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Quantifying Transversality
by Measuring the Robustness of Intersections∗

Herbert Edelsbrunner†, Dmitriy Morozov‡, and Amit Patel§

Abstract
By definition, transverse intersections are stable under
infinitesimal perturbations. Using persistent homology,
we extend this notion to a measure. Given a space of
perturbations, we assign to each homology class of the
intersection its robustness, the magnitude of a perturba-
tion in this space necessary to kill it, and prove that ro-
bustness is stable. Among the applications of this result
is a stable notion of robustness for fixed points of contin-
uous mappings and a statement of stability for contours
of smooth mappings.

Keywords. Smooth mappings, transversality, fixed points,
contours, homology, filtrations, zigzag modules, persistence,
perturbations, stability.

1 Introduction
The main new concept in this paper is a quantification of
the classically differential notion of transversality. This
is achieved by extending persistence from filtrations of
homology groups to zigzag modules of well groups.

Motivation. In hind-sight, we place the starting point
for the work described in this paper at the difference be-
tween qualitative and quantitative statements and their
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relevance in the sciences; see eg. the discussion in
Thom’s book [13, Chapters 1.3 and 13.8]. It appears
the conscious mind thinks in qualitative terms, delegat-
ing the quantitative details to the unconscious, if pos-
sible. In the sciences, quantitative statements are a re-
quirement for testing a hypothesis. Without such a test,
the hypothesis is not falsifiable and, by popular philo-
sophical interpretation, not scientific [11]. The particu-
lar field discussed in [13] is the mathematical study of
singularities of smooth mappings, which is dominated
by qualitative statements. We refer to the seminal pa-
pers by Whitney [15, 16] and the book by Arnold [1]
for introductions. A unifying concept in this field is the
transversality of an intersection between two spaces. Its
origins go far back in history and appear among others
in the work of Poincaré about a century ago. It took a
good development toward its present form under Pon-
tryagin, Whitney, and Thom; see eg. [12]. In his review
of Zeeman’s book [17], Smale criticizes the unscientific
aspects of the work promoted in the then popular area of
catastrophe theory, thus significantly contributing to the
discussion of qualitative versus quantitative statements
and to the fate of that field. At the same time, Smale
points to positive aspects and stresses the importance of
the concept of transversality in the study of singularities.
In a nutshell, an intersection is transverse if it forms a
non-zero angle and is therefore stable under infinitesi-
mal perturbations; see Section 2 for a formal definition.

Results. We view our work as a measure theoretic
extension of the essentially differential concept of
transversality. We extend by relaxing the requirements
on the perturbations from smooth mappings between
manifolds to continuous mappings between topologi-
cal spaces. At the same time, we are more tolerant to
changes in the intersection. To rationalize this tolerance,
we measure intersections using real numbers as opposed
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to 0 and1 to indicate existence. The measurements are
made using the concept of persistent homology; see [5]
for the original paper. However, we have need for mod-
ifications and use the extension of persistence from fil-
trations to zigzag modules as proposed in [2]. An im-
portant property of persistence, as originally defined for
filtrations, is the stability of its diagrams; see [3] for the
original proof. There is no comparably general result
known for zigzag modules. Our main result is a step in
this direction. Specifically, we view the following as the
main contributions of this paper:

1. the introduction of well groups that capture the tol-
erance of intersections to perturbations in a given
space of allowable perturbations;

2. the proof that the diagram defined by the well
groups is stable;

3. the application of these results to fixed points and
periodic orbits of continuous mappings.

In addition, our results have ramifications in the study
of the set of critical values, the apparent contour of a
smooth mapping. Specifically, the stability of the dia-
grams mentioned above results in a stability result for
the apparent contour of a smooth mapping from an ori-
entable2-manifold to the plane [6]. The need for these
stable diagrams was indeed what triggered the develop-
ment described in this paper.

Outline. Section 2 provides the relevant background.
Section 3 explains how we measure robustness using
well groups and zigzag modules. Section 4 proves our
main result, the stability of the diagrams defined by the
modules. Section 5 discusses applications. Section 6
concludes the paper.

2 Background
We need the algebraic concept of persistent homology
to extend the differential notion of transversality as ex-
plained in the introduction. In this section, we give a
formal definition of transversality, referring to [9] for
general background in differential topology. We also in-
troduce homology and persistent homology, referring to
[10] for general background in classic algebraic topol-
ogy and to [4] for a text in computational topology.

Transversality. Let X,Y be manifolds,f : X → Y a
smooth mapping, andA ⊆ Y a smoothly embedded sub-
manifold of the range. We assume the manifolds have
finite dimension and no boundary, writingm = dimX,

n = dimY, andk = dimA. Given a pointx ∈ X

and a smooth curveγ : R → X with γ(0) = x, we
call γ̇(0) thetangent vectorof γ atx. Varying the curve
while maintaining that it passes throughx, we get a set
of tangent vectors called thetangent spaceof X atx, de-
noted asTxX. Composing the curves with the mapping,
f ◦ γ : R → Y, we get a subset of all smooth curves
passing throughy = f(x) = f ◦ γ(0). Thederivative
of f at x is Df(x) : TxX → TyY defined by map-
ping the tangent vector ofγ atx to the tangent vector of
f ◦ γ at y. The derivative is a linear map and its image
is a subspace ofTyY. The dimensions of the tangent
spaces arem = dimTxX andn = dimTyY, which
implies that the dimension of the image of the derivative
is dimDf(x)(TxX) ≤ min{m,n}.

We are interested in properties off that are stable un-
der perturbations. We call a propertyinfinitesimally sta-
ble if for every smooth homotopy,F : X × [0, 1] → Y

with f0 = f , there is a real numberδ > 0 such that
ft possesses the same property for allt < δ, where
ft(x) = F (x, t) for all x ∈ X. An important exam-
ple of such a property is the following. The mappingf
is transverseto A, denoted asf ⊤∩ A, if for eachx ∈ X

with f(x) ∈ A, the image of the derivative off at x
together with the tangent space ofA ata = f(x) spans
the tangent space ofY at a. More formally,f ⊤∩ A if
Df(x)(TxX)+TaA = TaY. It is plausible but also true
that transversality is an infinitesimally stable property.

Product spaces. It is convenient to recast transversal-
ity in terms of intersections of subspaces ofX × Y, a
manifold of dimensionm+n. Consider the graphs off
and of its restriction to the preimage ofA,

gph f = {(x, y) ∈ X× Y | y = f(x)};

gph f |A = {(x, a) ∈ X× A | a = f(x)}.

The intersection of interest is betweengph f andX×A,
two manifolds of dimensionsm andm + k embedded
in X×Y. This intersection is the graph off |A, which is
homeomorphic to the preimage ofA. See Figure 1 for
an example in whichm = n = 1 andk = 0. Here,
TaA = 0 and transversality requires that whenever the
curve,gph f , intersects the line,X × A, it crosses at
a non-zero angle. This is the case in Figure 1 which
implies that having a cardinality four preimage ofa is
an infinitesimally stable property off . Nevertheless, the
left two intersection points are clearly more stable than
the right two intersection points, but we will need some
algebra to give precise meaning to this statement.
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X× aA = {a}

gph f

X

Y

Figure 1: The preimage ofa, consisting of four points on the
horizontal axis representingX, is homeomorphic to the inter-
section of the curve with the horizontal line passing through
the pointa ∈ Y.

Homology. The algebraic language of homology is a
means to define and count holes in a topological space.
It is a functor that maps a space to an abelian group and
a continuous map between spaces to a homomorphism
between the corresponding groups. There is such a func-
tor for each dimension,p. It is convenient to combine
the homology groups of all dimensions into a single al-
gebraic structure. WritingHp(X) for thep-dimensional
homology group of the topological spaceX, we form a
graded group by taking direct sums,

H(X) =
⊕

p≥0

Hp(X).

To simplify language and notation, we will suppress di-
mensions and refer toH(X) as thehomology groupof
X. Its elements are formally written as polynomials,
α0 + α1t + α2t

2 + . . ., whereαp is a p-dimensional
homology class and only finitely many of the classes
are non-zero. As usual, adding two polynomials is done
componentwise. The groupsHp(X) depend on a choice
of coefficient group. The theory of persistence intro-
duced below requires we use field coefficients. An ex-
ample is modulo two arithmetic in which the field is
Z2 = {0, 1}. Thep-dimensional group is then a vec-
tor space,Hp(X) ≃ Z

βp

2 , and its rank, the dimension
of the vector space, is thep-th Betti number, βp =
βp(X). Similarly, H(X) is a vector space of dimen-
sion

∑

p≥0
βp. We sayX andY have the same homol-

ogy if there is an isomorphism betweenH(X) andH(Y)
whose restrictions to the components are isomorphisms.
Equivalently,βp(X) = βp(Y) for all non-negative inte-
gersp.

Persistent homology. Now suppose we have a finite
sequence of nested spaces,X1 ⊆ X2 ⊆ . . . ⊆ Xℓ.
Writing Φi = H(Xi) for the homology group of thei-

th space, we get a sequence of vector spaces connected
from left to right by homomorphisms induced by inclu-
sion:

Φ : Φ1 → Φ2 → . . .→ Φℓ.

We call this sequence afiltration. To study the evolu-
tion of the homology classes as we progress from left to
right in the filtration, we letϕi,j be the composition of
the maps betweenΦi andΦj , for i ≤ j. We say a class
α ∈ Φi is born atΦi if it does not belong to the image
of ϕi−1,i. Furthermore, this classα dies enteringΦj if
ϕi,j−1(α) does not belong to the image ofϕi−1,j−1 but
ϕi,j(α) does belong to the image ofϕi−1,j . We call the
images of the mapsϕi,j thepersistent homology groups
of the filtration and record the evolution of the homol-
ogy classes in thepersistence diagramof the filtration,
denoted asDgm(Φ). This is a multiset of points in the
extended plane,̄R2 = (R ∪ {−∞,∞})2. Marking an
increase in rank on the horizontal, birth axis and a drop
in rank on the vertical, death axis, each point represents
the birth and the death of a generator and records where
these events happen; see Figure 2. For technical rea-

birth

de
at

h

(i, i)

Figure 2: The three off-diagonal points represent the births and
deaths of three generators. The number of points in the shaded
upper-left quadrant equals the rank of the corresponding ho-
mology group.

sons that will become clear shortly, we add infinitely
many copies of each point on the diagonal to the dia-
gram. Given an index,i, we can read off the rank of
H(Xi) by counting the points in the half-open upper-left
quadrant,[−∞, i] × (i,∞], anchored at the point(i, i)
on the diagonal. More generally, the rank of the im-
age ofϕi,j equals the number of points in the upper-left
quadrant anchored at(i, j).

Stability. Consider now the case in which the spaces
in the sequence are sublevel sets of a real valued func-
tion ϕ : X → R, that is, there are valuesri such that
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Xi = ϕ−1(∞, ri] for eachi. A homological critical
valueof ϕ is a valuer such that for every sufficiently
smallδ > 0, the homomorphism fromH(ϕ−1(−∞, r−
δ]) to H(ϕ−1(−∞, r + δ]) induced by inclusion is not
an isomorphism. We supposeϕ is tameby which we
mean that each sublevel set has finite rank homology and
there are only finitely many homological critical values,
denoted asr1 < r2 < . . . < rℓ. We can represent
the evolution of the homology classes by the finite fil-
tration consisting of the groupsΦi = H(ϕ−1(−∞, ri]),
for 1 ≤ i ≤ ℓ, and by the persistence diagram of that
filtration, D = Dgm(Φ). Lettingψ : X → R be an-
other tame function, we get another filtraton,Ψ, and an-
other persistence diagram,E = Dgm(Ψ). Thebottle-
neck distancebetween the two is the infimum, over all
bijections,µ : D → E, of the longest length edge in the
matching,

W∞(D,E) = inf
µ

sup
a∈D

‖a− µ(a)‖∞.

An important result is the stability of the persistence di-
agram under perturbations of the function.

STABILITY THEOREM FORTAME FUNCTIONS [3].
Let ϕ andψ be tame, real-valued functions onX. Then
the bottleneck distance between their persistence
diagrams is bounded from above by‖ϕ− ψ‖∞.

Here,‖ϕ− ψ‖∞ = supx∈X
|ϕ(x) − ψ(x)|, as usual.

The original form of this result is slightly stronger as
it restricts itself to dimension preserving bijections. The
theorem implies that the bottleneck distance between the
diagrams defined byϕ andψ goes to zero as the differ-
ence between the two functions approaches zero.

3 Measuring Robustness

The main new concept in this section is the well group
defined by a mappingf : X → Y, a subspaceA ⊆ Y,
and a parameterr. It encodes the persistent homology
of the preimage of the subspace.

Admissible mappings. In this paper, we limit the
class of mappings to those with manageable properties.
While our goal is a statement of our results in a context
that is sufficiently broad to support interesting applica-
tions, we are aware of the technical burden that comes
with generality. We hope that the following class of
mappings gives a happy median between the conflicting
goals of generality and transparency.

DEFINITION. LetX andY be topological spaces and
A a subspace ofY. A continuous mappingf : X→ Y is
admissibleif f−1(A) has a finite rank homology group.

Requiring that the preimage ofA has finite rank homol-
ogy is strictly weaker than demanding tameness of the
well function defined next.

Perturbations and well groups. We are interested in
how we explore the neighborhood off−1(A) as we
perturbf . For this purpose, we introduce a subspace
P = P(f) of C(X,Y), the space of continuous map-
pings fromX to Y. For example,P may be the space
of continuous mappingsh homotopic tof ; that is, there
exists a continuous mappingH : X × [0, 1] → Y with
H(x, 0) = f(x) andH(x, 1) = h(x) for all x ∈ X.
We assume a metric onP , writing ‖f − h‖P for the
distance between two mappingsf, h ∈ P . For exam-
ple, we could construct one by assuming a metric on
Y, lifting it to define the distance between mappings in
C(X,Y), and taking‖f − h‖P to be the infimum length
of all curves of mappings that connectf andh within P .
We callh anr-perturbationof f if ‖f − h‖P ≤ r.

We use these definitions to introduce thewell function
fA → R of f andA by settingfA(x) to the infimum
value ofr for which there is anr-perturbationh ∈ P
such thath(x) ∈ A. The level setof fA at a valuer is
the preimage of that value:f−1

A
(r). Thesublevel setfor

the same valuer is the union of the level sets at values
at mostr: Xr = f−1

A
[0, r]. Note thath−1

A
(0) = h−1(A)

is contained inXr for everyr-perturbationh ∈ P . This
inclusion induces a homomorphism between the corre-
sponding homology groups:

jh : H(h−1

A
(0))→ F(r),

where we simplify notation by writingF(r) for
H(f−1

A
[0, r]). The image of this map, denoted byim jh,

is a subgroup ofF(r). The intersection of subgroups is
again a subgroup.

DEFINITION. Given a metric space of perturbations,
P = P(f), thewell groupof Xr is the subgroupU(r) ⊆
F(r) obtained by intersecting the images,im jh, over all
r-perturbationsh of f in P .

A different space of perturbations gives different well
groups and therefore a different interpretation of their
meaning.

Example. To illustrate the definitions, let us consider
again the example in Figure 1 of the mapping from the
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real line to itself. The preimage ofA = {a} is a set of
four points separated by three critical points off . From
left to right, the values off at these critical points are
a+ r1, a− r2, a+ r3. Correspondingly, the well func-
tion, fa : R→ R, has three homological critical values,
namelyr1 > r2 > r3. SettingP = P(f) to the set
of all continuous mappingsh : R → R and measur-
ing distance by‖f − h‖P = supx |f(x) − h(x)|, we
have a well groupU(r) for each radiusr ≥ 0. Table
1 shows the ranks ofF(r) andU(r) for values ofr in
the interior of the four intervals delimited by the homo-
logical critical values. Starting withr = 0, we have

(0, r3) (r3, r2) (r2, r1) (r1,∞)

F(r) 4 3 2 1
U(r) 4 2 2 0

Table 1: The ranks of the homology and well groups defined
for the mappingf and the submanifoldA = {a} in Figure 1.

four points, each forming a component represented by
a class in the homology group and in the well group of
the sublevel set offa. Therefore, both groups are the
same and have rank four, see the first column in Table
1. Growingr turns the points into intervals but leaves
the groups the same untilr passesr3, the smallest of the
three homological critical values. The two right inter-
vals merge into one, so the rank of the homology group
drops to three. We can find anr-perturbation,r > r3,
whose level set ata consists of the left two points of
f−1(a) but the right two points have disappeared. In-
deed, the level set of everyr-perturbation, forr > r3,
has a non-empty intersection with the first two but can
have empty intersection with the merged interval on the
right. Hence, the left two intervals have a representation
in the well group, the merged interval does not, and the
rank of the well group is two; see the second column
in Table 1. The next change happens whenr passesr2.
The middle interval merges with the merged interval on
the right. The rank of the homology group drops to two,
while the rank of the well group remains unchanged at
two; see the third column in Table 1. Finally, whenr
passesr1, the remaining two intervals merge into one,
so the rank of the homology group drops to one. We can
find anr-perturbation,r > r1, whose level set ata is
empty, so the rank of the well group drops to zero; see
the last column in Table 1.

Terminal critical values. Recall that we assume the
mappingf : X → Y is admissible. The initial homol-
ogy group,F(0) = H(f−1

A
(0)), has therefore finite rank,

and becauseU(0) ⊆ F(0), the initial well group has fi-
nite rank. For convenience, we permit negative parame-
ter values by stipulatingF(r) = F(0) andU(r) = U(0)
wheneverr ≤ 0. Imagine we grow the sublevel set
by gradually increasingr to infinity. Since the admis-
sibility of f does not imply the tameness of the well
function, this leaves open the possibility thatfA has in-
finitely many homological critical values. We call a ra-
dius,r, a terminal critical valueof fA if for every suffi-
ciently smallδ > 0 the homomorphism fromF(r − δ)
to F(r + δ) applied toU(r − δ) does not giveU(r + δ).
In contrast to the homological critical values, there can
only be a finite number of terminal critical values. To
see this, we note that the set of perturbations that define
the well groups grows with increasingr. It follows that
the well groups can not increase in rank. To state this re-
lationship between well groups more formally, we write
f(r, s) : F(r) → F(s) for the homomorphism induced
by inclusion.

SHRINKING WELLNESSLEMMA . For each choice
of radii r ≤ s, the image of the well group atr con-
tains the well group ats, that is,U(s) ⊆ f(r, s)(U(r)).

The only way the well group can change is by lowering
its rank. Since we start with a finite rank, there can only
be finitely many terminal critical values, which we de-
note asu1 < u2 < . . . < ul. To this sequence, we add
u0 = −∞ on the left andul+1 = ∞ on the right. We
choose an interleaved sequence

u0 < r0 < u1 < . . . < ul < rl < ul+1

and index the homology and the well groups accord-
ingly, writing Fi = F(ri) andUi = U(ri), for all i.
To these sequences, we addF−1 = U−1 = 0 on the left
andFl+1 = Ul+1 = 0 on the right. Furthermore, we
write fi,j : Fi → Fj instead off(ri, rj) for all feasible
choices ofi ≤ j.

Well module. In contrast to the homology groups, the
well groups of the sublevel sets do not form a filtra-
tion. Instead, they form a special kind of zigzag mod-
ule. By definition of terminal critical values, the rank
of Ui exceeds the rank ofUi+1. The rank of the im-
age,fi,i+1(Ui), is somewhere between these two ranks.
We call a difference betweenUi and its image aconven-
tional death, in which a class maps to zero, and a dif-
ference between the image andUi+1 anunconventional
death, in which the image of a class lies outside the next
well group. We capture both cases by inserting a new
group between the contiguous well groups; see Figure
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Ui

biai

Qi

α

β

Ui+1

Fi+1Fi

Figure 3: Connecting two consecutive well groups to the quo-
tient group introduced between them. The classα dies a con-
ventional death and the classβ dies an unconventional death.

3. To this end, we consider the restriction offi,i+1 to
Ui and in particular its kernel,Ki = Ui ∩ ker fi,i+1,
which we refer to as thevanishing subgroupof Ui. Us-
ing this subgroup, we constructQi = Ui/Ki. The for-
ward map,ai : Ui → Qi, is defined by mapping a class
ξ to ξ + Ki. It is clearly surjective. The backward map,
bi : Ui+1 → Qi, is defined by mapping a classη to
ξ+Ki, whereξ belongs tof−1

i,i+1
(η). This map is clearly

injective. Instead of a filtration in which all maps go
from left to right, we get a sequence in which the maps
alternate between going forward and backward. As in-
dicated below, every other group in the sequence is a
subgroup of the corresponding homology group:

Qi−1

bi−1

← Ui
ai→ Qi

bi← Ui+1

ai+1

→ Qi+1

↓ ↓
→ Fi → Fi+1 → .

We call this sequence thewell moduleof fA, denoted
asU. We remark thatU is a special case of a zigzag
module as introduced in [2]. It is special because all
forward maps are surjective and all backward maps are
injective. Equivalently, there are no births other than at
the start, when we go fromU−1 toU0.

Left filtration. Perhaps surprisingly, the evolution of
the homology classes can still be fully described by
pairing births with deaths, just like for a filtration. To
shed light on this construction, we follow [2] and turn
a zigzag module into a filtration. In our case, all births
happen atU0, so this transformation is easier than for
general zigzag modules. Writeu0,i : U0 → Fi for
the restriction off0,i to the initial well group. By the
Shrinking Wellness Lemma, the image of this map con-
tains thei-th well group, that is,Ui ⊆ u0,i(U0). We
consider the preimages of the well groups inU0 to-
gether with the preimages of their vanishing subgroups,
Ai = u−1

0,i (Ki) andBi = u−1

0,i (Ui); see Figure 4. We note

thatAi/Ai−1 ≃ ker ai andBi/Bi+1 ≃ cok bi. In words,
the first quotient represents the homology classes that
die a conventional death, going fromUi toUi+1, and the
second quotient represents the homology classes that die
an unconventional death in the same transition. As illus-
trated in Figure 4, the preimages form a nested sequence

Ai

Fi+1FiU0

UiBi+1

Ai+1

Bi

Ui+1

Figure 4: The left filtration decomposesU0 into the preim-
ages of the well groups and the preimages of their vanishing
subgroups.

of subgroups ofU0. Together with the inclusion maps,
this gives theleft filtration of the zigzag module,

0→ A0 → . . .→ Al = Bl → . . .→ B0 = U0.

We can recover the well groups withUi ≃ Bi/Ai−1.
Recall thatUl+1 = 0, which impliesKl = Ul. It follows
that the middle two groups in the left filtration,Al and
Bl, are indeed equal.

Compatible bases. A useful property of the left filtra-
tion is the existence of compatible bases of all its groups.
By this we mean a basis ofU0 that contains a basis for
eachAi and eachBi. Specifically, we rewriteU0 as a
direct sum of kernels of forward maps and cokernels of
backward maps:

U0 ≃ ker a0 ⊕ · · · ⊕ ker al ⊕

cok bl−1 ⊕ · · · ⊕ cok b0.

Reading this decomposition from left to right, we en-
counter theAi and theBi in the sequence they occur
in the left filtration. Choosing a basis for each kernel
and each cokernel, we thus get compatible bases for all
groups in the left filtration. We call this theleft filtration
basisof U0. It is unique up to choosing bases for the
kernels and cokernels.

Consider now a homology classα in U0 and its rep-
resentation as a sum of basis vectors. We writeα(ai)
for the projection ofα to the preimage of the kernel of
thei-th forward map, which is obtained by removing all
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vectors that do not belong to the basis ofker ai. Simi-
larly, we writeα(bi) for the projection ofα to the preim-
age ofcok bi. Lettingj be the minimum index such that
α(ai) = α(bi) = 0 for all i ≥ j, we say thatα falls ill
atUj .

Well diagrams. Constructing the birth-death pairs
that describe the well module is now easy. All classes
are born atU0, however, to distinguish the changes in
the well group from those in the homology group, we
say all the classesget wellatU0. They fall ill later, and
once they fall ill, they do not get well any more. The
drop in rank fromUi−1 to Ui is µi = rank(ker ai−1) +
rank(cok bi−1). We thus haveµi copies of the point
(0, ui) is the diagram. There is no information in the
first coordinates, which are all zero. We thus define the
well diagramas the multiset of pointsui with multiplic-
ities µi, denoting it asDgm(U). For technical reasons
that will become obvious in the next section, we add in-
finitely many copies of0 to this diagram. Hence, each
point inDgm(U) is either0, a positive real number, or
∞, and the diagram itself is a multiset of points on the
extended line,̄R = R ∪ {±∞}. It has infinitely many
points at0 and a finite number of non-zero points.

As suggested by the heading of this section, we think
of each point in the diagram as a measure for how re-
silient a homology class off−1(A) is against perturba-
tions inP . At each well groupUi, an entire set of ho-
mology classes falls ill, and we callui therobustnessof
each classα in this set, denoting it as̺(α) = ui.

4 Proving Stability

We are interested in relating the distance between map-
pings to the distance between their well diagrams, both
defined using a common perturbation spaceP . After
quantifying these distances, we connect parallel well
modules to form new modules, and we finally prove that
the well diagram is stable.

Distance between functions. Let f, g : X → Y be
two admissible mappings between topological spaces,
A ⊆ Y a subspace, andP a metric space of perturba-
tions that contains bothf andg. UsingA, we get the
two well functions: fA, gA : X → R. The distance
between them is the supremum difference between cor-
responding values:

‖fA − gA‖∞ = sup
x∈X

| fA(x) − gA(x) | .

The distance between the two well functions is related
to the distance,‖f − g‖P , between the two mappings
f and g in P . Specifically, the distance between the
well functions cannot exceed the distance between the
mappings.

DISTANCE LEMMA . Assuming the above notation,
we have‖fA − gA‖∞ ≤ ‖f − g‖P .

PROOF. Fix a pointx ∈ X and letr = fA(x). By
construction offA, there exists anr-perturbationh of
f in P with x ∈ h−1(A). By the triangle inequal-
ity, ‖g − h‖P ≤ ‖f − g‖P + r. Hence,gA(x) ≤
r + ‖f − g‖P . Thus,| fA(x) − gA(x) |≤ ‖f − g‖P .

Distance between diagrams. Let G(r) be the homol-
ogy group andV(r) ⊆ G(r) the well group ofg−1

A
[0, r].

As for f , we insert quotients between contiguous well
groups and connect them with forward and backward
maps to form a well module, denoted asV. The corre-
sponding well diagram,Dgm(V), is again a multiset of
points inR̄, consisting of infinitely many copies of0 and
finitely many non-zero points. Recall that the bottleneck
distance between the diagrams off andg is the length
of the longest edge in the minimizing matching. Be-
cause our diagrams are one-dimensional, the bottleneck
distance is easy to compute. To describe the algorithm,
we order the positive points in both diagrams, getting

0 ≤ u1 ≤ u2 ≤ . . . ≤ uM ;
0 ≤ v1 ≤ v2 ≤ . . . ≤ vM ,

where we add zeros to make sure we have two sequences
of the same length. Theinversion-free matchingpairsui
with vi for all i. We prove that this matching gives the
bottleneck distance.

MATCHING LEMMA . Assuming the above notation,
the bottleneck distance betweenDgm(U) andDgm(V)
is equal tomax1≤i≤M |ui − vi|.

PROOF. For a given matching, we consider the vec-
tor of absolute differences, which we sort largest first.
Comparing two such vectors lexicographically, we now
prove that the inversion-free matching gives the mini-
mum vector. This implies the claimed equality,

W∞(Dgm(U),Dgm(V)) = max
1≤i≤M

|ui − vi|,

To prove minimality, we consider a matching that has
at least one inversion, that is, pairs(ui, vt) and(uj , vs)
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with i < j ands < t. If ui = uj or vs = vt then switch-
ing to the pairs(ui, vs) and(uj, vt) preserves the sorted
vector of absolute differences. Otherwise, the new vec-
tor is lexicographically smaller than the old vector. In-
deed, the minimum of the four points isui or vs and the
maximum isuj or vt. If the minimum and the maximum
are from opposite diagrams then they delimit the largest
of the four absolute differences, and this largest differ-
ence belongs to the old vector. Otherwise, both absolute
differences shrink when we switch the pairs. Repeatedly
removing inversions as described eventually leads to the
inversion-free matching, which shows that it minimizes
the vector and its largest entry is the bottleneck distance.

Bridges. The main tool in the proof of stability is
the concept of a short bridge between parallel filtra-
tions. The length of these bridges relates to the dis-
tance between the functions defining the filtrations. Let
ε = ‖f − g‖P . By the Distance Lemma, we have
‖fA − gA‖∞ ≤ ε, which implies that the sublevel set
of gA for radiusr is contained in the sublevel set of
fA for radiusr + ε. Hence, there is a homomorphism
Br : G(r)→ F(r + ε), which we call thebridgefromG

to F at radiusr. We use the bridge to connect the initial
segment ofG to the terminal segment ofF. The end-
points of the bridge satisfy the property expressed in the
Shrinking Wellness Lemma.

BRIDGE LEMMA . LetBr : G(r) → F(r + ε) be the
bridge atr, whereε = ‖f − g‖P andf, g ∈ P . Then
U(r + ε) ⊆ Br(V(r)).

PROOF. Let α be a homology group inU(r + ε). By
definition of the well group,α belongs to the image of
H(h−1(A)) in F(r + ε) for every(r + ε)-perturbation
h of f in P . This includes allr-perturbations ofg. It
follows that the preimage ofα in G(r) belongs to the
well group, that is,B−1

r (α) ∈ V(r).

Everything we said about bridges is of course sym-
metric in F and G. In other words,f−1

A
[0, r] ⊆

g−1

A
[0, r+ ε] and there is a bridge fromF(r) toG(r+ ε)

for everyr ≥ 0.

New modules. We use the Bridge Lemma to construct
new zigzag modules from the well modules off andg.
Specifically, we useBr to connect the initial segment
of V, from V(0) to V(r), to the terminal segment ofU,
from U(r + ε) to U(∞). To complete the module, we
insertQ(r) = V(r)/(V(r) ∩ kerBr) betweenV(r) and

U(r + ε). The forward map, fromV(r) to Q(r), is sur-
jective, and the backward map, fromU(r+ ε) toQ(r) is
injective; see Figure 5. The new zigzag module is thus
of the same type as the well modules implying it has a
left filtration basis that gives rise to a family of compat-
ible bases for the groups in the left filtration.

V(0)

G(r)

V(r)

Q(r)

F(r + ε)

(r + ε)
U

U(∞)

Figure 5: The zigzag module obtained by connecting an initial
segment ofV to a terminal segment ofU.

A particular construction starts with the filtrations
F(0) → . . . → F(∞) andG(0) → . . . → G(∞) and
addsB0 : G(0)→ F(ε). Following the bridge fromG to
F at0, we get a new filtration and a new zigzag module,
denoting the latter asW; see Figure 6. The decomposi-
tion of W(0) = V(0) by the left filtration ofW is simi-
lar to the decomposition ofU(0) by the left filtration of
U; see Figure 4. Lettingi be the index such thatui ≤
ε < ui+1, we haveU(ε) = Ui. The classes inAi−1

and inU0/Bi die before we reachF(ε). The remaining
classes formU(ε) ≃ Bi/Ai−1. Correspondingly, there
are homology classes inW(0) that die before we reach
F(ε), namely the ones in the kernel of the forward map,
fromW(0) toQ(0), and in the preimage of the cokernel
of the backward map, fromU(ε) to Q(0). The remain-
ing classes formW(ε) ≃ B−1

0 (U(ε))/(W(0) ∩ kerB0).
The two quotient groups,U(ε) andW(ε), are decom-
posed in parallel so that choosing a basis forU(ε) gives
one forW(ε). This will be useful shortly.

Main result. We are now ready to state and prove the
stability of the well diagram.

STABILITY THEOREM FORWELL DIAGRAMS. Let
f and g be admissible mappings between topological
spacesX andY, let A be a subspace ofY, and letP
a metric space of perturbations containing bothf and
g. ThenW∞(Dgm(U),Dgm(V)) ≤ ‖f − g‖P for the
well modulesU andV of f andg.

PROOF. We construct a bijection fromDgm(U) to
Dgm(V) such that the difference between matched
points is at mostε = ‖f − g‖P . Specifically, we match
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each pointu ≤ ε in Dgm(U) with a copy of 0 in
Dgm(V), and we use the parallel bases ofU(ε) and
W(ε) for the rest, whereW is the zigzag module ob-
tained by adding the bridge fromG to F at radius0, as
described above.

Let α belong to the left filtration basis ofU(0) such
that its image belongs to the basis ofU(ε). Let r be the
value at whichα falls ill and note thatr > ε. Let β
belong to the left filtration basis ofV(0) = W(0) such
that the images ofα andβ in W(ε) = U(ε) coincide.
We now construct yet another zigzag module, by adding
a first bridge fromG(r−ε− δ) toF(r− δ) and a second
bridge fromF(r+ δ) back toG(r+ ε+ δ), whereδ > 0
is sufficiently small such that there is no death in the
interval [r − δ, r + δ], except possibly atr. We denote
the resulting module byX; see Figure 6. We note that
all maps between groups are induced by inclusions so
that the diagram formed by the filtrations and the bridges
between them commutes.

W
X

0 r ∞

ε ε δ δ ε

G,V

F,U

Figure 6: The four curves represent four filtrations as well as
four the zigzag modules. The middle two are constructed from
the outer two by adding bridges connecting the dots.

By construction, the image ofβ in F(r − δ) is non-
zero and belongs toU(r − δ). In contrast, the image
of β in F(r + δ) is either zero or lies outsideU(r + δ).
Applying the Bridge Lemma going backward along the
first bridge, we note that the image ofβ ∈W(0) = X(0)
in G(r− ε− δ) is non-zero and belongs toV(r− ε− δ).
Applying the Bridge Lemma going forward along the
second bridge, we note that the image ofβ in G(r+ε+δ)
is either zero or lies outsideV(r + ε+ δ). Since we can
chooseδ > 0 as small as we like, this implies thatβ
falls ill somewhere in the interval[r − ε, r + ε]. In the
matching, this radius is paired withr, the radius at which
α falls ill in U. The absolute difference between the two
radii is at mostε, as required.

5 Applications
In this section, we use the stability of the transversality
measure to derive stability results for fixed points, peri-
odic orbits, and apparent contours. All three problems
can be recast in terms of intersections between topolog-
ical spaces and are therefore amenable to the tools de-
veloped in this paper.

Fixed points. A fixed pointof a continuous mapping
from a topological space to itself is a point that is its
own image. Assuming this space is them-dimensional
Euclidean space andb is the mapping, we introduce a
mappingf : Rm → R

m defined byf(x) = x− b(x). A
fixed point ofb is a root off , that is,f(x) = 0. Writing
X = Y = R

m andA = {0}, the origin ofRm, we get
the setting studied in this paper. Each fixed pointx of
b corresponds to a class in the0-dimensional homology
group off−1(0). Using the methods of this paper, we
assign a non-negative robustness measure,̺(x), to x.
It gives the magnitude of the perturbation necessary to
remove this fixed point. This does not mean that a per-
turbation of smaller magnitude has a fixed point at pre-
cisely the same location but rather that it has one or more
fixed points in lieu ofx. Letting̺(x) be the maximum
robustness of all the fixed points off , every perturbation
of magnitude less than̺(x) has at least one fixed point.
This implication suffices to give a new proof of a classic
topological result on fixed points; see [10]. LetB

m be
the closed unit ball inRm.

BROUWER’ S FIXED POINT THEOREM. Every con-
tinuous mappingb : Bm → B

m has a fixed point.

PROOF. Extendb to a mapping fromRm toR
m by defin-

ing b(x) equal to its value atx/‖x‖2 wheneverx 6∈ B
m.

Let f : Rm → R
m be defined byf(x) = x − b(x) and

let g : Rm → R
m be the identity, defined byg(x) = x.

We may assume thatf is admissible, else the homology
group off−1(0) has infinite rank andf has infinitely
many roots. The other mapping,g, is clearly admissible,
with a single root atx = 0. LettingP be the space of all
continuous mappings fromRm to R

m, and measuring
the distance betweenf andg by taking the supremum
of the Euclidean distance between corresponding image
points, we get

‖f − g‖P = sup
x∈Rm

‖f(x)− g(x)‖
2

= sup
x∈Rm

‖b(x)‖2,

which is at most1. The well diagram of the identity
consists of a single, non-zero point at plus infinity. The
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Stability Theorem for Well Diagrams implies that the
well diagram off also has a point at plus infinity. But
this implies thatf has a root and, equivalently, thatb has
a fixed point.

The above reduction of fixed points to an intersection
setting uses the difference between two points, an oper-
ation not available if the mappingb : M→M is defined
on a general metric space. In this case, we can use the
correspondence between the fixed points ofb and the
intersection points between the graph ofb and the diag-
onal inM ×M. To apply the results of this paper, we
setX = M, Y = M×M, andA = {(x′, x′) | x′ ∈M}.
Furthermore, we define the distance between two points
x = (x′, x′′) andy = (y′, y′′) in M×M equal to

‖x− y‖
Y

=

{

∞ if x′ 6= y′;
‖x′′ − y′′‖

M
if x′ = y′.

We restrictP to those mappingsh : M → M × M

that arise as graphs of a continuous mapping fromM to
itself. It is not difficult to see that this setting gives the
same robustness values for the caseM = R

m discussed
above.

Periodic orbits. We generalize the above setting by
allowing for fixed points of iterations of the mapping.
LettingM be a metric space andf : M→M a mapping,
we writef j : M → M for thej-fold composition off
with itself. A sequence

F j(x) = (x, f(x), f2(x), . . . , f j−1(x))

is an order-j periodic orbit of f if f j(x) = f ◦
f j−1(x) = x. It is straightforward to see the follow-
ing relationship betweenf and itsj-fold composite.

ORBIT LEMMA . A point x ∈ M is a fixed point of
f j iff Fj(x) is an order-j periodic orbit off .

We can therefore use the methods of this paper to mea-
sure the robustness ofx, that is, to determine how much
f j needs to be perturbed to remove the fixed point.
However, it is more interesting to measure how muchf
needs to be perturbed to remove the periodic orbit. This
is different because not every mapping can be written
as thej-fold composite of another mapping. This mo-
tivates us to introduceP as the space of perturbations
of f j that arej-fold composites of perturbationsh of f .
Using this spaceP , we intersect the images of the ho-
momorphisms induced by thehj . With this setup, we
construct the well diagram off j and interpret the re-
sulting values as the robustness of the order-j periodic
orbits off .

Apparent contours. As mentioned in the introduc-
tion, [6] reduces the stability of the contour of a map-
ping to the stability of well diagrams, the main result
of this paper. We briefly review the reduction. LetM

be a compact, orientable2-manifold andf : M → R
2

a smooth mapping. The derivative off at a pointx is
a linear map from the tangent space toR

2. The point
x is critical if the derivative atx is not surjective, and
the apparent contourof f is the set of images of criti-
cal points. Beyond smoothness off , we assume that the
well functions it defines are admissible. Specifically, for
eacha ∈ R

2, the functionfa : M → R is defined by
mapping every pointx to fa(x) = ‖f(x)− a‖2 and we
assume thatf−1

a (0) consists of a finite number of points.
To study the apparent contour, we consider the entire

2-parameter family of well functions. Fixing a value
a ∈ R

2, the sublevel sets offa form a filtration of
homology groups and a zigzag module of well groups.
Each point in the preimage ofa falls ill at a particular ra-
dius interpreted as the robustness of that point. The main
result of this paper implies that this measure is stable,
that is,W∞(Dgm(U),Dgm(V)) ≤ ‖fa − ga‖∞, where
U andV are the well modules defined by the mappings
f, g : M → R and the valuea ∈ R

2. As shown in [6],
this implies that the apparent contours off and ofg are
close. The sense in which they are close is interesting in
its own right and we refer to that paper for details.

6 Discussion
The main contribution of this paper is the definition of
a robustness measure for the homology of the intersec-
tion between topological spaces, and a proof that this
measure is stable. While robustness and persistence
are related, there are also differences between these no-
tions. For example, robustness adapts to a given metric
space of perturbations, and this extra degree of freedom
is sometimes essential, such as for a meaningful anal-
ysis of periodic orbits. The results in this paper raise
a number of questions and invite extensions in several
directions.

• Fixed points of mappings play an important role in
game theory [14]. Can the results of this paper be
used to gain insights into the nature of fixed points
as they arise in different games? What are contexts
in which the robustness of a fixed point is relevant
to the understanding of the dynamics of a game?

• The three applications sketched in Section 5 barely
scratch the surface of the possible. An interesting
direction for further research are mappings from
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lower to higher dimensions. For example, the
boundary of a computer-aided design model is the
image of a mapping from a2-manifold toR3. Can
our results be used to detect and remove acciden-
tal self-intersections, a problem of significant eco-
nomic importance [8].

• Except for a few special settings, we have no al-
gorithms for computing well diagrams. The main
obstacle is the possibly infinite set of perturba-
tions that appears in the definition of well groups.
However, since the groups that arise for admissible
mappings are finite, only a finite number of pertur-
bations are relevant. Can we approach the algorith-
mic question from this direction?
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