj,h ∈ C[Λ] for every
1 ≤ j < h ≤ Dγ . Consider the polynomial Aγ(Λ) :=

∏
1≤j<h≤Dγ

aj,h ∈ C[Λ]. Since

aj,h has degree 1 for every 1 ≤ j < h ≤ Dγ , it follows that A has degree
(
Dγ

2

)
. Fur-

thermore, for every (u1, . . . , un) ∈ Cn with Aγ(u1, . . . , un) 6= 0, the corresponding

polynomial uγ :=
∑n

i=1 uiT
γiXi separates the initial terms

∑Mγ

m=0 x
(j,γ)
m T m of the

power series σ(j,γ) (1 ≤ j ≤ Dγ).
From Theorem 2.2 we see that for a random choice of the coefficients u1, . . . , un

in the set {1, . . . , ρD2
γ} the linear form uγ separates the first Mγ terms of the points

of Vγ with probability at least 1 − 1/ρ. From now on we assume that uγ satisfies
this requirement.

The algorithm proceeds in three steps. First, it computes a suitable approxima-
tion to the geometric solution of Vγ associated to the linear form u :=

∑n
i=1 uiXi

by means of κ0 := ⌈log(Mγ + 1)⌉ steps of the global Newton iterator of [21].
This approximation is used in order to obtain the corresponding approximation

m
(κ0)
uγ , w

(κ0)
uγ ,1, . . . , w

(κ0)
uγ ,n of the polynomials that form the geometric solution of Vγ

associated with uγ . Finally, we apply an adaptation of the global Newton iterator

which takes as input the polynomials of the previous step m
(κ0)
uγ , w

(κ0)
uγ ,1, . . . , w

(κ0)
uγ ,n

and outputs the required approximation to the polynomials muγ
, wuγ ,1, . . . , wuγ ,n

that form the geometric solution of Vγ associated with uγ .
Now we consider the three steps above in detail. The first step takes as in-

put the given geometric solution m
(0)
u,γ , w

(0)
u,1,γ , . . . , w

(0)
u,n,γ of V0,γ , and performs

κ0 := ⌈log(Mγ + 1)⌉ times the global Newton iterator of [21] to obtain polyno-

mials m
(κ0)
u,γ , w

(κ0)
u,1,γ , . . . , w

(κ0)
u,n,γ ∈ Q[T, Y ] such that the following conditions hold:

(i)u,κ0 degY m
(κ0)
u,γ = Dγ and degT m

(κ0)
u,γ ≤ Mγ ,

(ii)u,κ0 degY w
(κ0)
u,i,γ < Dγ and degT w

(κ0)
u,i,γ ≤ Mγ for 1 ≤ i ≤ n,
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(iii)u,κ0 m
(κ0)
u,γ ≡

∏Dγ

j=1

(
Y − ϕ

(j,γ)
κ0

)
mod (T Mγ+1),

(iv)u,κ0 σ
(j,γ)
i ≡ w

(κ0)
u,i,γ

(
T, ϕ

(j,γ)
κ0

)
mod (T Mγ+1) for 1 ≤ i ≤ n.

Here ϕ
(j,γ)
κ0 is the Taylor expansion of order 2κ0 of the power series u(σ(j,γ)), that

is, ϕ
(j,γ)
κ0 :=

∑2κ0

m=0 u(x
(j,γ)
m )T m for 1 ≤ j ≤ Dγ .

According to [21, Proposition 7], it follows that this step requires performing
O

(
(nLγ + nΩ)M(Dγ)M(Mγ)

)
arithmetic operations in Q, where Lγ denotes the

number of arithmetic operations in Q required to evaluate the polynomials hi,γ of
(3.6). Furthermore, in view of the application of Lemma 2.4 it is important to
remark that this step does not involve any division by a nonconstant polynomial in
the coefficients u1, . . . , un.

Next we discuss the second step. In this step we obtain approximations

m
(κ0)
uγ , w

(κ0)
uγ ,1, . . . , w

(κ0)
uγ ,n of the polynomials that form the geometric solution of Vγ

associated with uγ with precision 2κ0 ≥ Mγ , namely

• degY m
(κ0)
uγ = Dγ and degT m

(κ0)
uγ ≤ Mγ ,

• degY w
(κ0)
uγ ,i < Dγ and degT w

(κ0)
uγ ,i ≤ Mγ for 1 ≤ i ≤ n,

• m
(κ0)
uγ ≡

∏Dγ

j=1

(
Y − φ

(j,γ)
κ0

)
mod (T Mγ+1),

• σ
(j,γ)
i ≡ w

(κ0)
uγ ,i

(
T, φ

(j,γ)
κ0

)
mod (T Mγ+1) for 1 ≤ i ≤ n.

Here φ
(j,γ)
κ0 is the Taylor expansion of φ(j,γ) := uγ(σ(j,γ)) of order 2κ0 for 1 ≤ j ≤

Dγ .
From conditions (i)u,κ0– (iv)u,κ0 and the elementary properties of the resultant

it is easy to see that m
(κ0)
uγ satisfies the following identity:

(4.15) m(κ0)
uγ

(Y ) = ResỸ

(
Y −

n∑

i=1

uiT
γiw

(κ0)
u,i,γ(Ỹ ), m(κ0)

u,γ (Ỹ )
)
.

The resultant of the right–hand side is computed mod (T Mγ+1) by interpolation
in the variable Y to reduce the problem to the computation of Dγ resultants, as
explained in the computation of the resultant in (4.7). These Dγ resultants involve

two polynomials of Q[T, Ỹ ] of degree in Ỹ bounded by Dγ and are computed mod
(T Mγ+1). Hence we deduce that this step requires O

(
M(Dγ)DγM(Mγ)

)
arithmetic

operations in Q.
We apply Lemma 2.4 in order to extend this procedure to an algorithm comput-

ing m
(κ0)
uγ , w

(κ0)
uγ ,1, . . . , w

(κ0)
uγ ,n. For this purpose, we observe that a similar argument

as in the proof of Proposition 4.1 proves that the denominators in Q[Λ] which arise
during the computation of the Dγ resultants required to compute the minimal poly-
nomial of the generic version

∑n
i=1 ΛiT

γiXi of the linear form uγ are divisors of a
polynomial of Q[Λ] of degree at most 4D3

γ . Applying Theorem 2.2 we see that for a

random choice of the coefficients u1, . . . , un in the set {1, . . . , 4ρD3
γ} none of these

denominators are annihilated with probability at least 1 − 1/ρ.
Finally, we consider the third step of the algorithm. For κ1 := ⌈log(2γn+1E+1)⌉,

we apply κ1 − κ0 times an adaptation of the global Newton iterator of [21] to the

polynomials m
(κ0)
uγ , w

(κ0)
uγ ,1, . . . , w

(κ0)
uγ ,n computed in the previous step. In the kth

iteration step, we compute polynomials m
(k)
uγ , w

(k)
uγ ,1, . . . , w

(k)
uγ ,n satisfying:

• degY m
(k)
uγ = D and degT m

(k)
uγ ≤ 2k,
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• m
(k)
uγ =

∏Dγ

j=1(Y − φ
(j,γ)
k ),

• degY w
(k)
uγ ,i < D and degT w

(k)
uγ ,1 ≤ 2k for 1 ≤ i ≤ n,

• σ
(j,γ)
i ≡ w

(k)
uγ ,i(T, φ

(j,γ)
k ) mod (T 2k+1) for 1 ≤ i ≤ n.

Here φ
(j,γ)
k is the Taylor expansion of φ(j,γ) := uγ(σ(j,γ)) of order 2k for 1 ≤ j ≤ Dγ .

In particular, it follows that m
(κ1)
uγ is the required approximation to muγ

with
precision 2γn+1E.

Fix κ0 < k ≤ κ1. We briefly describe how we can obtain an approximation with
precision 2k of the polynomials that form the geometric solution of Vγ associated
to the linear form uγ from an approximation with precision 2k−1. Similarly to

[21], set ∆k(T, Y ) := uγ(w̃
(k)
uγ ) − uγ(w

(k−1)
uγ ) = uγ(w̃

(k)
uγ ) − Y , where w̃

(k)
uγ is the

result of applying a “classical Newton step” to w
(k−1)
uγ , as described in [21]. Fur-

thermore, write ∆m(T, Y ) := T−1−2k−1

(m
(k)
uγ − m

(k−1)
uγ ). Since m

(k)
uγ (Y + ∆k) ≡ 0

mod (T 2k+1, m
(k−1)
uγ ) holds (see [15, §4.2]), it follows that

0 ≡ m(k)
uγ

(Y+ ∆k) ≡ m(k−1)
uγ

(Y+ ∆k) + T 2k−1+1∆m(Y+ ∆k) mod (T 2k+1, m(k−1)
uγ

)

≡ ∆k
∂m

(k−1)
uγ

∂Y
(Y ) + T 2k−1+1∆m(Y ) mod (T 2k+1, m(k−1)

uγ
).

We conclude that the following congruence relation holds:

(4.16) m(k)
uγ

≡ m(k−1)
uγ

−
(
∆k

∂m
(k−1)
uγ

∂Y
mod m(k−1)

uγ

)
mod (T 2k+1).

A similar argument proves the following congruence relation

(4.17) w
(k)
uγ ,i ≡ w̃

(k−1)
uγ ,i −

(
∆k

∂w̃
(k−1)
uγ ,i

∂Y
mod m(k−1)

uγ

)
mod (T 2k+1) for 1 ≤ i ≤ n.

Each iteration of our adaptation of the global Newton iteration is based on (4.16)
and (4.17), which are extensions of the corresponding congruence relations of [21].

We first compute w̃
(k)
uγ by a standard Newton–Hensel lifting, and then evaluate the

expressions (4.16) and (4.17). With a similar analysis as in [21, Proposition 7] we
conclude that the whole procedure requires O

(
(nLγ +nΩ)M(Dγ)Eγn+1

)
arithmetic

operations in Q.
Finally, combining the complexity estimates of the three steps above and the

probability of achievement of the two generic conditions imposed to the coefficients
u1, . . . , un, we deduce the statement of the proposition. �

Using the algorithm of the statement of Proposition 4.6 for all γ ∈ Γ we obtain
approximations of the factors mγ which allow us to compute the minimal poly-

nomial mu and hence a geometric solution of V̂ . Our next result outlines this
procedure and estimates its complexity and error probability.

Proposition 4.7. Suppose that we are given a geometric solution of the vari-
ety V0,γ for all γ ∈ Γ, as provided by Theorem 4.3, with a linear form u ∈
Q[X1, . . . , Xn] whose coefficients are randomly chosen in the set {1, . . . , 4ρD4},
where ρ is a fixed positive integer. Then there is an algorithm which computes a

geometric solution of the curve V̂ with error probability bounded by 1/ρ performing
O

(
(n2L + n1+Ω)M(MΓ)M(D)

(
M(D) + M(E)

))
arithmetic operations in Q. Here
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L := maxγ∈Γ Lγ, where Lγ is the number of arithmetic operations required to evalu-
ate the polynomials hi,γ of (3.6) for all γ ∈ Γ and MΓ := maxγ∈Γ max{γ1, . . . ,γn+1}.

Proof. For each γ ∈ Γ, we apply the algorithm underlying the proof of Proposition
4.6 in order to obtain an approximation of muγ

with precision 2γn+1E. Due to
(4.14), this polynomial immediately yields an approximation with precision 2E of
mγ(T, Y ) in Q((T 1/γn+1))[Y ].

Multiplying all these approximations, we obtain an approximation with precision
2E of the polynomial m̂u =

∏
γ∈Γ mγ of (4.12). Since every coefficient aj(T ) of

m̂u ∈ Q(T )[Y ] is a rational function of Q(T ) having a reduced representation with
numerator and denominator of degree at most E, such a representation of aj(T ) can
be computed from its approximation with precision 2E using Padé approximation
with O(M(E)) arithmetic operations in Q.

In order to estimate the complexity of the whole procedure, we estimate the
complexity of its three main steps:

(i) the computation of the polynomials mγ with precision 2E for all γ ∈ Γ,
which requires O

( ∑
γ∈Γ(nLγ +nΩ)M(Dγ)

(
M(Mγ)M(Dγ)+Eγn+1

))
arith-

metic operations in Q,
(ii) the computation of the product

∏
γ∈Γ mγ with precision 2E, which requires

O
(
M(D)M(E)

)
arithmetic operations in Q,

(iii) the computation of a reduced representation of all the coefficients of m̂u ∈
Q(T )[Y ], which requires O

(
M(E)D

)
arithmetic operations in Q.

In conclusion, the algorithm performs O
(
(nL + nΩ)M(MΓ)M(D)

(
M(D) + M(E)

))

arithmetic operations in Q, where MΓ := maxγ∈Γ{Mγ , γn+1} and L := maxγ∈Γ Lγ .
Next we discuss how this procedure can be extended to the computation of a

geometric solution of V̂ in the sense of Section 2.3. Two computations of the above
procedure involve divisions by the coefficients ui of the linear form u: the compu-
tation of the resultant of (4.15) for all γ ∈ Γ and the Padé approximations of (iii).
Both computations are reduced to D applications of the EEA, which is performed
in a ring Q(Λ). A similar analysis as in Proposition 4.1 shows that all the denomina-
tors in Q[Λ] arising during such application of the EEA are divisors of a polynomial
of degree 4D4. Therefore, according to Lemma 2.4, we conclude that a geometric

solution of V̂ can be computed with O
(
(n2L+n1+Ω)M(MΓ)M(D)

(
M(D)+M(E)

))

arithmetic operations in Q, with an algorithm with error probability at most 1/ρ,
provided that the coefficients of u are randomly chosen in the set {1, . . . , 4ρD4}. �

Putting together Theorem 4.3 and Proposition 4.7 we obtain the main result of
this section:

Theorem 4.8. Let ρ be a fixed positive integer. Suppose that the coefficients of the
linear form ũ of the statement of Theorem 4.3 and of the linear form u are randomly
chosen in the set {1, . . . , 4nρD4}. Then the algorithm underlying Theorem 4.3 and

Proposition 4.7 computes a geometric solution of the curve V̂ with error probability
3/ρ performing O

(
(n2L + n1+Ω)M(MΓ) log(Q)M(D)

(
M(D) + M(E)

))
arithmetic

operations in Q. Here L := maxγ∈Γ Lγ, where Lγ is the number of arithmetic
operations required to evaluate the polynomials hi,γ of (3.6) for all γ ∈ Γ, Q :=
2 max1≤i≤n{‖q‖; q ∈ ∆i}, and MΓ := maxγ∈Γ ‖γ‖.
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4.3. Solving a sufficiently generic sparse system. Now we obtain a geometric
solution of the zero-dimensional variety V1 := {x ∈ Cn : h1(x) = 0, . . . , hn(x) = 0}

from a geometric solution of the curve V̂ .
With notations as in the previous section, we have that V1 = π−1(1), where

π : V̂ → A1 is the linear projection defined by π(x, t) := t. Moreover, due to

Lemma 4.5, the equality V1 = π−1(1) ∩ V̂ holds.
This enables us to easily obtain a geometric solution of V1 from a geometric

solution of the curve V̂ . Indeed, let m̂u(T, Y ), v̂1(T, Y ), . . . , v̂n(T, Y ) be the poly-

nomials which form a geometric solution of V̂ associated to a linear form u ∈ Q[X ].
Suppose further that the linear form u separates the points of V1. Making the sub-
stitution T = 1, we obtain new polynomials m̂u(1, Y ), v̂1(1, Y ), . . . , v̂n(1, Y ) ∈ Q[Y ]
such that m̂u(1, u(X)) and ∂mu

∂Y (1, u(X))Xi − v̂i(1, u(X)) (1 ≤ i ≤ n) vanish over
V1. Taking into account that degY (mu) = D = #V1 and that u separates the points
of V1, it follows that the polynomials m̂u(1, Y ), v̂1(1, Y ), . . . , v̂n(1, Y ) ∈ Q[Y ] form
a geometric solution of V1.

Proposition 4.9. Let ρ be a fixed positive integer. With assumptions and nota-
tions as in Theorem 4.8, the algorithm described above computes a geometric solu-
tion of the zero-dimensional variety V1 with error probability 4/ρ using O

(
(n2L +

n1+Ω)M(MΓ) log(Q)M(D)
(
M(D) + M(E)

))
arithmetic operations in Q.

5. The solution of the original system

Let notations and assumptions be as in the previous sections. Assume that we are
given a geometric solution mu(Y ), v1(Y ), . . . , vn(Y ) of the zero-dimensional variety
V1 defined by the polynomials h1 := f1 + g1, . . . , hn := fn + gn. Assume further
that the linear form u of such a geometric solution separates the points of the zero–
dimensional variety f1 = · · · = fn = 0. In this section we describe a procedure for
computing a geometric solution of the input system f1 = · · · = fn = 0.

For this purpose, we introduce an indeterminate T over Q[X ] and consider the
“deformation” F1, . . . , Fn ∈ Q[X, T ] of the polynomials f1, . . . , fn defined in the
following way:

Fi(X, T ) := fi(X) + (1 − T )gi(X) (1 ≤ i ≤ n).

Set V := {(x, t) ∈ An+1 : F1(x, t) = · · · = Fn(x, t) = 0} and denote by π : V → A1

the projection map defined by π(x, t) := t. As in Subsection 4.2, we introduce the
variety Vdom ⊂ An+1 defined as the union of all the irreducible components of V
whose projection over A1 is dominant.

5.1. Solution of the second deformation. In this section we describe an efficient
procedure for computing a geometric solution of Vdom from the geometric solution
of π−1(0) provided by Proposition 4.9.

Since π−1(0) is the variety defined by the “sufficiently generic” sparse system
h1(X) = F1(X, 0) = 0, . . . , hn(X) = Fn(X, 0) = 0, with similar arguments to those
leading to the proof of Lemma 4.5, it is not difficult to see that the polynomials
F1, . . . , Fn, the variety V , the projection π : V → A1, and the fiber π−1(0) satisfy
all the assumptions of Lemma 4.4. We conclude that Vdom is a curve and that the
identity V ∩ π−1(0) = Vdom ∩ π−1(0) holds. Furthermore, Lemma 4.4 implies that
all the hypotheses of [50, Theorem 2] are satisfied.
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Therefore, applying the “formal Newton lifting process” underlying the proof
of [50, Theorem 2], we compute polynomials m(T, Y ), v1(T, Y ), . . . , vn(T, Y ) ∈
Q[T, Y ] which form a geometric solution of Vdom. The formal Newton lifting process
requires O

(
(nL′+nΩ+1)M(D)M(E′)

)
arithmetic operations in Q, where L′ denotes

the number of arithmetic operations required to evaluate F1, . . . , Fn and E′ is any
upper bound of the degree of m in the variable T .

We can apply Lemma 2.3 in order to estimate degT m in combinatorial terms. In-

deed, let Q̃1, . . . , Q̃n ⊂ Rn+1 be the Newton polytopes of the polynomials F1, . . . , Fn

and let ∆ ⊂ Rn+1 be the standard unitary simplex in the plane {T = 0}. Since

Q̃i ⊂ Qi × [0, 1] holds for 1 ≤ i ≤ n, where Qi ⊂ Rn is the Newton polytope of hi,
by (2.3) of Lemma 2.3 we deduce the following estimate:

(5.1) degT mu ≤ E′ :=

n∑

i=1

MV (∆, Q1, . . . , Qi−1, Qi+1, . . . , Qn).

With this definition of E′, we have:

Proposition 5.1. Suppose that we are given a geometric solution of the variety
V1, as provided by Proposition 4.9. A geometric solution of Vdom can be deter-
ministically computed with O

(
(nL′ + nΩ+1)M(D)M(E′)

)
arithmetic operations in

Q.

5.2. Solving the input system. Making the substitution T = 1 in the polynomi-
als m(T, Y ), vi(T, Y ) (1 ≤ i ≤ n) which form the geometric solution of Vdom com-
puted by the algorithm of Proposition 5.1 we obtain polynomials m(1, Y ), v1(1, Y ),
. . . , vn(1, Y ) ∈ Q[Y ] which represent a complete description of our input sys-
tem f1(X) = · · · = fn(X) = 0, eventually including multiplicities. Such mul-
tiplicities are represented by multiple factors of m(1, Y ), which are also factors
of v1(1, Y ), . . . , vn(1, Y ) (see e.g. [21, §6.5]). In order to remove them, we com-
pute a(Y ) := gcd

(
m(1, Y ), (∂m/∂Y )(1, Y )

)
, and the polynomials m(1, Y )/a(Y ),

(∂m/∂Y )(1, Y )/a(Y ), vi(1, Y )/a(Y ) (1 ≤ i ≤ n). These polynomials form a geo-
metric solution of our input system and can be computed with O

(
nM(D)E′

)
addi-

tional arithmetic operations in Q.
Summarizing, we sketch the whole procedure computing a geometric solution of

the input system f1 = · · · = fn = 0. Fix ρ ≥ 4. We randomly choose the coefficients
of the polynomials g1, . . . , gn in the set {1, . . . , 4ρ(nd)2n+1 + 2ρn22N1+···+Ns} and
coefficients of linear forms u, ũ in the set {1, . . . , 16nρD4}. By Theorem 2.2 it
follows that the polynomials g1, . . . , gn and the linear forms u, ũ satisfy all the
conditions required with probability at least 1−1/ρ. Then we apply the algorithms
underlying Propositions 4.9 and 5.1 in order to obtain a geometric solution of the
variety Vdom. Finally, we use the procedure above to compute a geometric solution
of the input system f1 = · · · = fn = 0. This yields the following result:

Theorem 5.2. The algorithm sketched above computes a geometric solution of the
input system f1 = · · · = fn = 0 with error probability at most 1/ρ using

O
((

n2 max{L, L′} + n1+Ω
)
M(D)

(
log(Q)M(MΓ)

(
M(D) + M(E)

)
+ M(E′)

))

arithmetic operations in Q. Here L := maxγ∈Γ Lγ, where Lγ is the number of
arithmetic operations required to evaluate the polynomials hi,γ of (3.6) for all γ ∈ Γ,
L′ denotes the number of arithmetic operations required to evaluate F1, . . . , Fn,
MΓ := maxγ∈Γ ‖γ‖, and Q := 2 max1≤i≤n{‖q‖; q ∈ ∆i}.
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Bézout numbers, SIAM J. Numer. Anal. 32 (1995), 1308–1325.
[37] M. Oka, Non-degenerate complete intersection singularity, Hermann, Paris, 1997.
[38] L.M. Pardo, How lower and upper complexity bounds meet in elimination theory, Applied Al-

gebra, Algebraic Algorithms and Error Correcting Codes, Proceedings of AAECC–11 (Berlin)
(G. Cohen, M. Giusti, and T. Mora, eds.), Lecture Notes in Comput. Sci., vol. 948, Springer,
1995, pp. 33–69.

[39] L.M. Pardo and J. San Mart́ın, Deformation techniques to solve generalized Pham systems,
Theoret. Comput. Sci. 315 (2004), no. 2–3, 593–625.

[40] P. Pedersen and B. Sturmfels, Product formulas for resultants and Chow forms, Math. Z.
214 (1993), no. 3, 377–396.

[41] P. Philippon and M. Sombra, Hauteur normalisée des variétés toriques projectives, eprint
math.NT/0406476, 38pp., 2003.
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