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Abstract. The matrix rank minimization problem has applications in many fields such as system identification, optimal

control, low-dimensional embedding, etc. As this problem is NP-hard in general, its convex relaxation, the nuclear norm mini-

mization problem, is often solved instead. Recently, Ma, Goldfarb and Chen proposed a fixed-point continuation algorithm for

solving the nuclear norm minimization problem [33]. By incorporating an approximate singular value decomposition technique

in this algorithm, the solution to the matrix rank minimization problem is usually obtained. In this paper, we study the

convergence/recoverability properties of the fixed-point continuation algorithm and its variants for matrix rank minimization.

Heuristics for determining the rank of the matrix when its true rank is not known are also proposed. Some of these algorithms

are closely related to greedy algorithms in compressed sensing. Numerical results for these algorithms for solving affinely

constrained matrix rank minimization problems are reported.

Key words. Matrix Rank Minimization, Matrix Completion, Greedy Algorithm, Fixed-Point Method, Restricted Isometry

Property, Singular Value Decomposition
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1. Introduction. In this paper, we are interested in the affinely constrained matrix rank minimization

(MRM) problem, which can be cast as

min rank(X)

s.t. A(X) = b,
(1.1)

where X ∈ R
m×n, b ∈ R

p and A : Rm×n 7→ R
p is a linear map. Without loss of generality, we assume that

m ≤ n throughout this paper.

Problem (1.1) has applications in many fields such as system identification [32], optimal control [20,

16, 18], and low-dimensional embedding in Euclidean space [30], etc. For example, consider the problem of

designing a low-order discrete-time controller for a plant, so that the step response of the combined controller

and plant lies within specified bounds. Suppose the plant impulse response is h(t), t = 0, . . . , N , the controller

impulse response is x(t), t = 0, . . . , N , and u(t) = 1, t = 0, . . . , N is the step input. Then finding a low-order

system is equivalent to solving the following problem:

min rank(H(x))

s.t. bl(t) ≤ (h ∗ x ∗ u)(t) ≤ bu(t), t = 0, . . . , N,
(1.2)

where bl and bu are given lower and upper bounds on the step response, ∗ denotes the convolution operator,

andH(x) is the Hankel matrix (see e.g., [17, 39]). Problem (1.2) is an application of an inequality-constrained

variant of (1.1).
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A special case of (1.1) is the matrix completion problem:

min rank(X)

s.t. Xij =Mij , ∀(i, j) ∈ Ω.
(1.3)

This problem has applications in online recommendation systems, collaborative filtering [40, 41], etc., in-

cluding the famous Netflix problem [37]. In the latter problem, users provide ratings to some of the movies

in a list of movies. Here Mij is the rating given to j-th movie by the i-th user. Since users only rate a

limited number of movies in the list, we only know some of the entries of the matrix M . The goal of the

Netflix problem is to fill in the missing entries in this matrix. It is commonly believed that only a few factors

contribute to people’s tastes in movies. Thus the matrix M will generally be of low rank. Finding this

low-rank completion to M is just the matrix completion problem (1.3).

If X is a diagonal matrix, then (1.1) becomes the compressed sensing problem [8, 12]:

min ‖x‖0
s.t. Ax = b,

(1.4)

where A ∈ R
m×n, b ∈ R

m, and ‖x‖0, which is called the ℓ0 norm, counts the number of nonzero elements in

the vector x. The compressed sensing problem, which is currently of great interest in signal processing, is

NP-hard [35]. Recent results in compressed sensing have shown that under certain randomness hypotheses,

the optimal solution to (1.4) can be found by solving a convex relaxation of (1.4) using only a limited number

of measurements. Since the convex envelope of the function ‖x‖0 on the set {x ∈ R
n : ‖x‖∞ ≤ 1} is the ℓ1

norm ‖x‖1 :=
∑

i |xi| [22], a natural choice for a convex relaxation of problem (1.4) is the problem:

min ‖x‖1
s.t. Ax = b.

(1.5)

Many algorithms for solving (1.4) and (1.5) have been proposed. These include greedy algorithms [42, 13,

45, 14, 36, 11, 1, 2] for (1.4) and convex optimization algorithms [7, 19, 21, 25, 46, 47] for (1.5). See [10] for

more information on the theory and algorithms for compressed sensing.

The matrix rank minimization problem (1.1) is also NP-hard. To get a tractable problem, we can replace

rank(X) by the nuclear norm ‖X‖∗ of X , the convex envelope of rank(X) on the set {X ∈ R
m×n : ‖X‖2 ≤ 1}

[38], as proposed by Fazel et al. [16]. The nuclear norm of X is defined as the sum of the nonzero singular

values of X and the spectral norm ‖X‖2 is equal to the largest singular value of X ; i.e., if the singular values

of X are σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σm = 0, then

‖X‖∗ =

r
∑

i=1

σi

and ‖X‖2 = σ1. Thus, the nuclear norm relaxation of (1.1) is:

min ‖X‖∗
s.t. A(X) = b.

(1.6)

Let A be the matrix version of A, i.e., A(X) = A · vec(X), where vec(X) is the vector obtained by

stacking the columns of the matrix X in natural order. Recht et al. [38] proved that if the entries of A are
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drawn from some random distribution and the number of measurements p ≥ Cr(m+ n) log(mn), then with

very high probability, most m× n matrices of rank r can be recovered by solving problem (1.6), where C is

a positive constant; i.e., an optimal solution to (1.6) gives an optimal solution to (1.1).

If b is contaminated by noise, then (1.6) should be relaxed to

min ‖X‖∗
s.t. ‖A(X)− b‖2 ≤ θ,

(1.7)

where θ > 0 is the noise level. The Lagrangian version of (1.7) can be written as

minµ‖X‖∗ +
1

2
‖A(X)− b‖22,(1.8)

where µ is a Lagrangian multiplier.

Several algorithms have been proposed for solving (1.1) and (1.6). Using the fact that (1.6) is equivalent

to the semidefinite programming (SDP) problem

min
X,W1,W2

1
2 (Tr(W1) + Tr(W2))

s.t.

[

W1 X

X⊤ W2

]

� 0,

A(X) = b,

(1.9)

where Tr(W ) denotes the trace of the square matrix W , Recht, Fazel and Parrilo [38] and Liu and Van-

denberghe [32] proposed interior-point methods to solve this SDP. However, these interior-point methods

cannot be used to solve large problems. First-order methods were proposed by Cai, Candès and Shen [4]

and Ma, Goldfarb and Chen [33] that can solve very large matrix rank minimization problems efficiently.

One of the algorithms in [33], which is called FPCA (Fixed-Point Continuation with Approximation SVD),

almost always achieves the best recoverability. FPCA can recover m× n matrices of rank r using p samples

even when r is very close to the largest rank rmax := max{r|r(m + n − r)/p < 1} of m× n matrices that

one can recover with only p samples. In this paper, we study the convergence/recoverability properties and

numerical performance of FPCA and some of its variants. Our main contribution is a weakening of the

conditions previously given by Lee and Bresler [28, 27] required for the approximate recovery of a low-rank

matrix.

Notation. We use R
n
+ to denote the nonnegative orthant of Rn. We use A∗ to denote the adjoint

operator of A. We define the inner product of two matrices X and Y ∈ R
m×n to be 〈X,Y 〉 = Tr(X⊤Y ) =

Tr(Y ⊤X), and denote the Frobenius norm of the matrix X by ‖X‖F = (Tr(X⊤X))1/2 and the Euclidean

norm of the vector x by ‖x‖2. Henceforth, we will write A(X) as AX as this should not cause any confusion.

For example, A∗AX := A∗(A(X)).

Outline. The rest of this paper is organized as follows. In Section 2 we review the role that the

restricted isometry property plays in the theory of compressed sensing and matrix rank minimization. We

also present three propositions from [28] that provide the basis for the theoretical results that we give later

in the paper. We review the Fixed-Point Continuation (FPC) and FPC with Approximate SVD (FPCA)

algorithms proposed in [33] in Section 3. We then address the first variant of FPCA, which we call iterative

hard thresholding (IHT), and prove convergence results for it in Section 4. Section 5 is devoted to another

variant of FPCA, which is called iterative hard thresholding with matrix shrinkage (IHTMS), and convergence
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results for it. We establish convergence/recoverability properties of FPCAr, a very close variant of FPCA, in

Section 6. Some practical issues regarding numerical difficulties and ways to overcome them are discussed in

Section 7. Finally, we give some numerical results obtained by applying these algorithms to both randomly

created and real matrix rank minimization problems in Section 8.

2. Restricted Isometry Property. In compressed sensing and matrix rank minimization, the re-

stricted isometry property (RIP) of the matrix A or linear operator A plays a key role in the relationship

between the original combinatorial problem and its convex relaxation and their optimal solutions.

The definition of the RIP for matrix rank minimization is:

Definition 2.1. For every integer r with 1 ≤ r ≤ m, the linear operator A : Rm×n → R
p is said to

satisfy the Restricted Isometry Property with the restricted isometry constant δr(A) if δr(A) is the minimum

constant that satisfies

(1 − δr(A))‖X‖2F ≤ ‖AX‖22 ≤ (1 + δr(A))‖X‖2F ,(2.1)

for all X ∈ R
m×n with rank(X) ≤ r. δr(A) is called the RIP constant. Note that δs ≤ δt, if s ≤ t.

The RIP concept and the RIP constant δr(A) play a central role in the theoretical developments of

this paper. We first note that if the operator A has a nontrivial kernel, i.e., there exists X ∈ R
m×n such

that AX = 0 and X 6= 0, then δn(A) ≥ 1. Second, if we represent A in the coordinate form (AX)i =

Tr(AiX), i = 1, . . . , p, then δr(A) is related to the joint kernel of the matrices Ai. For example, if there

exists a matrix X ∈ R
m×n with rank r such that AiX = 0, i = 1, . . . , p, then δr(A) ≥ 1. Our results in this

paper do not apply to such a pathological case.

For matrix rank minimization (1.1), Recht et al. [38] proved the following results.

Theorem 2.2 (Theorem 3.3 in [38]). Suppose that rank(X) ≤ r, r ≥ 1 and δ5r(A) < 0.1. Then (1.1)

and (1.6) have the same optimal solution.

Theorem 2.3 (Theorem 4.2 in [38]). Fix δ ∈ (0, 1). If A : Rm×n → R
p is a nearly isometric random

map (see Definition 4.1 in [38]), then for every 1 ≤ r ≤ m, there exist constants c0, c1 > 0 depending only

on δ such that, with probability at least 1− exp(−c1p), δr(A) ≤ δ whenever p ≥ c0r(m+ n) log(mn).

Theorems 2.2 and 2.3 indicate that ifA is a nearly isometric randommap, then with very high probability,

A will satisfy the RIP with a small RIP constant and thus we can solve (1.1) by solving its convex relaxation

(1.6). For example, if A is the matrix version of the operator A, and its entries Aij are independent,

identically distributed (i.i.d.) Gaussian, i.e., Aij ∼ N (0, 1/p), then A is a nearly isometric random map. For

other nearly isometric random maps, see [38].

In Section 8, we will show empirically that when the entries of A are i.i.d. Gaussian, the algorithms

proposed in this paper can solve the matrix rank minimization problem (1.1) very well.

It is worth noticing that the linear map A in the matrix completion problem (1.3) does not satisfy

the RIP. A counterexample is given in [5]. For more theory on and algorithms for the matrix completion

problem, see [6, 9, 5, 24, 23, 4, 33, 44, 31].

In our proofs of the convergence of FPCA variants, we need A to satisfy the RIP. Before we describe

some properties of the RIP that we will use in our proofs, we need the following definitions.

Definition 2.4 (Orthonormal basis of a subspace). Given a set of rank-one matrices Ψ =

{ψ1, . . . , ψr}, there exists a set of orthonormal matrices Γ = {γ1, . . . , γs}, i.e., 〈γi, γj〉 = 0, for i 6= j

and ‖γi‖F = 1 for all i, such that span(Γ) = span(Ψ). We call Γ an orthonormal basis for the subspace

span(Ψ). We use PΓX to denote the projection of X onto the subspace span(Γ). Note that PΓX = PΨX and
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rank(PΓX) ≤ r, ∀X ∈ R
m×n.

Definition 2.5 (SVD basis of a matrix). Assume that the rank-r matrix Xr has the singular value

decomposition Xr =
∑r

i=1 σiuiv
⊤
i . Γ := {u1v⊤1 , u2v⊤2 , . . . , urv⊤r } is called an SVD basis for the matrix Xr.

Note that elements in Γ are orthonormal rank-one matrices.

We now list some important properties of linear operators that satisfy RIP. 1

Proposition 2.6. Suppose that the linear operator A : Rm×n → R
p satisfies the RIP with constant

δr(A). Let Ψ be an arbitrary orthonormal subset of Rm×n such that rank(PΨX) ≤ r, ∀X ∈ R
m×n. Then,

for all b ∈ R
p and X ∈ R

m×n, the following properties hold:

‖PΨA∗b‖F ≤
√

1 + δr(A)‖b‖2(2.2)

(1− δr(A))‖PΨX‖F ≤ ‖PΨA∗APΨX‖F ≤ (1 + δr(A))‖PΨX‖F .(2.3)

Proposition 2.7. Suppose that the linear operator A : Rm×n → R
p satisfies the RIP with constant

δr(A). Let Ψ,Ψ′ be arbitrary orthonormal subsets of Rm×n such that rank(PΨ∪Ψ′X) ≤ r, for any X ∈ R
m×n.

Then the following inequality holds

‖PΨA∗A(I − PΨ)X‖F ≤ δr(A)‖(I − PΨ)X‖F , ∀X ∈ span(Ψ′).(2.4)

Proposition 2.8. If a linear map A : Rm×n → R
p satisfies

(2.5) ‖AX‖22 ≤ (1 + δr(A))‖X‖2F , ∀X ∈ R
m×n, rank(X) ≤ r,

then

(2.6) ‖AX‖2 ≤
√

1 + δr(A)

(

‖X‖F +
1√
r
‖X‖∗

)

, ∀X ∈ R
m×n.

Proofs of Propositions 2.6, 2.7 and 2.8 are given in the Appendix.

3. FPC Revisited. To describe FPC and FPCA and its variants, we need the following definitions.

Definition 3.1. Assume that the singular value decomposition of the matrix X ∈ R
m×n is given by

X =
∑m

i=1 σiuiv
⊤
i with σ1 ≥ σ2 ≥ . . . ≥ σm. Then the best rank-r approximation Rr(X) to the matrix X is

defined as

Rr(X) =

r
∑

i=1

σiuiv
⊤
i .

Rr : Rm×n → R
m×n is also called the hard thresholding/shrinkage operator with threshold r.

Definition 3.2. Assume the SVD of the matrix X is given by X = UDiag(σ)V ⊤. For ν > 0, the

matrix shrinkage operator Sν(X) is defined as

Sν(X) = UDiag((σ − ν)+)V
⊤,

1Propositions 2.6 and 2.8 were first proposed by Lee and Bresler without proof in [28]. Proofs of Propositions 2.6 and 2.8
were provided later in [27].
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where a+ := max(a, 0). Sν : Rm×n → R
m×n is also called the soft shrinkage operator with threshold ν.

FPC, whose development was motivated by the work on ℓ1 regularized problems in [21], is based on

applying an operator splitting technique to the optimality conditions for (1.8). Note that X∗ is the optimal

solution to (1.8) if and only if

0 ∈ µ∂‖X∗‖∗ + g(X∗),(3.1)

where g(X∗) = A∗(AX∗ − b) is the gradient of the least squares term 1
2‖AX∗ − b‖22, and ∂‖X∗‖∗ is the

subgradient of the nuclear norm ‖X∗‖∗ of X∗. According to [3], the subgradient of ‖X‖∗ is given by

∂‖X‖∗ = {UV ⊤ +W : U⊤W = 0,WV = 0, ‖W‖2 ≤ 1},(3.2)

where the SVD of X is given by X = UDiag(σ)V ⊤, U ∈ R
m×r, V ∈ R

n×r, σ ∈ R
r
+.

Based on the optimality conditions (3.1), we can develop a fixed-point iterative scheme for solving (1.8)

by adopting an operator splitting technique. Note that (3.1) is equivalent to

0 ∈ τµ∂‖X∗‖∗ +X∗ − (X∗ − τg(X∗))(3.3)

for any τ > 0. If we let

Y ∗ = X∗ − τg(X∗),

then (3.3) can be rewritten as

0 ∈ τµ∂‖X∗‖∗ +X∗ − Y ∗,(3.4)

i.e., X∗ is the optimal solution to

min
X∈Rm×n

τµ‖X‖∗ +
1

2
‖X − Y ∗‖2F .(3.5)

It is known that Sτµ(Y
∗) gives the optimal solution to (3.5) [33]. Hence, the following fixed-point

iterative scheme can be given for solving (1.8):

{

Y k+1 = Xk − τg(Xk)

Xk+1 = Sτµ(Y
k+1).

(3.6)

The following convergence result is proved in [33].

Theorem 3.3 (Theorem 4 in [33]). Assume τ ∈ (0, 2/λmax(A∗A)), where λmax(A∗A)) denotes the

largest eigenvalue of A∗A. The sequence {Xk} generated by the fixed-point iterations (3.6) converges to

some X∗ ∈ X ∗, where X ∗ is the optimal set of problem (1.8).

Note that in every iteration of (3.6), an SVD has to be computed to perform the matrix shrinkage

operation, which is very expensive. Consequently, FPCA uses an approximate SVD to replace the whole

SVD, i.e., it computes only a rank-r approximation to Y k+1. Note that there are many ways to get a rank-r

approximation to Y k+1. Here we assume that the best rank-r approximation Rr(Y
k+1) is used. In Section 7,

we discuss a Monte Carlo method to approximately compute Rr(Y
k+1), since computing Rr(Y

k+1) exactly

is still expensive if r is not very small and the matrices are large. By adopting a continuation strategy for
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the parameter µ in (3.6), we arrive at the following FPCA algorithm (Algorithm 1) as proposed in [33].

Algorithm 1: Fixed-Point Continuation with Approximate SVD for MRM (FPCA)

Initialization: Set X := X0.
for µ = µ1, µ2, . . . , µL = µ̄ do

while not converged do
Y := X − τA∗(AX − b).
choose r.
X := Sτµ(Rr(Y )).

We can see that FPCA makes use of three techniques, hard thresholding, soft shrinkage and continuation.

These three techniques have different properties which, when combined, produce a very robust and efficient

algorithm with great recoverability properties. By using only one or two of these three techniques, we get

different variants of FPCA. We will study two of these variants, Iterative Hard Thresholding (IHT) and

Iterative Hard Thresholding with soft Matrix Shrinkage (IHTMS) in Sections 4 and 5, respectively, and

FPCA with given rank r (FPCAr) in Section 6.

In the following three sections, we assume that the rank r of the optimal solution is given and we compute

the best rank-r approximation to Y in each iteration. In Section 7, we give a heuristic for choosing r in

each iteration if r is unknown and use the fast Monte Carlo algorithm proposed in [15] to compute a rank-r

approximation to Y .

4. Iterative Hard Thresholding. In this section, we study a variant of FPCA that we call Iterative

Hard Thresholding (IHT) because of its similarity to the algorithm in [2] for compressed sensing.

If in FPCA, we assume that the rank r is given, we do not do any continuation or soft shrinkage, and

always choose the stepsize τ equal to one, then FPCA becomes Algorithm 2 (IHT). At each iteration of

IHT, we first perform a gradient step Y k+1 := Xk −A∗(AXk − b), and then apply hard thresholding to the

singular values of Y k+1, i.e., we only keep the largest r singular values of Y k+1, to get Xk+1.

Algorithm 2: Iterative Hard Thresholding (IHT)

Initialization: Given X0, r.
for k = 0,1,. . . do

Y k+1 := Xk −A∗(AXk − b).
Xk+1 := Rr(Y

k+1)

As previously mentioned, IHT is closely related to an algorithm proposed by Blumensath and Davies [2]

for compressed sensing. Their algorithm for solving (1.4) performs the following iterative scheme:

{

yk+1 = xk − τA⊤(Axk − b)

xk+1 = Hr(y
k+1),

(4.1)

where Hr(y) is the hard thresholding operator that sets all but the largest (in magnitude) r elements of y

to zero. Clearly, IHT for matrix rank minimization and compressed sensing are the same except that the

shrinkage operator in the matrix case is applied to the singular values, while in the compressed sensing case

it is applied to the solution vector.
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To prove the convergence/recoverability properties of IHT for matrix rank minimization, we need the

following lemma.

Lemma 4.1. Suppose X := Rr(Y ) is the best rank-r approximation to the matrix Y , and Γ is an SVD

basis of X. Then for any rank-r matrix Xr and SVD basis Γr of Xr, we have

‖PBX − PBY ‖F ≤ ‖PBXr − PBY ‖F ,(4.2)

where B is any orthonormal set of matrices satisfying span(Γ ∪ Γr) ⊆ span(B).

Proof. Since X is the best rank-r approximation to Y and rank(Xr) = r, ‖X − Y ‖F ≤ ‖Xr − Y ‖F .
Hence,

‖PB(X − Y )‖2F + ‖(I − PB)(X − Y )‖2F ≤ ‖PB(Xr − Y )‖2F + ‖(I − PB)(Xr − Y )‖2F .

Since (I − PB)X = 0 and (I − PB)Xr = 0, this reduces to (4.2).

For IHT, we have the following convergence results, whose proofs essentially follow those given by

Blumensath and Davies [2] for IHT for compressed sensing. Our first result considers the case where the

desired solution Xr satisfies a perturbed linear system of equations AXr + e = b.

Theorem 4.2. Suppose that b = AXr + e, where Xr is a rank-r matrix, and A has the RIP with

δ3r(A) ≤ α/
√
8 where α ∈ (0, 1). Then, at iteration k, IHT will recover an approximation Xk satisfying

∥

∥Xr −Xk
∥

∥

F
≤ αk

∥

∥Xr −X0
∥

∥

F
+

β

1− α
‖e‖2,(4.3)

where β := 2
√

1 + α/
√
8. Furthermore, after at most k∗ :=

⌈

log1/α
(∥

∥Xr −X0
∥

∥

F
/‖e‖2

)

⌉

iterations, IHT

estimates Xr with accuracy

∥

∥

∥Xr −Xk∗

∥

∥

∥

F
≤ 1− α+ β

1− α
‖e‖2.(4.4)

Proof. Let Γr and Γk denote SVD bases of Xr and X
k, respectively, and Bk denote an orthonormal basis

of the subspace span(Γr ∪ Γk). Let Zk := Xr −Xk denote the residual at iteration k. Since PBk+1
Xr = Xr

and PBk+1
Xk+1 = Xk+1, it follows first from the triangle inequality and then from Lemma 4.1 that

∥

∥Xr −Xk+1
∥

∥

F
≤

∥

∥PBk+1
Xr − PBk+1

Y k+1
∥

∥

F
+
∥

∥PBk+1
Xk+1 − PBk+1

Y k+1
∥

∥

F

≤ 2
∥

∥PBk+1
Xr − PBk+1

Y k+1
∥

∥

F
.

(4.5)

Using the fact that b = AXr + e, Y k+1 = Xk − A∗(AXk − AXr − e) = Xk + A∗(AZk + e). Hence, from

(4.5),

∥

∥Xr −Xk+1
∥

∥

F
≤ 2

∥

∥PBk+1
Xr − PBk+1

Y k+1
∥

∥

F

≤ 2
∥

∥PBk+1
Xr − PBk+1

Xk − PBk+1
A∗A(PBk+1

Zk + (I − PBk+1
)Zk)− PBk+1

A∗e
∥

∥

F

≤ 2
∥

∥PBk+1
Zk − PBk+1

A∗A(PBk+1
Zk + (I − PBk+1

)Zk)
∥

∥

F
+ 2

∥

∥PBk+1
A∗e

∥

∥

F

≤ 2
∥

∥(I − PBk+1
A∗APBk+1

)PBk+1
Zk

∥

∥

F
+ 2

∥

∥PBk+1
A∗A(I − PBk+1

)Zk
∥

∥

F
+ 2

∥

∥PBk+1
A∗e

∥

∥

F
.
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Since rank(PBk+1
X) ≤ 2r, ∀X ∈ R

m×n, by applying (2.2) in Proposition 2.6 we get,

∥

∥PBk+1
A∗e

∥

∥

F
≤

√

1 + δ2r(A)‖e‖2.

Since PΨPΨ = PΨ, it follows from (2.3) in Proposition 2.6 that the eigenvalues of the linear operator

PΨA∗APΨ are in the interval [1 − δr(A), 1 + δr(A)]. Letting Ψ = Bk+1, it follows that the eigenvalues of

PBk+1
A∗APBk+1

lie in the interval [1 − δ2r(A), 1 + δ2r(A)]. Hence the eigenvalues of I − PBk+1
A∗APBk+1

are bounded above by δ2r(A) and it follows that

∥

∥(I − PBk+1
A∗APBk+1

)PBk+1
Zk

∥

∥

F
≤ δ2r(A)

∥

∥PBk+1
Zk

∥

∥

F
.

Also, since PBk
Zk = Zk, Zk ∈ span(Bk) and rank(PBk∪Bk+1

X) ≤ 3r, ∀X ∈ R
m×n, by applying Proposition

2.7 we get

∥

∥PBk+1
A∗A(I − PBk+1

)Zk
∥

∥

F
≤ δ3r(A)

∥

∥(I − PBk+1
)Zk

∥

∥

F
.

Thus, since δ2r(A) ≤ δ3r(A),

∥

∥Xr −Xk+1
∥

∥

F
≤ 2δ2r(A)

∥

∥PBk+1
Zk

∥

∥

F
+ 2δ3r(A)

∥

∥(I − PBk+1
)Zk

∥

∥

F
+ 2

√

1 + δ2r(A)‖e‖2
≤ 2

√
2δ3r(A)

∥

∥Zk
∥

∥

F
+ 2

√

1 + δ3r(A)‖e‖2.

By assumption, δ3r(A) ≤ α/
√
8; hence we have

∥

∥Zk+1
∥

∥

F
≤ α

∥

∥Zk
∥

∥

F
+ β‖e‖2.(4.6)

Iterating this inequality, we get (4.3).

From (4.3), the recovery accuracy
∥

∥Zk
∥

∥

F
≤ 1−α+β

1−α ‖e‖2, if αk
∥

∥Xr −X0
∥

∥

F
≤ ‖e‖2. Hence for k∗ :=

⌈

log1/α
(∥

∥Xr −X0
∥

∥

F
/‖e‖2

)

⌉

, (4.4) holds.

Remark 4.3. Note that in Theorem 4.2, convergence is guaranteed for any α ∈ (0, 1). For the choice

α = 1
2 , β = 2

√

1 + 1/
√
32 ≈ 2.1696. Thus (4.3) becomes

∥

∥Xr −Xk
∥

∥

F
≤ 2−k

∥

∥Xr −X0
∥

∥

F
+ 4.3392‖e‖2,

and (4.4) becomes

∥

∥

∥
Xr −Xk∗

∥

∥

∥

F
≤ 5.3392‖e‖2.

For an arbitrary matrix X , we have the following result.

Theorem 4.4. Suppose that b = AX + e, where X is an arbitrary matrix, and A has the RIP with

δ3r(A) ≤ α/
√
8 where α ∈ (0, 1). Let Xr be the best rank-r approximation to X. Then, at iteration k, IHT

will recover an approximation Xk satisfying

∥

∥X −Xk
∥

∥

F
≤ αk

∥

∥Xr −X0
∥

∥

F
+ γǫ̃r,(4.7)

9



where γ := β2

2(1−α) + 1, β := 2
√

1 + α/
√
8, and

ǫ̃r = ‖X −Xr‖F +
1√
r
‖X −Xr‖∗ + ‖e‖2,(4.8)

is called the unrecoverable energy (see [36]). Furthermore, after at most k∗ :=
⌈

log1/α
(∥

∥Xr −X0
∥

∥

F
/ǫ̃r

)

⌉

iterations, IHT estimates X with accuracy

∥

∥

∥X −Xk∗

∥

∥

∥

F
≤ (1 + γ)ǫ̃r.(4.9)

Proof. From Theorem 4.2 with ẽ = A(X −Xr) + e instead of e, we have

∥

∥Xr −Xk
∥

∥

F
=

∥

∥Zk
∥

∥

F
≤ αk

∥

∥Xr −X0
∥

∥

F
+

β

1− α
‖ẽ‖2.

By Proposition 2.8, we know that

‖ẽ‖2 ≤ ‖A(X −Xr)‖F + ‖e‖2 ≤
√

1 + δr(A)

(

‖X −Xr‖F +
1√
r
‖X −Xr‖∗

)

+ ‖e‖2.

Thus we have from the triangle inequality and (4.8)

∥

∥X −Xk
∥

∥

F
≤

∥

∥Xr −Xk
∥

∥

F
+ ‖X −Xr‖F

≤ αk
∥

∥Xr −X0
∥

∥

F
+

β

1− α
‖ẽ‖2 + ‖X −Xr‖F

≤ αk
∥

∥Xr −X0
∥

∥

F
+

(

β

1− α

√

1 + δr(A) + 1

)

ǫ̃r

≤ αk
∥

∥Xr −X0
∥

∥

F
+ γǫ̃r.

This proves (4.7).

Furthermore,
∥

∥X −Xk
∥

∥

F
≤ (1+γ)ǫ̃r if α

k
∥

∥Xr −X0
∥

∥

F
≤ ǫ̃r. Therefore, for k

∗ :=
⌈

log1/α
(∥

∥Xr −X0
∥

∥

F
/ǫ̃r

)

⌉

,

(4.9) holds.

Remark 4.5. For the choice α = 1
2 , β = 2

√

1 + 1/
√
32 ≈ 2.1696 and γ = β2

2(1−α) + 1 ≈ 5.7072. Thus

(4.7) holds as

∥

∥X −Xk
∥

∥

F
≤ 2−k

∥

∥Xr −X0
∥

∥

F
+ 5.7072ǫ̃r,

and (4.9) holds as

∥

∥

∥X −Xk∗

∥

∥

∥

F
≤ 6.7072ǫ̃r.

Similar bounds on the RIP constant for an approximate recovery were obtained by Lee and Bresler

[28, 27] for affinely constrained matrix rank minimization and by Lee and Bresler for ellipsoidally constrained

matrix rank minimization [29]. The results in Theorems 4.2 and 4.4 improve the previous results for affinely

constrained matrix rank minimization in [28, 27]. Specifically, Theorems 4.2 and 4.4 require the RIP constant

10



δ3r(A) < 1/
√
8 ≈ 0.3536, while the result in [28, 27] requires δ4r(A) ≤ 0.04 and the result in [29] requires

δ3r(A) < 1/(1 + 4/
√
3) ≈ 0.3022 for recovery in the noisy case. The IHT algorithm for matrix rank

minimization has also been independently studied by Meka, Jain and Dhillon in [34], who have obtained

very different results than those in Theorems 4.2 and 4.4.

5. Iterative Hard Thresholding with Matrix Shrinkage. We study another variant of FPCA in

this section. If in each iteration of IHT, we perform matrix shrinkage to Rr(Y ) with fixed thresholding

µ > 0, we get the following algorithm (Algorithm 3), which we call Iterative Hard Thresholding with Matrix

Shrinkage (IHTMS). Note that Sµ(Rr(Y )) = Rr(Sµ(Y )), ∀r, µ and Y .

Algorithm 3: Iterative Hard Thresholding with Matrix Shrinkage (IHTMS)

Initialization: Given X0, µ and r.
for k = 0,1,. . . do

Y k+1 := Xk −A∗(AXk − b).
Xk+1 := Rr(Sµ(Y

k+1)).

For IHTMS, we have the following convergence results.

Theorem 5.1. Suppose that b = AXr + e, where Xr is a rank-r matrix, and A has the RIP with

δ3r(A) ≤ α/
√
8 where α ∈ (0, 1). Then, at iteration k, IHTMS will recover an approximation Xk satisfying

∥

∥Xr −Xk
∥

∥

F
≤ αk

∥

∥Xr −X0
∥

∥

F
+

1

1− α
(β‖e‖2 + 2µ

√
m),(5.1)

where β := 2
√

1 + α/
√
8. Furthermore, after at most k∗ :=

⌈

log1/α
(∥

∥Xr −X0
∥

∥

F
/(‖e‖2 + 2µ

√
m)

)

⌉

itera-

tions, IHTMS estimates Xr with accuracy

∥

∥

∥Xr −Xk∗

∥

∥

∥

F
≤ 1− α+ β

1− α
‖e‖2 +

2− α

1− α
2µ

√
m.(5.2)

Proof. Using the same notation as in the proof of Theorem 4.2, we know that PBk+1
Xr = Xr and

PBk+1
Xk+1 = Xk+1. Using the triangle inequality we get,

∥

∥Xr −Xk+1
∥

∥

F
≤
∥

∥PBk+1
Xr − PBk+1

Y k+1
∥

∥

F

+
∥

∥PBk+1
Xk+1 − PBk+1

Sµ(Y
k+1)

∥

∥

F

+
∥

∥PBk+1
Sµ(Y

k+1)− PBk+1
Y k+1

∥

∥

F
.

(5.3)

Since Xk+1 is the best rank-r approximation to Sµ(Y
k+1), by applying Lemma 4.1 we get

∥

∥PBk+1
Xk+1 − PBk+1

Sµ(Y
k+1)

∥

∥

F
≤
∥

∥PBk+1
Xr − PBk+1

Sµ(Y
k+1)

∥

∥

F

≤
∥

∥PBk+1
Xr − PBk+1

Y k+1
∥

∥

F

+
∥

∥PBk+1
Sµ(Y

k+1)− PBk+1
Y k+1

∥

∥

F
.

(5.4)

Therefore, by combining (5.3), (5.4) and noticing that

∥

∥PBk+1
Sµ(Y

k+1)− PBk+1
Y k+1

∥

∥

F
≤

∥

∥Sµ(Y
k+1)− Y k+1

∥

∥

F
≤ µ

√
m,

11



we have

∥

∥Xr −Xk+1
∥

∥

F
≤ 2

∥

∥PBk+1
Xr − PBk+1

Y k+1
∥

∥

F
+ 2µ

√
m.

Using an argument identical the one below (4.5) in the proof of Theorem 4.2, we get

∥

∥Xr −Xk+1
∥

∥

F
≤ 2

√
2δ3r(A)

∥

∥Zk
∥

∥

F
+ 2

√

1 + δ3r(A)‖e‖2 + 2µ
√
m.

Now since δ3r(A) ≤ α/
√
8, we have

∥

∥Zk+1
∥

∥

F
≤ α

∥

∥Zk
∥

∥

F
+ β‖e‖2 + 2µ

√
m,

which implies that (5.1) holds. Hence (5.2) holds if k∗ :=
⌈

log1/α
(∥

∥Xr −X0
∥

∥

F
/(‖e‖2 + 2µ

√
m)

)

⌉

.

For an arbitrary matrix X , we have the following results.

Theorem 5.2. Suppose that b = AX + e, where X is an arbitrary matrix, and A has the RIP with

δ3r(A) ≤ α/
√
8 where α ∈ (0, 1). Let Xr be the best rank-r approximation to X. Then, at iteration k,

IHTMS will recover an approximation Xk satisfying

∥

∥X −Xk
∥

∥

F
≤ αk

∥

∥Xr −X0
∥

∥

F
+ γǫ̃r +

2µ
√
m

1− α
,(5.5)

where γ := β2

2(1−α) + 1, β := 2
√

1 + α/
√
8, and ǫ̃r is defined by (4.8). Furthermore, after at most k∗ :=

⌈

log1/α
(∥

∥Xr −X0
∥

∥

F
/(ǫ̃r + 2µ

√
m)

)

⌉

iterations, IHTMS estimates X with accuracy

∥

∥

∥X −Xk∗

∥

∥

∥

F
≤ (1 + γ)ǫ̃r +

2− α

1− α
2µ

√
m.(5.6)

Proof. The proof of (5.5) is identical to the proof of (4.7) in Theorem 4.4, except that (5.1) is used instead

of (4.3). It also immediately follows from (5.5) that (5.6) holds for k∗ :=
⌈

log1/α
(∥

∥Xr −X0
∥

∥

F
/(ǫ̃r + 2µ

√
m)

)

⌉

.

6. FPCA with Given Rank r. In this section, we study the FPCA when rank r is known and a unit

stepsize τ = 1 is always chosen. This is equivalent to applying a continuation strategy to µ in IHTMS. We

call this algorithm FPCAr (see Algorithm 4 below). The parameter ηµ determines the rate of reduction of

the consecutive µj in continuation, i.e.,

µj+1 = max{µjηµ, µ̄}, j = 1, . . . , L− 1(6.1)

For FPCAr, we have the following convergence results.

Theorem 6.1. Suppose that b = AXr + e, where Xr is a rank-r matrix, and A has the RIP with

δ3r(A) ≤ α/
√
8 where α ∈ (0, 1). Also, suppose in FPCAr, after Kj iterations with fixed µ = µj, we obtain

a solution X
(Kj)

(j) that is then set to the initial point X0
(j+1) for the next continuation subproblem µ = µj+1.

12



Algorithm 4: FPCA with given rank r (FPCAr)

Input : X0
(1), r, µ1 > µ2 . . . > µL = µ̄.

for j = 1,. . . ,L do
Set µ = µj .
for k = 0,1,. . . , until convergence do

Y k+1
(j) := Xk

(j) −A∗
(

AXk
(j) − b

)

.

Xk+1
(j) := Sµ

(

Rr

(

Y k+1
(j)

))

.

Set X0
(j+1) = Xk+1

(j) .

Output: X∗ := X0
(L+1).

Then FPCAr will recover an approximation X
(KL)
(L) that satisfies

∥

∥

∥Xr −X
(KL)
(L)

∥

∥

∥

F
≤
(

α
∑L

j=1
Kj

)

∥

∥Xr −X0
∥

∥

F
+





L
∑

j=2

α
∑L

l=j
Kl + 1





β

1− α
‖e‖2

+





L
∑

j=2

(

α
∑L

l=j
Kl

)

µj−1 + µL





2
√
m

1− α
,

(6.2)

where β := 2
√

1 + α/
√
8.

Proof. For X
(K1)
(1) , which is obtained by setting µ = µ1 in the first K1 iterations, we get from Theorem

5.1, that if δ3r(A) ≤ α/
√
8,

∥

∥

∥Xr −X
(K1)
(1)

∥

∥

∥

F
≤ αK1

∥

∥Xr −X0
∥

∥

F
+

β

1− α
‖e‖2 +

2µ1
√
m

1− α
.(6.3)

Then from iteration K1 + 1 to K1 +K2, we fix µ = µ2. Again by Theorem 5.1, we get

∥

∥

∥
Xr −X

(K2)
(2)

∥

∥

∥

F
≤ αK2

∥

∥

∥
Xr −X

(K1)
(1)

∥

∥

∥

F
+

β

1− α
‖e‖2 +

2µ2
√
m

1− α
.(6.4)

By substituting (6.3) into (6.4), we get

∥

∥

∥Xr −X
(K2)
(2)

∥

∥

∥

F
≤α(K1+K2)

∥

∥Xr −X0
∥

∥

F
+
(

αK2 + 1
) β

1− α
‖e‖2

+
(

αK2µ1 + µ2

) 2
√
m

1− α
.

Repeating this procedure we get (6.2).

Theorem 6.1 shows that as long as µL is small and KL is large, the recovery error will be very small.

For an arbitrary matrix X , we have the following convergence result.

Theorem 6.2. Suppose that b = AX + e, where X is an arbitrary matrix. Let Xr be the best rank-r

approximation to X. With the same notation and under the same conditions as in Theorem 6.1, FPCAr
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will recover an approximation X
(KL)
(L) that satisfies

∥

∥

∥X −X
(KL)
(L)

∥

∥

∥

F
≤
(

α
∑L

j=1
Kj

)

∥

∥Xr −X0
∥

∥

F
+









L
∑

j=2

α
∑L

l=j
Kl + 1



 γ + 1



 ǫ̃r

+





L
∑

j=2

(

α
∑L

l=j
Kl

)

µj−1 + µL





2
√
m

1− α
,

where γ := β2

2(1−α) + 1, β := 2
√

1 + α/
√
8, and ǫ̃r is defined by (4.8).

Proof. We skip the proof here since it is similar to the proof of Theorem 4.4.

7. Practical Issues. In practice, the rank r of the optimal solution is usually unknown. Thus, in

every iteration, we need to determine r appropriately. We propose some heuristics for doing this here. We

start with r := rmax. So X1 is a rank-rmax matrix. For the k-th iteration ( k ≥ 2 ), r is chosen as the

number of singular values of Xk−1 that are greater than ǫsσ
k−1
1 , where σk−1

1 is the largest singular value

of Xk−1 and ǫs ∈ (0, 1) is a given tolerance. Sometimes the given tolerance truncates too many of the

singular values, so we need to increase r occasionally. One way to do this is to increase r by 1 whenever the

non-expansive property (see [33]) of the shrinkage operator Sµ is violated some fixed number of times, say

10. In the numerical experiments described in Section 8, we used another strategy; i.e., we increased r by 1

whenever the Frobenius norm of the gradient g increased by more than 10 times. We tested this heuristic

for determining r extensively. It enables our algorithms to achieve very good recoverability and appears to

be very robust. For many examples, our algorithms can recover matrices whose rank is almost rmax with a

limited number of measurements.

Another issue in practice is concerned with the SVD computation. Note that in IHT, IHTMS and

FPCA, we need to compute the best rank-r approximation to Y k+1 at every iteration. This can be very

expensive even if we use a state-of-the-art code like PROPACK [26], especially when the rank of the matrix is

relatively large. Therefore, we used instead the Monte Carlo algorithm LinearTimeSVD proposed in [15] to

approximate the best rank-r approximation. For a given matrix A ∈ R
m×n, and parameters cs, ks ∈ Z

+ with

1 ≤ ks ≤ cs ≤ n and {pi}ni=1, pi ≥ 0,
∑n

i=1 pi = 1, this algorithm returns approximations σt(C), t = 1, . . . , ks

to the largest ks singular values and approximations H
(t)
ks
, t = 1, . . . , k to the corresponding left singular

vectors of the matrix A in O(m + n) time. Thus, the SVD of A is approximated by

A ≈ Aks
:= Hks

Diag(σ(C))(A⊤Hks
Diag(1/σ(C))⊤.

Drineas et al. [15] prove that with high probability, the following estimate holds for both ξ = 2 and ξ = F

when {pi}ni=1 are nearly optimal probabilities (see [15]):

‖A−Aks
‖2ξ ≤ min

D:rank(D)≤ks

‖A−D‖2ξ + poly(ks, 1/cs)‖A‖2F ,(7.1)

where poly(ks, 1/cs) is a polynomial in ks and 1/cs. Thus, Aks
is an approximation to the best rank-ks

approximation to A. The LinearTimeSVD Algorithm, which we found to be much faster than PROPACK,

is outlined below in Algorithm 5.

Note that in Algorithm 5, we compute an exact SVD of a smaller matrix C⊤C ∈ R
cs×cs . Thus, cs

determines the speed of this algorithm. If we choose a large cs, we need more time to compute the SVD

14



Algorithm 5: Linear Time Approximate SVD Algorithm [15]

Input : A ∈ R
m×n, cs, ks ∈ Z

+ s.t.1 ≤ ks ≤ cs ≤ n, {pi}ni=1 s.t.pi ≥ 0,
∑n

i=1 pi = 1.
Output: Hk ∈ R

m×ks and σt(C), t = 1, . . . , ks.
for t = 1,. . . ,cs do

Pick it ∈ 1, . . . , n with Pr[it = α] = pα, α = 1, . . . , n.
Set C(t) = A(it)/

√
cspit .

Compute C⊤C and its SVD; say C⊤C =
∑cs

t=1 σ
2
t (C)y

tyt
⊤
.

Compute ht = Cyt/σt(C) for t = 1, . . . , ks.

Return Hks
, where H

(t)
ks

= ht, and σt(C), t = 1, . . . , ks.

of C⊤C. However, the larger cs is, the more likely are the σt(C), t = 1, . . . , ks to be close to the largest

ks singular values of the matrix A since the second term in the right hand side of (7.1) is smaller. In our

numerical experiments, we found that we could choose a relatively small cs so that the computational time

was reduced without significantly degrading the accuracy. There are many ways to choose the probabilities

pi. In our numerical experiments in Section 8, we used the simplest one, i.e., we set all pi equal to 1/n. For

other choices of pi, see [15] and the references therein.

Although PROPACK is more accurate than this Monte Carlo method (Algorithm 5), we observed from

our numerical experiments that our algorithms are very robust and are not very sensitive to the accuracy of

the approximate SVDs.

In the j-th inner iteration in FPCA we solve problem (1.8) for a fixed µ = µj ; and stop when

‖Xk+1 −Xk‖F
max{1, ‖Xk‖F }

< xtol,(7.2)

where xtol is a small positive number. We then decrease µ and go to the next inner iteration.

8. Numerical Experiments. In this section, we present numerical results for the algorithms discussed

above and provide comparisons with the SDP solver SDPT3 [43]. We use IHTr, IHTMSr, FPCAr to denote

algorithms in which the rank r is specified, and IHT, IHTMS, FPCA to denote those in which r is determined

by the heuristics described in Section 7. We tested these six algorithms on both randomly created and realistic

matrix rank minimization problems (1.1). IHTr, IHT, IHTMSr and IHTMS were terminated when (7.2)

holds. FPCAr and FPCA were terminated when both (7.2) holds and µk = µ̄. All numerical experiments

were run in MATLAB 7.3.0 on a Dell Precision 670 workstation with an Intel xeon(TM) 3.4GHZ CPU and

6GB of RAM. All CPU times reported in this section are in seconds.

8.1. Randomly Created Test Problems. We tested some randomly created problems to illustrate

the recoverability/convergence properties of our algorithms. The random test problems (1.1) were created in

the following manner. We first generated random matricesML ∈ R
m×r andMR ∈ R

n×r with i.i.d. Gaussian

entries ∼ N (0, 1) and then set M = MLM
⊤
R . We then created a matrix A ∈ R

p×mn with i.i.d. Gaussian

entries Aij ∼ N (0, 1/p). Finally, the observation b was set equal to b := Avec(M). We use SR = p/(mn),

i.e., the number of measurements divided by the number of entries of the matrix, to denote the sampling

ratio. We also list FR = r(m + n − r)/p, i.e. the dimension of the set of rank r matrices divided by the

number of measurements, in the tables. Note that if FR > 1, then there is always an infinite number of

matrices with rank r satisfying the p linear constraints, so we cannot hope to recover the matrix in this
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situation. We also report the relative error

rel.err. :=
‖Xopt −M‖F

‖M‖F

to indicate the closeness ofXopt toM , whereXopt is the optimal solution to (1.1) produced by our algorithms.

We declaredM to be recovered if the relative error was less than 10−3.We solved 10 randomly created matrix

rank minimization problems for each set of (m,n, p, r). We used NS to denote the number of matrices that

were recovered successfully. The average time and average relative error of the successfully solved problems

are also reported.

The parameters used in the algorithms are summarized in Table 8.1.

Table 8.1
Parameters used in the algorithms

parameter value description

µ̄ 10−8 parameter in Algorithms 1 and 4
ηµ 0.25 parameter in (6.1)
ǫs 0.01 parameter in LinearTimeSVD
cs 2rmax − 2 parameter in LinearTimeSVD
pi 1/n, ∀i parameter in LinearTimeSVD
xtol 10−6 parameter in (7.2)

We first compare the solvers discussed above that specify the rank r with the SDP solver SDPT3 [43].

The results for a set of small problems with m = n = 60, 20 percent sampling (i.e., SR = 0.2 and p = 720)

and different ranks are presented in Table 8.2. Note that for this set of parameters (m,n, p), the largest rank

that satisfies FR < 1 is rmax = 6.

Table 8.2
Comparison between IHTr, IHTMSr and FPCAr with SDPT3

Prob SDPT3 IHTr IHTMSr FPCAr
r FR NS time rel.err. NS time rel.err. NS time rel.err. NS time rel.err.

1 0.17 10 122.93 2.31e-10 10 2.60 1.67e-05 10 2.59 1.67e-05 10 4.63 9.00e-06
2 0.33 10 124.26 3.46e-09 10 4.97 1.99e-05 10 4.98 2.11e-05 10 6.06 1.51e-05
3 0.49 3 149.74 2.84e-07 10 10.04 2.38e-05 10 9.95 2.27e-05 10 10.64 2.35e-05
4 0.64 0 — — 10 22.99 2.88e-05 10 22.72 3.05e-05 10 23.29 2.93e-05
5 0.80 0 — — 10 75.86 3.89e-05 10 84.13 3.95e-05 10 79.46 3.94e-05

From Table 8.2 we can see that the performance of our methods is very robust and quite similar in terms

of their recoverability properties. They are also much faster and their abilities to recover the matrices are

much better than SDPT3. For ranks less than or equal to 5, which is almost the largest rank guaranteeing

FR < 1, IHTr, IHTMSr and FPCAr can recover all randomly generated matrices with a relative error of the

order of 1e− 5. However, SDPT3 can only recover all matrices with a rank equal to 1 or 2. When the rank

r increases to 3, SDPT3 can only recover 3 of the 10 matrices. When the rank r increases to 4 or 5, none of

the 10 matrices can be recovered by SDPT3.

To verify the theoretical results in Sections 4, 5 and 6, we plotted the log of the approximation error

‖Xk −X∗‖F achieved by each of the algorithms IHTr, IHTMSr and FPCAr versus the iteration number k

in Figure 8.1 for one of 10 randomly created problems involving a matrix of rank 2. From this figure, we can
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Fig. 8.1. Approximation error versus the iteration number for a problem where the rank equaled 2

see that log ‖Xk −X∗‖F is approximately a linear function of the iteration number k. This implies that our

theoretical results in Sections 4, 5 and 6 approximately hold in practice.

For the same set of test problems, Tables 8.3, 8.4, and 8.5 present comparisons of IHTr versus IHT,

IHTMSr versus IHTMS and FPCAr versus FPCA.

Table 8.3
Comparison between IHTr and IHT

Prob IHTr IHT
r FR NS time rel.err. NS time rel.err.

1 0.17 10 2.60 1.67e-05 10 4.24 1.74e-05
2 0.33 10 4.97 1.99e-05 10 7.00 1.92e-05
3 0.49 10 10.04 2.38e-05 10 13.27 2.32e-05
4 0.64 10 22.99 2.88e-05 10 28.06 2.93e-05
5 0.80 10 75.86 3.89e-05 10 96.32 4.00e-05

Table 8.4
Comparison between IHTMSr and IHTMS

Prob IHTMSr IHTMS
r FR NS time rel.err. NS time rel.err.

1 0.17 10 2.59 1.67e-05 10 3.98 1.77e-05
2 0.33 10 4.98 2.11e-05 10 6.95 2.04e-05
3 0.49 10 9.95 2.27e-05 10 12.65 2.30e-05
4 0.64 10 22.72 3.05e-05 10 27.12 2.86e-05
5 0.80 10 84.13 3.95e-05 10 94.13 4.10e-05

From these tables we see that by using our heuristics for determining the rank r at every iteration,

algorithms IHT, IHTMS and FPCA perform similarly to algorithms IHTr, IHTMSr and FPCAr which make

use of knowledge of the true rank r. Specifically, algorithms IHT, IHTMS and FPCA are capable of recovering

low-rank matrices very well even when we do not know their rank.
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Table 8.5
Comparison between FPCAr and FPCA

Prob FPCAr FPCA
r FR NS time rel.err. NS time rel.err.

1 0.17 10 4.63 9.00e-06 10 4.66 8.88e-06
2 0.33 10 6.06 1.51e-05 10 6.15 1.55e-05
3 0.49 10 10.64 2.35e-05 10 11.50 2.24e-05
4 0.64 10 23.29 2.93e-05 10 25.66 2.88e-05
5 0.80 10 79.46 3.94e-05 10 83.91 3.87e-05

Table 8.6
Comparison when the given rank is different from the true rank of 3

Given rank NS time rel.err.

IHTr
1 0 — —
2 0 — —
3 10 10.04 2.38e-05
4 10 21.42 3.42e-05
5 10 63.53 5.51e-05
6 4 109.00 4.44e-04

IHT 10 13.27 2.32e-05

IHTMSr
1 0 — —
2 0 — —
3 10 9.95 2.27e-05
4 10 22.53 3.40e-05
5 10 67.89 5.93e-05
6 1 116.62 6.04e-04

IHTMS 10 12.65 2.30e-05

FPCAr
1 0 — —
2 0 — —
3 10 10.64 2.35e-05
4 10 21.26 3.46e-05
5 10 63.67 5.99e-05
6 3 108.02 4.04e-04

FPCA 10 11.50 2.24e-05

Choosing r is crucial in algorithms IHTr, IHTMSr and FPCAr as it is in greedy algorithms for matrix

rank minimization and compressed sensing. In Table 8.6 we present results on how the choice of r affects

the performance of algorithms IHTr, IHTMSr and FPCAr when the true rank of the matrix is not known.

In Table 8.6, the true rank is 3 and the results for choices of the rank from 1 to 6 are presented. The rows

labeled IHT, IHTMS and FPCA present the results for these algorithms which use the heuristics in Section

7 to determine the rank r. From Table 8.6 we see that if we specify a rank that is smaller than the true

rank, then all of the algorithms IHTr, IHTMSr and FPCAr are unable to successfully recover the matrices

(i.e., the relative error is greater than 1e-3). Specifically, since for the problems tested the true rank of the

matrix was 3, the algorithms failed when r was chosen to be either 1 or 2. If the chosen rank is slightly

greater than the true rank (i.e., the rank was chosen to be 4 or 5), all the three algorithms IHTr, IHTMSr
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and FPCAr still worked. However, the relative errors and times were much worse than those produced by

the heuristics based solvers IHT, IHTMS and FPCA. When the chosen rank was too large (i.e., was chosen

to be 6), IHTr, IHTMSr and FPCAr were only able to recover the matrices in 4, 1 and 3 out of 10 problems,

respectively. However, IHT, IHTMS and FPCA always recovered the matrices.

8.2. A Video Compression Problem. We tested the performance of our algorithms on a video

compression problem. By stacking each frame of the video as a column of a large matrix, we get a matrixM

whose j-th column corresponds to the j-th frame of the video. Due to the correlation between consecutive

frames of the video matrix, M is expected to be of low rank. Hence we should be able to recover the video

by only taking a limited number of measurements. The video used in our experiment was downloaded from

the website http://media.xiph.org/video/derf. The original colored video consisted of 300 frames where each

frame was an image stored in an RGB format, as a 144× 176× 3 array. Since this video data was too large

for our use, we preprocessed it in the following way. We first converted each frame from an RGB format

into a grayscale image, so each frame was a 144× 176 matrix. We then used only the portion of each frame

corresponding to a 39× 47 submatrix of pixels in the center of each frame, and took only the first 20 frames.

Consequently, the matrix M had m = 1833 rows and n = 20 columns. We then created a Gaussian sampling

matrix A ∈ R
p×(mn) as in Section 8.1 with p = 1833 ∗ 20 ∗ 0.4 = 14664 rows (i.e., we used sampling ratio

SR = 0.4) and computed b = Avec(M) ∈ R
p. This 14664× 36660 matrix A was close to the size limit of

what could be created by calling the MATLAB function A = randn(p,mn) on our computer. Although

the matrix M was expected to be of low rank, it was only approximately of low rank. Therefore, besides

comparing the recovered matrices with the original matrix M , we also compared them with the best rank-5

approximation of M . Since the relative error of the best rank-5 approximation of M was 2.33e − 2, we

cannot expect to get a more accurate solution. Therefore, we set xtol equal to 0.002 for this problem. The

results of our numerical tests are reported in Table 8.7. The ranks reported in the table are the ranks of the

recovered matrices. The reported relative errors and CPU times are averages over 5 runs. We do not report

any results for SDPT3, because the problem is far too large to be solved by an SDP solver. From Table 8.7

we see that our algorithms were able to recover the matrix M very well, achieving relative errors that were

of the same order as that obtained by the best rank-5 approximation.

Table 8.7
Results on recovery of compressed video

Solvers rank rel.err. time
IHTr 5 6.87e-2 645
IHT 5 9.76e-2 949

IHTMSr 5 6.72e-2 688
IHTMS 5 9.69e-2 804
FPCAr 5 5.10e-2 514
FPCA 5 5.17e-2 1296

In Figure 8.2, the three images in the first column correspond to three particular frames in the original

video. The images in the second column correspond to these frames in the rank-5 approximation matrix of

the video. The images in the third column correspond to these frames in the matrix recovered by FPCA. The

other five solvers recovered images that were very similar visually to FPCA so we do not show them here.

From Figure 8.2 we see that FPCA recovers the video very well by taking only 40% as many measurements

as there are pixels in the video.
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(a) (b) (c)

Fig. 8.2. Comparison of frames 4, 12 and 18 of (a) the original video, (b) the best rank-5 approximation and (c) the
matrix recovered by FPCA
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Appendix. Here we give proofs of Propositions 2.6, 2.7 and 2.8.

Proof of Proposition 2.6.

Proof. We prove (2.2) first. Since for any X ∈ R
m×n, rank(PΨX) ≤ r, we have

|〈X,PΨA∗b〉| = |〈APΨX, b〉|
≤ ‖APΨX‖2‖b‖2
≤

√

1 + δr(A)‖PΨX‖F‖b‖2
≤

√

1 + δr(A)‖X‖F‖b‖2.

Thus

‖PΨA∗b‖F = max
‖X‖F=1

|〈X,PΨA∗b〉| ≤
√

1 + δr(A)‖b‖2.

To prove (2.3), note that by the RIP,

(1− δr(A))‖PΨX‖2F ≤ ‖APΨX‖2F ≤ (1 + δr(A))‖PΨX‖2F ,

which means the eigenvalues of PΨA∗APΨ restricted to span(Ψ) are in the interval [1 − δr(A), 1 + δr(A)].

Thus (2.3) holds. �
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Proof of Proposition 2.7. First, we prove

|〈A(I − PΨ)X,APΨY 〉| ≤ δr(A)‖(I − PΨ)X‖F ‖PΨY ‖F , ∀Y ∈ R
m×n, X ∈ span(Ψ′).(A-1)

(A-1) holds obviously if (I − PΨ)X = 0 or PΨY = 0. Thus we can assume (I − PΨ)X 6= 0 and PΨY 6= 0.

Define X̂ = (I−PΨ)X
‖(I−PΨ)X‖F

and Ŷ = PΨY
‖PΨY ‖F

; then we have
∥

∥

∥X̂
∥

∥

∥

F
= 1,

∥

∥

∥Ŷ
∥

∥

∥

F
= 1 and 〈X̂, Ŷ 〉 = 0. Since

X̂ ∈ span(Ψ ∪Ψ′) and Ŷ ∈ span(Ψ), we have rank
(

X̂ + Ŷ
)

≤ r and rank
(

X̂ − Ŷ
)

≤ r. Hence by RIP,

2(1− δr(A)) = (1 − δr(A))
∥

∥

∥X̂ + Ŷ
∥

∥

∥

2

F
≤

∥

∥

∥AX̂ +AŶ
∥

∥

∥

2

2

≤ (1 + δr(A))
∥

∥

∥X̂ + Ŷ
∥

∥

∥

2

F
= 2(1 + δr(A)).

and

2(1− δr(A)) = (1 − δr(A))
∥

∥

∥X̂ − Ŷ
∥

∥

∥

2

F
≤

∥

∥

∥AX̂ −AŶ
∥

∥

∥

2

2

≤ (1 + δr(A))
∥

∥

∥X̂ − Ŷ
∥

∥

∥

2

F
= 2(1 + δr(A)).

Therefore we have

〈AX̂,AŶ 〉 =

∥

∥

∥AX̂ +AŶ
∥

∥

∥

2

2
−
∥

∥

∥AX̂ −AŶ
∥

∥

∥

2

2

4
≤ δr(A)

and

−〈AX̂,AŶ 〉 =

∥

∥

∥AX̂ −AŶ
∥

∥

∥

2

2
−
∥

∥

∥AX̂ +AŶ
∥

∥

∥

2

2

4
≤ δr(A).

Thus, |〈AX̂,AŶ 〉| ≤ δr(A) and (A-1) holds.

Finally we have, for any X ∈ span(Ψ′),

‖PΨA∗A(I − PΨ)X‖F = max
‖Y ‖F=1

|〈PΨA∗A(I − PΨ)X,Y 〉|

= max
‖Y ‖F=1

|〈A(I − PΨ)X,APΨY 〉|

≤ δr(A) ‖(I − PΨ)X‖F ,

i.e., (2.4) holds, which completes the proof. �

Proof of Proposition 2.8. This proof essentially follows that given by Needell and Tropp in [36].

Proof. Let Bs := {X ∈ R
m×n : rank(X) = s, ‖X‖F ≤ 1} be the unit ball of rank-s matrices in R

m×n.

Define the convex hull of the unit norm matrices with rank at most r as:

S := conv







⋃

s≤r

Bs







⊂ R
m×n.
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By (2.5), we know that the operator norm

‖A‖S→2 = max
X∈S

‖AX‖2 ≤
√

1 + δr(A).

Define another convex set

K := {X ∈ R
m×n : ‖X‖F +

1√
r
‖X‖∗ ≤ 1} ⊂ R

m×n,

and consider the operator norm

‖A‖K→2 = max
X∈K

‖AX‖2.

The content of the proposition is the claim that K ⊂ S.

Choose a matrix X ∈ K with SVD X = UDiag(σ)V ⊤. Let I0 index the r largest components of σ,

breaking ties lexicographically. Let I1 index the next largest r components, and so forth. Note that the final

block IJ may have fewer than r components. We may assume that σ|Ij is nonzero for each j. This partition

induces a decomposition

X = U [Diag(σ|I0 ) +
J
∑

j=1

Diag(σ|Ij )]V ⊤ = λ0Y0 +
J
∑

j=1

λjYj ,

where λj = ‖UDiag(σ|Ij )V ⊤‖F and Yj = λ−1
j UDiag(σ|Ij )V ⊤. By construction, each matrix Yj belongs to S

because it’s rank is at most r and it has unit Frobenius norm. We will prove that
∑

j λj ≤ 1, which implies

that X can be expressed as a convex combination of matrices from the set S. So X ∈ S and K ⊂ S.

Fix j in the range {1, 2, . . . , J}. It follows that σ|Ij contains at most r elements and σ|Ij−1
contains

exactly r elements. Therefore,

λj = ‖σ|Ij‖2 ≤ √
r‖σ|Ij‖∞ ≤ √

r · 1
r
‖σ|Ij−1

‖1.

Summing these relations, we obtain,

J
∑

j=1

λj ≤
1√
r
‖σ|Ij−1

‖1 ≤ 1√
r
‖X‖∗.

It is obvious that λ0 = ‖σ|I0‖2 ≤ ‖X‖F . We now conclude that

J
∑

j=0

λj ≤ ‖X‖F +
1√
r
‖X‖∗ ≤ 1

because X ∈ K. This implies that X ∈ S and K ⊂ S, and thus completes the proof. �

REFERENCES

[1] Blumensath, T., and Davies, M. E. Gradient pursuits. IEEE Transactions on Signal Processing 56, 6 (2008), 2370–2382.

[2] Blumensath, T., and Davies, M. E. Iterative hard thresholding for compressed sensing. Applied and Computational

Harmonic Analysis 27, 3 (2009), 265–274.

[3] Borwein, J. M., and Lewis, A. S. Convex Analysis and Nonlinear Optimization. Springer-Verlag, 2003.

22



[4] Cai, J., Candès, E. J., and Shen, Z. A singular value thresholding algorithm for matrix completion. SIAM J. on

Optimization 20, 4 (2010), 1956–1982.

[5] Candès, E. J., and Plan, Y. Matrix completion with noise. Proceedings of the IEEE (2009).

[6] Candès, E. J., and Recht, B. Exact matrix completion via convex optimization. Foundations of Computational

Mathematics 9 (2009), 717–772.

[7] Candès, E. J., and Romberg, J. ℓ1-MAGIC: Recovery of sparse signals via convex programming. Tech. rep., Caltech,

2005.

[8] Candès, E. J., Romberg, J., and Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly

incomplete frequency information. IEEE Transactions on Information Theory 52 (2006), 489–509.

[9] Candès, E. J., and Tao, T. The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inform.

Theory 56, 5 (2009), 2053–2080.

[10] compressed sensing website, R. http://dsp.rice.edu/cs.

[11] Dai, W., and Milenkovic, O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. on Infor-

mation Theory 55, 5 (2009), 2230–2249.

[12] Donoho, D. Compressed sensing. IEEE Transactions on Information Theory 52 (2006), 1289–1306.

[13] Donoho, D., Tsaig, Y., Drori, I., and Starck, J.-C. Sparse solution of underdetermined linear equations by stagewise

orthogonal matching pursuit. Tech. rep., Stanford University, 2006.

[14] Donoho, D. L., and Tsaig, Y. Fast solution of ℓ1-norm minimization problems when the solution may be sparse. IEEE

Transactions on Information Theory 54, 11 (2008), 4789–4812.

[15] Drineas, P., Kannan, R., and Mahoney, M. W. Fast Monte Carlo algorithms for matrices ii: Computing low-rank

approximations to a matrix. SIAM J. Computing 36 (2006), 158–183.

[16] Fazel, M., Hindi, H., and Boyd, S. A rank minimization heuristic with application to minimum order system approxi-

mation. In Proceedings of the American Control Conference (2001), vol. 6, pp. 4734–4739.

[17] Fazel, M., Hindi, H., and Boyd, S. Log-det heuristic for matrix rank minimization with applications to Hankel and

Euclidean distance matrices. In Proceedings of the American Control Conference (2003), pp. 2156–2162.

[18] Fazel, M., Hindi, H., and Boyd, S. Rank minimization and applications in system theory. In American Control

Conference (2004), pp. 3273–3278.

[19] Figueiredo, M. A. T., Nowak, R. D., and Wright, S. J. Gradient projection for sparse reconstruction: Application to

compressed sensing and other inverse problems. IEEE Journal on Selected Topics in Signal Processing 1, 4 (2007).

[20] Ghaoui, L. E., and Gahinet, P. Rank minimization under LMI constraints: A framework for output feedback problems.

In Proceedings of the European Control Conference (1993).

[21] Hale, E. T., Yin, W., and Zhang, Y. Fixed-point continuation for ℓ1-minimization: Methodology and convergence.

SIAM Journal on Optimization 19, 3 (2008), 1107–1130.
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