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Abstract. The word problem for discrete groups is well-known to be widiagble by
a Turing Machine; more precisely, itis reducible both to &odh and thus equivalent
to the discrete Halting Problem.

The present work introduces and studies a real extensiomeofvord problem for a
certain class of groups which are presented as quotienpgrofia free group and
a normal subgroup. As main difference with discrete grotipsse groups may be
generated byincountably many generators with index running over certets of
real numbers. This includes a variety of groups which arecaptured by the finite
framework of the classical word problem.

Our contribution extends computational group theory frowa discrete to the Blum-
Shub-Smale (BSS) model of real number computation. It plewia step towards
applying BSS theory, in addition to semi-algebraic geoypetiso to further areas of
mathematics.

The main result establishes the word problem for such gréoife not only semi-
decidable (and thus reducilflem) but also reducibléo the Halting Problem for such
machines. It thus gives the first non-trivial example of alylea complete that is,
computationally universal for this model.

1 Introduction

In 1936, ALAN M. TURING introduced the now so-called Turing Machine and proved the
associated Halting Problehh, that is the question of termination of a given such machine
M, to be undecidable. On the other hand simulating a madtirea a Universal Turing
Machine established to be semi-decidable. In the sequel, several other probieweasre
also revealed semi-, yet un-decidable. Two of thefithert's Tenth and theWord Prob-
lem for groups, became particularly famous, not least becawesedrise and are stated in
purely mathematical terms whose relation to computer sei¢arned out considerable a
surprise. The according undecidability proofs both praickeg constructing from a given
Turing MachineM an instancexy, of the problemP under consideration such thaj € P
iff M terminates; in other words, a reduction frainto P. As P is easily seen to be semi-
decidable this establishes, conversely, reducibilitydtand thus Turing-completeness of
P.

Turing Machines are still nowadays, 70 years after thenohtiction, considered the
appropriate model of computation for discrete problemat, i, over bits and integers. For
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real number problems of Scientific Computation as for exanipINumerics, Computer
Algebra, and Computational Geometry on the other hand,rabirelependent previous
formalizations were in 1989 subsumed in a real counterpaté classical Turing Ma-
chines called the Blum-Shub-Smale, for short BSS model BBSBCSS98]. It bears many
structural similarities to the discrete setting like fora@xple the existence of a Universal
Machine or the undecidability of the associated real HglBnoblemH, that is the question
of termination of a given BSS-machiié.

Concerning BSS-complete problefshowever, not many are known so far. The Tu-
ring-complete ones for example and, more generally, angrelis problem becomes de-
cidable over the reals [BSS89XEMPLE §1.6]; andextendingan undecidable discrete
problem to the reals generally does not work either:

Example 1.Hilbert's Tenth Problem (over R) is the task of deciding, given a multivari-
ate polynomial equation ové®, whether it has a solution iR. For integerR = Z, this
problem has been proven (Turing-)undecidable [Mat70]. featsR = R however, itis
(BSS-)decidable by virtue ofARskI’'s Quantifier Elimination [BCSS98, top of p.97].

O

1.1 Relation to Previous Works

Provably undecidable problems over the reals, such adMtredelbrot Set or the ratio-
nalsQ are supposedly (concerning the first) or, concerning therabave actually been
established [MZ05hot reducible from and thus strictly easier th&h In fact the only
BSS-complet& essentially differing fronH we are aware of is a certain countable exis-
tential theory in the language of ordered fields [CucO2EDREM 2.13].

The present work closes this structural gap by presentirepbgeneralization of the
word problem for groups and proving it to be reducible bottnirand to the real Halt-
ing Problem. On the way to that, we significantly extend nwifrom classical and com-
putational (discrete, i.e.) combinatorial group theorythe continuous setting of BSS-
computability. Several examples reveal these new notismaahematically natural and
rich. They bear some resemblance to certain recent prégergaf continuous fundamen-
tal groups from topology [CCO00] where, too, the set of getwsa(‘alphabet’) is allowed
to be infinite and in fact of continuum cardinality. There hles@r words generally have
transfinite length whereas we require them to consist of finliely many symbols.

We find our synthesis of computational group theory and raailver computability to
also differ significantly from the usual problems studiediie BSS model which typically
stem from semi-algebraic geometry. Indeed, the papersngealth groupsG in the BSS
setting [BouO1, Gas01, Pru02] treat suéhas underlying structure of the computational
model, that is, not over the rea and its arithmetic. [Tuc80] considers the question of
computational realizings and its operation, not of deciding properties of (elemerf}s o
G. A rare exception, BRKSEN JEANDEL, and KOIRAN do consider BSS-decidability
(and complexity) of properties of a real group [DJKO5]; heeethey lack completeness
results. Also, their group is not fixed nor presented but igiklg some matrix generators.
For instance, finiteness of the multiplicative subgrouff@fenerated by eX@ri/x), x € R,
is equivalent tox € Q and thus undecidable yet not reducible friiiMZ05]; whereas any
fixed such group is isomorphic either {@,+) or to (Zn,+) for somen € N and has
decidable word problem (Examples 12 and 13).

1.2 Overview

Our work is structured as follows. In Section 2 we recall basdtions of real number
computation. Section 3 starts with a review of the classigaid problem infinitely pre-

sented groups. Then we introduce real counterparts caligtbnically presented groups,
the core objects of our interest. We give some guiding exampf mathematical groups
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that fit into this framework. The word problem for these grsup defined and shown to
be semi-decidable in the BSS model of computation over thks.r&ection 4 proves our
main result: We recall basic concepts from algebra useddiattalysis of the word problem
(Section 4.1) like Higman-Neumann-Neumann (for short: HMXtensions and Britton’s
Lemma (Section 4.2). It follows the concept of a benign sabgr(Section 4.3); in the
discrete case, this notion due to [Hig61] relies implicitly finiteness presumptions and
thus requires particular care when generalizing to theinantis case. Sections 4.4 and 4.5
prove the paper’s central claim: The real Halting Problemlmareduced to the word prob-
lem of algebraically presented real groups. We close ini@e& with some conclusions.
The paper tries to be self-contained for complexity thasrishis especially holds with
respect to the presentation of some concepts from combiakgooup theory. Itis certainly
recommended to study the related material from originatcesi In particular, we found
the books by RTMAN [Rot95] and by lyNDON and SSHUPP[LS77] extremely helpful.

2 BSS-Machines and the Real Halting Problem

This section summarizes very briefly the main ideas of reatlmer computability theory.
For a more detailed presentation see [BCSS98].

Essentially a (real) BSS-machine can be consideredRanaom Access Machine
over R which is able to perform the basic arithmetic operationsrat cost and which
registers can hold arbitrary real numbers. Its inputs aus tinite sequences ov& of
possibly unbounded length.

Definition 2. [BSS89]

a) LetX C R®:= gy RY, i.€. a set of finite sequences of real numberDIksENSION,
dim(X), is the smallest D= N such thatX C @y-pRY; dim(X) = « if no such D
exists.

b) ABSS-MACHINE M OVER R WITH ADMISSIBLE INPUT SETX is given by a finite set
| of instructions labeled by, ... ,N. A configuration oM is a quadruple(n,i, j,y) €
I x Nx N xR*. Here, n denotes the currently executed instruction, i anck jused as
addresses (copy-registers) ands the actual content of the registersidt The initial
configuration ofVI's computation on input € X'is (1,1,1,X) . If n =N and the actual
configuration is(N, i, j,y), the computation stops with outpptThe instruction®1 is
allowed to perform are of the following types:

computation: n:ys<« Ycony|, whereop € {+,—,x,+}; or
n:ys«< o forsomea e R .
The registe#s will get the valueyony; or a, respectively. All other register-entries
remain unchanged. The next instruction will be &h; moreover, the copy-register
i is either incremented by one, replaced @yor remains unchanged. The same
holds for copy-register j.
branch: n: if yp > 0 goto 3(n) else goton+ 1. According to the answer of the test
the next instruction is determined (wheBén) € I). All other registers are not
changed.
copy: n:yj < Yyj, i.e. the content of the “read”-register is copied into thevfite’-
register. The next instruction is-a1; all other registers remain unchanged.
c) The size of ame RY is sizex(X) = d. The cost of any of the above operations.i$he
cost of a computation is the number of operations perfornmill the machine halts.
d) For someX C R” we call a function f: X — R (BSS-)computable iff it is realized
by a BSS machine over admissible inputX¥eSimilarly, a setX C R” is decidable
in R* iff its characteristic function is computabl&.is called a decision problem or a
language ovelR”.
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e) ABSS oracle machine using an oracle@et R” is a BSS machine with an additional
type of node called oracle node. Entering such a node the imacan ask the oracle
whether a previously computed elemgrg R* belongs toQ. The oracle gives the
correct answer at unit cost.

A real Halting Problem now can be defined straightforwardiyweell.

Definition 3. Thereal Halting Problen is the following decision problem. Given the
code ¢ € R” of a BSS machinkl, does M terminate its computation (on inf@)t?

Both the existence of such a coding for BSS machines and ttheciohability of H in the
BSS model were shown in [BSS89].

3 Word-Problem for Groups

Groups occur ubiquitously in mathematics, and having datmns with and in them han-
dled by computers constitutes an important tool both inrttiedoretical investigation and
in practical applications as revealed by the flourishingifiegfl Computational Group The-
ory [FK91, FK95, HEBO5]. Unfortunately already the simplesesgtion, namely equality
‘a=Db" of two elementsa,b € G is in general undecidable for grou@sreasonably pre-
sentable to a digital computer, that is, in a finite way — thieloeated result obtained in
the 1950ies independently bydVikov [Nov59] and BoONE [B0o058]. In the canoni-
cal model of real number decidabilityn the other handgverydiscrete problent. C =*

is solvable [BSS89, EaMPLE §1.6], rendering the word problem for finitely presented
groups trivial.

However, whenever we deal with computational questionsliuirg groups of real or
complex numbers, the Turing model seems not appropriateanyAs an example take
the unit circle inR? equipped with complex multiplication. There is a clear neatfatical
intuition how to compute in this group; such computations ba formalized in the BSS
model. We thus aim at a continuous counterpart to the dis@lass of finitely presented
groups for which the word problem is universal for the BSS elod

Afterrecalling basic notions related to the (classicalyayaroblem of finitely presented
groups (Section 3.1) we introduce in Section 3.2 the larfgeyscof algebraically presented
real groups. Section 3.3 gives several examples showinglhigwmew class covers natural
groups occurring in mathematics. Next (Section 3.4) weldistasemi-decidability of the
word problem for algebraically presented groups, thataducibility to the Halting Prob-
lemH in the real number model of Blum, Shub, and Smale. Our maintrtreen proves the
existence of algebraically presented groups for which tbedvwproblem is reducible from
H; this covers the entire Section 4.

3.1 The Classical Setting

Here, the setting for the classical word problem is briefiyatied. A review of the main
algebraic concepts needed in our proofs is postponed tio&ett

Definition 4. a) Let X be a set. Thieee group generated ¥, denoted by = ((X),0) or
more briefly(X), is the se{X UX~1)* of all finite sequences = x;* - - - x¢n with n€ N,
X € X, & € {—1,+1}, equipped with concatenatianas group operation subject to
the rules
xox? = 1 = xlox WxeX (1)
where % := x and wherel denotes the empty word, that is, the unit element.
1 We remark that in the other major and complementary modekaF number computation, de-
cidability makes no sense as it corresponds to evaluatingagacteristic and thus discontinuous

function which is uncomputable due to the so-called Mainorém of Recursive Analysis [Wei00,
THEOREM4.3.1].
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b) For a group H and WC H, denote by
W)y = {wit--- Wi :neN,w € W,g = +1}
the subgroup of H generated by W . Timmalsubgroup of H generated by W is
MW)un = ({h-w-h™l:heH,weW})y .

For h e H, we write YW for its W—cosefth-w: we (W)un} of all g € H with g=w h.
c) Fix sets X and R (X) and consider the quotient group & (X)/(R),, denoted by

(X|R), of all R—cosets ofX).

If both X and R are finite, the tuple,R) will be called afinite presentationf G; if

X is finite and R recursively enumerable (by a Turing machima, is in the discrete

sense; equivalently: semi-decidable), it issgursivé presentationif X is finite and R

arbitrary, G isfinitely generated

Intuitively, R induces further rulesw= 1, w € R" in addition to Equation (1); put differ-
ently, distinct wordsi, v e (X) might satisfyu=v'in G, that is, by virtue oR. Observe that
the rule ‘Wi ---wé" = 1” induced by an element = (W' ---wé") € R can also be applied

as ‘\N‘;‘_l .. .\Nik = Wr:‘?" .. 'W;j§_+1”'
Definition 4 (continued).

d) Theword problem for(X|R) is the task of deciding, givew € (X), whetherw = 1
holds in(X|R).

The famous work of Novikov and, independently, Boone eshbk the word problem for
finitely presented groups to be Turing-complete:

Fact5. a) For any finitely presented groufX|R), its associated word problem is semi-
decidable (by a Turing machine).
b) There exists a finitely presented gropfjR) whose associated word problem is many-
one reducible by a Turing machine from the discrete HaltimgiRem H. O

Of course, a) is immediate. For the highly nontrivial Clairy) ee e.g. one of [Boo58,
Nov59, LS77, Rot95].

Example 6. 3 := ({a,b,c,d}|{a”'bd =c 'dc:icH})
is arecursivelypresented group with word problem reducible frétncompare the proof
of [LS77, THEOREMS§IV.7.2]. O

In order to establish Fact 5b), we neefirately presented group. This step is provided by
the remarkable

Fact 7 (Higman Embedding Theorem).Every recursively presented group can be em-
bedded in a finitely generated one.

Proof. See, e.g., [LS77,&TION §1V.7] or [Rot95, THEOREM12.18]. O

Fact 7 asserts the word problem from Example 6 to be in turngibde to that of the
finitely presented grouf( is embedded into, because any such embedding is autoratical
effective:

2 This notion seems misleading Bs in generahot recursive; nevertheless it has become estab-
lished in literature.



6 K. Meer, M. Ziegler

Observation 8. Let G= (X)/(R), and H= (Y) /(S)» denote finitely generated groups and
W : G — H ahomomorphism. Thewy,is (Turing-) computable in the sense that there exists
a computable homomorphisyt : (X) — (Y) such thatp(X) € (S, whenevex € (R)n;

that is, ) maps R-cosets to S-cosets and makes the following diagnaimute:

X) v (Y)

l l )
(X)/(Rin —2— (Y)/(Sn

Indeed, due the homomorphism properpyis uniquely determined by its values on the
finitely many generators € X of G, that is, byy(x) = wi/(S» wherew; € (Y). Setting
(and storing in a Turing Machind) (x;) := w; yields the claim.

3.2 Presenting Real Groups

Regarding that the BSS-machine is the natural extensioneoTtiring machine from the
discrete to the reals, the following is equally natural aggatization of Definition 4c+d):

Definition 9. Let X C R® and RC (X) C3R>. The tuple(X,R) is called apresentation
of thereal groupG = (X|R). This presentation isigebraically generatedf X is BSS-
decidable and XZ RN for some Ne N. G is termedalgebraically enumeratedf R is in
addition BSS semi-decidable; if R is even BSS-decidableGcalgebraically presented.
Theword problemfor the presented real group & (X|R) is the task of BSS-deciding,
givenw € (X), whethew = 1 holds in G.

The next table summarizes the correspondence betweeratbsoal discrete and our new
real notions.

Turing | BSS
finitely generated algebraically generated

recursively presented algebraically enumerated
finitely presented algebraically presented

Remark 10. a) AlthoughX inherits fromR algebraic structure such as additienand
multiplication x, the Definition 4a) of the free group = ((X),o) considersX as a
plain set only. In particular, (group-) inversion @ must not be confused with (mul-
tiplicative) inversion: 5)% #1=>505"1for X = R. This difference may be stressed
notationally by writing ‘abstract’ generatoxg indexed with real vectors; here, ‘ob-
viously’ xg * # X, 5.

b) Isomorphic (that is, essentially identical) groupgR) = (X’'|R’) may have different
presentationgX,R) and (X’,R); see Section 3.3. Even whéh= R/, X need not be
unique! Nevertheless we adopt from literature such as [ 8i&7conventiofi of speak-
ing of “the group(X|R)”, meaning a group with presentatioX, R).

This however requires some care, for instance wheis considered (as in Defini-
tion 4d) both an element ¢X) and of(X|R)! For that reason we prefer to writgV)y
rather than, e.g., Gj@V): to indicate in which group we consider a subgroup to be
generated.

For a BSS-machine to read or write a wava: (X) = (X UX~1)* of course means to input
or output a vectofwsy, €1,...,Wn,&n) € (RN x N)". In this sense, the Rules (1) implicit in
the free group are obviously decidable and may w.l.0.g. bleided inR.

3 Most formally, Ris a set ofvectors of vectorsf varying lengths. However by suitably encoding
delimiters, we shall regari as effectively embedded inginglevectors of varying lengths.

4 This can be justified with respect to the solvability of thersvproblem in the case dinite pre-
sentations andoruniformly by virtue of TiETZE's Theorem [LS77, ROPOSITIONSSII.2.1 and
811.2.2].
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3.3 Examples

Example 11.Every finite or recursivepresentation is an algebraic presentation. Its word
problem is BSS-decidable.

As long asX in Definition 4c) is at most countable, so will be any grgdR). Only pro-
ceeding to real groups as in Definition 9 can include many@sting uncountable groups
in mathematics.

Example 12.Let S denote the unit circle if© with complex multiplication. The following
is an algebraic presentati¢®|R; URp) of S:

o X:i={xs:(r,s) € R?\ {0}},
o Ri:={xs0x}:(r,5),(ab) #0Arb=sanrar> 0},

o Roi={X 50X poXyy: (1,5),(a,b), (u,v) #0A
A2+ =1na2+b?=1Au=ra—shbAv=rb+sa}.

Intuitively, Ry yields the identification of (generators whose indicesaspnt) points lying
on the same half line through the origin. In particular, guerk is ‘equal’ (by virtue ofR;)
to somex, p of ‘length’ a?+b? = 1. To these elementR, applies and identifie® soXa
with x, v whenever, over the complex numbers, it holds-is) - (a+ib) = u+iv. O

Clearly, the presentation of a group need not be uniquepeglso have = (Y |Ry) where
Y ={Xs: r’+s? =1}. Here is a further algebraic presentation of the same group:

Example 13.Let X := {x :t € R}, R:= {X = X1, X%Xs = X4s : {,S € R}. Then(X|R)
is a 1D (!) algebraic presentation of the gro(if,1),+) isomorphic to(S, x) viat —
exp(2rit +ic) for anyc € R. Yet none of these isomorphisms is BSS-computable! O

Next consider the group SIR) of real 2x 2 matricesA with detA) = 1. A straight-
forward algebraic presentation of it is given @§R) whereX := {Xapcq) : ad—bc=1}
andR:= {Xab.c.d)X(gr.st) = Xuvwz) - U=agd+bsAav=ar+btAw=cq+dsAz=cr+dt}.
Here as well as in the above examples, any group elementX) is equivalent (w.r.tR)
to an appropriatsinglegeneratox € X. This is different for the following alternative, far
less obvious algebraic presentation:

Example 14 (Weil Presentation 8£,(R)). For eactb € R, write

U(b):z(é?), v::(_?é), S(@):=V-U(1)-V-U(@)-V-U(}) € SLa(R) .

LetX = {xy(p) : b€ R} U{Xy}. Furthermore leR denote the union of the following four
families of relations (which are easy but tedious to statmédly as subsets giX)):

SL1: “U(-) is an additive homomorphisim
SL2: “S(-) is a multiplicative homomorphisin
SL3: “V2=9g(-1)";

SL4: “S(a)-U(b)-S(1/a) = U (b&?) Va,b".

According to [Lan85]{X|R) is isomorphic taSLy(R) under the natural homomorphism.
O

In all the above cases, the word problem — in Example 12 biisitee question whether
(r,s) = (1,0) and in Example 13 whethér= 0 — is decidable. We next illustrate that, in
the real case, different presentations of the same groupatfiegt solvability of the word
problem.

Example 15.The following are presentatiodX|R) of (Q,+):
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a) X = {x:reQ}, R= {XX=Xys:I,5€Q}.

b) X = {Xpq:P,q€ Z,q+ 0},
R = {XpgXab = X(pbragqp) : P-d&DEZ} U {Xpq=Xnpng : P,G,N € Z,n#0}.

c) Let(bi)ici denote an algebraic ba3isf theQ—-vector spac®; w.l.0.g. 0 | andby = 1.
Consider the linear projectid: R — Q, ¥;ribi — ro with rj € Q.

X ={x:teR}, R= {xxs=x:s:t,SeR} U {x =Xp):teR} .

Case b) yields an algebraic presentation, a) is not everb@ipally generated but c) is.
The word problem is decidable for a): e.g. by effective enaieglinto (R,+); and so is

it for b) although not for ¢)x = 1 < P(t) = 0 but bothP~%(0) = {Sjeabjaj:0¢JC

| finite,qj € Q} and its complement are totally disconnected and uncousthbhce BSS-
undecidable. O

Example 16.(Undecidable) real membership& Q" is reducible to the word problem of
an algebraically presented real group: Consiet {x : r € R}, R= {xnr =X, Xr ik =
x:reRneNke Z}. Thenx, = xo < r € Q; also,R C R? is decidable becaugeC R
is. O

This however does not establish B&&rdnessof the real word problem becaugg is
provably easier than the BSS Halting ProblEniMZ05]. On the other hand, without the
restriction to algebraically presented groups (and thuallehto Example 6), it is easy to
find a real group with BSS-hard word problem:

Example 17.Let X = {X,yr :r €e R}w{sit} = (Rw {e}) x {1,2}. andR:= {vi =
Wr : I € H} where, forre RY, we abbreviated; := x;jl---x;ll “S Xy e X, ANAWr =
Yo Vet Ve, o Yey- ING = (X|R), it is Ve = W iff T € H; compare Fact 38. Therefore,
I — Vi W constitutes a reduction frofil to the word problem irG. However,G has just
semidecidable relations. |

The construction of aalgebraically presentedgroup with BSS-complete word problem
in Section 4 is the main contribution of the present work.

3.4 Reducibility to the Real Halting Problem

We first show that, parallel to Fact 5a), the word problem for algebraically enumerated
real group is not harder than the BSS Halting Problem.

Theorem 18. Let G= (X|R) denote a algebraically enumerated real group. Then the as-
sociated word problem is BSS semi-decidable.

Recall that semi-decidability & C K (that is, being a halting set) is equivalent to recur-
sive enumerability

A=rangéf) for some computable, partial functidnC K* — K*

in the Turing K = IF2) as well as the BSSK = R) model; in the latter case by virtue of
TARSKI's quantifier elimination [Mic91].

Lemma 19. For Y C R®, it holds: If Y is (semi-)decidable, then so(¥).

Proof. Given a stringw = (y1,...,Yk) € R¥, consider all -1 partitions ofw into non-
empty subwords. For each subword, decide or semi-decidéhehie belongs toy UY 1.
Accept iff, for at least one patrtition, all its subwords seed. O

5 That is, as opposed to a Banach space basis, every vectdsadrapresentation as linear combi-
nation offinitely many out of these (here uncountably many) base elements.
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Proof (Theorem 18By Definition 4b+c)w= 1< w e (R)y, that is, if and only if

l---fnf_nfﬁl- ©)

INEN Ixg,...,. %0 € (X) Iy,...,in€ (R W=XT1X b Xl 2%,
Since bothX andR were required to be semi-decidable, same holdgXorand(R). This
yields semi-decidability of (3). Indeed, ldtg :C R” — R* be BSS-computable with
(X) =rangdf) and (R) = rang€g); then it is easy to construct (but tedious to formal-
ize) from f andg a BSS-computable function dR™ ranging over alh € N, all w € (X),
all xq,...,% € (X), and allry,...,r, € (R). Compose its output with the decidable test
‘W= >T1r_1>?[l--->§1r_n>?gl?“ and, if successful, returw. This constitutes a function dR®
with range exactlyW)p,. O

4 Reductionfrom the Real Halting Problem

This section proves the main result of the paper and contisaounterpart to Fact 5b): The
word problem for algebraically presented real groups iseinayal not only undecidable (cf.
Example 16) in the BSS model but in fact as hard as the reaingadroblem.

Theorem 20. There exists an algebraically presented real grddp= (X|R) such thatH
is BSS-reducible to the word problem3fi

We first (Sections 4.1) review some basics from group themthé context of presented
groups; specifically free products, HNN extensions ardiBON’s Lemma. As in the clas-
sical reduction from the Turing Halting Problérhto finitely presented groups in [LS77,
SECTION §IV.7] (based on ideas of isMAN [Hig61] and \ALIEV [Val69]), these power-
ful tools permit a more elegant and abstract treatment theelementary approach pursued
in, e.g., [Rot95, GAPTER 12]. A second major ingredienbenignsubgroups are recalled
and generalized to our effective real setting in Section #t8s requires particular care
since many properties heavily exploited in the discrete dasy., that the homeomorphic
image of a finitely generated group is again finitely genetaéee not immediately clear
how to carry over to the reals (Section 4.2). For instancepafgdor the classical result may
exploit MATIYASEVICH's famous solution of Hilbert’s Tenth Problem, namely a Diap-
tine formulation ofH [Mat70]. This form can be transformed into a straight linegnam
and further on into a group theoretic one by virtue afikiAN’s concept of benign sub-
groups. Our general proof strategy is conceptually sinbiar necessarily quite different
in detail. Specifically, lacking a real Diophantine chaegiztation ofH (recall Example 1),
Section 4.4 has to proceed differently, namely by desagileimchfixedcomputational path
of a BSS machine as a real straight line program, and obteins that a representation as
an effectivelybenign real group. In the final step (Section 4.5), all theseigs and their
embeddings are joined into one single, algebraically priesktone.

4.1 Basics from Group Theory and Their Presentations

This subsection briefly recalls some constructions fronugrtheory and their properties
which will heavily be used later on. For a more detailed expmsas well as proofs of the
cited results we refer to the two textbooks [LS77, Rot95]r @atational emphasis for each
construction and claim lies on the particular grqupsentatiorunder consideration — for
two reasons: First and as opposed to the discreté cdiierent presentations of the same
group may heavily affect its effectivity properties (Exam@5). And second, sometimes
there does not seem to be a ‘natural’ choice for a presentél®emark 22, Footnote 6).
Here, no (e.g. effectivity) assumptions are made concgrtiia set of generators nor
relations presenting a group. To start with and just for gmrds, let us briefly extend the
standard notions of a subgroup and a homomorphism to thegeftpresentedyroups:
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Definition 21. A subgroupJ of the presented group & (X|R) is a tuple(V,S) with V C
(X) and S= RN (V). This will be denoted by & (V|Ry) or, more relaxed, U= (V|R).

A realizationof a homomorphisnp : G — H between presented groups=6(X|R) and
H = (Y|S) is a mappingl’ : X — (Y) whose unique extension to a homomorphisnion
maps R-cosets to S-cosets, that is, makes Equation (2) demmu

A realization of an isomorphismpis a realization ofp as a homomorphism.

In the above notatioan’(X)\S) is a presentation of the subgrougG) of H. For an
embeddingp, Gis classically isomorphic t@(G); Lemma 33 below contains a computable
variation of this fact.

Remark 22.The intersectiolA N B of two subgroup#\, B of G is again a subgroup d&.
For presented sub-groups= (U|R) andB = (V|R) of G = (X|R) however,(U NV|R) is
in generahota presentation cANB.

Definition 23 (Free Product).Consider two presented groups=5(X|R) and H= (Y|S)
with disjoint generators X1Y = 0 — e.g. by proceeding to’X= X x {1},Y" :=Y x {2},
R :=Rx {1}, S := Sx {2}. Thefree producbf G and H is the presented group

GxH = (XUY|RUS) .
Similarly for the free produc,t‘rI Gi with G; = (X{|R), i ranging over arbitary index set I.
le

In many situations one wants to identify certain elementsfoée product of groups. These
are provided by two basic constructiomsnalgamatiorandHigman-Neumann-Neumann
(or shortly HNN) extension, see [HNN49, LS77, Rot95]. Thwiition behind the latter is
nicely illustrated, e.g., in [Rot95,IBURE 11.9].

Definition 24 (Amalgamation).Let G= (X|R), H = (Y|S) with XNY = 0. Let A= (V|R)
and B= (W|S) be respective subgroups agd: (V) — (W) realization of an isomorphism
¢@: A— B. The free product of G and Emalgamatinghe subgroups A and B vigis the
presented group

(GxH |@@)=avacA) = (XUY|RUSU{gWV 1 :veV}) . (4)

Definition 25 (HNN Extension).Let G= (X|R), A= (V|R),B = (W|R) subgroups of G,
andg a realization of an isomorphism between A and B. Figinan-Neumann-Neumann
(HNN) extension of G relative to,B and@is the presented group

(Git|[ta=gajtvacA) = (XU{t}|RU{gWtv it t:veV)) .

G is thebaseof the HNN extensiong X is a new generator called thstable letterand A
and B are theassociated subgroup$the extension.

Similarly for the HNN extensiofG; () )ici [tia= @ (a)tiVa € AiVi € |) with respect to a
family of isomorphisme : Aj — B; and subgroupsAB; C G, i€ l.

Both HNN extensions and free products with amalgamationiagimple and intuitive
characterizations for a word to be, in the resulting groupiealent to 1. These results are
connected to some very famous names in group theory. Pranfsefound, e.g., in [LS77,
CHAPTERIV] or [Rot95, CHAPTER 11].

Fact 26 (Higman-Neumann-Neumann)Let G' := (G;t|ta = @(a)tVa € A) be a HNN
extension of G. Then, identity-g g is an embedding of G into*G O

Fact 27 (Britton's Lemma). Let G := (G;t|ta= @(a)tvac A) be an HNN extension of G.
Consider a sequendeo,t®,0i,...,t*,gn) withne N, g € G, & € {—1,1}. If it contains
no consecutive subsequerfte!, gi,t) with g € A nor(t,gj,t‘l) with gj € B, then it holds
Qo-té1-g1---tén-gh# 1in G*. O
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Fact 28 (Normal Form). Let P:= (GxH|@(a) = avA) denote a free product with amal-
gamation. Consider...,c, € GxH, n€ N, such that

each ¢is eitherin G orin H;
consecutivejcci 1 come from different factors;
if n> 1, thenno ¢isin A nor B;
ifn=1thenqg # 1

Then,g---c,#1inP. a

4.2 First Effectivity Considerations

Regarding finitely generated groups, the cardinalitiehefdets of generators (that is their
rank9 add under free products [LS77,0BOLLARY §IV.1.9]. Consequently, they can
straight forwardly be bounded under both HNN extensionsfaeel products with amal-
gamation. Similarly for real groups, we have easy contr@rdtedimension Nof set of
generators according to Definition 9:

Observation 29. For groups G = (X{|R) with X C RN for alli € | C R, the free product

itl G = (U Codin [ U Rx{ih)
is of dimension at most M 1. In the countable case € N, the dimension can even be
achieved to not grow at all: by means of a bicomputable higecdR x N — R like (x,n) —
([X),n) + (x— [x]).

Similarly for free products with amalgamation and for HNNemsions.

Moreover, free products, HNN extensions, and amalgamsitidalgebraically generated/
enumerated/presented groups are, under reasonable présnsnagain algebraically gen-
erated/enumerated/presented:

Lemma 30. a) Let G = (Xj|R) foralli €1 C N. If | is finite and each ¢algebraically
generated/enumerated/presented, then $oiig G;.
Same for = N, provided that Gis algebraically generated/enumerated/presented
formly in i.

b) Let G= (X|R) and consider the HNN extensiornt G= (G; (ti)ic| [tia = @(a)tjVa €
AVi € Iy with respect to a family of isomorphisngs: A — B; between subgroups
A = (Vi|R),B; = (W|R) for Vi, C (X), i €.
Suppose that | is finite, each S algebraically enumerated/presentedVR™ is semi-
/decidable, and finally eadp is effective as a homomorphism; thehiG&algebraically
enumerated/presented as well.
Same for I= N, provided that the Vare uniformly semi-/decidable and effectivity of
the@ holdsuniformly.

¢) Let G= (X|R) and H= (Y|S); let A= (V|R) C G and B= (W|S) C H be subgroups
with V C (X), W C (Y), V C R*® semi-/decidable, ang: A — B an isomorphism
and effective homomorphism. Then, their free product witlalgamation (4) is alge-
braically enumerated/presented whenever G and H are.

Remark 31. Unifornfsemi-)decidability of a family; C R” of course means that every
V; is (semi-)decidable not only by a corresponding BSS-maciin, but all Vi by one
common machind; similarly for uniform computability of a family of mappings. By
virtue of (the proof of) [Cuc92, HEOREM 2.4], a both necessary and sufficient condition
for such uniformity is that the real constants employed by M) can be chosen to all
belong to one common finite field extensi@rcy, . ..,cx) over the rationals. a
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Recall (Observation 8) that a homomorphism between fingeherated groups is automat-
ically effective and, if injective, has decidable range affdctive inverse. For real groups
however, in order to make sense out of the prerequisites inrha 30b+c), we explicitly
have to specify the following

Definition 32. An homomorphisnds : (X|R) — (Y|S) of presented real groups is called
an effective homomorphisnii it admits a BSS-computable realizatigh: X — (Y) in the
sense of Definition 21.

For Y to be called areffective embeddingt must not only be an effective homomor-
phism and injective; bup’ is also required to be injective and have decidable imdf&X)
plus a BSS-computable inverge g/ (X) C (Y) — X.

Effective embeddings arise in Lemmas 33 and 36. For an ingeffective homomorphism
@as in Lemma 30c) on the other hand, a realization needs netitgdctive; for instance,
@ might map two equivalent (w.r.t. the relatioR¥syet distinct elements to the same image
word.

Proof (Lemma 30).

a) If X is decidable for eache I, | finite, then so idJic; (X x {i}); same for semi-
decidable/decidabl&. Uniform (semi-)decidability of eaclX; means exactly that
Uien(Xi x {i}) is (semi-)decidable.

b) The set of generators of the HNN extension is decidable @3.iThe additional re-
lations {(q(\7)ti\7‘1ti‘l : Ve V,} are semi-/decidable since, by presumptignis and
@ : (Vi) — (W) is computable. Uniformity enters as in a).

c) Similarly. O

Lemma 33. Lety : G = (X|R) — (Y|S) = K denote an effective embedding.

a) There is an effective embeddixgw(G) — G (i.e. we have an effective isomorphism).

b) If V C (X) is decidable, then the restrictiopp|y to H = (V|R) C G is an effective
embedding again.

c) If G is algebraically generated and K algebraically praged theny(G) is alge-
braically presented as well.

Proof. a) Lety' : X — (Y) denote the effective realization gfwith inverseyx’ according
to Definition 32. The unique extension@fto a homomorphism has imagdg((X)) =
(W'(X)). Similar to Lemma 19 we can decide, giverc {Y), whetherw € W/ ((X)).
Moreover if so, we obtain a partition= (vi,...,V;) with vi € ¢/(X). Then calculating
xi :=X'(vi) € X yields a computable extension gfto a homomorphism oy’ ((X))
which satisfies injectivity, has decidable image apichs inverse. Moreove{’ maps
S-cosets toR-cosets: Taker,vo € Y/ ((X)) with v1/S= v»/S; thenu; := X'(v) have
vi = {/(u) and thus, sincg/ makes Equation (2) commute by presumptieyy,S=
W(u1/R) = Y(uz/R) = v2/S, now injectivity of Y impliesu;/R= uz/R.

b) The rangey/'(V) of the restrictiony/|y coincides withx'~1(V) N (Y'(X)). The first
term is decidable sincg is computable andl decidable; the second term is decidable
by Definition 32 and Lemma 19.

¢) Becomes clear by staring @tG) = (Y/(X)|S). O

4.3 Benign Embeddings

The requirement in Lemma 30b+c) that the subgroup(bg recursively enumerable or
even decidable, is of course central but unfortunatelyatés in many cases. For instance,
a subgroup of a finitely presented group in general need ot g finitely generated: Con-
sider, e.g., theommutatofG, G| := ({uvu vt : u,v € G}) of the free grougs = ({a,b})
and compare Remark on p.177 of [LS77]. Similarly the algelatly presented real group
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(R,+) has a subgroup (Example 15a) which is not algebraically geee. Nevertheless,
both can obviously be effectively embedded into a, respelgtifinitely presented and an
algebraically presented group. This suggests the notiberijnsubgroups, in the classical
case (below, Item a) introduced in [Hig61]. Recall that éhaffectivity of an embedding
drops off automatically.

Definition 34. a) Let X be finite, VC (X). The subgroup A= (VIR) of G= (X|R) is
(classically)benign inG if the HNN extensiofX;t|ta = atva € A) can be embedded
into some finitely presented groupK(Y|S).

b) Let XC R™, V C (X). The subgroup A= (V|R) of G= (X|R) is effectively benign in
G if the HNN extensiofG;t |ta = atVa € A) admits an effective embedding into some
algebraically presented group ¥ (Y|S).

c) Let I C N. A family (Aj),_, of subgroups of G isiniformly effectively benign inG if,
in the sense of Remark 31, there are groupsiiformly algebraically presented and
uniformly effective embeddings: (G;ti|tia = aitiVa; € A)) — K.

The benefit of benignity is revealed in the following

Remark 35.In the notation of Definition 34b), i is effectively benign irG then the word
problem forA is reducible to that foK: Fact 26.

Moreover in this case, thmembership problerfor A in G — that is the question whether
givenx € (X) is equivalent (w.r.tR) to an element oA — is also reducible to the word
problem forK: According to Fact 27a:= x/Rsatisfies t-a-t™l.al=1<acA 0O

We now collect some fundamental properties frequently st on. They extend corre-
sponding results from the finite framework. Specificallynirea 36b) generalizes [LS77,
LEMMA §IV.7.7(i)] and Claims d+e) generalize [LS77eMMA §IV.7.7(ii)].

Lemma 36. a) Let A= (V|R) CH = (W|R) C G = (X|R) denote a chain of sub-/groups
with V C (W) and WC (X). If W is decidable and A effectively benignin G, then it is
also effectively benignin H.

b) If G= (X|R) is algebraically presented and subgroug=AV |R) has decidable gener-
ators V C (X), then A is effectively benign in G.

c) If A is effectively benign in G and: G — H an effective embedding, th&(A) is
effectively benign ip(G).

d) Let A and B be effectively benign in algebraically presdn®. Then A B admits a
presentation effectively benignin G.

e) LetA, B, G as in d); thetAUB)g admits a presentatidreffectively benign in G.

f) Let(A)ici be uniformly effectively benign in G (Definition 34c). THefy. Ai) admits
a presentation effectively benignin G.

The above claims hold uniformly in that the correspondirfgative embeddings do not

introduce new real constants.

Proof. a) Lety be an effectively realizable embedding of the HNN extengkri|ta =
@(a)tva € A) into some algebraically presentid= (Y|S). SinceW U {t} is decidable,
Lemma 33b) asserts the restrictiongpto yield an effective embedding of the HNN
extensionW;t|ta= @(a)tVa € A) into K.

b) The identity being an effectively realizable embeddiXgi¢ decidable, now apply
Lemma 33b), it suffices to observe that the HNN extension

K = (Gtlat=tavacA) = (Xt|RU{vt=tWwveV})

is algebraically presented itself. Indeed R, and the additional relations parametrized
by V are decidable by presumption.

6 possibly different fromV UW/|R)
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The presented HNN extension under consideration,

(@(X)is|g(Vs=sg(V)WeV) (%)

is the image undep of (G;t|at = tava € A) by extendingg (t) := s. The latter HNN
extension by presumption embeds into some (finite-dimeladgically presenteld via
some effectivep. According to Lemma 33ajp admits an effective inverse. Hence the
composition o ¢~ consitutes the desired effective embedding of (5) Kito

By assumption there exist two algebraically presentedjgek = (Y|S) andL = (Z|T)
together with realizationg : XU {r} — (Y), ¢/ : XU {r} — (Z) of effective embed-
dings

@ :Ga = (Grlar=ravac A) = (X;r|[RU{vr=rviveV }) - K = (Y|S)
Y :Gg := (G;rlbr=rbvbeB) = (X;r|RU{wr=rwweW}) —L = (Z|T) .

We shall realize an embeddingof the HNN extensiorGc := (G;r|cr = rcvc € C)
into an algebraically presented group for the presentatidn= <{vVe (W) :w/Re
A} |R) for ANB. To this end observe th{G) = (¢/(X)|S) andy(G) = (Y/(X)|T) are
subgroups oK andL, respectively, and isomorphic due to Fact 26 with isomaphi
@o P~ Y(G) — @(G) realized byy o '~ according to Lemma 33. Definition 24 is
thus applicable and we are entitled to consider the freemwith amalgamation

P:= (K«L|@y(0)) = tve € Y(G)) (6)
= (YUZISUTU{g (WY (2)) =Zz:ze ¢'(X)}) .

P is algebraically presented because of Lemma 30c). Morepi@®y = W(G) in P
according to (6). Alsos := @ (r) commutes exactly witlp(A) andt := /(r) exactly
with Y(B), sos-t commutes exactly witp(A) "W(B). Thereforex’ : X U{r} — (YU
Z), x— Y (x), r — s-t respects cosets in the sense of Equation (2) and thus realize
embedding : (G;r|cr =rcvc € C) — P as desired.

With notations as in d), it holds

W((AUB)g) = @((AUB)c) = (GA)UGB)), = (§(A)UY(B)),
= (Qr-GrHuyer-Grie n @G ;

the first line because andy are injective homomorphisms coinciding @) the sec-
ond becaus@ and onlyA commutes withr in Gp due to Britton’s Lemma (Fact 27),
similarly for B in Gg. Now @(G) is algebraically presented due to Lemma 33c) and
thus effectively benign iP by Claim b). Similarly,(@(r -G-rH)yug(r-G-r—1))p
has decidable generators and is thus effectively benidghaa well. Claim d) now as-
serts effective benignty af((AUB)) in P; and therefore also ip(G) C P according
to Claim a) combined with Lemma 33c). Claim c¢) combined witnima 33a) finally
yields effective benignty ofAUB) in G.

Let (¢f)ic1 denote the uniformly computable realizations of embedslipg G; :=
(G;rlar = rava € Aj) — K. Fix j € |. Similar to Equation 6) and the proof of e),
we have

i€l

% ((£A)) = (Ua(r-crh),n a().

o , —1 _ , ;
P:= <Iﬂ€<| K.’(ﬂ((pJ (0)) EWqu,(G)WeI>
where (by uniformity, see Lemma 3®) and @;(G) are algebraically presented, and
<Ui€| @(r-G- r‘1)>P has decidable generators of bounded dimension, compare Ob-
servation 29. O

We are now ready to start with the main part of the proof.

7 Notice the arbitrarily broken symmetry between the groepsieddinggA, @) and(B, i) involved.
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4.4 Dealing with a single path set

Consider the real halting problefi C R” together with an appropriate BSS machive
which accepts exactly inputselonging taH and stalls for all others. The accepting paths
of M admit an effective enumeratidg, ), n € N. Here, each pati is described by a finite
sequence (of length = D(y,) € N, say) of primitive arithmetic operations, assignments,
and comparisons performed along it. Each such pagives rise to the (possibly empty)
setAy C RY, d = d(y) € N, of inputsr € RY on whichM follows exactly this path. Both
functionsn — d(yn) andn — D(y,) are computable.

A computational patty together with an inpufrs,...,rq) following it give rise to a
sequenceqy.1,---,rp € R of intermediate results, each one being the result from gooem
sition of at most two previous ones. For instanges rj£rwithd <i <D and 1< j,k <1;
or ri = a for some machine constaate R of M; branches take the fornti“> 0?".The
advantage of this description gfas a sei3, C RP of (r1,...,rd,fd+1,...,rn) is that each
intermediate result; may be accessed several times but gets assigned only once.

In view of Remark 35, our goal is to writ&y, as a subgroupy, effectively benign in
a suitable algebraically presented group such that meripeisA,y, is reducible to that of
Uy, with the additional constraint that all constructions waniformlyin n—in fact using
only constants already presentlifi compare Remark 31 and see Footnote 9. However for
notational convenienca,(and thus alsg,d, D) will be kept fixed and occasionally omitted
throughout this subsection. They reappear in Section 4é&mvthe subgroupdy,, n€ N,
are finally glued together.

Definition 37. Let
X = {Xjg seRieN}U{y} = (RxN)U{=}, G := (X)
denote a free group with subgroups
Hed '= ({V:Xig :SER,i <d}) and H.q:=(Xis:SER,i>d) .
Furthermore consider the subgroups
Uy := Wr:redy) and \ = (Ws:SeBy)

The reason for the complicated definitionwf(instead of, e.g.yr:= X(1ry) " Xikro) li€s
in the following

Fact 38. The wordswi, r € Ay, are Nielsen-reduced-compargL.S77, p.223}—and thus
freely generate Y[LS77, RROPOSITION§I.2.5]. In particular,wr € Uy iff I € A,

Theorem 39. Uy is (or rather, has a presentation) effectively benign ineddgpically pre-
sented G.

The proof of this theorem proceeds in several steps(dgt; , . . . ,0p) denote the arithmetic
operations, assignments, and branched tests performeueqgpathy; cf. left column of
Figure 1. For each suah define a subgrouy, of G as in the middle column of Figure 1.
Since the generators involved are free, we have

Lemma 40. It holds D
Wy = mi=d+1W°i

and
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Proof. Let us focus on the second claim, the argument for the firsipooeeeds similarly.
Inclusion ‘Uy C (VyUH-q4) NH<4" holds since to every worehi € Uy, (r1,...,rq) € Ay,
there corresponds an extensiog € Vy with S= (ry,...,rq,rd4+1,...,rp) € By; and the
symbolsxj ) with i > d can be cancelled fromv by means ofH. 4, thus transforming into
an element oHg.

For the reverse inclusion, observe that the wotgs V,, equivalent to a word itH<q are
exactly those with symbols; (), i > d, removed and with < d unmodified. O

We will now show that th&\;, are effectively benign il5; hence Lemma 36d) establishes
the same fol,. Since the respective sets of generators are easily ddejdamma 36b)
yields alsoH-4 andH- 4 effectively benign inG. So by Lemma 36e+d), Theorem 39 fol-
lows.

Definition 41. Let C denote the infinite (in fact uncountable) HNN extension

<G . iy VteRVIieN| aiy)-9=@iy(9)-aiy Vg€ GV(U)>
"My VOAtERVIEN | My -g=(iy)(9) - My Vg€ GV(i,t)

with base G and stable letters; g, m;;) as above. Heregy), Yy : G — G denote the
isomorphism®

Qi) - X9 — Xistt),  X(j T Xijsyr YV

_ VseR Vj#i .
Wiyt Xig — Xist): X — Xijgr YV

Intuitively in C, commuting a stable lettex;; ) ‘causes’ a real addition in the sense that
R -a&}) = X(i stt)- Furthermore, since;y) commutes with alk; ¢, j # i, it holds

= -1 = .
Qi) Wiry,tivrp) &y = W(rg,.fi+t,...rp) (7)
similarly with generatorsn;; ;) for multiplication.

Lemma 42. For each operation o0 and its corresponding subgroymEC as in Figure 1,
it holds W = GN Ly, and W is effectively benignin G.

Proof. % < a% The inclusionW,,_q) € GNLx._q) holds because the generatarss
may be used according to (7) to attain, starting frwm_; ..... 0)» any desired value
rj for the symbolsqj.rj) in wr, j # i, while ri = a cannot be affected. Conversely,
a representative of an element frdmy, ) belonging toG must by Fact 27 have all
stable letters,, ;) removed by means of repeated applications of (7); these teava
unaffected, thus establishing membershigig._)-

X« Xj: Similarly as above, the, ) yield, starting fromwg, wr with any value forr,,
£ #1,j; while the (by definition 0ﬂ-<xi<_xj) necessarily simultaneous) application of
botha; s) andaj ) preserves the property;“=r;”.

Xi < Xj+ X Similarly, now preservingr| =rj+ry”.

The other cases proceed analogously and establjsh GN L, for all o.

Knowingo, the generators df, C C are obviously decidable. Hends, is effectively
benign in algebraically present€daccording to Lemma 36b). Since the same applies to
G, too, Lemma 36d) yields alda) to be effectively benign il€; and thus inG as well by
virtue of Lemma 36a). O

8 Notice thaty; ) hast # 0. In fact, we take into account only BSS computations whiomdt
multiply with 0. This is no loss of generality because anytiplication command may be preceded
with a test whether any of the factors equals 0 and, if so,ectlassignment of 0.

9 This is the only place where real constants occur; howewesetihat do belong to the finitely many
already present iM.
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o] W, CG Lo CC
“Xi — Xj”, 1<j<i| (wrirp=rj) Wy ; Ay Ajs SER;
s g tSERLALJ)
“x —a”’, aeRfixed | (Wr:r=a) (W(o,..0a,0...0) ; &rs)  SERLHI)
“Xi = X)X < k< | (Wi = 4rg) (Wp ; s SERLFIT K,
;g Aks)s Ajs) Aks) (SER)
“Xi — —=Xj", 1< j<i| (Wrirp=—rj) (Wg ; s iSEREHIL]
) Aigd(j,—g SER)
“Xi =X x XL < k< | (Wi =Ty (Wej 105 Ars) i SER LT K
P Mg Miks), My Miks) SER)
“X e 1/x% 1< j<i| (Wrir= %,r,» #0) | (Wey ;5 &g i SER LA ;
;s M) -Mij /s 0F#SER)
“Xj >0, 1<j<i| (Wr:irj>0) (Wg ; Ajs 0<seR;
»aus iSERLE])
“Xj <0, 1<j<i| (Wrirj<0) (W.,...0-10,..0 » M(jg: 0<SER;
s g tSERLAE])

We abbreviat® = (0,...,0) and, forl = {i; <iz <...<ip} C {1,...,D},
§:=(0,...,0, 1,0,...,0, 1 ,0,......... ,0, 1 ,0,...,0).
~— ~~ ~—

in I2 ip

Fig. 1. Operations and their induced subgroups.

4.5 Putting It All Together

So far, the index of the computational paty, had been fixed. It will now run ove¥, so
that

e n— Ap C RYM denotes an enumerable and uniformly decidable decomposifi
H= UngN An;_
o Uy:=MWnhr:r€Ap € GneN, where
o G=(Y;(Xig))serien; (Xon))nen) denotes a free algebraically presented group;  and
= -1 -1 -1
® Winrra) = Xdrg) " Xty Ko Y Xom Xar) " Xdrg)
Observe how the index of the pathy,, acceptingh, is now encoded into the words gener-
atingUy,. Theorem 39 obviously carries over to this minor modificatioence

e U, is effectively benign irG.

For givenn, A, is decidable: simply evaluatg on a givenr. This amounts tainiform
decidability (Remark 31). A brief review of Section 4.4 raleall constructions to hold
uniformly in n so that in fact

e U is uniformlyeffectively benign inG in the sense of Definition 34c).

It now follows from Lemma 36f) thaflJ,,Un) C Gis effectively benign irG, too; and so is

uo= <<Unun> U <(X(01n))”€N>> n <y; (X(i,s))SER.i21>

by Lemma 36b+d+e). According to Remark 35, membership tan thus be reduced to
the word problem of some algebraically presented giduput, similar to the arguments
in Lemmas 40 and 42) arises fromJ,Un by eliminatingx ) and replacing it with an
existential quantifier oven. HenceU equals({wr: 3n: 1 € Aq}) by virtue of Fact 38.
This concludes the proof of Theorem 20. O

More precisely, regarding Observation 29 and Footnote 8,avrives at the following
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Scholium*® 43 To every BSS machind semi-deciding some languaieC R*, there ex-
ists an algebraically presented real group-6(X|R) (in fact with XC R x N) to whose
word problem the membershiplhis reducible to.

The computation of this reduction requires no real congaMioreover, deciding X and
R is possible uniformly in (that is, giveN. In particular, the description of G requires no
real constants other than those present alreadylin O

Since a Universal BSS Machine does not need constantsoivel

Corollary 44. The real Halting ProblenH is reducible to the word problem of an alge-
braically presented group ovep!

5 Conclusions and Perspectives

In this paper we have introduced the class of algebraicaiggnted real groups given as a
quotient group of a free group and a normal subgroup. Thegreep was defined through
a possibly uncountable set of generators BSS-decidablenie $ixed dimensional space;
the relations are similarly generated by a BSS-decidallé/¢ethen considered the word
problem for such groups: Given a finite sequence of genesatiecide whether this word
is equivalent (with respect to the relations) to the unitedat?

As main result of the paper it has been established that, @moie hand, the word
problem for an algebraically presented group is always s#guidable; while, on the other
hand, there are algebraically presented groups for whiehatstove word problem is not
only undecidable but exactly as hard as the real HaltingIErob

We believe our results to be an interesting step into thectime of extending the BSS
theory into different areas of mathematics. Many of the kneamputability and complex-
ity results in the BSS model are closely related to compantatiproblems of semi-algebraic
sets. Though these play an important role in our approachedis tive resulting problem
are located in the heart of computational group theoryytb@nnection to semi-algebraic
geometry is visible in the background only.

There are clearly a bunch of interesting questions to bestiyated. We conclude by
mentioning a few of them. They might hopefully serve as stgppoint for a fruitful further
research related to the topics studied in this paper.

Our construction yields a BSS-complete group with both gatioesX and relation®R
being BSS-decidable.

Question 1. Can we require the set of generators todmmi-algebraicather than decid-
able?

Over complex numbers, every decidable set in s@Mas also algebraic [CR93]; however
our proof makes heavy use @fas a discrete component ¥fand does not comply with
complex decidability.

Question 2. How about a group with word problem BSS-complete @v/er

In our approach, the relatior® seem crucial to live irR”; for instance in view oy,
(Definition 37) which includes wordsiof length 1+ 2d(n) unbounded im.

Question 3. Can one restrict (not only the set of generators but alsok#tef relations to
some finite-dimension&"?

To this end, it might be worth while exploiting that a BSS miaehreferences data in
fact not globally but through copy registers which changeabgnost one in each step; cf.
Definition 2.

It would furthermore be nice to have a real counterpart tdféneous Higman Embed-
ding Theorem (Fact 7):

10 A scholium is “a note amplifying a proof or course of reasoning, as in mattrs’ [Mor69].
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Question 4. Does every recursively presented real group admit a (BSSpotable) em-
bedding into an effectively presented one?

Special classes of discrete groups witbcidableword problem have been investigated
with respect to the computationamplexityof this decision [MS83,HRRTO06]. This looks
promising to carry over to the reals; for instance in form of

Question 5. Can we find a class of groups whose word problem is (decidaidg eom-
plete for a certain complexity class liRéPg ?

This would be interesting in order to extend the yet spaisteoli knownNPr—complete
problems.

Finally, an entire bunch of interesting questions resutisffinspecting further classical
undecidability results in the new framework. We close herguist referring to the survey
paper by Miller [Mil92] in which a lot of related issues aresdussed.
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