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1 Introduction

The goal of this paper is to show how to produce a piece of rigorous bifurca-
tion diagram of periodic orbits for an ODE. We study the Rössler system [R],
one of the textbook examples of ODEs generating nontrivial dynamics, for the
parameter range containing two period doubling bifurcations.

According to the discussion in Kuzniecov textbook [Ku, Section 2.7] there are
two extremes in studying bifurcations in dynamical systems. The first one, going
back to Poincaré, is to analyze the appearance (branching) of new invariant
objects (equilibria or periodic orbits) from the known ones as parameters of the
system vary. A good reference for this approach is a textbook by Chow and
Hale [CH]. On the other extreme, it is the approach going back to Andronov
[An] and Thom [T], is to study rearrangements (bifurcations) of the whole phase
portrait under variations of parameters. It is apparent that the first approach
is necessarily one of the initial steps in attempting to describe the bifurcations
in Andronov-Thom sense. In fact in many dimensional systems (even for planar
maps like the Hénon map) achieving the complete description of the phase
space portrait and its changes appears to be hopeless in view of the results on
the Henon-like maps [MV, BC, WY1, WY2].

While there exists a vast literature on the bifurcation theory, see for exam-
ple [AAIS, CH, G, Ku] and references given there, and also a lot of numerical
bifurcation diagrams for various systems can be found in literature (see for
example references in [Ku]), there are virtually no rigorous results on bifurca-
tions of periodic orbits for ODEs in dimension three or higher in the situation,
when the periodic orbit undergoing the bifurcation is not given to us analyti-
cally due to some special symmetries of the system. The basic reason for this
is: while numerical experiments and/or normal form computations may clearly
show what is happening (in terms of the bifurcations) we usually lack any rea-
sonable rigorous estimates about the observed orbits, which prevents us to turn
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these observations into rigorous statements. To obtain the necessary estimates
one needs to integrate the variational equations describing the partial deriva-
tives with respect to initial conditions up to order 3 or higher. This is usually a
serious problem for rigorous ODE solvers. It turns out that the naive approach:
applying an ODE solver to the system of variational equations does not work,
because the methods dealing with the wrapping effect used in the Lohner-type
algorithms (the most effective rigorous ODE solvers) [Lo, Z1, NJ] break down
for such system. As the solution of this problem Cr-Lohner algorithm has been
proposed in [WZ] and it is used in the present work.

Concerning the content of the paper regarding the bifurcation theory itself,
we were forced to reformulate some well known theorems to make them amenable
to computer assisted proofs. It is a common feature of all bifurcations theorems
that the bifurcation point (or rather a candidate) and all necessary data like the
spectrum and maybe some higher order terms are always given as part of the
assumptions. But in a nonlinear system we usually do not have explicitly these
data, in fact the existence of the bifurcation point has to be proved by looking on
the behavior of the system in some neighborhood. This forces us to reformulate
some bifurcation theorems in a semi-local way, we have to investigate properties
of solutions of implicit equations, which are degenerate (due to the presence of
bifurcations). This is the reason, why from various approaches to bifurcations
we chose the one developed in [CH] and which is based on the Liapunov-Schmidt
reduction.

In our work we focus on the period doubling bifurcation of periodic orbits
for Rössler equations, in fact we study the Poincaré map for Rössler system.
The paper is organized as follows: in Sections 3, 4 and 5 we discuss the main
tools used to produce a validated piece of the bifurcation diagram containing
the period doubling bifurcations. In the remaining sections we give some details
concerning our results for Rössler system.

2 Basic definitions

By N, Z, Q, R, C we denote the set of natural, integer, rational, real and
complex numbers, respectively. Z− and Z+ are negative and positive integers,
respectively. By S1 we will denote a unit circle on the complex plane.

For Rn we will denote the norm of x by ‖x‖ and if the formula for the norm
is not specified in some context, then it means that one can use any norm there.
Let x0 ∈ Rs, then Bs(x0, r) = {z ∈ Rs | ‖x0 − z‖ < r} and Bs = Bs(0, 1).

Let A : Rn → Rn be a linear map. By Sp(A) we denote the spectrum of
A, which is the set of λ ∈ C, such that there exists x 6= Cn \ {0}, such that
Ax = λx.

For a map f : X → Y by dom(f) we will denote the domain of f . For a map
F : X → X we will denote the fixed point set by Fix (F,U) = {x ∈ U | F (x) =
x}.

Let x = (x1, . . . , xn) ∈ Rn. By πi we will denote the projection on i-th
coordinate, i.e. πi(x) = xi. Analogously for any multiindex α = (i1, i2, . . . , ik) ∈
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Zk
+ we define πα(x) = (xi1 , xi2 , . . . , xik ). Sometimes the points in the phase

space will have coordinates denoted by different letters, for example z = (ν, x, y),
then we will index the projection by the names of variables, i.e. π(ν,x)(z) = (ν, x)
etc.

Definition 1 Let f : Rn ⊃ dom (f) → Rn be C1. Let z0 ∈ dom (f). We say
that z0 is a hyperbolic fixed point for f iff f(z0) = z0 and Sp(Df(z0))∩S1 = ∅,
where Df(z0) is the derivative of f at z0.

Definition 2 Consider a map f : X ⊃ dom (f) → X. Let x ∈ X. Any
sequence {xk}k∈I , where I ⊂ Z is a set containing 0 and for any l1 < l2 < l3 in
Z if l1, l3 ∈ I, then l2 ∈ I, such that

x0 = x, f(xi) = xi+1, for i, i+ 1 ∈ I

will be called an orbit through x. If I = Z− ∪{0}, then we will say that {xk}k∈I

is a full backward orbit through x.

Definition 3 Let X be a topological space and let the map f : X ⊃ dom (f)→
X be continuous.

Let Z ⊂ Rn, x0 ∈ Z, Z ⊂ dom (f). We define

W s
Z(z0, f) = {z | ∀n≥0f

n(z) ∈ Z, lim
n→∞

fn(z) = z0}

Wu
Z (z0, f) = {z | ∃ {xn} ⊂ Z a full backward orbit through z, such that

lim
n→−∞

xn = z0}

W s(z0, f) = {z | lim
n→∞

fn(z) = z0}

Wu(z0, f) = {z | ∃ {xn} a full backward orbit through z, such that

lim
n→−∞

xn = z0}

Inv+(Z, f) = {z | ∀n≥0f
n(z) ∈ Z}

Inv−(Z, f) = {z | ∃ {xn} ⊂ Z a full backward orbit through z }

Inv (Z, f) = Inv+(Z, f) ∩ Inv−(Z, f)

If f is known from the context, then we will usually drop it and use W s(z0),
W s

Z(z0) etc instead.

Definition 4 Let Pν : Rn → Rn, where ν belongs to some interval. We say that
Pν has a period doubling bifurcation at (ν0, x0) iff there exists V = [ν1, ν2]×X ⊂
R× Rn, such that the following conditions are satisfied

• (ν0, x0) ∈ intV , Pν0(x0) = x0

• there exists a continuous function xfp : [ν1, ν2]→ intX, such that

Fix (Pν , X) = {xfp(ν)}
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• there exist two continuous curves ci : [ν0, ν2]→ intX, i = 1, 2 , such that
for ν ∈ [ν0, ν2] holds

c1(ν0) = c2(ν0) = xfp(ν0)

c1(ν) 6= c2(ν), ν 6= ν0

Pν(c1(ν)) = c2(ν), Pν(c2(ν)) = c1(ν)

Fix(P 2
ν , X) = {c1(ν), c2(ν), xfp(ν)}

• the dynamics:

for ν ≤ ν0
Inv (X,Pν) = {xfp(ν)}

For ν > ν0 the maximal invariant set in X Inv (X,Pν) is equal to

Wu
X(xfp(ν), P ) ∩

(

W s
X(c1(ν), P

2
ν ) ∪W s

X(c2(ν), P
2
ν )
)

and is a one-dimensional connected manifold with boundary points c1(ν),
c2(ν).

3 Derivation of the conditions for the occur-

rence of the period doubling bifurcation

The goal of this section is to present the set of conditions, which guarantee
the existence of period doubling bifurcation for a given map, and which can be
verified using rigorous numerics. The main tools used are the Liapunov-Schmidt
reduction [CH] and the implicit function theorem.

Assume that we have a parameter dependent map z 7→ P (ν, z), which ap-
parently undergoes the period doubling bifurcation as the parameter ν changes.
Let zfp(ν) be a fixed point curve for P . We assume that it is regular and we
can compute it and its all derivatives.

To prove the existence of the period doubling bifurcation we proceed as in
[CH]. First we perform the Liapunov-Schmidt reduction to obtain a function
G : R× R ⊃ dom(G) → R, whose zeros correspond to fixed points and period
two points of Pν and then we try to describe the solution set for equation
G(ν, x) = 0. Next, through some additional computation of eigenvalues we will
be able to decide about the hyperbolicity of bifurcating periodic orbits.

The basic steps of the Liapunov-Schmidt reduction for P 2 are:

• we choose good coordinates (x, y) ∈ R×Rn−1. It is desirable to choose x in
the approximate bifurcation direction (in the eigendirection corresponding
to −1 eigenvalue at the bifurcation point).

• let Z = [ν1, ν2]× [x1, x2] and Y ⊂ Rn−1 be such that the apparent bifur-
cation point (ν0, x0, y0) belongs to the interior of Z × Y
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• we need to show that there exists a function y(ν, x), defined on Z with
the values in Y , such that

y − πy(P
2
ν (x, y)) = 0 for (ν, x, y) ∈ Z × Y iff y = y(ν, x). (1)

• the bifurcation function G : Z → R is defined by

G(ν, x) = x− πx(P
2
ν (x, y(ν, x))). (2)

Now, we have to find the solution set of the following equation

G(ν, x) = 0, (ν, x) ∈ Z. (3)

Let xfp(ν) = πx(zfp(ν)) be the x-coordinate of the fixed point curve. We
assume that [ν1, ν2] ⊂ dom (xfp) and xfp([ν1, ν2]) ⊂ [x1, x2]. Therefore we have

G(ν, xfp(ν)) = 0. (4)

The idea of solving (3) goes as follows: we introduce a new bifurcation
function

g(ν, x) =
G(ν, x)

x− xfp(ν)
(5)

and then we solve equation g(ν, x) = 0 by the implicit function theorem.
Observe that expression (5) defining g(ν, x) contains zero in the denominator,

moreover usually the exact value of xfp(ν) is not known, therefore the formula
(5) appears to be useless in rigorous computations. The next lemma will give
us an integral representation of g, which will not contain any singularities and
therefore it is well suited for rigorous numerics.

Lemma 1 Assume F : Rn → Rs is C1. Let x, y ∈ Rn. Then

F (x) − F (y) =

∫ 1

0

∂F

∂x
(t(x − y) + y)dt · (x− y)

Hence we can define equivalently g : [ν1, ν2]→ [x1, x2] by

g(ν, x) =

∫ 1

0

∂G

∂x
(ν, t(x− xfp(ν)) + xfp(ν))dt. (6)

We obtain
G(ν, x) = (x − xfp(ν))g(ν, x).

Therefore, we have to determine the solution set of the following equation

g(ν, x) = 0 (ν, x) ∈ Z, (7)

where g is defined in (6).
In the case of the period doubling bifurcation we expect solutions of (7) to

form a regular curve. The following lemma gives a set of conditions, which
implies this fact.
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Lemma 2 Let Z = [ν1, ν2]× [x1, x2]. Assume that g : Z → R is a Ck-function,
k ≥ 2.

Assume that

∂2g

∂x2
(Z) > 0, (8)

∂g

∂ν
(Z) < 0, (9)

g(ν1, x) > 0, for x ∈ [x1, x2] (10)

g(ν2, x1) > 0, (11)

g(ν2, x2) > 0, (12)

g(ν2, x0) < 0, for some x0 ∈ (x1, x2) (13)

Then there exist x̄1, x̄2, such that x1 < x̄1 < x0 < x̄2 < x2 and there exists a
function ν : [x̄1, x̄2]→ [ν1, ν2] of class Ck, such that

{(ν, x) ∈ Z | g(ν, x) = 0 } = {(ν(x), x), x ∈ [x̄1, x̄2]}.

Moreover, there exists x̄0 ∈ (x̄1, x̄2) such that

ν′(x) > 0, x ∈ (x̄0, x̄2)

ν′(x) < 0, x ∈ (x̄1, x̄0)

ν(x) > ν1, x ∈ [x̄1, x̄2]

ν(x̄1) = ν(x̄2) = ν2.

Proof: Observe first that from condition (8) it follows that for any given ν ∈
[ν1, ν2] and any c ∈ R the equation

g(ν, x) = c,

has at most two solutions in [x1, x2].
From this observation and equations (11–13) it follows that there exist x̄1

and x̄2, such that

x1 < x̄1 < x0 < x̄2 < x2

{x ∈ [x1, x2] | g(ν2, x) = 0 } = {x̄1, x̄2}

g(ν2, x) > 0, for x < x̄1 or x > x̄2

g(ν2, x) < 0, for x ∈ (x̄1, x̄2).

From the above conditions and conditions (9) and (10) it follows immediately,
that there exists function ν : [x̄1, x̄2]→ [ν1, ν2], such that

{(ν, x) ∈ Z | g(ν, x) = 0 } = {(ν(x), x), x ∈ [x̄1, x̄2]}.

By the implicit function theorem function ν(x) is of class Ck.
It remains to show the existence of a unique minimum of ν(x) and its mono-

tonicity properties.
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Let y ∈ (x̄1, x̄2) be any critical point of ν(x), i.e ν̇(y) = 0. We will show
that ν̈(y) > 0.

By differentiating twice equation g(ν(x), x) = 0 we obtain

∂2g

∂ν2
(ν(x), x)(ν̇(x))2 + 2

∂2g

∂ν∂x
(ν(x), x)ν̇(x) +

∂g

∂ν
(ν(x), x)ν̈(x) +

∂2g

∂x2
(ν(x), x) = 0

Therefore for y we have

0 =
∂g

∂ν
(ν(y), y)ν̈(y) +

∂2g

∂x2
(ν(y), y)

ν̈(y) = −

(

∂g

∂ν
(ν(y), y)

)−1
∂2g

∂x2
(ν(y), y) > 0.

We see that all critical points are strong local minima. This implies that the
set of critical points consists from just one point.

The model for Lemma 2 is given by the function g1(ν, x) = x2 − ν in the
neighborhood of point (0, 0). By changing signs of ν and g we obtain the follow-
ing model functions g2(ν, x) = ν + x2, g3(ν, x) = ν − x2 and g4(ν, x) = −ν − x2

for which we can state analogous lemmas.
Now we can formulate a lemma based on the implicit function theorem

addressing the assumptions implying intersection of curves solving equation
G(ν, x) = 0, where G arises in through the Liapunov-Schmidt reduction in
the context of the period doubling bifurcation.

Lemma 3 Let Z = [ν1, ν2]× [x1, x2]. Assume that G : Z → R is a Ck-function,
k ≥ 3.

Assume that there exists a Ck-function xfp : [ν1, ν2] → (x1, x2), such that
G(ν, xfp(ν)) = 0 for ν ∈ [ν1, ν2].

Assume that

∂3G

∂x3
(Z) > 0 (14)

∂2G

∂x∂ν
(Z) +

∂2G

∂x2
(Z)x′

fp([ν1, ν2]) · [0, 1] < 0. (15)

We assume that following conditions are satisfied for some x1 ≤ δ1 <
xfp(ν1) < δ2 ≤ x2

G(ν1, [δ2, x2]) > 0, G(ν1, [x1, δ1]) < 0 (16)

∂G

∂x
(ν1, [δ1, δ2]) > 0, (17)

G(ν2, x2) > 0, G(ν2, x1) < 0 (18)

∂G

∂x
(ν2, xfp(ν2)) < 0 (19)
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Then there exist x1 < x̄1 < x̄2 < x2, such that xfp(ν2) ∈ (x̄1, x̄2) and a
function ν : [x̄1, x̄2]→ [ν1, ν2] of class Ck−1, such that

{(ν, x) ∈ Z | G(ν, x) = 0 } = Cfp ∪ Cper =

{(ν, xfp(ν)), ν ∈ [ν1, ν2]} ∪ {(ν(x), x), x ∈ [x̄1, x̄2]} (20)

and the intersection of curves Cfp and Cper contains exactly one point.
Moreover, there exists x̄0 ∈ (x̄1, x̄2) such that

ν′(x) > 0, x ∈ (x̄0, x̄2)

ν′(x) < 0, x ∈ (x̄1, x̄0)

ν(x) > ν1, x ∈ [x̄1, x̄2]

ν(x̄1) = ν(x̄2) = ν2.

Proof: For the proof we want to apply to Lemma 2. For this end we define g
as in (6).

We start by showing that (14) and (15) imply that ∂2g
∂x2 (Z) > 0 and ∂g

∂ν
(Z) <

0, respectively.
We have

∂2g

∂x2
(ν, x) =

∫ 1

0

∂3G

∂x3
(ν, t(x− xfp(ν)) + xfp(ν))t

2dt.

Hence from (14) we obtain immediately that ∂2g
∂x2 (Z) > 0.

∂g

∂ν
(ν, x) =

∫ 1

0

(

∂2G

∂x∂ν
(ν, t(x− xfp(ν)) + xfp(ν))+

∂2G

∂x2
(ν, t(x− xfp(ν)) + xfp(ν))(1 − t)x′

fp(ν)

)

dt ⊂

∂2G

∂x∂ν
(Z) +

∂2G

∂x2
(Z)x′

fp([ν1, ν2]) · [0, 1].

This and (15) imply that ∂g
∂ν

(Z) < 0.
To obtain condition (10) we need to split the interval [x1, x2] into three parts

[x1, δ1], [δ1, δ2] and [δ2, x2], so that in the middle part we have the zero of G(ν1, ·)
and we need to use there the integral representation of g. On the remaining
parts it is enough to verify the signs of G. Hence we see that conditions (16–17)
imply (10).

The remaining assumptions in Lemma 2 follow easily from (18–19). Now we
use Lemma 2 to obtain function ν(x) and condition (20).

It remains to show that curves Cfp and Cper defined by (20) intersect exactly
in one point. Observe that these curves intersect because curve Cfp cuts Z into
two pieces and the end points of the second curve belong to different components,
which follows directly from the fact that xfp(ν2) ∈ (x̄1, x̄2).
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Now we turn to the question of the uniqueness of the intersection point.
Let α, β ∈ [ν1, ν2], α < β. For t ∈ [0, 1] let νt = tα + (1 − t)β and xt =

txfp(α) + (1 − t)xfp(β). Observe that for each t ∈ [0, 1] point (νt, xt) belongs

to Z. Let θ ∈ (α, β) be such that x′
fp(θ) =

xfp(α)−xfp(β)
α−β

. We have

∂G

∂x
(α, xfp(α)) −

∂G

∂x
(β, xfp(β)) =

∫ 1

0

(

∂2G

∂x∂ν
(νt, xt)(α − β) +

∂2G

∂x2
(νt, xt)(xfp(α) − xfp(β))

)

dt =

(
∫ 1

0

(

∂2G

∂x∂ν
(νt, xt) +

∂2G

∂x2
(νt, xt)x

′
fp(θ)

)

dt

)

(α− β) ⊂

(

∂2G

∂x∂ν
(Z) +

∂2G

∂x2
(Z)x′

fp([ν1, ν2]) · [0, 1]

)

(α− β).

Therefore, from above computations and assumption (15) it follows that the
function ν 7→ ∂G

∂x
(ν, xfp(ν)) is injective on [ν1, ν2]. Observe that from (6) it fol-

lows that, if (ν, xfp(ν)) ∈ Cfp∩Cper then ∂G
∂x

(ν, xfp(ν)) = 0, so the intersection
of Cfp and Cper contains at most one point.

Observe that in the above lemma we cannot make the claim that the in-
tersection point of the curves, which solve equation G(ν, x) = 0 is exactly in
(ν(x̄0), x̄0). This can be easily seen in the following example. Let G(ν, x) =
(x − 1)(x2 − ν), x1 = −2, x2 = 2, ν1 = −1 and ν2 = 1. It is easy to see
that all assumptions of Lemma 3 are satisfied, but the intersection of the curves
(ν(x) = x2, x) and (ν, x(ν) = 1) is not (0, 0). On the other hand in the context
of the period doubling bifurcation the intersection point is (ν(x̄0), x̄0), but we
cannot infer such conclusion from Lemma 3 and we need to use the information
about the dynamical origin of function G. Now we state the theorem which
addresses this issue.

Theorem 4 Let Pν : Rn ⊃ dom(Pν)→ Rn, where ν ∈ I ⊂ R be one-parameter
family of maps of class Ck (k ≥ 3), both with respect to the parameter ν and
x ∈ Rn.

Let Z = [ν1, ν2]× [x1, x2] and Y ⊂ Rn−1 be a closure of open set, such that
[x1, x2]× Y ⊂ dom(P 2

ν ) for ν ∈ [ν1, ν2]. Assume that

A1 for any (ν, x) ∈ Z there exists a unique y = y(ν, x) ∈ intY , such that
y − πy(P

2
ν (x, y)) = 0. Moreover, we assume that y : Z → Y is Ck.

A2 there exists Ck-function xfp : [ν1, ν2] → (x1, x2), such that for ν ∈ [ν1, ν2]
holds

Fix (Pν , [x1, x2]× Y ) = {(xfp(ν), y(ν, xfp(ν)))} (21)

A3 Let
G(ν, x) = x− πx(P

2
ν (x, y(ν, x))), for (ν, x) ∈ Z.

Assume that G and xfp satisfy assumptions of Lemma 3 and let x̄1,x̄2, x̄0

and ν : [x̄1, x̄2]→ [ν1, ν2] be as in the assertion of Lemma 3.
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Then the fixed point set of P 2
ν for ν ∈ [ν1, ν2], i.e.

{

(ν, x, y) ∈ Z × Y | P 2
ν (x, y) = (x, y)

}

is equal to the sum of the fixed point set for Pν

Per1 = {(ν, xfp(ν), y(ν, xfp(ν))) | ν ∈ [ν1, ν2]}

and the period-2 points set

Per2 = {(ν(x), x, y(ν, x)) | x ∈ [x̄1, x̄2]}.

Sets Per1 and Per2 have exactly one common point (νb, zb) given by

(νb, zb) = (ν(x̄0), (x̄0, y(ν(x̄0), x̄0)).

Moreover, the projections of Per1 and Per2 onto (ν, x)-plane have exactly
one common point (νb, xb) given by

(νb, xb) = (ν(x̄0), x̄0).

Proof: From the construction of the bifurcation function G and our assump-
tions we immediately obtain that

{(ν, x, y) ∈ Z × Y | P 2
ν (x, y) = (x, y)} = Per1 ∪ Per2.

From Lemma 3 we know that projections onto (ν, x)-plane of sets Per1
and Per2 intersect exactly in one point, say (ν̄, x̄). Observe that the point
(ν̄, x̄, y(ν̄, x̄)) belongs to the intersection of Per1 and Per2.

It remains to show that (ν̄, x̄) = (ν(x̄0), x̄0). We will show that the function
x 7→ ν(x) has a local extremum at x̄. This will imply that x̄ = x̄0, because by
Lemma 3 x̄0 is the only local extremum of ν(x).

We reason by contradiction. Let us assume that ν′(x̄) 6= 0. Let U = Uν ×
Ux × Uy, where Uν ⊂ [ν1, ν2], Ux ⊂ [x1, x2] and Uy ⊂ Y , be neighborhood of
(ν̄, x̄, y(ν̄, x̄)), such that

Pν(x, y) ∈ int ([x1, x2]× Y ), for (ν, x, y) ∈ U

ν(a) 6= ν(b), for a, b ∈ Ux and a 6= b. (22)

Such U exists because (x̄, y(ν̄, x̄)) is a fixed point for Pν̄ and (x̄, y(ν̄, x̄)) ∈
int ([x1, x2]× Y ).

Let us take v ∈ Ux, such that v 6= x̄. Then (v, y(ν(v), v)) is not a fixed
point for Pν(v). Points (v, y(ν(v), v)) and Pν(v)(v, y(ν(v), v)) are different, both
belong to Z and are period-2 points for Pν(v). Therefore they both belong to
Per2 and

ν(πxPν(v)(v, y(ν(v), v))) = ν(v). (23)

Observe that from the continuity it follows that

lim
v→x̄

πxPν(v)(v, y(ν(v), v)) = πxPν(x̄)(x̄, y(ν(x̄), x̄)) = x̄.

From the above observation it follows that for v sufficiently close to x̄ points v
and πxPν(v)(v, y(ν(v), v)) are in Ux, but in this situation condition (23) contra-
dicts (22). This proves that x̄ = x̄0.
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3.1 Hyperbolicity of bifurcating solutions

The Liapunov-Schmidt projection does not give any direct information about
the dynamical character of the bifurcating objects. The required information
concerning the hyperbolicity is of course contained in the spectra of DPν and
DP 2

ν and its derivatives. Below we present a lemma addresing this issue.

Lemma 5 Assume that Pν : Rn → Rn for ν ∈ [ν1, ν2] satisfies all assumptions
of Theorem 4 and in the sequel we will use all the notation introduced there.

Let zfp(ν) = (xfp(ν), y(ν, xfp(ν))).

fixed points: Assume that there exists ǫ > 0, such that for all ν ∈ [ν1, ν2] holds

Sp

(

∂Pν

∂z
(zfp(ν))

)

= Aν ∪Bν ∪ {λ(ν)},

where λ(ν) ∈ R has the multiplicity one, Aν ⊂ {α ∈ C, |α| < 1− ǫ} and
Bν ⊂ {β ∈ C, |β| > 1 + ǫ}. Moreover, we assume that

λ(ν1) ⊂ (−1, 1)

λ(ν2) < −1

dλ

dν
(zfp(ν)) < 0, ν ∈ [ν1, ν2]

Then the fixed points for Pν on curve zfp(ν) are hyperbolic for ν ∈ [ν1, ν2]\
{ν(x̄0)} and

dimWu(zfp(ν
−), Pν−) + 1 = dimWu(zfp(ν

+), Pν+)

for any ν1 ≤ ν− < ν(x̄0) < ν+ ≤ ν2.

period-2 points: Assume that there exists ǫ > 0, such that on the Per2 curve
(i.e. for x ∈ [x̄1, x̄2]) holds

Sp

(

∂P 2
ν(x)

∂z
(x, y(ν(x), x))

)

= Ax ∪Bx ∪ {γ(x)}

where γ(x) ∈ R has the multiplicity one, Ax ⊂ {α ∈ C, |α| < 1− ǫ} and
Bx ⊂ {β ∈ C, |β| > 1 + ǫ}. Moreover, we assume that

d2γ

dx2
(x) < 0, x ∈ [x̄1, x̄2]

0 < γ(x̄1) < 1.

Then for x ∈ [x̄1, x̄2] \ {x̄0} the period two points zd(x) = (x, y(ν(x), x))
for Pν(x) are hyperbolic and

γ(x̄0) = 1

0 < γ(x) < 1,

dimW s(zd(x), P
2
ν(x)) = dimW s(zfp(ν

−), Pν−)

for any ν1 ≤ ν− < ν(x̄0) and x ∈ [x̄1, x̄2] \ {x̄0}
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Proof: The statement about the hyperbolicity of fixed points is obvious.
For the proof of the second part it is enough to observe that in the bifurcation

point holds

λ(ν(x̄0)) = −1, γ(x0) = λ(ν(x̄0))
2 = 1,

dγ

dx
(x̄0) = 0.

4 Continuation

To apply the tools described in Section 3 in the part regarding the existence of
the Liapunov-Schmidt reduction we need to prove the existence and uniqueness
(locally) of solution of the equation of the form f(a, y) = 0 for a given a, where
y ∈ Rn and a is a parameter. Similarly, when continuing the fixed point curve
or period-2 point curve we have solve the existence and the local uniqueness of
the solution of x − P i(a, x) = 0, where a is the parameter. It turns out that
both of the above mentioned tasks, can be handled by the same tools.

In this section we will discuss such tools, the first one consists of classical in-
terval analysis tools: interval Newton method [A, Mo, N] and Krawczyk method
[A, Kr, N], which can be seen as clever interval versions of the standard Newton
method. These methods work very efficiently in the situation, where the solution
sought is well isolated from other solutions and it requires C1-estimates, only.
The second approach, which is based on the implicit function theorem deals
with situation, when we are close to the bifurcation point and therefore there
are several solutions close to one another, as in the case of the period doubling
we have the fixed point and period two points in a small neighborhood.

4.1 Two methods for proving the existence of zeros for a

map.

Let A ⊂ Rn. By [A]I we will denote an interval enclosure of the set A, i.e. the
smallest set of the form [A]I = [a1, b1]×· · ·× [an, bn], such that A ⊂ [A]I , where
ai, bi ∈ Rn ∪ {±∞}.

Theorem 6 (Interval Newton Method [A, Mo, N]) Let X ⊂ Rn be a convex,
compact set, f : N → Rn be smooth and fix a point x ∈ N . Let us denote by

N(f,X, x) = x− [Df(X)]
−1
I f(x) (24)

the Interval Newton Operator for a map f on set X with fixed x ∈ X. Then

• if N(f,X, x) ⊂ intX then the map f has unique zero in X. Moreover, if
x∗ is such unique zero of f in X then x∗ ∈ N(f,X, x).

• if N(f,X, x) ∩X = ∅ then the map f has no zeros in X.
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Theorem 7 (Interval Krawczyk Method [A, Kr, N]) Let X ⊂ Rn be a
convex, compact set, f : N → Rn be smooth and fix a point x ∈ N . Let C ∈ Rn×n

be an isomorphism. Let us denote by

K(f, C,X, x) = x− Cf(x) + (Id − C · [Df(X)]I)(X − x) (25)

the Interval Krawczyk Operator for a map f on set X with fixed x ∈ X and
matrix C. Then

• if K(f, C,X, x) ⊂ intX then the map f has unique zero in X. Moreover,
if x∗ is such unique zero of f in X then x∗ ∈ K(f, C,X, x).

• if K(f, C,X, x) ∩X = ∅ then the map f has no zeros in X.

4.2 Continuation close to the bifurcation point

Lemma 8 Assume fν : R × Rn−1 ⊃ X × Y → Rn, ν ∈ [ν1, ν2] is Ck function
both with respect to argument and parameter, with k ≥ 3, such that

1. for ν ∈ [ν1, ν2] there exists unique fixed point (xfp(ν), yfp(ν)) for fν in
X × Y

2. for all (ν, x) ∈ [ν1, ν2] × X there exists unique y(ν, x) ∈ intY solving
equation y− πy(f

2
ν (x, y)) = 0 and the map y : [ν1, ν2]×X → Y is of class

Ck.

3. the map G(ν, x) = x− πx(f
2
ν (x, y(ν, x))) satisfies

∂3G

∂x3
(ν, x) > 0, for ν ∈ [ν1, ν2], x ∈ X (26)

G(ν, x1) < 0, G(ν, x2) > 0, for ν ∈ [ν1, ν2] (27)

∀ν ∈ [ν1, ν2] ∃x− ∈ (xfp(ν), x2) G(ν, x−) < 0 (28)

∀ν ∈ [ν1, ν2] ∃x+ ∈ (x1, xfp(ν)) G(ν, x+) > 0 (29)

Then there exist two Ck curves c1, c2 : [ν1, ν2] → Rn such that for ν ∈ [ν1, ν2]
holds πx(c1(ν)) < xfp(ν) < πx(c2(ν)) and ci(ν) is a period two point for fν ,
i = 1, 2.

Moreover, if for some ν0 ∈ {ν1, ν2} holds fν0(c1(ν0)) = c2(ν0) or fν0(c2(ν0)) =
c1(ν0) then for all ν ∈ [ν1, ν2]

fν(c1(ν)) = c2(ν), fν(c2(ν)) = c1(ν) (30)

Proof: The second assumption and (26) imply that for a fixed ν the map f2
ν has

at most three fixed points in X×Y . From the first assumption we know that fν
has unique fixed point (xfp(ν), yfp(ν)) in X × Y . Therefore any zero of G(ν, ·),
which is different from (ν, xfp(ν)) corresponds to a period two point of fν . From
the continuity of G and from (27–29) it follows that G has one zero in each of the
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intervals x1
per(ν) ∈ (x1, xfp(ν)) and x2

per(ν) ∈ (xfp(ν), x2). It is easy to see that

functions xi
per are continuous for i = 1, 2. We set ci(ν) = (xi

per(ν), y(ν, x
i
per(ν)).

We will show the smoothness of xi
per , which together with assumption that

y(x, ν) is Ck implies the smoothness of ci. It is enough to show that

∂G

∂x
(ν, xi

per(ν)) 6= 0,

because then we can apply the implicit function theorem to obtain the required
differentiability. Let us fix ν ∈ [ν1, ν2]. Observe that condition (26) implies that
for any fixed ν the function x 7→ ∂G

∂x
(ν, x) has at most two zeros in [x1, x2]. From

remaining assumptions it is clear that on interval [x1, xfp(ν)] and [xfp(ν), x2]
the function x 7→ G(ν, x) has strictly positive maximum and strictly negative
minimum, respectively. Therefore these extremal points are zeros of ∂G

∂x
(ν, x)

and obviously they are different from points xi
per(ν), which are zeros of G(ν, ·).

Hence we have shown that ∂G
∂x

(ν, xi
per(ν)) 6= 0.

Assume that ν0 = ν1 (the other case is analogous). From the implicit func-
tion theorem it follows that for some ν′ > ν1 condition (30) is satisfied for
ν1 ≤ ν < ν′. Let νm be supremum of such ν′ ≤ ν2. It is easy to see that
νm = ν2, because at νm is also satisfied by the continuity and implicit function
theorem allows us to extend the range of ν satisfying (30) to the right if νm < ν2.

5 Extracting the dynamical information from Lia-

punov-Schmidt reduction

As was mentioned already in Section 3.1 the Liapunov-Schmidt projection does
not give us any direct information about the dynamics of bifurcating solutions
regarding the invariant manifolds of the bifurcating objects as required by Def. 4.
In this section following the ideas of de Oliveira and Hale [H, OH], we show
that the information obtained from the Liapunov-Schmidt reduction and the
spectrum of the bifurcating fixed point curve is enough to say precisely, what is
the dynamics in the neighbourhood of the bifurcation point.

Our argument follow the ideas from [CH, Chapter 9, Thm. 3.1 and 4.2],
where an analogous problem was considered for fixed points for ODEs and pe-
riodic orbits for periodically forced ODEs. The notion of the central manifold
[K] plays crucial role in this proof.

Theorem 9 Let Pν : Rn → Rn for ν ∈ [ν1, ν2] be a Ck-map (k ≥ 3) both with
respect to ν and its arguments. Assume that on the set V = [ν1, ν2]×[x1, x2]×Y ,
where Y ⊂ Rn−1 is a closure of an open set, we were able to perform the
Liapunov-Schmidt reduction and verify assumptions of Theorem 4. Let (νb, zb)
be the bifurcation point and zfp(ν) = (xfp(ν), y(ν, xfp(ν)) be the fixed point
curve for Pν in V .

14



Let v be the eigenvector of
∂Pνb

∂z
(zb) corresponding to the eigenvalue −1. We

assume that πxv 6= 0.
Assume that there exists ǫ > 0, such that for all ν ∈ [ν1, ν2] holds

Sp

(

∂Pν

∂z
(zfp(ν))

)

= Aν ∪Bν ∪ {λ(ν)},

where λ(ν) ∈ R has the multiplicity one, Aν ⊂ {α ∈ C, |α| < 1 − ǫ} and
Bν ⊂ {β ∈ C, |β| > 1 + ǫ}. Moreover, we assume that

λ(ν1) ⊂ (−1, 1)

λ(ν2) < −1.

Then the map P has a period doubling bifurcation at (νb, xb, y(νb, xb)).

Proof: Let ν : [x̄1, x̄2]→ [ν1, ν2] be the function from assumption A3 of Theo-
rem 4 (in fact of Lemma 3) is satisfied. In the notation used in Theorem 4 we
have (νb, zb) = (ν(x̄0), (x̄0, y(ν(x̄0), x̄0))). Let c1(ν) and c2(ν) be respectively
lower and upper branch of the graph of the function x → ν(x) giving period-2
points – see Fig. 1.

Let us define a map H : V → R× Rn by

H(ν, z) = (ν, P (ν, z)).

Consider the spectrum of DH(νb, zb). It is easy to see that +1 is an eigenvalue
of DH(νb, zb) of multiplicity one, λ = −1 has also multiplicity one and all other
eigenvalues are off the unit circle.

We apply the center manifold theorem [K, G, HPS] to H in the neighbour-
hood of (νb, zb). Therefore, there exists a neighbourhood M of (νb, zb) and
two-dimensional center manifold W c ⊂M such that

∀(ν, z) ∈W c if Hi(ν, z) ∈M then H(ν, z) ∈ Wc, for i = −1, 1

Inv (M,H) ⊂W c

W c is tangent at (νb, zb) to the subspace spanned by vectors {(1, 0), (0, v)} ⊂
R × Rn. Observe that from our assumption about v, i.e. πx(v) 6= 0, it follows
that we can use on W c in the neighbourhood of (νb, zb) the same coordinates
(ν, x) as in the Liapunov-Schmidt reduction. There exists a neighbourhood
of (νb, zb) denoted by U = [ν̃1, ν̃2] × [x̃1, x̃2] × Ỹ ⊂ M ∩ V and Ck-functions
h : [ν̃1, ν̃2]× [x̃1, x̃2]→ Ỹ and f : [ν̃1, ν̃2]× [x̃1, x̃2]→ R satisfying

W c = {(ν, x, h(ν, x))}

P (ν, x, h(ν, x)) = (f(ν, x), h(ν, f(ν, x)))

Inv (U,H) ⊂ W c. (31)

Let us stress that the dynamics of Pν in W c is one-dimensional , namely
that of x 7→ f(ν, x).

15



Figure 1: Location of sets Ai, Bi with respect to zeros of G.

From the Liapunov-Schmidt reduction we know that a point (ν, x, y) ∈ U
has period one or two with respect to map H iff y = y(ν, x) and G(ν, x) = 0. Let
N = [ν̃1, ν̃2]× [x̃1, x̃2]. If U is chosen to be sufficiently close to the bifurcation
point, then the set N \ {(ν, x) | G(ν, x) = 0} has four connected components –
see Fig 1. Namely,

A1 = {(ν, x) ∈ N | ((ν ≤ νb) and (x < xfp(ν))) or

((ν > νb) and (x < c1(ν)))} ,

A2 = {(ν, x) ∈ N | ((ν ≤ νb) and (x > xfp(ν))) or

((ν > νb) and (x > c2(ν)))} ,

B1 = {(ν, x) ∈ N | (ν > νb) and (xfp(ν) > x > c1(ν))} ,

B2 = {(ν, x) ∈ N | (ν > νb) and (xfp(ν) < x < c2(ν))} .

We also require that

x̃1 < c1(ν̃2) < c2(ν̃2) < x̃2. (32)

On each of these components the function d(ν, x) = x − f(ν, f(ν, x)) must
have a constant sign. Observe that on A2 we have

x− f(ν, f(ν, x)) > 0, for (ν, x) ∈ A2 (33)

because zfp(ν̃1) is attracting on W c and we consider the second iterate. Anal-
ogously we obtain

x− f(ν, f(ν, x)) < 0, for (ν, x) ∈ A1 (34)

For the component B2 we have

x− f(ν, f(ν, x)) < 0, for (ν, x) ∈ B2
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because xfp(ν̄2) is repelling on W c and we consider the second iterate. Analo-
gously

x− f(ν, f(ν, x)) > 0, for (ν, x) ∈ B1.

For a subset Z ⊂ N by Zν we will denote Zν = {x : (ν, x) ∈ N}. Observe
that for each ν ∈ [ν̃1, ν̃2] holds

f2
ν ((Ai)ν) ∩ [x̃1, x̃2] ⊂ (Ai)ν , f2

ν ((Bi)ν) ∩ [x̃1, x̃2] ⊂ (Bi)ν i = 1, 2. (35)

For the proof of (35) observe that map l(ν, x) = (ν, f(ν, x)) maps connected
components of N \ {G(ν, x) = 0} into connected components, i.e. for any
S ∈ {A1, A2, B1, B2} there exists T = T (S) ∈ {A1, A2, B1, B2}, such that

(l(S) ∩N) ⊂ T (S), (36)

because

l(G−1(0) ∩N) ∩N = G−1(0) ∩N = l−1(G−1(0) ∩N) ∩N

Observe that the relevant eigenvalue of DPν at zfp(ν) describing the dynamics
on W c is λ(ν), which is real and since we consider the second iterate we see that
in the neighbourhood of the fixed point curve we have points mapped into the
same component. This together with (36) proves (35).

From the above considerations we obtain for ν ≤ νb

xfp(ν) < f(ν, f(ν, x)) < x, for xfp(ν) < x ≤ x̃2

xfp(ν) > f(ν, f(ν, x)) > x, for xfpν) > x ≥ x̃1.

The above conditions, (31) and nonexistence of other period two points in U
imply that

Inv (πx,yU, Pν) = {zfp(ν)}, for ν ∈ [ν̃, νb].

For ν ∈ (νb, ν̃2] we have

xfp(ν) < x < f(ν, f(ν, x)) < c2(ν), for xfp(ν) < x < c2(ν)

xfp(ν) > x > f(ν, f(ν, x)) > c1(ν), for xfp(ν) > x > c1(ν)

c2(ν) < f(ν, f(ν, x)) < x, for x > c2(ν)

c1(ν) > f(ν, f(ν, x)) > x, for x < c1(ν) .

The above conditions, conditions (32,31) and nonexistence of other period two
points in U imply that for ν ∈ (νb, ν̃2]

Inv (πx,yU, Pν) = {(x, h(ν, x)) |x ∈ [c1(ν), c2(ν)]}

We would like to stress here that, contrary to all previous theorems and
lemmas, in the proof of the above theorem we prove the statements about the
invariant manifold of bifurcating orbits from Definition 4 on some set U , whose
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size we do not control, whereas it is given by the range of the existence of
the central manifold. In principle, this range can be inferred from the proof
of the center manifold theorem, but it will be an interesting task to develop
a computable approach, which will allow to rigorously prove these facts on
the whole set V . Such task will require explicite estimates about the central
manifold in the region very close to the bifurcation and some other tools, may
be of Conley index type [MM], further away from the bifurcation.

6 Application to the Rössler system.

Consider an autonomous ODE in R3 called the Rössler system [R]







x′ = −y − z
y′ = x+ by
z′ = b+ z(x− a)

(37)

The classical parameter values (considered by Rössler) are a = 5.7 and b = 0.2.
For the remainder of this paper we fix b = 0.2.

The system (37) has been extensively studied in the literature numerically
and is treated in the literature as one of classical examples of systems generating
chaotic attractor. Yet, the number of rigorous results concerning it is very small.
In Fig. 2 we show a numerically obtained bifurcation diagram for periodic orbits
on section x = 0 with b = 0.2 and a as parameter. We see that when the
parameter a increases from 2 to 5.7 one observes a cascade of period doubling
bifurcations. In Fig. 3 we show some periodic orbits for different values of a.
Our goal in this section is to validate the part of the bifurcation diagram in
Fig.2 containing two first period doublings using the approach introduced in
the previous sections.

Let us list the few known rigorous results about (37). Pilarczyk (see [P] and
references given there) gave a computer assisted proof of the following facts: for
a = 2.2 there exists periodic orbit, for a = 3.1 there exists two periodic orbits.
However from his proof one cannot infer any information about the dynamical
character of these orbits. He constructs suitable isolating neighborhoods, which
have an index of an attracting or a hyperbolic orbit with one unstable direction,
but no such claim can be made about the periodic orbit proved to exists. In
fact we do not even known, wether this orbit is unique.

Finally, for the classical parameter values b = 0.2 and a = 5.7 the system is
chaotic [Z3] in the following sense: a suitable Poincaré map has an invariant set
S and the dynamics on S contains the shift map dynamics on three symbols.

Before proceeding any further we need to introduce some notation. Let
Π = {(x, y, z) ∈ R3 | x = 0, x′ > 0} be a Poincaré section. Since for u ∈ Π
the first coordinate is equal to zero we will use the remaining two coordinates
u = (y, z) to represent a point on Π. For a fixed parameter value a > 0 by Pa =
(Pa,y, Pa,z) : Π→ Π we will denote the corresponding Poincaré return map. By
P we will denote the map defined by P (a, y, z) = (a, Pa,y(y, z), Pa,z(y, z)).
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Figure 2: Bifurcation diagram for the Rössler system

Figure 3: Periodic orbits corresponding to fixed point, period two point, period
four point and period eight point for the Poincaré map. Parameter values are
a = 2.8, a = 3.5, a = 4 and a = 4.2.
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Apparently the first period doubling bifurcation is observed for a ≈ 2.832445
and the second one for a ≈ 3.837358. In the remainder of this section we discuss
the computer assisted proof of the existence of both these bifurcations. In our
presentation we will discuss the first one more in details, while for the second
one we will just state relevant lemmas and estimates.

Let u0 = (y0, z0) be an approximate fixed point for Pa0
, i.e. we set

u0 = (y0, z0) = (−4.7946653021070986256, 0.052488098609082899093) (38)

and put

M =

[

0.99999765967819775891 −0.9582095926217468751
0.0021634782474835700244 −0.28606708410382636343

]

(39)

The columns of M are normalized approximate eigenvectors of DPa0
(u0), where

first column corresponds to the eigenvalue close to −1 and the second one to
the eigenvalue close to zero. On section Π we choose new coordinates (ỹ, z̃) =
M−1((y, z)− u0) and since, in the sequel, we will use only the new coordinates
we will drop the tilde.

Define
A = [a1, a2] = [2.83244, 2.832446]
Y = [y1, y2] = 1.3107 · [−1, 1] · 10−3

Z = [z1, z2] = 1.3107 · [−1, 1] · 10−4

Now our goal is present the proof of the following theorem

Theorem 10 The map Pa has a period doubling bifurcation at some point
(a, y, z) ∈ int (A× Y × Z).

Remark 11 The existence of period doubling bifurcation is a local phenomenon.
In fact the sets A, Y , Z can be chosen to be smaller which speed up the proof
(13 minutes versus 87 minutes), namely we were able to prove the existence of
period doubling bifurcation in the set

A = [a1, a2] = [2.83244, 2.832445028]
Y = [y1, y2] = [−1, 1] · 10−4

Z = [z1, z2] = [−1, 1] · 10−5

However, the choice of larger set facilitates the proof of the existence of con-
necting branch of period two points between first and second period doubling
bifurcation, because decreasing a2 results in the eigenvalue of period-two points
to be very close to 1, which makes it very difficult to rigorously continue it.

6.1 The existence of fixed point curve.

Lemma 12 There exists function (yfp, zfp) : A→ Y ×Z of class C∞ such that
for (a, y, z) ∈ A× Y × Z holds

Pa(y, z) = (y, z) iff (y, z) = (yfp(a), zfp(a))
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and

y′fp(A) ⊂ [−1.3336825610133946629,−1.3275439332565022177] (40)

Proof: The proof, which is computer assisted, consists from two parts, in the
first one we prove the existence of the fixed point curve and in the second part
we establish estimate (40).

For the first part, we use the Interval Newton Method (Theorem 6) and
C1-Lohner algorithm to prove that for a ∈ A there exists a unique fixed point
(yfp(a), zfp(a)) for Pa in Y ×Z. In computations we insert the whole set A×Y ×
Z as an initial condition in our routine, which computes the Interval Newton
Operator and obtain that the for all a ∈ A the fixed point (yfp(a), zfp(a))
belongs to the set

N := N(Id − Pa, Y × Z) =
[

[−2.838378938597049559, 3.2727784971172813446] · 10−5

[−4.8121450471307824034, 4.2979575521536656939] · 10−6

]T

(41)

To obtain (40) we apply C1-Lohner algorithm [Z1] to the system















x′ = −y − z
y′ = x+ by
z′ = b+ z(x− a)
a′ = 0

(42)

with b = 0.2 in order to compute a bound for y′fp(A). Differentiating

P (a, yfp(a), zfp(a)) = (a, yfp(a), zfp(a))

with respect to a we obtain

y′fp =

∂Pa,y

∂a

(

1− ∂Pa,z

∂z

)

+
∂Pa,z

∂a
· ∂Pa,y

∂z
(

∂Pa,y

∂y
− 1
)(

∂Pa,z

∂z
− 1
)

−
∂Pa,y

∂z

∂Pa,z

∂y

(43)

where the partial derivatives of P are evaluated at (yfp(a), zfp(a)).
We use the set A×N , where N is defined in (41) as initial condition in our

routine which computes partial derivatives of P and after substituting them to
(43) we obtain a bound for y′fp as in (40).

We used the Taylor method of order 14 and the time step equal to 0.02 to
integrate the system (37) in R3 for the first part of the proof and the order
10 and the time step 0.01 when we integrate the extended system (42) in the
second part.
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Lemma 13 The eigenvalues λ1, λ2 : A → R of DPa(yfp(a), zfp(a)) are given
by

λ1(a) =
1

2

(

∂Pa,y

∂y
+

∂Pa,z

∂z
− s(a)

)

,

λ2(a) =
1

2

(

∂Pa,y

∂y
+

∂Pa,z

∂z
+ s(a)

)

,

s(a) =

√

(

∂Pa,y

∂y
−

∂Pa,z

∂z

)2

+ 4
∂Pa,y

∂z

∂Pa,z

∂y

where partial derivatives of P are evaluated at (yfp(a), zfp(a)). Let v(a) be the
normalized eigenvector corresponding to eigenvalue λ1(a). Then

λ1(a1) ∈ [−0.99999781944914578613,−0.99999548919217751131]

λ1(a2) ∈ [−1.00000064581599335217,−1.00000064581598072628]

λ2(A) ⊂ [−0.0013533261367103342071, 0.0013530378340487671934]

λ′
1(A) ⊂ [−0.70107900728585614836,−0.62770519734197127715]

vy(A) ⊂ ±[0.99728887963031764841, 1.0027184248801992439]

where vy denotes the y coordinate of v.

Proof: We leave the derivation of formulas for λ1, λ2 to the reader. We used the
C1-Lohner algorithm applied to the system (37) in order to compute bounds for
λ1(a1) and λ1(a2). Since the parameter a2 has been chosen to be very close to
the bifurcation parameter we find difficulties with the verification of condition
λ1(a2) < −1 in computations performed in interval arithmetics based on dou-
ble precision (52-bit mantissa) boundary value type. In our computations we
used interval arithmetics based on float numbers with 150-bit mantissa (MPFR
[MPFR] and GMP [GMP] packages).

Since the eigenvalue λ1(a) of DPa(yfp(a), zfp(a)) is given by an explicit for-
mula one can express λ′

1(a) in terms of first and second order partial derivatives
of P . We obtain

λ′
1(a) =

1

2

(

∂

∂a

∂Pa,y

∂y
+

∂

∂a

∂Pa,z

∂z
− s′(a)

)

s′(a) =
1

s(a)

(

∂Pa,y

∂y
−

∂Pa,z

∂z

)(

∂

∂a

∂Pa,y

∂y
−

∂

∂a

∂Pa,z

∂z

)

+
2

s(a)

((

∂

∂a

∂Pa,y

∂z

)

∂Pa,z

∂y
+

(

∂

∂a

∂Pa,z

∂y

)

∂Pa,y

∂z

)
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order step
λ2(A), λ

′
1(A) 10 0.03

λ1(a1) 10 0.1
λ1(a2) - 150-bit precision 14 0.05

Table 1: Parameters of the C1 − C2-Lohner algorithms.

where the symbols ∂
∂a

∂Pa,y

∂z
and ∂

∂a

∂Pa,z

∂y
should be understood as

∂

∂a

∂Pa,z

∂y
(yfp(a), zfp(a)) =

∂2Pa,z

∂a∂y
(yfp(a), zfp(a))

+
∂2Pa,z

∂y2
(yfp(a), zfp(a))y

′
fp(a)

+
∂2Pa,z

∂y∂z
(yfp(a), zfp(a))z

′
fp(a)

and y′fp(a) and z′fp(a) can be computed as in (43). Next, we applied the C2-
Lohner algorithm [WZ] to the extended system (42) in order to compute a bound
for the first and the second order partial derivatives of P and in consequence a
bound for λ′

1(A).
We inserted A × N , where N is defined in (41), as the initial condition

in our routine, which computes the partial derivatives of Poincaré map up to
second order. In these computations we simultaneously computed bounds for
λ2(A) and λ′

1(A). The parameter settings of the Taylor method used in the
computations are listed in Table 1.

6.2 The existence of Liapunov-Schmidt reduction.

Lemma 14 For all (a, y) ∈ A×Y there exists unique z = z(a, y) ∈ Z such that

P 2
a,z(y, z) = z iff z = z(a, y) (44)

and the map z : A× Y → Z is smooth of class C∞. Moreover, the map G : A×
Y → R defined by

G(a, y) = y − P 2
a,y(y, z(a, y))

satisfies

∂3G

∂y3
(A× Y ) ⊂ [1.8296823158090675943, 7.2204769494502958338] (45)

∂2G

∂y2
(A× Y ) ⊂ [−0.2084557586786322414, 0.2080871792788867581] (46)
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Proof: Let us fix (a, y) ∈ A × Y and define a function Va,y : Z → R by
Va,y(z) = z−P 2

a,z(y, z). The computer assisted proof of this Lemma consists of
the following steps

• We divide interval A onto 30 parts. For each subinterval Ā in this covering
we proceed as follows

• Using Interval Newton Method (Theorem 6) we verified that for all (a, y) ∈
Ā × Y the function Va,y has exactly one zero in Z. Denote this zero by
z(a, y). This defines the unique map z : Ā × Y → Z which is smooth by
implicit function theorem and which satisfies (44).

• Let Z̄ denote a bound for z(Ā, Y ) resulting from the previous step. Dif-
ferentiating z(a, y)− P 2

a,z(y, z(a, y)) = 0 with respect to y we obtain

(

1−
∂Pa,z

∂z

)

∂z

∂y
=

∂Pa,z

∂y
(

1−
∂Pa,z

∂z

)

∂2z

∂y2
=

∂2Pa,z

∂z2
(
∂z

∂y
)2 + 2

∂2Pa,z

∂y∂z

∂z

∂y
+

∂2Pa,z

∂y2
(

1−
∂Pa,z

∂z

)

∂3z

∂y3
=

∂3Pa,z

∂z3

(

∂z

∂y

)3

+ 3
∂3Pa,z

∂y∂z2

(

∂z

∂y

)2

+ 3

(

∂2z

∂y2
∂2Pa,z

∂z2
+

∂3Pa,z

∂y2∂z

)

∂z

∂y

+ 3
∂2z

∂y2
∂2Pa,z

∂y∂z
+

∂3Pa,z

∂y3

We see that we can compute all the partial derivatives of z(a, y) as a
functions of partial derivatives of P . Hence, partial derivatives ofG(a, y) =
y − P 2

a,y(y, z(a, y)) can be expressed in terms of partial derivatives of P .

Using the C3-Lohner algorithm [WZ] applied to the system (37) with a
range of parameter values Ā and an initial condition Y × Z̄ we computed
bounds of partial derivatives of Poincaré map P up to third order and an

estimation for ∂3G
∂y3 (Ā× Y ) and ∂2G

∂y2 (Ā× Y ). The estimates (45) and (46)
are an interval enclosures of the estimates obtained in each of 30 steps.

We used 6-th order Taylor method with the time step 0.04, both, to verify
the existence of z(a, y) and to compute higher order partial derivatives of P .
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order step grid remarks
∂G

∂y
(a2, yfp(a2)) 14 0.05 – 150-bit mantissa

G(a2, y1) 14 0.05 – 150-bit mantissa
G(a2, y2) 14 0.05 – 150-bit mantissa

∂2G

∂y∂a
(A× Y ) 6 0.05 5× 30 integration of (42)

∂G

∂y
({a1} × Y ) 10 0.05 1× 16000 nonequal parts

Table 2: Parameters of the C0 − C2-Lohner algorithms.

6.3 The existence of period doubling bifurcation for P .

Lemma 15 For A = [a1, a2], Y = [y1, y2] the following estimations hold true

∂G

∂y
(a2, yfp(a2)) ∈ [−1.2916325,−1.2916323] · 10−6 (47)

G(a2, y1) ∈ [−1.15,−1.07] · 10−13 (48)

G(a2, y2) ∈ [5.2, 5.21] · 10−12 (49)

∂2G

∂y∂a
(A× Y ) ⊂ [−2.421398492231531,−0.278863623843693] (50)

∂G

∂y
({a1} × Y ) ⊂ [0.83, 16.87] · 10−6 (51)

Proof: The estimations have been obtained using C0 − C1 − C2-Lohner al-
gorithms applied to the systems (37) and (42). The verification of conditions
(47–49) required computations in interval arithmetics based on 150-bit mantissa
floating points.

The settings of C0-C2-Lohner methods for the above computations are listed
in Table 2.

Proof of Theorem 10: The assertion follows from Theorems 4, 9 and
numerical Lemmas 12, 13, 14, 15.

Indeed, assumptions of Theorem 4 has been verified in

• A1 – Lemma 14

• A2 – from Lemma 12 there exists a fixed point curve (yfp, zfp) : A →
(y1, y2) and from Lemma 14 it has form as desired in A2

• A3 – 0 /∈ ∂3G
∂y3 (A× Y ) because of (45).

From (46), (50) and (40) it follows that 0 /∈ ∂2G
∂a∂y

(A×Y )+ ∂2G
∂y2 y

′
fp(A)·[0, 1].

Finally, Lemma 15 guarantees that the remaining assumptions of Lemma 3
with ε1 = εν = +1 and [δ1, δ2] = [y1, y2].
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Finally, from Lemma 13 we see that the assumptions about the spectrum of
DPa(A) and an eigenvector v(a) as desired in Theorem 9 are satisfied.

6.4 The existence of second period doubling bifurcation.

In Section 6.3 we gave a computer assisted proof that for some parameter value
ā1 ∈ [2.83244, 2.832446] period doubling bifurcation occurs for Pā1

. In this
section we use similar arguments in order to prove that P 2

ā2
has period doubling

bifurcation for some ā2 ∈ [3.83735812, 3.837358168411].
Since the arguments used to prove the existence of second period doubling

bifurcation are the same as in the first period doubling bifurcation we omit the
details and we present only the sets and the necessary estimates.

Define

A2 = [a3, a4] = [3.83735812, 3.837358168411]

Y2 = [y3, y4] = [−1.1, 1.1] · 10−6

Z2 =
1

3
Y2

u2 = (−4.5003284169596655673, 0.043136987520848421584)

M2 =

[

0.99999908059259889903 0.82277742767392003653
0.0013560287448822982113 −0.56836370794614177182

]

The point u2 is an approximate period two point for parameter value a4,
and the columns of matrix M2 are normalized eigenvectors of DP 2

a4
, where the

first column corresponds to eigenvalue close to −1.
On the Poincaré section Π we will use a coordinates (y, z) = M−1

2 (u − u2),
where u denotes a point in cartesian coordinates. In this subsection we will use
only these coordinates.

Theorem 16 The Poincaré map P 2
a has a period doubling bifurcation at some

point (ā2, ȳ2, z̄2) ∈ int (A2 × Y2 × Z2).

The proof is a consequence of the following lemmas (proved with computer
assistance)

Lemma 17 There exist function (yper , zper) : A2 → Y2 × Z2 smooth of class
C∞ such that for (a, y, z) ∈ A2 × Y2 × Z2 holds

P 2
a (y, z) = (y, z) iff (y, z) = (yper(a), zper(a))

and

y′per(A2) ⊂ [−0.36435039423614490328,−0.36419313389173590956]
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Lemma 18 Let λ1, λ2 : A→ R be eigenvalues of DP 2
a (yper(a), zper(a)) defined

by similar formulas as in Lemma 13. Let v(a) be the normalized eigenvector
corresponding to eigenvalue λ1(a). Then

λ1(a3) ∈ [−0.99999992011934590863,−0.99999992005484927837]

λ1(a4) ∈ [−1.00000000000149573159618,−1.00000000000149573159615]

λ2(A2) ⊂ [−7.7304566166653588839, 7.7302177026359675856] · 10−5

λ′
1(A2) ⊂ [−1.6554066232416912996,−1.6460891324715511974]

πyv(A2) ⊂ ±[0.99984657385734598822, 1.0001534381577519284].

Lemma 19 For all (a, y) ∈ A2 × Y2 there exists unique z = z(a, y) ∈ Z2 such
that

P 4
a,z(y, z) = z iff z = z(a, y)

and the map z : A2 × Y2 → Z2 is smooth of class C∞. Moreover, the map
G : A2 × Y2 → R defined by

G(a, y) = y − P 4
a,y(y, z(a, y))

satisfies

∂3G

∂y3
(A× Y ) ⊂ [11.780861336872181511, 22.544626008881969881]

∂2G

∂y2
(A× Y ) ⊂ [−0.12474597648618415136, 0.12474408945310766494]

Lemma 20 The following estimations hold true

∂G

∂y
(a4, yper(a4)) ∈ [−2.992,−2.991] · 10−12

G(a4, y3) ∈ [−5.13,−5.11] · 10−19

G(a4, y4) ∈ [5.21, 5.22] · 10−19

∂2G

∂y∂a
(A2 × Y2) ⊂ [−4.354355790892265432,−2.244876361570084633]

∂G

∂y
({a3} × Y2) ⊂ [0.99, 30.98] · 10−8

Parameter settings of computations involved in proofs of the above lemmas
are listed in Table 3.

7 Continuation of bifurcation diagram

In the previous sections we proved that the map Pa has period doubling bifur-
cations for parameter values ā1 ∈ [a1, a2] = A and ā2 ∈ [a3, a4] = A2 in sets
Y × Z and Y2 × Z2, respectively.

Our goal now is to connect these bifurcations with the curve of period two
points. More precisely, we prove the following result
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order step grid remarks
∂3G

∂y3
(A2 × Y2) 10 0.04 150× 1 –

∂2G

∂y2
(A2 × Y2) 10 0.04 150× 1 –

∂G

∂y
(a4, yper(a4)) 25 0.05 – 150-bit mantissa

G(a4, y3), G(a4, y4) 25 0.05 – 150-bit mantissa
∂2G

∂y∂a
(A2 × Y2) 10 0.05 150× 1 integration of (42)

∂G

∂y
({a3} × Y2) 14 0.05 1× 10000 –

Table 3: Parameters of the C0 − C3-Lohner algorithms in the proof of the
existence of second period doubling bifurcation.

Theorem 21 There exists a continuous curve

(yper, zper) : (ā1, ā2]→ R2

of period two points for Pa. Moreover,

(yper(a), zper(a)), Pa(yper(a), zper(a)) ∈ Y × Z for ā1 < a ≤ a2

(yper(a), zper(a)), P
2
a (yper(a), zper(a)) ∈ Y2 × Z2 for a3 ≤ a ≤ ā2.

Therefore curve (yper, zper) connects the two bifurcation points for a = ā1 and
a = ā2.

The proof of the existence of a branch of period two points for P consists of
the following steps.

1. the existence of continuous curve of period two points on intervals (ā1, a2]
and [a3, ā2] is a consequence of Theorem 10 and Theorem 16, respectively.

2. for parameter values slightly above a2, a2 < a ≤ ã, with ã − a2 small,
we extend this curve using Lemma 8, which requires some C3 estimates
(hence it is demanding computationally).

3. for parameters far from a2 up to a3, i.e. ã < a ≤ a3, we verify the existence
of period two point curves using Krawczyk method (Theorem 7), which
requires only C1 estimates.

4. Since we use different methods for proving the existence of segments of
period two points curve over some intervals in [ā1, ā2] it is necessary to
verify that these segments can be glued to produce continuous curve.
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At first, it appears that step 2, requiring costly C3 computations, is not neces-
sary, because in step 3 we can consider also points close to a2 using C1 com-
putations. But it turns out that, while in principle possible, this approach may
require very large computation times, because the hyperbolicity is very weak
there, due to the fact that one eigenvalue of P 2

a2
is very close to 1.

To deal with this problem we used Lemma 8 to prove that for parameter
values slightly above a2 there exists a continuous branch of period two points.
Algorithm 1 is designed to verify assumptions of Lemma 8. In Lemma 22 we
prove its correctness.

Definition 5 Let U ⊂ Rn be a bounded set. We say that G ⊂ 2R
n

is a grid of
U if

1. G is a finite set and each G ∈ G is a closed set

2. U ⊂
⋃

G∈G G

In our algorithms, which will be presented below, we always use grids con-
sisting of interval sets, i.e. sets which are cartesian products of intervals, most
of the time uniform grids, which are defined as follows.

Definition 6 Let Y = Πn
i=1Yi, where Yi = [ai, bi] for ai ≤ bi and let (g1, . . . , gn) ∈

Z+. We define a (uniform) g1×g2×· · ·×gn-grid for Y denoted by G(g1, . . . , gn, Y )
as follows.

For any (j1, . . . , jn) ∈ Z+, such that ji ≤ gi we set

gj1,...,jn = Πi=1

[

ai, ai + ji ·
bi − ai

gi

]

. (52)

Then G(g1, . . . , gn, Y ) is a collection of all gj1,...,jn .

Lemma 22 If Algorithm 1 is called with its arguments ν1, ν2, g1, g2, g3, gx, t,
X × Y and fν and it does not throw an exception then the assumptions of
Lemma 8 are satisfied for fν , ν ∈ [ν1, ν2] on X × Y .

Proof: The assumption about existence of fixed point curve is verified in lines
15–19 since for all ν ∈ [ν1, ν2] the Interval Newton Operator satisfies assump-
tions op Theorem 6.

The existence of Liapunov-Schmidt reduction together with condition (26)
is verified in lines 2–8. In lines 4–6 we see that y(ν, x) which solves equation
y−πy(f

2
ν (x, y)) is unique for fixed ν, therefore by the implicit function theorem

y(ν, x) is smooth and we can compute map G and its partial derivatives.
In lines 9–10 we verify that G(ν2,min(X)) < 0 and G(ν2,max(X)) > 0.

Since ∂G
∂ν

(ν,min(X)) > 0 and ∂G
∂ν

(ν,max(X)) < 0 (lines 11–14) we see that for
ν ∈ [ν1, ν2] holds G(ν,min(X)) < 0 and G(ν,max(X)) > 0. Therefore (27)
holds true.
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Algorithm 1: verification of assumptions of Lemma 8

Data: [ν1, ν2] - an interval, g1, g2, g3, gx - integers, t ∈ (0, 1) - float
number, X × Y - a convex, compact set, fν - parameterized family
of maps

Result: If algorithms stops and does not throw an exception then
assumptions of Lemma 8 are satisfied

begin1

G1 ←− g1 × gx-grid for [ν1, ν2]×X ;2

foreach ν̄ × X̄ ∈ G1 do3

y(ν̄, X̄)←−4

IntervalNewtonOperator(Id Y − πY ◦ f2
ν̄ (X̄, ·), Y, center(Y ));

if not y(ν̄, X̄) ⊂ intY then5

throw Liapunov-Schmidt reduction not verified6

if not ∂3G
∂x3 (ν̄, X̄) > 0 then7

throw condition (26) is not satisfied8

if (not G(ν2,min(X)) < 0) or (not G(ν2,max(X)) > 0) then9

throw condition (27) is not satisfied10

G2 ←− g2-grid for [ν1, ν2];11

foreach ν̄ ∈ G2 do12

if (not ∂G
∂ν

(ν̄, x1) > 0) or (not ∂G
∂ν

(ν̄, x2) < 0) then13

throw condition (27) is not satisfied14

G3 ←− g3-grid for [ν1, ν2];15

foreach ν̄ ∈ G3 do16

(X̄, Ȳ )←− IntervalNewtonOperator(Id−fν̄, X×Y, center(X×Y ));17

if not (X̄, Ȳ ) ⊂ int (X × Y ) then18

throw fixed points curve not verified19

x+ ←− (1 − t)min(X) + tmin(X̄);20

x− ←− (1 − t)max(X) + tmax(X̄);21

if (not G(min(ν̄), x+) > 0) or (not G(min(ν̄), x−) < 0) then22

throw condition (28) or (29) is not satisfied23

if (not ∂G
∂ν

(ν̄, x+) < 0) or (not ∂G
∂ν

(ν̄, x−) > 0) then24

throw condition (28) or (29) is not satisfied;25

end26
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Finally, in lines 15–25 we verify conditions (28–29). Again we verify that for
an element of grid ν̄ it holds G(min(ν̄), x+) > 0 and G(min(ν̄), x−) < 0. This
together with ∂G

∂ν
(ν̄, x+) > 0 and ∂G

∂ν
(ν̄, x−) < 0 proves (28–29).

As was mentioned earlier Algorithm 1 is used to prove the existence of period
two points curve for parameter values slightly above the first bifurcation - i.e.
for parameters close to a2 G has three solutions close to one another. For these
parameter values we found difficulties with verifying the existence of period-two
points curve using C1-computations, only.

For parameter values away from the bifurcation, where all eigenvalues of
periodic orbit are well separated from the unit circle, we use Algorithm 2 based
on the Newton interval method and the Krawczyk method, both requiring only
C1-computations, and which verifies the existence of only one branch of period
two points for Pa.

Before we present this algorithm we need to introduce some notations. Let
Π̄ = {(x, y, z) ∈ R3 : x = 0} be a Poincaré section for (37) and Pa : Π̄−→◦ Π̄ be
corresponding Poincaré map for a system with parameter value a. Notice that
the trajectory can intersect Π̄ at a point (y, z) ∈ Π̄ for which x′ = −y − z is
positive or negative (if it is equal to zero the Poincaré map is not defined). Hence
we have P̄ 2

a |Π = Pa, where Pa is the Poincaré map for section Π = {(x, y, z) ∈
R3 | x = 0, x′ > 0} and therefore period two points for Pa correspond to period
four points for P̄a. Let us define a map Fa : Π̄4 → R8 by

Fa









(y1, z1)
(y2, z2)
(y3, z3)
(y4, z4)









=









(y2, z2)− P̄a(y1, z1)
(y3, z3)− P̄a(y2, z2)
(y4, z4)− P̄a(y3, z3)
(y1, z1)− P̄a(y4, z4)









Algorithm 2 was used to verify the existence of a continuous branch of period
two points for Pa for a belonging to some interval. Sets Xi × Yi give the size of
the neighborhood around a candidate periodic orbit on section Π. Lines 4 to 8
constitute a heuristic part and their task is to find a good candidate.

Lemma 23 If Algorithm 2 is called with its arguments [a∗, a
∗], Yi × Zi, i =

1, 2, 3, 4 and g and does not throw an exception then there exists a continuous
curve (yper, zper) : [a∗, a

∗] → Π such that (yper(a), zper(a)) is period two point
for Pa.

Proof: The existence of fixed point for P 2
a for all a ∈ [a∗, a

∗] is verified in lines
12–16. Lines 17–18 guarantee that this is a period two point for Pa, in fact a
unique one in U .

Uniqueness implies continuity on each ā ∈ G and due to uniqueness and
connectedness of the setB defined in line 19 we see that they agree on boundaries
of ā.

Proof of Theorem 21:
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Algorithm 2: verification the existence of period two points branch.

Data: [a∗, a
∗] - an interval, Yi × Zi, i = 1, 2, 3, 4 - convex, compact sets,

g - an integer
Result: if algorithm stops and does not throw an exception then there

exists a continuous branch of period two points for Pa for
parameter values a ∈ [a∗, a

∗]
begin1

G ←− g-grid for [a∗, a
∗];2

foreach ā ∈ G do3

a←− center(ā);4

u1 = (y1, z1)←− find approximate period two point for P 2
a using5

standard Newton method;
u2 = (y2, z2)←− P̄a(y1, z1);6

u3 = (y3, z3)←− P̄a(y2, z2);7

u4 = (y4, z4)←− P̄a(y3, z3);8

C ←− compute approximate value of DFa(u1, u2, u3, u4);9

if C is singular then10

C ←− Id ;11

U ←− (u1 + Y1 × Z1, u2 + Y2 × Z2, u3 + Y3 × Z3, u4 + Y4 × Z4);12

u←− (u1, u2, u3, u4);13

Kā = (k1,ā, k2,ā, k3,ā, k4,ā)←−14

IntervalKrawczykOperator(Fā, C
−1, U, u);

if not Kā ⊂ intU then15

throw cannot verify the existence of period two point;16

if k1,ā ∩ k3,ā 6= ∅ then17

throw the unique fixed point for P 2
ā in k1,ā is not necessary18

period two point for Pā;

B ←−
⋃

ā∈G ā× k1,ā;19

if B is not connected then20

throw cannot verify if branch of fixed point curve is continuous21

on interval [a∗, a
∗];

end22
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[ν1, ν2] g1 g2 g3 gx t (Xi × Yi) · 10−4

[a2, 2.8325] 6 70 600 150 0.88 [−99.0216, 97.95]× [−4, 4]
[2.8325, 2.8326] 10 80 300 270 0.7 [−166.9, 163.9]× [−4, 4]
[2.8326, 2.8327] 12 60 150 320 0.6 [−214.59, 209.62]× [−4, 4]
[2.8327, 2.8328] 17 50 120 330 0.5 [−253.8, 246.8]× [−8, 8]
[2.8328, 2.8329] 18 50 100 350 0.5 [−287.757, 279]× [−8, 8]

Table 4: Parameters of the Algorithm 1.

The existence of continuous curve of period two points on intervals (ā1, a2]
and [a3, ā2] is a consequence of Theorem 10 and Theorem 16, respectively. Let
as = 2.8329. For parameter values [a2, as] we verify the existence of period two
points branch using Algorithm 1 and for parameter values a ∈ [as, a3] we use
Algorithm 2.

We have ran Algorithm 1 five times with parameters listed in Table 4 (in
each case the map is Pa). Since in each case the algorithm had stopped and did
not throw an exception we conclude that in each interval of parameters listed in
Table 4 there exist two continuous curves c1(a), and c2(a) of period two points.
Sets Xi × Yi listed in Table 4 are chosen so that

Y × Z ⊂ X1 × Y1 ⊂ · · · ⊂ X5 × Y5, (53)

where Y ×Z is the set used in the proof of the existence of first period doubling
bifurcation. Observe also, that since we know that for a2 holds Pa2

(c1(a2)) =
c2(a2) and c1(a2), c2(a2) ∈ Y × Z ⊂ X1 × Y1 from Lemma 8 we obtain that
{c1(a), c2(a)} is period two orbit for Pa, for a ∈ [a2, as], i.e. the whole interval
of parameters covered by intervals listed in the first columns in Table 4. The
uniqueness of period two orbit together with condition (53) implies that the
curves are continuous on (ā1, as].

One can see that the total number of initial values for which we need compute
third order derivatives of G,which is equal to the sum of g1gx over all rows in
Table 4, is equal to 19350. The total time of computation of this step is ten
hours on the Pentium IV, 3GHz processor.

We have run Algorithm 2 with 74 different arguments listed in Table 5.
We have chosen the parameters of the Algorithm 2 so that such 74 intervals
[(a∗)i, (a

∗)i], i = 1, . . . , 74 cover the interval [as, a3]. Notice also, that for pa-
rameters a closer to as we need larger values of g since the hyperbolicity close to
a2 is very weak. The total number of subintervals used to cover interval [as, a3]
is 614450. In fact this is the longest part of the numerical proof. The total
time of computation of this step is 53 hours on the Pentium IV, 3GHz proces-
sor. Since in each case Algorithm 2 stops and does not throw an exception we
conclude that on each subinterval [(a∗)i, (a

∗)i] there exists continuous branch
of period two points. We need to show that these curves glue continuously at
a∗i ’s. In fact, this algorithm returns an upper bound for this period two points
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branch which is of the form

B =

74
⋃

i=1

Bi (54)

where Bi’s are defined in line 19 of Algorithm 2. We verified that B is connected
- this together with an information that for fixed a ∈ [as, a3] there exists a
unique period two point (yper(a), zper(a)) such that (a, yper(a), zper(a)) ∈ B
implies that the curve (yper(a), zper(a)) is continuous on [as, a3].

There remains to show the continuity of fixed point branch for parameter
values a = as and a = a3. For a = as we know that there exist period two
points c1(as), c2(as) which belongs to the last set listed in Table 4, i.e.

c1(as), c2(as) ∈ W1 = u0 +M · ([−287.757, 279]× [−8, 8]) · 10−4

where u0 and M define coordinate system close to first period doubling bifur-
cation and are defined in (38–39). On the other hand the estimation for period
two point resulting from Krawczyk method used in Algorithm 2 is

W2 = (W 1
2 ,W

2
2 )

W 1
2 = [−4.7668051788293892557,−4.7667832743925968586]

W 2
2 = [0.052543190547910088861, 0.052543238016254205369]

One can verify that W2 ⊂ W1 which obviously means that a period two point
(yper(as), zper(as)) ∈ W2 resulting from the Krawczyk method and Algorithm 2
is one of the points c1(as), c2(as) resulting from Algorithm 1. Hence, the curve
of period two points is continuous at a = as.

In a similar way we verified continuity at a = a3. From the Krawczyk method
used in Algorithm 2 we know that (yper(a3), zper(a3)) is a unique period two
point in the set

W3 = (W 1
3 ,W

2
3 )

W 1
3 = [−4.5010116820607413146,−4.4996232549240025023]

W 2
3 = [0.043134233933640332703, 0.043140290681655812932]

On the other hand from Theorem 16 we know that for a = a3 period two point
belongs to the set

W4 = u2 +M2 · (Y2 × Z2)

where M2, u2, Y2, Z2 define the set on which we verify the existence of second
period doubling bifurcation. One can verify that W4 ⊂ W3 which proves that
the branch of period two points is continuous at a = a3.
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U = [−1, 1] · (1100, 3, 1000, 3000, 1100, 3, 1000, 3000) · 10−8

i [a∗, a
∗] g Y1 × Z1 × Y2 × Z2 × Y3 × Z3 × Y4 × Z4

1 [2.8329, 2.83291] 14000 U
2 [2.83291, 2.83292] 13500 U
3 [2.83292, 2.83293] 12200 3U
4 [2.83293, 2.83294] 11250 3U
5 [2.83294, 2.83295] 10400 3U
6 [2.83295, 2.83296] 9650 3U
7 [2.83296, 2.83297] 9050 3U
8 [2.83297, 2.83298] 8500 3U
9 [2.83298, 2.83299] 8000 3U
10 [2.83299, 2.833] 7550 3U
11 [2.833, 2.83301] 7200 3U
12 [2.83301, 2.83302] 6800 3U
13 [2.83302, 2.83303] 6500 3U
14 [2.83303, 2.83304] 6200 3U
15 [2.83304, 2.83305] 6000 3U
16 [2.83305, 2.83306] 5700 3U
17 [2.83306, 2.83307] 5500 3U
18 [2.83307, 2.83308] 5300 3U
19 [2.83308, 2.83309] 5100 3U
20 [2.83309, 2.8331] 4900 3U
21 [2.8331, 2.83311] 4800 3U
22 [2.83311, 2.83312] 4600 3U
23 [2.83312, 2.83313] 4450 3U
24 [2.83313, 2.83314] 4300 3U
25 [2.83314, 2.83315] 4150 3U
26 [2.83315, 2.83316] 4050 3U
27 [2.83316, 2.83317] 3950 3U
28 [2.83317, 2.83318] 3850 3U
29 [2.83318, 2.83319] 3750 3U
30 [2.83319, 2.8332] 3650 3U
31 [2.8332, 2.8333] 36000 3U
32 [2.8333, 2.8334] 29000 3U
33 [2.8334, 2.8335] 24000 3U
34 [2.8335, 2.8336] 20000 3U
35 [2.8336, 2.8337] 18000 3U
36 [2.8337, 2.8338] 16000 3U
37 [2.8338, 2.8339] 14000 3U
38 [2.8339, 2.834] 13000 3U
Table 5 continued on the next page
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Table 5 continued from previous page

i [a∗, a
∗] g Y1 × Z1 × Y2 × Z2 × Y3 × Z3 × Y4 × Z4

39 [2.834, 2.8345] 59000 3U
40 [2.8345, 2.835] 42000 3U
41 [2.835, 2.8355] 17500 15U
42 [2.8355, 2.836] 11000 15U
43 [2.836, 2.8365] 8000 15U
44 [2.8365, 2.837] 6200 15U
45 [2.837, 2.8372] 2800 30U
46 [2.8372, 2.8375] 3600 30U
47 [2.8375, 2.838] 5000 30U
48 [2.838, 2.8385] 3600 30U
49 [2.8385, 2.839] 2900 30U
50 [2.839, 2.8395] 2400 30U
51 [2.8395, 2.84] 2100 30U
52 [2.84, 2.841] 3700 30U
53 [2.841, 2.842] 3000 30U
54 [2.842, 2.843] 2500 30U
55 [2.843, 2.844] 2200 30U
56 [2.844, 2.845] 2000 30U
57 [2.845, 2.846] 1700 30U
58 [2.846, 2.848] 3100 30U
59 [2.848, 2.85] 2600 30U
60 [2.85, 2.86] 11000 30U
61 [2.86, 2.87] 6500 30U
62 [2.87, 2.88] 4700 30U
63 [2.88, 2.89] 3700 30U
64 [2.89, 2.9] 3100 30U
65 [2.9, 2.95] 4400 150U
66 [2.95, 3] 2500 150U
67 [3, 3.1] 3500 150U
68 [3.1, 3.2] 2500 150U
69 [3.2, 3.3] 2100 150U
70 [3.3, 3.4] 1800 150U
71 [3.4, 3.5] 1600 150U
72 [3.5, 3.6] 1400 150U
73 [3.6, 3.7] 1500 150U
74 [3.7, a3] 2400 150U

Table 5: Parameters of Algorithm 2. The initial set U is defined in the first line
of the table.
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7.1 Technical data.

In order to compute Poincaré maps P and P 2 with their partial derivatives
we used the interval arithmetic [IE, Mo], the set algebra and the Cr-Lohner
algorithm [WZ] developed at the Jagiellonian University by the CAPD group
[CAPD]. The C++ source files of the program with an instruction how it should
be compiled and run are available at [WI].

All computations were performed with the Pentium IV, 3GHz processor and
512MB RAM under Kubuntu Feisty Fawn linux with gcc-4.1.1 and MSWindows
XP Professional with gcc-3.4.4. The computations took approximately three
days. The main time-consuming part (over 63 hours) is the verification of the
existence of connecting branch of period two points between first and second
bifurcation.
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