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Abstract

This paper studies Adaptive Finite Element Methods (AFEMs), based on piecewise lin-

ear elements and newest vertex bisection, for solving second order elliptic equations with

piecewise constant coefficients on a polygonal domain Ω ⊂ R
2. The main contribution is to

build algorithms that hold for a general right hand side f ∈ H−1(Ω). Prior work assumes

almost exclusively that f ∈ L2(Ω). New data indicators based on local H−1 norms are

introduced and then the AFEMs are based on a standard bulk chasing strategy (or Dörfler

marking) combined with a procedure that adapts the mesh to reduce these new indicators.

An analysis of our AFEM is given which establishes a contraction property and optimal con-

vergence rates. In contrast to previous work, it is shown that it is not necessary to assume

a compatible decay of the data estimator but rather that this is automatically guaranteed

by the approximability assumptions on the solution by adaptive meshes, without additional

assumptions on f . Computable surrogates for the data indicators are introduced and shown

to also yield optimal convergence rates.

AMS subject classifications. 41A25, 41A65, 65N12, 65N15,65N30

1 Introduction

The theoretical understanding of the performance of Adaptive Finite Element Methods (AFEMs)

for ellliptic problems has matured significantly during the last decade. This has led to the

construction of AFEMs whose performance is, in a certain sense (described below), provably

optimal when measured by error decay versus cardinality (and number of computations provided

optimal iterative solvers and storage are used). However, even in the simplest settings, such as

a Poisson problem on a polyhedral domain in R
2, there remain important issues that need to be

resolved in order to bring adaptivity theory to its most natural and complete form. The present

paper centers on two of these issues:
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• The minimal conditions on the data f which are needed for building an AFEM and deriving

convergence rates;

• The role of “data oscillation” assumptions in the analysis of convergence rates for AFEMs.

Since our main interest is to clearly put forward the new ideas necessary to properly handle

these two issues, we shall only treat the model elliptic problem in two space dimensions:

−div(A∇u) = f in Ω, u|∂Ω = 0, (1.1)

where Ω is a polygonal domain in R
2, and x 7→ A(x) is a matrix valued function such that A(x)

is symmetric positive definite for all x ∈ Ω and has eigenvalues λi(x) satisfying

0 < amin ≤ λi(x) ≤ amax, x ∈ Ω,

where amin and amax are fixed positive numbers. In addition, we assume that Ω can be decom-

posed into a (disjoint) partition

Ω = Ω1 ∪ · · · ∪ Ωj ,

where each Ωj is itself a polygonal subdomain and A(x) equals a fixed matrix Aj for all x ∈ Ωj ,

i.e. A(x) is piecewise constant over this partition. We further assume that the subdomains Ωj

are matched by the initial mesh T0 in the sense that each Ωj is a union of triangles in T0. Our

reason for working under these assumptions on A is that they allow for interface singularities

[7],[9], which are much more extreme than corner singularities.

It is customary in the a posteriori error analysis of FEM to assume that f ∈ L2(Ω). Then,

the variational formulation of (1.1) consists in finding u ∈ H1
0 (Ω) such that

a(u, v) = L(v), v ∈ H1
0 (Ω), (1.2)

where the bilinear form a is given by

a(u, v) :=

∫

Ω

A∇u · ∇v,

and the linear form L is given by

L(v) :=

∫

Ω

fv.

Lax-Milgram theory ensures the existence and uniqueness of the solution u of (1.2) under the

more general assumption that L is continuous on H1
0 (Ω) and a is coercive and continuous on

H1
0 (Ω)×H1

0 (Ω). Therefore the well-posedness of (1.2) remains valid when f ∈ H−1(Ω), the dual

space of H1
0 (Ω), with L now defined by

L(v) := 〈f, v〉,

where 〈·, ·〉 denotes the (H−1, H1
0 ) duality bracket.

Our interest in H−1 data is twofold: first it is the natural functional setting for (1.2) and

the study of AFEM, and second there are important applications, some discussed below, for
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which f /∈ L2(Ω). With the exception of Nochetto [11] and Stevenson [13],[14], studies of AFEM

always assume f ∈ L2(Ω) and rely on a specific form of data oscillation which has significant

implications on the structure of AFEM; see (3.21) below. Our approach is, however, different

from [13],[14] in several respects: we do not approximate f by piecewise constants as in [13],[14],

which is somewhat arbitrary for general f ∈ H−1(Ω); we localize the global H−1 norm of f to

stars ωz and thus define the new local data indicators ‖f‖H−1(ωz); and we examine the relation

between approximation classes for u and f , which require dealing with approximations of f

other than piecewise constants. Despite these differences, we do have a procedure ADAPTDATA

to reduce the data estimator which is similar to the inner loop in [13],[14].

AFEMs for approximating u generate a sequence of nested conforming (no hanging nodes)

triangulations {Tk}k≥0 of Ω, starting from T0. For each Tk they find an approximation UTk
to u

by solving a Galerkin problem for a finite element space of piecewise polynomials subordinate

to Tk. Each AFEM is built on (i) a fixed rule for refining triangles, and (ii) a specified finite

element space over triangulations generated by the particular refinement rule. Starting with an

initial triangulation T0 of Ω, the subsequent triangulations Tk are generated by certain adaptive

strategies. Typically, the AFEM computes the Galerkin solution UTk
on the triangulation Tk,

estimates the residual rk := f + div(AUTk
) (which in our case is in H−1(Ω)), and uses this to

compute an error indicator eT := eT (UTk
, f) for each triangle T ∈ Tk. These error indicators are

then used to decide which triangles from Tk will be further refined in order to improve accuracy.

This process is often referred to as marking. After refining the marked triangles and doing

any additional refinements necessary to remove hanging nodes, the new triangulation Tk+1 is

obtained and the process is repeated. We refer the reader to Nochetto et al. [12] for an up to

date survey of the current theory of AFEMs for elliptic problems.

To understand the issues raised in this paper, we briefly recall the main results of AFEM

theory in the special case of newest vertex bisection and Lagrange Pm elements. The customary

performance analysis of AFEMs measures the approximation error in the H1
0 (Ω) norm

‖v‖H1
0
(Ω) := ‖∇v‖L2(Ω),

and measures the complexity of a triangulation T by its cardinality #(T ); this matches well the

computational effort necessary to compute the Galerkin solution UT provided optimal iterative

solvers are available. We let TN denote the set of all conforming triangulations T with #(T ) ≤ N
that can be obtained from T0 by the newest vertex bisection process, and let

σN (u) := inf
T ∈TN

‖u− UT ‖H1
0
(Ω) (1.3)

be the best error we could ever obtain by such triangulations (hereafter we assume N ≥ #(T0)).
An ideal AFEM would be one that generates triangulations Tk such that

‖u− UTk
‖H1

0
(Ω) ≤ CσNk

(u), (1.4)

with Nk := #(Tk) and C an absolute constant. There is no AFEM that is known to produce

such an ideal performance.
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On the other hand, there are AFEMs which come close to this performance. To describe

these results, for s > 0 let As be the set of functions u such that

|u|As := sup
N≥#(T0)

N sσN (u) < +∞. (1.5)

The set As is a quasi-Banach space, when equiped with the quasi-norm

‖u‖As := |u|As + ‖u‖H1
0
(Ω).

A more modest goal than (1.4) would be to construct AFEMs such that whenever u ∈ As, the

AFEM produces triangulations Tk such that

‖u− UTk
‖H1

0
(Ω) ≤ C|u|As#(Tk)−s, (1.6)

with C an absolute constant. Starting with Binev, Dahmen, and DeVore [2], AFEMs have been

constructed which exhibit this performance, except for one caveat: to guarantee this performance

it is assumed that f ∈ L2(Ω) [2],[5],[12], or alternatively f ∈ H−1(Ω) can be approximated by

piecewise constants over Tk [13],[14], properties which are not a consequence of u ∈ As.

Let us elaborate further on this last issue. Given a triangulation T and the Galerkin solution

UT associated to T , a typical AFEM uses the residual-type local error indicators

e2T := h2
T ‖f + div(A∇UT )‖2L2(T ) + hT ‖J(UT )‖2L2(∂T ), (1.7)

on each triangle T ∈ T . Here, hT is the diameter of T and J(UT ) is the jump of A∇UT ·νσ across

a side (edge) σ of T , where νσ is a unit outward normal to σ. These error indicators do indeed

control the global error from above in the sense that ‖u−UT ‖H1
0
(Ω)

<∼
∑

T∈T e
2
T . However, to

control the error from below one needs to introduce an extra term osc(f, T ), referred to as data

oscillation, which then gives

∑

T∈T
e2T <∼ ‖u− UT ‖2H1

0
(Ω) + osc(f, T )2.

A typical form of this term for Lagrange finite elements of degree m is

osc(f, T ) :=
(∑

T∈T
h2

T ‖f − aT (f)‖2L2(T )

) 1

2

, (1.8)

where aT (f) is the L2(T ) orthogonal projection of f onto Pm−1, the space of polynomials of

total degree ≤ m − 1. In the particular case m = 1 of piecewise linear elements, aT (f) is the

meanvalue of f over T .

A typical AFEM computes the error indicators eT for each T ∈ T , and marks for refinement

the triangles T ∈ T with largest error indicator. Among the many possible strategies on deciding

which triangles to mark, the strongest analytical results are obtained when the marking is done

using a bulk chasing criteria introduced by Dörfler [6], the so-called Dörfler marking. Recent

work, see [5],[9],[12], has shown that AFEMs based on this marking strategy achieve a benchmark

similar to (1.6) provided that u ∈ As and that in addition, f has enough smoothness so that
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the data oscillation term is controlled by the algorithm with the same rate of decay N−s, for

s ≤ m/2. A glance at (1.7) and (1.8) reveals that a minimal requirement for the applicability

of this approach is that f ∈ L2(Ω). Moreover, this requirement on f is even more demanding

when dealing with higher order Lagrange elements m > 1.

In order to remedy these issues, we need to develop new algorithms and theory for AFEMs

that work on the minimal assumption that f ∈ H−1(Ω). Moreover, such new algorithms could

also be useful in practice since there are several relevant elliptic problems which give rise to a

right hand side that belongs to H−1(Ω) but not to L2(Ω). Here are at least two of them:

• The function f belongs to Lp(Ω) for some 1 < p < 2. Then standard imbedding theorems

ensure that f ∈ Hs(Ω) for s = 1− 2
p < 0 and therefore f ∈ H−1(Ω).

• The linear form L has the form L(v) :=
∫
Ω

∇g · ∇v, where g is a function in H1
0 (Ω) such

that ∆g /∈ L2(Ω). A typical example is when g is itself a Pm finite element function. Then

f = −∆g typically contains Dirac distributions supported on the edges σ of the mesh with

densities the jumps of ∇g · νσ. Such distributions are in Hs(Ω) only for −1 ≤ s < −1
2 .

The main accomplishment of this paper is the development of a new AFEM, based on new

error and data indicators which apply to general data f ∈ H−1(Ω). The algorithm will be shown

to give the optimal convergence rate N−s under the sole assumption that u ∈ As, in contrast to

earlier approaches such as in [2],[5],[6],[9],[10],[13],[14] where additional assumptions are made

on f . Notice that the assumption u ∈ As only implies that f ∈ H−1(Ω) (and not necessarily

that f ∈ L2(Ω)). Since we are restricting our attention to piecewise linear elements (m = 1),

the range of s is 0 < s ≤ 1
2 .

An outline of this paper is as follows. We begin in §2 by recalling the properties of newest

vertex bisection that we shall need for our analysis. Then, we derive in §3 a posteriori error

estimates for piecewise linear finite elements by using localH−1 norms for f . The error estimator

consists of a jump estimator and a data estimator which is of the form

D(f, T ) :=
( ∑

z∈N (T )

‖f‖2H−1(ωz)

) 1

2

, (1.9)

where N (T ) is the set of nodes in the triangulation T and ωz the union of the triangles of T
having z as a vertex (the so-called star or patch). The data estimator (1.9) is thus defined for

any f ∈ H−1(Ω), in contrast to the data terms involving L2 norms in (1.7) and (1.8) or the

replacement of f ∈ H−1(Ω) by piecewise constants of [13],[14], which is a somewhat arbitrary.

We formulate in §4 an AFEM that applies to general f ∈ H−1(Ω). We prove a contraction

property for this AFEM that implies in particular convergence towards the exact solution. This

algorithm combines the bulk chasing strategy based on the new error indicators, together with a

generic refinement procedure ADAPTDATA, referred to as data adaptation, which reduces (1.9)

to a prescribed tolerance. This procedure is similar to Stevenson’s inner loop [13],[14], which

was later eliminated by Cascón et al. [5] in the context of L2 data. When treating general H−1

data, the reduction of D(f, T ) must be explicitly enforced for the AFEM to converge and exhibit

an optimal decay rate.
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In §5, we begin our analysis of the convergence rates for our AFEM. We first show that the

optimal convergence rate N−s is achieved by our algorithm, provided that u ∈ As and that

there is a subroutine ADAPTDATA that exhibits a similar convergence rate N−s for D(f, T ) in

terms of N = #(T ). We later build in §7 concrete realizations of ADAPTDATA which satisfy

this property under various assumptions on f .

In §6, we prove that there exists an optimal data adaptation procedure for which the con-

vergence rate N−s of D(f, T ) is ensured under the sole assumption that u ∈ As, for s < 1/2;

we also examine the borderline case s = 1/2. This optimal procedure is tied to evaluating the

local H−1(ωz) norms in D(f, T ) and finding optimal meshes for u. This is impractical because

the computation of local H−1(ωz) norms in (1.9) is generally not viable. However, we introduce

surrogate quantities in §7 that are computable, provided f ∈ Lp(Ω) for some p > 1 or f is a

Dirac distribution on a 1-dimensional curve, thereby leading to a larger data estimator D̃(f, T ).

In such cases, the AFEM can be built on these surrogate quantities, and ADAPTDATA can be

implemented using a simple and practical greedy algorithm for data adaptation. In addition, the

optimal decay rate N−s is achieved under the assumption that u ∈ As, for any 0 < s ≤ 1/2.

We end by some concluding remarks on possible extensions of our approach in §8.

2 Newest Vertex Bisection and Piecewise Linear Elements

In this section, we briefly recall newest vertex bisection and properties of the space of piecewise

linear elements. The starting point is an initial conforming triangulation T0 of the polygonal

domain Ω into a finite number of triangles. In newest vertex bisection, each edge of T0 is given

an initial label of either 0 or 1. Such labels are required to depend only on the edge σ and not

on the triangles to which σ belongs. The initial labeling of the edges of T0 is required to have

the property that for each triangle T ∈ T0, exactly one edge of T has the label 0 and the other

two have label 1. It is known that it is always possible to make such an initial assignment [8],[2].

Any triangle T created by the bisection procedure will have edges labeled i, i+ 1, i+ 1 with

i ≥ 0 integer. The vertex opposite the side labeled i is called the newest vertex [8],[2]. If T is to

be bisected then this refinement is done by connecting the midpoint of the side marked i with

the newest vertex. This leads to the creation of two new triangles (called the children of T ), and

three new edges. Each of these new edges is given the label i + 2. The newest vertex of each

children is the vertex opposite the side labeled i+ 1 (the side with the smallest label). Once T0
is equipped with the initial labeling, these rules guarantee that each edge has unique labeling

regardless of the triangles sharing it and no ambiguity arises in this process; see [2],[8],[12] for

details. The label i of an edge indicates its generation. Also the lowest labeled edge of a triangle

T gives the generation of T , i.e. how many bisections were made to create T .

Unless implemented recursively [12], this newest vertex bisection procedure creates meshes

T which are non-conforming. They can be represented by a (finite) binary forest whose roots

are the elements in T0 and whose leaves are the elements of T . Each such forest is contained in

an (infinite) master forest which consists of all triangles that may be generated from T0 by the

newest vertex bisection procedure. We are mainly interested in conforming meshes (no hanging

nodes), which correspond to a restricted class of finite binary forests.
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If Tk is a conforming mesh obtained from T0 by newest vertex bisection and Rk is a subset

of Tk of triangles to be refined, the refinement procedure creates a non-conforming mesh T k by

bisecting the elements in Rk, and finds the conforming refinement of T k by adding the smallest

number of additional newest vertex bisection steps so that the resulting mesh Tk+1 is conforming.

The second step (completion) is nonlocal and its complexity is rather intricate but critical for

the overall complexity analysis. It was shown by Binev, Dahmen, and DeVore [2] that the cost

of conforming refinement can be uniformly controlled. We express this crucial result as follows.

Lemma 2.1 (complexity of conforming bisection). There exists a constant C0 ≥ 1, depending

only on T0, such that for all k ≥ 1

#(Tk)−#(T0) ≤ C0

k−1∑

j=0

#(Rj). (2.1)

We now discuss two easy consequences of this result. Let T̃ be a non-conforming triangulation

obtained from T0 by several newest vertex bisections. In other words, we do not assume that

hanging nodes are removed after each set of bisections as is the case in the last Lemma. If T is

the smallest conforming refinement of T̃ , then

#(T )−#(T0) ≤ C0

(
#(T̃ )−#(T0)

)
, (2.2)

where C0 is the same constant as in (2.1). This comes from the fact that the same T would

also result from applying conforming refinement after each bisection step. A second scenario is

that T̃ is a non-conforming refinement of an arbitrary conforming refinement T of T0. If T is

the smallest conforming refinement of T̃ , then

#(T ) ≤ #(T0) + C0

(
(#(T̃ )−#(T )) + (#(T )−#(T0))

)
≤ C0#(T̃ ). (2.3)

For any two meshes T and T ∗ created from T0 by newest vertex bisection, we denote by

T ⊕ T ∗,

the overlay of the two meshes, consisting of the union of all triangles of T that do not contain

smaller triangles of T ∗ and of all triangles of T ∗ that do not contain smaller triangles of T . This

overlay can be obtained by performing all bisections called for in the generation of T and T ∗

from T0. Hence, we clearly have

#(T ⊕ T ∗) ≤ #(T ) + #(T ∗)−#(T0). (2.4)

We sometimes write

T ∗ ≥ T ,

to say that T ∗ is a refinement of T , which means that it is obtained from T by applying

additional steps of newest vertex bisection, or equivalently that T ⊕ T ∗ = T ∗. Note that the

overlay between two such conforming meshes is also conforming.
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Remark 2.2. Most constants occuring in this paper depend only on the geometry of T0. This

utilizes the property that any triangle created by newest vertex bisection is similar to one of

a fixed number of equivalence classes dictated by T0 and its labeling; see [8]. Throughout this

paper, C typically denotes a constant that only depends on the initial triangulation T0 and its

labeling, unless stated otherwise. We shall also sometimes write

A(·) <∼ B(·)

when A(·) ≤ CB(·) for such a constant independent of the arguments in A and B.

For a conforming mesh T , we denote by N (T ) the nodes (or vertices) of T , and by N0(T )

the subset of nodes that are interior to Ω. For z ∈ N (T ), we denote by φz the piecewise linear

hat function such that φz(z
′) = δz,z′ for all z′ ∈ N (T ). The support sets

ωz := Supp(φz) = ∪{T ∈ T ; z ∈ T }

are called stars. We denote by Γ(T ) the set of all inner edges σ of T , i.e. edges which are not

contained on the boundary ∂Ω. For each z ∈ N (T ) we denote by Γ(ωz) the set of inner edges

interior to ωz, i.e. those inner edges which have z as an end point, and we define the skeleton

of ωz as

γz := ∪{σ ; σ ∈ Γ(ωz)}.
We denote by hT the diameter of a triangle T and by hz the diameter of ωz. The triangulations

built from newest vertex bisection are shape regular and graded in the sense that all possibly

generated triangles satisfy a uniform smallest angle condition. From this it follows that hz is

uniformly equivalent to hT : for all z ∈ N (T ) and T ∈ T such that T ⊂ ωz,

hz . hT ≤ hz.

We denote by V(T ) the space of piecewise linear functions subordinate to T , and by V0(T )

those functions in V(T ) which vanish on the boundary ∂Ω of Ω. The hat functions {φz}z∈N (T )

are the canonical basis of V(T ) and, likewise, {φz}z∈N0(T ) are the canonical basis of V0(T ). We

recall the partition of unity property:

∑

z∈N (T )

φz(x) = 1, x ∈ Ω. (2.5)

3 A Posteriori Error Analysis with H−1 Data

In this section, we introduce certain local H−1(Ω) error indicators and derive some of their

properties. We denote by

|||v|||Ω := a(v, v)
1

2 =
(∫

Ω

A∇v · ∇v
) 1

2

,

the energy norm associated to the problem (1.2) which is equivalent to the H1
0 norm

√
amin‖v‖H1

0
(Ω) ≤ |||v|||Ω ≤

√
amax‖v‖H1

0
(Ω), (3.1)
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where ‖v‖H1
0
(Ω) := ‖∇v‖L2(Ω). For any subdomain ω ⊂ Ω, we define the local energy seminorm

|||v|||ω :=
(∫

ω

A∇v · ∇v
) 1

2

.

3.1 An Error-Residual Equation

Let f ∈ H−1(Ω), and let u ∈ H1
0 (Ω) be the exact solution of our model problem

a(u, v) = 〈f, v〉, v ∈ H1
0 (Ω). (3.2)

Fix a conforming triangulation T ≥ T0 and denote by U := UT ∈ V0(T ) the Galerkin solution

a(U, V ) = 〈f, V 〉, V ∈ V0(T ). (3.3)

Equivalently, U is the orthogonal projection of u onto V0(T ) in the sense of the inner product

a(·, ·). From the equivalence (3.1), U is a near best approximation to u in the H1
0 norm:

‖u− U‖H1
0
(Ω) ≤

√
amax

amin
‖u− V ‖H1

0
(Ω), V ∈ V0(T ). (3.4)

Integration by parts yields the following relation between the error u− U and the residual

a(u− U, v) = 〈f + div(A∇U), v〉 = 〈f, v〉+
∑

σ∈Γ(T )

∫

σ

Jv, v ∈ H1
0 (Ω), (3.5)

where on each edge σ, with normal ν := νσ,

J := J(U) := Jσ(U) := [A∇U ] · ν,

is the jump residual. Since A is piecewise constant over T ≥ T0, J is constant on each σ ∈ Γ(T ).

Using (2.5) in the error-residual relation, we end up with a similar relation localized to all stars

ωz:

a(u− U, v) =
∑

z∈N (T )

(
〈f, vφz〉+

∫

γz

Jvφz

)
. (3.6)

3.2 Reliability: Global Upper Bound

In order to derive an upper bound for the error, we first observe that Galerkin orthogonality

implies

〈f, φz〉+
∫

γz

Jφz = 0, z ∈ N0(T ). (3.7)

We first exploit this to rewrite (3.6) as follows,

a(u− U, v) =
∑

z∈N (T )

(
〈f, (v − αz(v))φz〉+

∫

γz

J(v − αz(v))φz

)
, (3.8)
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where αz(v) ∈ R is defined as the weighted meanvalue

αz(v) :=

∫
ωz

vφz

∫
ωz

φz
, z ∈ N0(T ),

and αz(v) := 0 if z ∈ N (T ) \ N (T0) is a boundary node. We now estimate each term on the

right-hand side of (3.8) separately assuming that v ∈ H1
0 (Ω). On the one hand, we have

〈f, (v − αz(v))φz〉 ≤ ‖f‖H−1(ωz)‖∇[(v − αz(v))φz]‖L2(ωz)

≤ ‖f‖H−1(ωz)(‖∇v‖L2(ωz) + ‖v − αz(v)‖L2(ωz)‖∇φz]‖L∞(ωz))

<∼ ‖f‖H−1(ωz)‖∇v‖L2(ωz).

Here we have used the fact that ‖∇φz‖L∞(ωz) <∼ h−1
z , as well as the rescaled Poincaré type

inequality

‖v − αz(v)‖L2(ωz) <∼ hz‖∇v‖L2(ωz), (3.9)

which is in its usual form for interior nodes but is also valid for boundary nodes (because v

vanishes at least on one of the edges that constitute the boundary of ωz; see [12]). On the other

hand, from the rescaled trace theorem and (3.9), we have

∫
γz

J(v − αz(v))φz ≤ ‖J‖L2(γz)‖v − αz(v)‖L2(γz)

<∼ ‖J‖L2(γz)

(
h

1/2
z ‖∇v‖L2(ωz) + h

−1/2
z ‖v − αz(v)‖L2(ωz)

)

<∼ h
1/2
z ‖J‖L2(γz)‖∇v‖L2(ωz)

<∼
( ∑

σ∈Γ(ωz)

|σ|2|Jσ|2
)1/2
‖∇v‖L2(ωz).

Since all points of Ω belong to at most 3 stars ωz, except for a set of zero Lebesgue measure,

this implies

a(u− U, v) .
( ∑

z∈N (T )

(
‖f‖2H−1(ωz) +

∑

σ∈Γ(ωz)

|σ|2|Jσ|2
)) 1

2 ‖∇v‖L2(Ω). (3.10)

Motivated by (3.10), we introduce the local jump residual and data indicators

j(z) := j(U, z, T ) :=
( ∑

σ∈Γ(ωz)

|σ|2|Jσ|2
)1/2

and d(z) := d(f, z, T ) := ‖f‖H−1(ωz). (3.11)

We also introduce their global counterparts

J (U, T ) :=
( ∑

z∈N (T )

j(z)2
) 1

2

and D(f, T ) =
( ∑

z∈N (T )

d(z)2
) 1

2

.

The local error indicator e(z) and global error estimator E are then given by

e(z)2 := e(U, f, z)2 := j(z)2 + d(z)2 and E2 := E(U, f, T )2 :=
∑

z∈N (T )

e(z)2. (3.12)

Using (3.10), together with the norm equivalence (3.1), we reach an a posteriori global upper

bound for H−1 data expressed as follows.
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Lemma 3.1 (global upper bound). There exists a constant CG > 0 that only depends on the

initial mesh T0 and amin, such that

|||u− U |||Ω ≤ CG E(U, f, T ). (3.13)

If M ⊂ N (T ) is a set of nodes of T , we use the notation D(f,M; T ), J (U,M; T ) and

E(f, U,M; T ) for data, jump and error estimators localized to the nodes of M. Namely, we

define

E(f, U,M; T ) :=
( ∑

z∈M
e(z)2

) 1

2

, (3.14)

and similarily define D(f,M; T ) and J (U,M; T ). It will be useful, for the discussion in §5,

to have an upper bound for the energy error between two Galerkin solutions U ∈ V0(T ) and

U∗ ∈ V0(T∗) with T∗ a conforming refinement of T . The following result shows that this error is

bounded by a localized estimator of the above type (3.14).

Lemma 3.2 (localized upper bound). Let M ∈ N (T ) be the set of all nodes z ∈ N (T ) such

that z is a vertex of a triangle T ∈ T \ T ∗ which was refined in the process of constructing T ∗.

Then,

|||U∗ − U |||Ω ≤ CL E(U, f,M; T ), (3.15)

where CL > CG only depends on the initial mesh T0 as well as on amin and CG is the constant

in (3.13).

Proof: We define v := U∗ − U ∈ V0(T ∗) and w = v − V where V ∈ V0(T ) is an arbitrary

function. In view of (3.6) and (3.7), we can write

|||U∗ − U |||2Ω = a(U∗ − U, v) = a(u− U, v) = a(u− U, v − V )

=
∑

z∈N (T )

(
〈f, wφz〉+

∫

γz

Jwφz

)

=
∑

z∈N (T )

(
〈f, (w − αz(w))φz〉+

∫

γz

J(w − αz(w))φz

)
.

We now take V := PT v where PT is a local Scott-Zhang projection operator [4] onto V0(T )

that we build as follows. For each z ∈ N0(T ) we pick a triangle Tz ∈ T in a such way that

Tz ⊂ ωz and the following property holds: if ωz contains at least one triangle in T ∩ T ∗, i.e. a

triangle of T that is not refined, we take for Tz such a triangle. For any g ∈ L2(Ω), we then

define πzg as its local L2(Tz)-orthogonal projection onto Π1 the space of affine polynomals, and

βz(g) := πzg(z) its value at z. We then set

PT g :=
∑

z∈N0(T )

βz(g)φz.

It is easily seen that PT leaves V0(T ) invariant.

From the particular choice of Tz and the fact that v ∈ V0(T ∗), we also find that w = v−PT v
vanishes in all the triangles in T ∩ T ∗. Therefore,

|||U∗ − U |||2Ω =
∑

z∈M

(
〈f, w − αz(w)φz〉+

∫

γz

J(w − αz(w))φz

)
.
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By the same arguments leading to Lemma 3.1, we thus obtain

|||U∗ − U |||2Ω .
( ∑

z∈M

(
‖f‖2H−1(ωz) +

∑

σ∈Γ(ωz)

|σ|2|Jσ|2
)) 1

2 ‖∇w‖L2(Ω).

Observing that PT is uniformly H1-stable in the sense that for all g ∈ H1
0 (Ω),

‖∇PT g‖L2(Ω) <∼ ‖∇g‖L2(Ω),

we obtain that ‖∇w‖L2(Ω) ≤ C‖∇v‖L2(Ω) ≤ C√
amin
|||U − U∗|||Ω with C > 1. This allows us to

conclude the proof with CL > CG. 2

3.3 Efficiency: Local Lower Bound

We want next to derive a local lower bound for the error |||u−U |||ωz . We consider a star ωz with

z ∈ N (T ) regardless of whether z is an interior or a boundary node. We construct a function

of the form

ϕ =
∑

σ∈Γ(ωz)

ασϕσ,

where the functions ϕσ are the canonical quadratic bubbles with value 1 at the mid-point of the

side σ and zero at all other Lagrange quadratic nodes, and where

ασ :=
3

2
|σ|Jσ, σ ∈ Γ(ωz).

Using ϕ as a test function in the error-residual relation yields (via Simpson’s rule)

a(u− U,ϕ) = 〈f, ϕ〉+
∑

σ∈Γ(ωz)

ασJσ

∫

σ

ϕσ = 〈f, ϕ〉+ 2

3

∑

σ∈Γ(ωz)

|σ|ασJσ = 〈f, ϕ〉+ j(z)2.

We thus arrive at

j(z)2 =

∫

ωz

A∇(u− U) · ∇ϕ− 〈f, ϕ〉

≤
(√

amax|||u− U |||ωz + ‖f‖H−1(ωz)

)
‖∇ϕ‖L2(ωz).

Since ‖∇ϕσ‖L2(ωz) . 1, we have

‖∇ϕ‖L2(ωz) .
∑

σ∈Γ(ωz)

|σ||Jσ| . j(z).

Therefore, we have proven the following local lower bound.

Lemma 3.3 (local lower bound). There exists a constant c1 > 0, that only depends on T0 and

on amax, such that

c1j(z) ≤ |||u− U |||ωz + d(z), z ∈ N (T ). (3.16)

Combining Lemmas 3.1 and 3.3, we immediately obtain the following result.

Corollary 3.4 (global lower and upper bound). There exist constants 0 < C1 < C2 ≤ 1 + C2
G,

that only depend on T0 and on amin and amax, such that

C1E(U, f, T )2 ≤ |||u− U |||2Ω +D(f, T )2 ≤ C2E(U, f, T )2. (3.17)
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3.4 The Data Estimator

We discuss next some properties of the data estimator D(f, T ). In particular, we compare

the magnitude of this term with other data estimators previously used in the literature. If

f ∈ L2(Ω) and U(H1
0 (ωz)) is the unit ball of H1

0 (ωz), then applying the Poincaré inequality to

v ∈ U(H1
0 (ωz)) we get

d(z) = ‖f‖H−1(ωz) = sup
v∈U(H1

0
(ωz))

〈f, v〉 ≤ ‖f‖L2(ωz)‖v‖L2(ωz) . hz‖f‖L2(ωz). (3.18)

The right side, which is the usual form of the interior residual for piecewise linear elements

and piecewise constant coefficients A, can be much larger than d(z) for an oscillatory function

f ∈ L2(Ω). In contrast, if f is constant in ωz (polynomial suffices), then

‖f‖2L2(ωz) = 3

∫

ωz

f2φz ≤ 3‖f‖H−1(ωz)‖fφz‖H1
0
(ωz) . h−1

z ‖f‖H−1(ωz)‖f‖L2(ωz),

and so in this case, d(z) and the right side of (3.18) are of the same magnitude.

We can also shed some light on the relative sizes of d(z) and j(z): using (3.5) with v ∈
U(H1

0 (ωz)) leads to

d(z) = ‖f‖H−1(ωz) . |||u− U |||ωz + j(z). (3.19)

This and Lemma 3.3 show that neither indicator j(z), d(z) dominates the other for f /∈ L2(ωz).

On the other hand, the derivation of Lemmas 3.1 and 3.3 reveals that we could have replaced

‖f‖H−1(ωz) by ‖f − fz‖H−1(ωz) for any constant fz when z ∈ N0(T ). This is due to the fact that

∫

ωz

(v − αz(v))φz = 0,

which allows us to remove fz from f in (3.8) for all z ∈ N0(T ). With such a modification,

instead of (3.16) we would obtain

j(z) . |||u− U |||ωz + ‖f − fz‖H−1(ωz),

and in place of (3.19),

d(z) . |||u− U |||ωz + ‖f − fz‖H−1(ωz).

This in turn leads to a modified form of the lower bound in (3.17), namely

E(U, f, T )2 . |||u− U |||2 +
∑

z∈N (T )

‖f − fz‖2H−1(ωz). (3.20)

The last term is an H−1-version of the so-called data oscillation term. In fact, if f ∈ L2(Ω),

then the same argument employed in (3.18) yields the more familiar quantity [1],[5],[9],[10],[12]

∑

z∈N (T )

‖f − αz(f)‖2H−1(ωz) .
∑

z∈N (T )

h2
z‖f − αz(f)‖2L2(ωz) = osc(f, T )2. (3.21)

The decay of the right-hand side of (3.21) is strictly faster than that of (3.18) when f =

−div(A∇u) is more regular than dictated by the regularity of u. For instance, reentrant corners
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of Ω and discontinuities of A may create singularities in u not reflected in f . In fact, u can

be arbitrarily close to H1 even for smooth data [7],[9],[12]. This explains the interest in data

oscillation and the lower bound (3.20). On the other hand, in our setting of piecewise linear

elements, the quasi-optimal convergence rates derived by Cascón et al. [5] hold for f ∈ L2(Ω)

without assuming any further regularity, and the meanvalue αz(f) plays no role in making d(z)

smaller; one might as well take αz(f) = 0. In the present context of H−1 data, the role of fz is

similar in the sense that replacing d(z) by ‖f−fz‖H−1(ωz) does not yield faster asymptotic decay

of the data estimator and setting fz = 0 turns out to be sufficient for the optimal convergence

of our AFEM algorithm of §5 and comparison of approximation classes of §6.

We therefore stick to the original definitions of data indicators and data estimator of §3.2

d(z) := ‖f‖H−1(ωz) and D(f, T ) =
( ∑

z∈N (T )

d(z)2
) 1

2

. (3.22)

The following result gives some important properties of the data estimator D(f, T ).

Lemma 3.5 (properties of data estimator). Let T be any conforming triangulation. Then

(i) The application f 7→ D(f, T ) is a norm on H−1(Ω).

(ii) For any f ∈ H−1(Ω) we have

D(f, T ) ≤
√

3‖f‖H−1(Ω). (3.23)

(iii) For any f ∈ H−1(Ω) and for any conforming refinement T∗ of T , we have

D(f, T∗) ≤
√

3D(f, T ). (3.24)

Proof: That D(·, T ) is a norm follows easily from the fact that D(f, T ) is the ℓ2(N (T )) norm

of the sequence (‖f‖H−1(ωz))z∈N (T ), and f = 0 in ωz for all z ∈ N (T ) implies f = 0 in Ω. To

prove (3.23), note that for each z ∈ N (T ), there exists λz ∈ H1
0 (ωz) such that

〈f, λz〉 = ‖f‖2H−1(ωz), and ‖λz‖H1
0
(ωz) = ‖f‖H−1(ωz).

If we define λ :=
∑

z∈N (T ) λz, then using the fact that almost every point of Ω is interior to a

triangle and thus contained in exactly 3 sets ωz, we have

‖λ‖2H1
0
(Ω) ≤ 3

∑

z∈N (T )

‖λz‖2H1
0
(ωz) = 3

∑

z∈N (T )

‖f‖2H−1(ωz). (3.25)

On the other hand
∑

z∈N (T )

‖f‖2H−1(ωz) =
∑

z∈N (T )

〈f, λz〉 = 〈f, λ〉 ≤ ‖f‖H−1(Ω)‖λ‖H1
0
(Ω).

Replacing ‖λ‖H1
0
(Ω) by the bound in (3.25) gives (3.23). To prove (3.24), we observe that for

each z∗ in N (T∗), there exists z ∈ N (T ) such that ωz∗ ⊂ ωz. Thus
∑

z∗∈N (T∗)

‖f‖2H−1(ωz∗ ) ≤
∑

z∈N (T )

∑

ωz∗⊂ωz

‖f‖2H−1(ωz∗ ). (3.26)

Replacing Ω by ωz, the previous derivation gives
∑

ωz∗⊂ωz
‖f‖2H−1(ωz∗ ) ≤ 3‖f‖2H−1(ωz). Inserting

this into (3.26) we arrive at (3.24). 2
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4 An AFEM: Algorithm and Contraction Property

We now propose an AFEM that, starting from the initial mesh T0, iteratively constructs refined

meshes and the corresponding Galerkin solutions. If k ≥ 0 stands for the adaptive counter, we

use a subscript k to indicate the corresponding mesh Tk, the nodes Nk = N (Tk), the Galerkin

solution Uk, the local indicators jk(z) := j(Uk, z), dk(z) := d(f, z), ek(z) := e(U, f, z), for z ∈
Nk, and the global estimators Jk := J (Uk, Tk), Dk := D(f, Tk), Ek := E(Uk, f, Tk).

4.1 The Algorithm

Our adaptive algorithm takes the following form. We choose a parameter 0 < θ < 1 and an

initial conforming mesh T0 satisfying the initial labeling of §2. Set k = 0 and iterate

Uk = SOLVE(Tk);
{jk(z), dk(z)}z∈Nk

= ESTIMATE(Tk, Uk, f);

Mk = MARK({ek(z)}z∈Nk
, Tk, θ);

if Dk > σk := θ
3Ek

T +
k = ADAPTDATA(Tk, f, σk

2
√

3
);

else

T +
k = Tk;

Tk+1 = REFINE(Tk,Mk)⊕ T +
k ;

k ← k + 1

This algorithm is based on the jump and data estimators jk(z) and dk(z); a more computa-

tional version will be discussed in §7. We now describe each subroutine appearing above in

sufficient detail.

Procedure SOLVE. This module finds the Galerkin solution Uk of (3.3) exactly. We therefore

assume that there is a way to evaluate (3.3), namely 〈f, φz〉 for all z ∈ Nk.

Procedure ESTIMATE. This module determines the jump indicator jk(z) and data indicator

dk(z) for each z ∈ Nk. We thus assume that we have access to dz = ‖f‖H−1(ωz) for all z ∈ Nk,

even though these values are not immediately available. Later in §7 we replace dz by surrogate

quantities d̃z, which are computable.

Procedure MARK. This module marks nodes z ∈ Nk with largest local indicators ek(z) accord-

ing to the following bulk chasing strategy (Dörfler marking [6]): given a parameter 0 < θ < 1

determine a smallest marked set Mk ⊂ Nk such that

E(f, Uk,Mk; Tk) ≥ θEk. (4.1)

Note that the marking is driven by the total estimator Ek and not by any of its constituents Jk

and Dk. This is consistent with the fact that separate marking might not, in general, lead to

optimal cardinality [5]. Bulk chasing ensures a reduction property of the estimator Ek provided
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f ∈ L2(Ω), which according with (3.18) gives the data indicator hz‖f‖L2(ωz) [5],[12]. This is not

possible for data f ∈ H−1(Ω) without further assumptions. Therefore we need to enforce a data

indicator reduction separately, which is done in ADAPTDATA.

Procedure ADAPTDATA. This module is similar to Stevenson’s inner loop to deal with

H−1 data [13],[14]. It refines stars with relatively large data indicators dk(z) until the over-

all contribution in the conforming refinement T +
k of Tk is smaller than a prescribed tolerance:

T +
k = ADAPTDATA(Tk, f, τ) should satisfy

D+
k := D(f, T +

k ) ≤ τ.

Note that D+
k ≤ θ

6
√

3
Ek. A contraction property of our AFEM is proved in §4.2 and is valid

regardless of the complexity of the triangulation T +
k produced by ADAPTDATA. The latter,

however, is crucial to examine the cardinality of AFEM. We will assume in §5 that this com-

plexity is compatible with the rate of convergence permitted by the solution u, and use this

assumption to derive optimal convergence rates of the AFEM. We will then show in §5 that this

assumption can indeed be met by a certain version of ADAPTDATA.

Procedure REFINE. This module performs one newest vertex bisection on each element T ⊂ ωz

for z ∈M whereM⊂ N (T ) is a given set of nodes in a conforming triangulation T . In addition

it performs one newest vertex bisection on each of the resulting pairs of children (T ′, T ′′) so

that each edge of T is bisected. This leads to a resulting non-conforming triangulation T and

T ∗ = REFINE(T ,M) is its smallest conforming refinement.

Remark 4.1. In the above algorithm, the next mesh Tk+1 is obtained from the current mesh

Tk as the overlay of the two refinements of Tk by REFINE and ADAPTDATA, which are done in

parallel. An alternative, that we shall not further explore, would be to perform them sequencially.

4.2 Contraction Property

We begin our analysis of the AFEM with the following property, which is instrumental in the

proof of a contraction property. A more general result is proved in [5].

Lemma 4.2 (jump residual reduction). Given a conforming refinement T of T0 and a set of

nodes M ∈ N (T ), let T ∗ ≥ REFINE(T ,M) be any conforming refinement of REFINE(T ,M).

Let V ∈ V0(T ) and V ∗ ∈ V0(T ∗) be arbitrary. There exists a constant C3 > 0 depending only

on T0 and on amin and amax such that for all δ > 0,

J (V ∗, T ∗)2 ≤ (1 + δ)
(
J (V, T )2 − 1

2
J (V,M; T )2

)
+ (1 + δ−1)C3 |||V ∗ − V |||2Ω.

Proof: As a first step, we compare the local quantities j(V ∗, z∗, T ∗) and j(V, z∗, T ∗) for all

z∗ ∈ N (T ∗), where these quantities are defined as in (3.11) for the fine triangulation T ∗ and

with U replaced by V ∗ or V . We remark that

j(V ∗, z∗, T ∗) ≤ j(V, z∗, T ∗) + j(V ∗ − V, z∗, T ∗)

≤ j(V, z∗, T ∗) +
(∑

σ∗∈Γ(ωz∗ ) |σ∗| ‖[A∇(V ∗ − V )]‖2L2(σ∗)

)1/2
.
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Since A is piecewise constant over T ∗, a rescaled inverse inequality yields ‖[A∇W ]‖L2(σ∗) .

|σ∗|−1/2‖∇W‖L2(ωz∗ ) for all σ∗ ∈ Γ(ωz∗) and all W ∈ V0(T ∗). We therefore obtain

j(V ∗, z∗, T ∗) ≤ j(V, z∗, T ∗) + C ‖∇(V ∗ − V )‖L2(ωz∗ ),

where C only depends on T0 and amax. Squaring this inequality, applying the Young inequality

(a+ b)2 ≤ (1 + δ)a2 + (1 + δ−1)b2 ∀a, b ∈ R,

for any δ > 0, and adding over z ∈ N (T ∗), we arrive at

J (V ∗, T ∗)2 ≤ (1 + δ)J (V, T ∗)2 + C3 (1 + δ−1)|||V ∗ − V |||2Ω, (4.2)

where C3 only depends on T0 and on amin and amax (here we have used the finite overlapping

property of stars ωz). Since V exhibits jumps solely on interelement boundaries of T , and the

latter belong to exactly two stars, we can rewrite J (V, T ∗)2 as

J (V, T ∗)2 = 2
∑

σ∈Γ(T )

( ∑

σ∗∈Γ(T ∗),σ∗⊂σ

|σ∗|2|Jσ∗ |2
)

= 2
∑

σ∈Γ(T )

(
∑

σ∗∈Γ(T ∗),σ∗⊂σ

|σ∗|2)|Jσ|2,

where Jσ = Jσ∗ is the jump of A∇V across σ and thus across any σ∗ ⊂ σ. On the other hand,

we have

J (V, T )2 = 2
∑

σ∈Γ(T )

|σ|2|Jσ|2.

We notice that we have
∑

σ∗∈Γ(T ∗),σ∗⊂σ |σ∗|2 ≤ |σ|2 for all σ ∈ Γ(T ). In addition, if σ ∈ Γ(ωz)

for some z ∈ M, then by definition of the procedure REFINE it has been split at least into two

in the refinement process which leads to T ∗ and therefore for such edges we have

∑

σ∗∈Γ(T ∗),σ∗⊂σ

|σ∗|2 ≤ 1

2
|σ|2.

From this it follows that

J (V, T ∗)2 ≤ 1

2
J (V,M; T )2 + J (V,N (T ) \M; T )2 = J (V, T )2 − 1

2
J (V,M; T )2.

Inserting this into (4.2), we conclude the proof. 2

We next combine this result together with the fact that the procedure ADAPTDATA reduces

the data estimator Dk strictly, in order to obtain a reduction property of the error estimator in

one AFEM loop. The following result shows that such a reduction is ensured provided that the

Galerkin solutions do not change much after such a loop.

Lemma 4.3 (estimator reduction). Let 0 < θ ≤ 1 be the bulk parameter. If C3 denotes the

constant of Lemma 4.2, then we have for all δ > 0

E2
k+1 ≤ (1 + δ)

(
1− θ2

12

)
E2

k + (1 + δ−1)C3|||Uk+1 − Uk|||2Ω. (4.3)
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Proof: We distinguish two cases depending on whether AFEM calls ADAPTDATA or not.

If AFEM does not call ADAPTDATA, then Dk ≤ θ
3Ek. The bulk property implies

θ2E2
k ≤ E(Uk, f,Mk; Tk)2 ≤ J (Uk,Mk; Tk)2 +D2

k ≤ J (Uk,Mk; Tk)2 +
θ2

9
E2

k ,

whence

J (Uk,Mk; Tk)2 ≥
8θ2

9
E2

k . (4.4)

We now examine the reduction of E2
k . In view of Lemma 4.2 and (3.24), we infer that

E2
k+1 ≤ (1 + δ)

(
J 2

k − 1
2J (Uk,Mk; Tk)2

)
+ (1 + δ−1)C3|||Uk+1 − Uk|||2Ω +D2

k+1

≤ (1 + δ)
(
J 2

k − 1
2J (Uk,Mk; Tk)2 + 3D2

k

)
+ (1 + δ−1)C3|||Uk+1 − Uk|||2Ω.

To estimate the first term on the right-hand side we use (4.4) and E2
k = J 2

k +D2
k

J 2
k −

1

2
J (Uk,Mk; Tk)2 + 3D2

k ≤ J 2
k −

4θ2

9
E2

k + 3D2
k

=
(
1− 2θ2

9

)
J 2

k +
(
3− 2θ2

9

)
D2

k −
2θ2

9
E2

k ,

(4.5)

followed by D2
k ≤ θ2

9 E2
k to finally derive

J 2
k −

1

2
J (Uk,Mk; Tk)2 + 3D2

k ≤
(
1− 2θ2

9

)
(J 2

k +D2
k) =

(
1− 2θ2

9

)
E2

k .

Therefore, we obtain

E2
k+1 ≤ (1 + δ)

(
1− 2θ2

9

)
E2

k + (1 + δ−1)C3|||Uk+1 − Uk|||2Ω.

which implies the desired reduction property (4.3).

If AFEM calls ADAPTDATA, which means that Dk > θ
3Ek, then we are ensured by the

definition of ADAPTDATA that

D(f, T +
k ) ≤ θ

6
√

3
Ek,

whence by (3.24), we have

D2
k+1 ≤

θ2

36
E2

k .

Moreover, E2
k > J 2

k + θ2

9 E2
k yields

J 2
k <

(
1− θ2

9

)
E2

k .

We again employ Lemma 4.2 to estimate E2
k+1 from above, now by

E2
k+1 ≤ (1 + δ)(J 2

k +D2
k+1) + (1 + δ−1)C3|||Uk+1 − Uk|||2Ω.

Using the two above estimates for D2
k+1 and J 2

k , we thus find that

E2
k+1 ≤ (1 + δ)

(
1− θ2

12

)
E2

k + (1 + δ−1)C3|||Uk+1 − Uk|||2Ω,
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which is the desired reduction property (4.3). 2

We are now in a position to prove the main result of this section. This estimate is instru-

mental for the discussion of cardinality given in §5. Its proof is similar to that given in [5] for

f ∈ L2(Ω).

Theorem 4.4 (contraction property). There exist constants γ > 0 and 0 < α < 1, depending

on T0, amin, amax and on the bulk parameter θ, such that for all k ≥ 0,

|||u− Uk+1|||2Ω + γ E2
k+1 ≤ α2

(
|||u− Uk|||2Ω + γ E2

k

)
. (4.6)

Proof: For convenience, we use the notation

ek = |||u− Uk|||Ω, Ek = |||Uk+1 − Uk|||Ω.

We invoke the Pythagoras equality for the energy norm

e2k+1 = e2k − E2
k ,

along with (4.3), to arrive at

e2k+1 + γ E2
k+1 ≤ e2k +

(
γ (1 + δ−1)C3 − 1

)
E2

k + (1 + δ) γ
(
1− θ2

12

)
E2

k . (4.7)

We now choose the parameters. We first select δ > 0 so that

(1 + δ)
(
1− θ2

24

)
= 1− θ2

48
=: α1

and next γ > 0 so that

γ (1 + δ−1)C3 − 1 = 0 ⇒ γ (1 + δ) =
δ

C3
.

We invoke the upper a posteriori error bound (3.17), namely

e2k ≤ C2 E2
k ,

to write (
1− θ2

12

)
E2

k ≤
(
1− θ2

24

)
E2

k −
θ2

24C2
e2k.

Inserting this back into (4.7), and setting α2 := 1− δθ2

24C2C3
, we get

e2k+1 + γ E2
k+1 ≤ α2 e

2
k + γ α1 E2

k .

The estimate (4.6) thus follows with α2 = max{α1, α2}. 2

5 Optimal Convergence Rates

In this section we study the asymptotic decay of the combined quantity

E(u, f, T )2 := |||u− U |||2Ω +D(f, T )2.
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5.1 Optimal Decay of E(u, f, T )

We first point out the following trivial consequence of (3.17)

E(U, f, T )2 ≈ E(u, f, T )2 ≈ |||u− U |||2Ω + γE(U, f, T )2, (5.1)

along with the fact that the last quantity is contracted by AFEM according to Theorem 4.4. We

assume that u ∈ As for 0 < s ≤ 1/2 which means that for all N ≥ #(T0) there exist conforming

meshes TN ≥ T0 with #(TN ) ≤ N and

|||u− UN |||Ω ≤ |u|AsN−s. (5.2)

Our AFEM can only meet this benchmark provided the data estimator exhibits a similar decay

rate. We thus make a crucial assumption on the module ADAPTDATA and f .

Assumption A(s): For any τ > 0, the output T + = ADAPTDATA(T , f, τ) satisfies

#(T +)−#(T ) ≤
(Fs

τ

) 1

s
, (5.3)

where Fs is a fixed constant.

We shall show below that we can construct subroutines ADAPTDATA for which this assump-

tion is satisfied in a variety of settings. But for now, we continue on with our analysis assuming

that we have such a subroutine in hand.

An immediate by-product of Assumption A(s) is that for all N > #(T0) there exist conform-

ing meshes TN ≥ T0 with #(TN ) ≤ N and

D(f, TN ) . FsN
−s. (5.4)

Lemma 5.1 (a priori asymptotic decay of E). Let assumption A(s) on ADAPTDATA and f , and

u ∈ As be valid. For all N > #(T0) there exist conforming meshes TN ≥ T0 with #(TN ) ≤ N

and

E(u, f, TN ) .
(
|u|As + Fs

)
N−s. (5.5)

Proof: Given N > #(T0) and the meshes TN (u) and TN (f) for u and f guaranteed by (5.2)

and (5.4), respectively, we simply consider the overlay

T (u, f) = TN (u)⊕ TN (f) ≥ T0.

Invoking (2.4), we have

#(T (u, f)) ≤ #(TN (u)) + #(TN (f))−#(T0) ≤ 2N.

Moreover, from (3.24), we obtain

E(u, f, T (u, f)) ≤ 2s
(
|u|As +

√
3Fs

)
(2N)−s.

From this we immediately deduce (5.5). 2
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5.2 Quasi-Optimal Cardinality of AFEM

In order to prove the optimal convergence of our AFEM, we need to make the following assump-

tion on the bulk parameter in MARK:

the bulk parameter satisfies 0 < θ < θ∗ with θ∗ :=
√

C1

1+C2
L
, (5.6)

where C1 and CL are the constants appearing in (3.17) and (3.15). Since C1 < 1+C2
G < 1+C2

L,

we deduce that θ∗ < 1 and that the larger the discrepancy between C1 and C2
L (or between C1

and C2 in (3.17)) the smaller the value of the threshold θ∗.

We next prove that if a conforming refinement T ∗ of T reduces E(u, f, T ) substantially, then

the refined set must capture the bulk of the error estimator. This property is what connects the

AFEM with the best possible decay of E(u, f, T ) described in §5.1. This crucial insight is due

to Stevenson [14] for the Laplacian and piecewise constant forcing f . The present formulation

is closer to that of Cascón et al [5] for f ∈ L2(Ω), but now the refined set R is indexed by nodes

z instead of by triangles T .

Lemma 5.2 (bulk property). Let ξ :=
√

1− θ2

θ2
∗
> 0. Let T ∗ ≥ T be a refinement of T and

let R ⊂ N (T ) designate the set of all nodes z ∈ N (T ) such that z is the vertex of a triangle

T ∈ T \ T ∗ which was refined in the process of constructing T ∗. If

E(u, f, T ∗) ≤ ξE(u, f, T ), (5.7)

then the set R satisfies the bulk property

E(U, f,R; T ) ≥ θE(U, f, T ). (5.8)

Proof: We use the lower bound in (3.17) and (5.7) to write

(1− ξ2)C1E(U, f, T )2 ≤ E(u, f, T )2 − E(u, f, T ∗)2

= |||u− U |||2Ω − |||u− U∗|||2Ω +D(f, T )2 −D(f, T ∗)2.

We observe that the Pythagoras equality in conjunction with (3.15) gives

|||u− U |||2Ω − |||u− U∗|||2Ω = |||U − U∗|||2Ω ≤ C2
LE(U, f,R; T )2,

Since (1− ξ2)C1 = (1 + C2
L)θ2, we find that

(1 + C2
L)θ2E(U, f, T )2 ≤ C2

LE(U, f,R; T )2 +D(f, T )2 −D(f, T ∗)2.

On the other hand, we observe that

D(f, T )2 = D(f,R; T )2 +D(f,N (T ) \ R; T )2 ≤ E(U, f,R; T )2 +D(f, T ∗)2,

and therefore

(1 + C2
L)θ2E(U, f, T )2 ≤ (1 + C2

L)E(U, f,R; T )2,

which is the asserted estimate. 2

We next show that the AFEM yields an estimate similar to (5.5) but with N replaced by

#(Mk).
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Lemma 5.3 (cardinality ofMk). Let u ∈ As and f and ADAPTDATA be such that Assumption

A(s) is satisfied. Let the bulk parameter θ satisfy (5.6). If (Tk,Mk) are the k-th mesh and

marked set generated by the AFEM from T0, then

#(Mk) .
(
|u|As + Fs

)1/s
E(u, f, Tk)−1/s. (5.9)

Proof: Let ε = ξ√
3
E(u, f, Tk) where ξ :=

√
1− θ2

θ2
∗

was introduced in Lemma 5.2. In view of

Lemma 5.1, there exists a conforming mesh Tε ≥ T0 such that

E(u, f, Tε) ≤ ε, and #(Tε) .
(
|u|As + Fs

) 1

s ε−
1

s .

We need to relate Tε and Tk. To do this, we introduce the overlay T ∗ = Tε⊕Tk, which, according

to (2.4), satisfies

#(T ∗) ≤ #(Tε) + #(Tk)−#(T0).

Since T ∗ ≥ Tε, we deduce that

E(u, f, T ∗)2 = |||u− U∗|||2Ω +D(f, T ∗)2 ≤ |||u− Uε|||2Ω + 3D(f, Tε)2 ≤ 3ε2 = ξ2E(u, f, Tk)2.

Let R ⊂ N (Tk) be the set of all nodes z ∈ N (Tk) such that z is the vertex of a triangle

T ∈ Tk \ T ∗ which was refined in the process of constructing T ∗. From Lemma 5.2, we conclude

that this set satisfies the bulk property

E(Uk, f,R; Tk) ≥ θEk.

Since the set Mk is a minimal subset of N (Tk) that satisfies the same property, we infer that

#(Mk) ≤ #(R) ≤ #(N ∗)−#(Nk) . #(T ∗)−#(Tk)

≤ #(Tε)−#(T0) .
(
|u|As + Fs

)
ε−

1

s .
(
|u|As + Fs

) 1

sE(u, f, Tk)−
1

s ,

as asserted. 2

We are now ready to prove the main result of this section, namely that the AFEM achieves

a performance comparable with the benchmark (5.5).

Theorem 5.4 (quasi-optimal cardinality of AFEM). Let u ∈ As and f and ADAPTDATA be

such that Assumption A(s) is satisfied. Let the bulk parameter satisfy (5.6). If (Tk,Vk, Uk)k≥0

is a sequence of conforming meshes, nested spaces Vk and Galerkin solutions Uk ∈ Vk generated

by our AFEM, then

E(u, f, Tk) .
(
|u|As + Fs

)
#(Tk)−s. (5.10)

Proof: At each iteration j of our AFEM, there are two instances where elements are added.

The first one is in the subroutine MARK. Lemma 5.3 shows that the set Mj of marked nodes

satisfies

#(Mj) .
(
|u|As + Fs

) 1

sE(u, f, Tj)−
1

s .
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The second instance is due to data adaptation within ADAPTDATA. For the j-th iterate, we

may apply (5.3) with τ = θ
6
√

3
E(Uj , f, Tj) and obtain

#(T +
j )−#(Tj) ≤ F

1

s
s

( θ

6
√

3
E(Uj , f, Tj)

)− 1

s ≈ F
1

s
s E(u, f, Tj)−

1

s

because of the equivalence (5.1). In light of Lemma 2.1, we deduce

#(Tk)−#(T0) .

k−1∑

j=0

(
#(Mj) + #(T +

j )−#(Tj)
)

.
(
|u|As + Fs

) 1

s

k−1∑

j=0

E(u, f, Tj)−
1

s . (5.11)

We now recall the contraction property (4.6) for 0 ≤ j < k

|||u− Uk|||2Ω + γE2
k ≤ α2(k−j)

(
|||u− Uj |||2Ω + γE2

j ),

which can be written equivalently as follows, upon employing (5.1),

E(u, f, Tk)
1

s . α
k−j

s E(u, f, Tj)
1

s .

Inserting this into (5.11), we obtain

#(Tk)−#(T0) .
(
|u|As + Fs

) 1

sE(u, f, Tk)−
1

s

k−1∑

j=0

α
k−j

s .
(
|u|As + Fs

) 1

sE(u, f, Tk)−
1

s

because α < 1 and so the geometric series
∑∞

j=0 α
j
s converges. This gives (5.10) provided

#(Tk) ≥ 2#(T0). If instead #(T0) < #(Tk) < 2#(T0), then #(Tk)−#(T0) ≥ 1 ≥ #(Tk)
2#(T0) , which

also yields (5.10). This concludes the proof. 2

6 Approximation Classes for the Data

The results of the previous sections show that if u ∈ As, the optimal convergence rate N−s is

met by our AFEM algorithm, provided that for the given data f , the procedure ADAPTDATA

satisfies the property (5.3) that defines Assumption A(s). The goal of this section is to discuss

under which circumstances such a property may hold. In view of (5.4), it is thus natural to

introduce approximation classes Bs for the data, whose definition mimics that of the classes As

for the solution u. Accordingly, we define for all N ≥ #(T0)

δN (f) := min
T ∈TN

D(f, T ),

and denote by Bs the set of all f ∈ H−1(Ω) such that

|f |Bs := sup
N≥#(T0)

N sδN (f) < +∞.

This is a (quasi) semi-norm, and a quasi-norm for the space Bs can be defined by

‖f‖Bs := ‖f‖H−1(Ω) + |f |Bs .

The main result of this section shows that the condition u ∈ As implies that f ∈ Bs, 0 < s < 1/2.
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Theorem 6.1 (relation between As and Bs). If u ∈ As for some 0 < s < 1/2, then f ∈ Bs and

‖f‖Bs ≤ C4‖u‖As , (6.1)

where C4 depends only on s, amin, amax and on the initial triangulation T0.

Since the class As is defined via approximation by piecewise linear functions in V0(T ), a

natural approach to proving this theorem is to start with (5.2) and then approximate f =

−div(A∇u) by S = −div(A∇V ) for some V ∈ V0(T ). Each such S is a Dirac distribution

supported on the interior edges Γ(T ) of T . With this in mind, the heuristic argument to prove

Theorem 6.1 is as follows: we let N ≈ 2n#(T0) for n ≥ 1 integer, and let Tj ≥ T0 and Vj ∈ V(Tj)
satisfy

#(Tj) ≤ 2j#(T0), ‖u− Vj‖H1
0
(Ω) . |u|As

(
2j#(T0)

)−s
.

We realize that u = u− Vn +
∑n

j=1 Vj − Vj−1 with V0 = 0 induces the representation of f

f = f − Sn +
n∑

j=1

Sj − Sj−1,

with Sj = −div(A∇Vj). We next introduce a mesh T ∗ ≥ Tj , which is a common refinement of

all Tj for 0 ≤ j ≤ n. We achieve this by further refining each interior edge of Tj at least mj

times and so creating an admissible mesh Rmj (Tj) ≥ Tj with a level of resolution comparable

with Tn. We finally set T ∗ := ⊕n
j=1Rmj (Tj) and evaluate each term in

D(f, T ∗) ≤ D(f − Sn, T ∗) +

n∑

j=1

D(Sj − Sj−1, T ∗).

To accomplish this program, we first examine in §6.1 the effect of m edge refinements and

completion to create Rm(T ) from T . Then, we characterize D(S, T ) and derive crucial prop-

erties of D(S, T ) in §6.2. We finally prove Theorem 6.1 in §6.3. Inspection of this proof reveals

that in the limit case s = 1
2 , we have a logarithmic loss in the sense that u ∈ As only implies

that δN (f) ≤ CN−s logN . We show in §6.4 that this loss cannot be avoided.

Theorem 6.1 suggests that one should be able to design the ADAPTDATA procedure so that

the property (5.3) holds for any f ∈ H−1 whenever u ∈ As. We discuss in §6.5 how this

may be achieved by using a specific refinement procedure. However, this procedure requires

the evaluation of the data indicators d(z) which are not easily computable in practice since

they involve the H−1(ωz) norms. We present in §7 simpler greedy strategies based on more

computable surrogate quantities d̃(z), under some additional assumptions on f .

6.1 Edge Refinement

In this subsection, we introduce certain conforming refinements Rm(T ) of a given admissible

triangulation T obtained by successively bisecting the inner edges of T at least m times. Given

an edge σ of length |σ|, its bisection results in two edges of length |σ|
2 . If each of these two edges

is again bisected we obtain four edges of length |σ|
4 . Notice that an application of newest vertex
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bisection to a triangle results in bisecting one of its edges. If a refinement is applied to each

of the resulting children, then the remaining two edges will also be bisected. So we can always

refine an edge σ in the original triangulation T into arbitrarily fine edges through a sequence of

newest vertex bisections. We are interested in doing this with a minimal number of refinements,

and we only want to refine the inner edges of T .

Given T , we let Rm(T ) be a triangulation with the following properties

(i) Rm(T ) is a refinement of T which is admissible;

(ii) Any edge of Rm(T ) contained in an inner edge σ of T has length at most 2−m|σ|.
(iii) The cardinality of Rm(T ) is minimal among all triangulations with these two properties.

Lemma 6.2 (the cardinality of Rm(T )). Given any admissible T , we have

#(Rm(T )) ≤ 7C02
m#(T ), m > 0, (6.2)

with C0 the constant in (2.1).

Proof: Let us first observe that given any triangle T that occurs in newest vertex bisection and

given one of its edges σ we can always perform a bisection of σ with at most 2 newest vertex

bisections. Namely, the first subdivision of T will bisect one of the edges of T . If this is not

σ then σ is an edge of one of the children of T and the subdivision of that child will bisect

σ. We shall call this sequence (of one or two bisections) a bisection of σ. If we perform three

subdivisions then each edge of T is bisected. We call the latter a full bisection of T .

Now given our original triangulation T =: T̃0, we denote by Γ0 = Γ(T̃0) its collection of inner

edges. We perform a full bisection on each of the triangles T ∈ T̃0 and denote the resulting

nonconforming triangulation by T̃1. Thus each edge of T has been bisected once in T̃1. We

denote by Γ1 the inner edges of T̃1 which are contained in an edge of Γ0.

Given that T̃m, m ≥ 1, has already been constructed and Γm are the edges of T̃m that are

contained in edges from Γ0, we perform a bisection of each σ ∈ Γm. We denote by T̃m+1 the

resulting non-conforming triangulation after each edge σ ∈ Γm has been bisected. Note that T̃m
satisfies the property (ii) required for Rm(T ).

It is easy to bound the cardinality of each T̃m. Let N0 = #(Γ0) be the number of inner edges

in T̃0 = T . Since each interior edge requires bisecting two triangles, we have

#(T̃1) ≤ 2N0 + #(T̃0).

In the general case of m ≥ 1, we have #(Γm) = 2mN0 and

#(T̃m) ≤ #(T̃m−1) + 4#(Γm−1) = #(T̃m−1) + 4 · 2m−1N0.

The factor 4 arises because to bisect σ we need to bisect the two triangles containing σ either

once or twice. It follows by induction that

#(T̃m) ≤ #(T̃0) + {2 + 4(2 + · · ·+ 2m−1)}N0 ≤ #(T̃0) + 4 · 2mN0.

Observing that N0 ≤ 3
2#(T̃0), we thus find that

#(T̃m) ≤ (6 · 2m + 1)#(T ) ≤ 7 · 2m#(T ).
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Given T̃m as described above, we define T m as the minimal completion of T̃m into a conforming

triangulation. Then, T m satisfies properties (i) and (ii) in the definition of Rm(T ). From

(2.3), we derive that #(T m) ≤ C2m#(T ), with C = 7C0, which concludes the proof since

#(Rm(T )) ≤ #(T m). 2

6.2 The Data Estimator for Dirac Distributions

We next derive properties of the data estimator D(S, T ) provided S is a linear combination of

the Dirac distributions of the inner edges σ ∈ Γ(T ) of T , i.e. S is of the form

S :=
∑

σ∈Γ(T )

cσδσ. (6.3)

Note that S = −div(A∇V ) for some V ∈ V0(T ) is of this form with cσ := Jσ(V ) the jump

of the normal component of A∇V across σ.

Lemma 6.3 (a characterization of D(S, T )). For all T and all S of the form (6.3), we have

∑

σ∈Γ(T )

|cσ|2|σ|2 . D(S, T )2 .
∑

σ∈Γ(T )

|cσ|2|σ|2. (6.4)

Proof: We shall prove that for each z ∈ N (T ), we have

∑

σ∈Γ(ωz)

|cσ|2|σ|2 . ‖S‖2H−1(ωz) .
∑

σ∈Γ(ωz)

|cσ|2|σ|2, (6.5)

where Γ(ωz) are the inner edges of T which admit z as an end point. The lemma then follows

by adding these estimates over all z ∈ N (T ).

To prove the right inequality in (6.5), we let v ∈ H1
0 (ωz) with ‖v‖H1

0
(ωz) = 1. Then

〈S, v〉H−1(ωz),H1
0
(ωz) =

∑

σ∈Γ(ωz)

cσ

∫

σ

v ≤
∑

σ∈Γ(ωz)

|cσ| |σ|1/2‖v‖L2(σ). (6.6)

From the trace theorem (see e.g. [4]), Poincaré’s inequality and standard scaling arguments we

have for any triangle T of ωz and any edge σ of T ,

‖v‖L2(σ) ≤ ‖v‖L2(∂T ) . |σ| 12 ‖v‖H1
0
(ωz) . |σ| 12 . (6.7)

Combining (6.6) and (6.7), and taking the supremum over all v so that ‖v‖H1
0
(ωz) = 1, we get

‖S‖H−1(ωz) .
∑

σ∈Γ(ωz)

|cσ| |σ|,

which implies the right inequality in (6.5) since the number of terms in the sum is bounded by

a fixed integer that only depends on the initial triangulation T0.
To prove the left inequality in (6.5), we choose an edge σ ∈ Γ(ωz) and let ϕσ be the canonical

quadratic bubble function with value 1 at the mid-point of the side σ and zero at all other

Lagrange quadratic nodes. It is easily checked that

‖ϕσ‖H1
0
(ωz) . 1.
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Moreover, we have

〈S, ϕσ〉H−1(ωz),H1
0
(ωz) = cσ

∫

σ

ϕσ =
2

3
|σ|cσ,

whence

‖S‖H−1(ωz)
>∼ |cσ||σ|.

Squaring and adding over σ ∈ Γ(z) we derive the left inequality in (6.5). 2

A first consequence of Lemma 6.3 is that edge refinement provides a decrease in the data

estimator when S is of the form (6.3), as expressed in the following.

Lemma 6.4 (decrease of D(S, T )). If S is of the form (6.3) and Rk(T ) is the edge bisection

refinement of Lemma 6.2, then

D(S,Rk(T ))2 . 2−kD(S, T )2. (6.8)

Proof: We have

D(S,Rk(T ))2 .
∑

σ∈Γ(Rk(T ))

|cσ|2|σ|2 ≤ 2−k
∑

σ∈Γ(T )

|cσ|2|σ|2 . 2−kD(S, T )2, (6.9)

where we have used both inequalities in Lemma 6.3 and the fact that the edges of Rk(T ) are

obtained by k successive refinements from those of T . 2

Combining Lemmas 6.4 and 6.2, we give an estimate of ‖S‖B1/2 when S is of the form (6.3).

Lemma 6.5 (estimate of ‖S‖B1/2). If S is of the form (6.3) over a mesh T ≥ T0, then

‖S‖B1/2 .
(
#(T )

) 1

2 ‖S‖H−1(Ω). (6.10)

Proof: Let N = #(T ) and m ≤ 7C0N . From Lemma 3.5, we have

δm(S) ≤
√

3‖S‖H−1(Ω), (6.11)

whence

m1/2δm(S) . N1/2‖S‖H−1(Ω). (6.12)

To bound δm(f) for m > 7C0N , we use the edge refinements Tk := Rk(T ) of Lemma 6.2, for

which we have #(Tk) ≤ 7C02
kN . For m = #(Tk), we have from Lemma 6.4 and Lemma 3.5

δm(S)2 ≤ D(S, Tk)2 . 2−kD(S, T )2 . 2−k‖S‖2H−1(Ω), (6.13)

whence

m1/2δm(S) . N1/2‖S‖H−1(Ω). (6.14)

For a general m we find k so that #(Tk) < m ≤ #(Tk+1) and use the fact that δm(S) is monotone

decreasing with increasing m, to derive (6.14) for all m ≥ N . We thus obtain (6.10). 2
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6.3 Proof of Theorem 6.1

We fix a value of n and estimate δN (f) for N ≈ 2n, assuming that u ∈ As. According to (1.5),

under such an assumption there is a sequence of admissible triangulations {Tj}nj=1 and best

approximations Vj ∈ V(Tj) of u in H1
0 (Ω) such that #(Tj) ≤ 2j#(T0) and

‖u− Vj‖H1
0
(Ω) ≤M2−js, 1 ≤ j ≤ n (6.15)

with M := |u|As#(T0)−s. For each Tj , we construct the edge refinement Rmj (Tj) upon applying

Lemma 6.2 with the choice

mj := n− j − ⌈log2 j
2⌉, 1 ≤ j ≤ n,

where ⌈·⌉ is the ceiling function. Let T ∗ = ⊕n
j=1Rmj (Tj) be the overlay of all meshes Rmj (Tj);

note that Vj ∈ V(T ∗) for all 1 ≤ j ≤ n. In view of (2.4) and (6.2), we have

#(T ∗) ≤
n∑

j=1

#(Rmj (Tj)) ≤ 7C0#(T0)
n∑

j=1

2mj+j ≤ 7C0#(T0)2n
∞∑

j=1

j−2,

where C0 is the constant in (2.1). If C∗ = 7π2

6 C0, then we infer that

#(T ∗) ≤ C∗#(T0)2n. (6.16)

We now give a bound for D(S, T ∗). If V0 := 0, we have the decomposition u = u − Vn +∑n
j=1 Vj − Vj−1, which induces the corresponding decomposition of f

f = f − Sn +

n∑

j=1

Sj − Sj−1,

with Sj = −div(A∇Vj). Since f 7→ D(f, T ∗) is a norm (see Lemma 3.5) we obtain

D(f, T ∗) ≤ D(f − Sn, T ∗) +
n∑

j=1

D(Sj − Sj−1, T ∗).

Using (3.23) and the continuity of the mapping v 7→ div(A∇v) from H1
0 (Ω) to H−1(Ω), we can

bound the first term in the right hand side by

D(f − Sn, T ∗) ≤
√

3‖f − Sn‖H−1(Ω) ≤
√

3 amax‖u− Vn‖H1
0
(Ω).

Similarly, the terms in the sum are each bounded by the following argument

D(Sj − Sj−1, T ∗) . D(Sj − Sj−1,Rmj (Tj))
. 2−mj/2D(Sj − Sj−1, Tj)
. 2−mj/2‖Sj − Sj−1‖H−1(Ω)

. 2−mj/2amax‖Vj − Vj−1‖H1
0
(Ω),

where we have used Lemma 6.4 and both inequalities of Lemma 3.5. It follows that

D(f, T ∗) ≤ C
(
‖u− Vn‖H1

0
(Ω) +

n∑

j=1

2−mj/2‖Vj − Vj−1‖H1
0
(Ω)

)
, (6.17)
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where the constant C only depends on amax and on the initial triangulation T0.
We next invoke (6.15) to deduce that ‖u− Vn‖H1

0
(Ω) ≤M2−ns,

‖Vj − Vj−1‖H1
0
(Ω) ≤ ‖u− Vj‖H1

0
(Ω) + ‖u− Vj−1‖H1

0
(Ω) ≤ (1 + 2s)M2−js, 1 < j < n,

and, since V1 is the best approximation of u within V(T1),

‖V1‖H1
0
(Ω) ≤ ‖u‖H1

0
(Ω).

Replacing this into (6.17) gives

D(f, T ∗) ≤ CM
(
2−ns +

n−1∑

j=2

2−mj/2−js
)

+ C2−n/2‖u‖H1
0
(Ω).

We observe that s < 1/2 implies

n−1∑

j=2

2−mj/2−js ≤ 2−ns
n−1∑

j=2

j2(n−j)(s−1/2) ≤ C2−ns.

Thus, for N = C∗#(T0)2n with C∗ the constant in (6.16), we thus find that

δN (f) ≤ D(f, T ∗) ≤ C
(
M + ‖u‖H1

0
(Ω)

)
2−sn ≤ C‖u‖AsN−s, (6.18)

where C only depends on s, amax and the initial triangulation T0. Taking into account the

monotonicity of δN (f) we complete the proof of the theorem. 2

6.4 The Case s = 1
2
: Counterexample

The limit case s = 1/2 is not covered by Theorem 6.1. In fact, (6.18) becomes

δN (f) ≤ C‖u‖AsN−1/2 logN.

We will now give a counterexample that shows that (6.18) cannot possibly hold for s = 1/2.

To this end, we use the unit square domain Ω = [0, 1]2 and the matrix coefficient A(x) = I,

therefore the equation is simply −∆u = f .

We take as an initial triangulation T0 the four triangles obtained by inserting the two diago-

nals connecting (0, 0) to (1, 1) and (1, 0) to (0, 1) respectively. We shall refer to this triangulation

of a square as the base pattern. We label the sides of the square Ω by 0 and the other four edges

in T0 by 1, as an initial labeling for newest vertex bisection. Let Q be one of the 4 squares

obtained by spliting Ω by the mid-point of its sides. If we refine only the triangles in T0 which

intersect Q, then applying four bisections, we arrive at a triangulation with the base pattern on

Q. This can be repeated: if Q is a dyadic square of side length 2−n then applying 4n bisections

from T0 we reach a (non-conforming) triangulation which contains the base pattern for Q.

We let φ denote the nodal basis function for T0 corresponding to the center vertex (1/2, 1/2).

More generally, for any dyadic square Q of Ω, we denote by φQ the nodal basis function subordi-

nate to the base pattern for Q associated to the vertex which is the center of this base pattern.

We have ‖φQ‖L∞(Ω) = 1 and ‖φQ‖H1
0
(Ω) = ‖φ‖H1

0
(Ω) = 2.
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We now choose a sequence (Qj)j>0 of disjoint dyadic squares of Ω with |Qj | = 4−j ; we

thus select one dyadic square from each scale j. To each Qj we associate the 4j dyadic squares

Qi,j ⊂ Qj with |Qi,j | = 4−2j , for i = 1, · · · 4j . We consider the function

u :=
∞∑

j=1

2−jψj , where ψj := 2−j
4j∑

i=1

φQi,j . (6.19)

From disjointness of the supports of the basis functions involved in this definition, we find that

‖ψj‖H1
0
(Ω) = 2 and ‖u‖H1

0
(Ω) = 2√

3
. The associate data f for the equation −∆u = f is thus in

H−1(Ω) with ‖f‖H−1(Ω) = 2√
3
.

It is easy to see that u ∈ A1/2. Indeed, for each j, we can start from Ω and apply 4j

refinements and arrive at the base pattern for Qj . Then, on Qj we apply an additional 3 · 4j

(uniform) refinements and arrive at a triangulation which contains the base pattern for each Qi,j

for i = 1, · · · , 4j . Thus, using at most
∑n

j=1(4j+3·4j) refinements we arrive at a triangulation T̄n
that contains the base pattern for each Qi,j for i = 1, · · · , 4j and j = 1, · · · , n. This triangulation

is not necessarily conforming and we define Tn its smallest conforming refinement, so that all

functions ψj for j = 1, · · · , n belong to V0(Tn), and therefore so does the function

Vn :=
n∑

j=1

2−jψj .

According to (2.1), we have

#(Tn) ≤ C0

n∑

j=1

(4j + 3 · 4j) ≤ C4n.

We thus find that

σC·4n(u) ≤ ‖u− Vn‖H1
0
(Ω) ≤

∞∑

j=n+1

2−j‖ψj‖H1
0
(Ω) ≤ 2 · 2−n,

which shows that u ∈ A1/2.

We now show that f is not in B1/2. Let T be any conforming triangulation obtained from

T0 by using 4n bisections. Writing Sn = −∆Vn and using Lemma 3.5, we see that

D(f, T ) ≥ D(Sn, T )−
√

3‖f − Sn‖H−1(Ω)

= D(Sn, T )−
√

3‖u− Vn‖H1
0
(Ω)

≥ D(Sn, T )− 2
√

32−n.

Thus, it is sufficient to show that

D(Sn, T ) ≥Mn2−n, (6.20)

where Mn →∞ as n→∞. To show this, we first let T ∗ = T ⊕ Tn be the overlay of Tn and T ,

so that #(T ∗) ≤ C4n. Using Lemmas 6.3 and 3.5 gives

D(Sn, T )2 ≥ 1

3
D(Sn, T ∗)2 ≥ C

∑

σ∈Γ(T ∗)

J2
σ |σ|2, (6.21)
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where Jσ = Jσ(Vn). Notice that Jσ = 0 unless σ is contained in an edge of Tn and in any case

Jσ is constant on σ.

Let us fix one of the edges σ from Tn and let σi, i = 1, 2, · · · ,mσ, denote the edges in T ∗

contained in σ. Then,

|σ| =
mσ∑

i=1

|σi| ≤ m1/2
σ

( mσ∑

i=1

|σi|2
)1/2

, (6.22)

and therefore
mσ∑

i=1

J2
σi
|σi|2 ≥ m−1

σ J2
σ |σ|2, (6.23)

where we have used the fact that Jσi = Jσ for each σi ⊂ σ. This gives

D(Sn, T ∗)2 ≥
∑

σ∈Γ(Tn)

m−1
σ J2

σ |σ|2. (6.24)

Notice that the only σ ∈ Γ(Tn) for which Jσ 6= 0 are the edges contained in the interior of

one of the Qi,j . For each fixed i, j, there are only four such edges. Also the jump in ∇φQi,j

across each of these edges is the same and equal to 2
√

2 4j , and so the jump in ∇ψj across each

such edge is
√

2 2j+1. Finally the jump Jσ(Vn) across each such edges is 2
√

2. Since |σ| ≥ C4−j

for each such edge, we obtain

D(Sn, T ∗)2 ≥
n∑

j=1

4j∑

i=1

N−1
i,j 4−2j (6.25)

where Ni,j is the largest of the mσ for σ in Qi,j .

On the other hand, we know that
∑n

j=1

∑4j

i=1Ni,j ≤ 4n because there are at most 4n refine-

ments in creating T and any refinement of an edge from Tn must come from the refinements

used to create T . Therefore, for at least half of the j ∈ {1, · · · , n}, we have
∑4j

i=1Ni,j ≤ 2 · 4n/n

and for each of these j for at least half of the i ∈ {1, · · · , 4j}, we have Ni,j ≤ 4 · 4n−j/n, i.e.

N−1
i,j ≥ 4−n+j−1n. Summing over just these i, j, we obtain that the right side of (6.25) is larger

than n4−n−2. Thus, we have verified (6.20) as desired.

6.5 An Optimal Data Adaptation Procedure

Theorem 6.1 implies that whenever u ∈ As for some 0 < s < 1
2 , then for all τ > 0, the

triangulation Tτ ≥ T0 of minimal cardinality such that

D(f, Tτ ) ≤ τ,

satisfies

#(Tτ )−#(T0) ≤ ‖f‖1/s
Bs τ

−1/s ≤ C1/s
4 ‖u‖

1/s
As τ

−1/s.

Therefore, if we define T + = ADAPTDATA(f, T , τ) by

T + := T ⊕ T τ√
3

,
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and recall (2.4), then we find that

#(T +)−#(T ) ≤ #(T τ√
3

)−#(T0) . ‖u‖1/s
As τ

−1/s.

In addition, using (3.24), we find that

D(f, T +) ≤ τ.

Therefore, we realize that Assumption A(s) holds with Fs . ‖u‖As .

This ADAPTDATA procedure is not realistic for several reasons. First, it assumes that we

are able to identify the triangulation of minimal cardinality such that the data estimator is

controlled by some prescribed tolerance. Even if we have exact knowledge of the data indicators

d(z), this task may not be achievable in reasonable computational time. A possibility is to try

to compute near optimal triangulations, that would still retain the property

#(Tτ )−#(T0) . ‖u‖1/s
As τ

−1/s,

with a constant larger than C
1/s
4 but still fixed; see (6.1). This may be achieved by properly

adapting the near best tree algorithm of Binev and DeVore [3]; however we shall not engage into

this discussion, due to the fact that we face a more severe obstruction, namely the fact that we

may not have practical access to the quantities d(z). We address this important issue next.

7 Computable Data Estimators and AFEM

In §7.1 we replace the data indicators d(z) with computable surrogates d̃(z), provided more

information is known on f . We then adapt our optimal convergence analysis in §7.2 to this

setting and show in §7.4 that the procedure ADAPTDATA can then be implemented as a simple

greedy algorithm.

7.1 Computable Data Estimators

The quantities d(z) require minimal H−1(Ω) regularity of f but are not easy to evaluate in

practice since they involve local H−1(ωz) norms. One may circumvent this obstruction provided

more information is known on f , by introducing computable surrogate quantities d̃(z) that

satisfy

d(z) <∼ d̃(z),

for all T and z ∈ N (T ). Two important examples are when f ∈ Lp(Ω) for some 1 < p ≤ 2 or

when f is a Dirac distribution on a 1-dimensional Lipschitz curve C. Note that in such examples

f is generally not in L2(Ω).

Since Ω ⊂ R
2, it is well known that H1

0 (Ω) embeds into Lq(Ω) for all q < ∞ and therefore

that Lp(Ω) continuously embeds in H−1(Ω) for all p > 1. Using the Poincaré inequality and

scaling arguments we obtain that for all g ∈ H1
0 (ωz) and q <∞

‖g‖Lq(ωz) . h2/q
z ‖∇g‖L2(ωz).
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By duality, we obtain that for all f ∈ Lp(Ω) and q = p/(p− 1),

‖f‖H−1(ωz) . h2/q
z ‖f‖Lp(ωz).

Therefore, if |ωz| ≈ h2
z denotes the measure of ωz, we obtain

d(z) . d̃(z) := |ωz|1/q‖f‖Lp(ωz). (7.1)

Likewise, assume that f is of the form f := vδC , where C is a Lipschitz curve contained in Ω

and v ∈ Lp(C) for p > 1. We then have for any g ∈ H1
0 (Ω) and q = p/(p− 1)

〈f, g〉 =

∫

C

v(s)g(s)ds ≤ ‖v‖Lp(C)‖g‖Lq(C) . ‖v‖Lp(C)‖g‖H1
0
(Ω),

where we have used the Sobolev embedding H1
0 (Ω) ⊂ W r

q (Ω) with r = min{1, 2/q} and trace

theorem (the trace operator maps continuously W r
q (Ω) into W

r−1/q
q (C)); hence f ∈ H−1(Ω).

Localizing this estimate near the portion of C which intersects a star ωz, we find that

‖f‖H−1(ωz) . |C ∩ ωz|1/q ‖v‖Lp(C∩ωz),

where |C ∩ ωz| denotes the length of C ∩ ωz. It follows that

d(z) . d̃(z) := |C ∩ ωz|1/q ‖v‖Lp(C∩ωz). (7.2)

Such surrogate data indicators d̃(z) lead to a computable data estimator

D̃(f, T ) :=
( ∑

z∈N (T )

d̃z(f)2
) 1

2

,

which obviously satisfies D(f, T ) . D̃(f, T ), along with computable error indicators e(z) and

estimator Ẽ
ẽ(z)2 := j(z)2 + d̃(z)2 and Ẽ2 := Ẽ(U, f, T )2 :=

∑

z∈N (T )

ẽ(z)2.

It is immediate to check that Lemmas 3.1, 3.2 and 3.3, as well as Corollary 3.4 remain valid

when D and E are replaced by D̃ and Ẽ , with different multiplicative constants C̃G, C̃L, c̃1, C̃1

and C̃2 involved in the corresponding estimates.

The following result shows that quasi-monotonicity property (iii) in Lemma (3.5) also remains

valid up to a modification of the constant
√

3.

Lemma 7.1 (quasi-monotonicity). Let T ∗ be a refinement of T and 1 < p ≤ ∞. We then have

D̃(f, T ∗) ≤ AD̃(f, T ), (7.3)

with A = 31/r and r = min{p, 2} for both surrogate indicators (7.1) and (7.2).
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Proof: Let d̃(z) be given by (7.1). If 1 < p ≤ 2, then

D̃(f, T ∗)2 =
∑

z∗∈N (T ∗)

(
|ωz∗ |1/q‖f‖Lp(ωz∗ )

)2

≤∑
z∈N (T )

∑
ωz∗⊂ωz

|ωz∗ |2/q‖f‖2Lp(ωz∗ )

≤∑
z∈N (T ) |ωz|2/q

∑
ωz∗⊂ωz

‖f‖2Lp(ωz∗ )

≤∑
z∈N (T ) |ωz|2/q

(∑
ωz∗⊂ωz

‖f‖pLp(ωz∗ )

)2/p
.

If p > 2, instead, we resort to Hölder inequality with exponents p/2 and p/(p− 2) to bound the

above inner sum as follows:

∑

ωz∗⊂ωz

|ωz∗ |2/q‖f‖2Lp(ωz∗ ) ≤ |ωz|
( ∑

ωz∗⊂ωz

|ωz∗ |
)(p−2)/p( ∑

ωz∗⊂ωz

‖f‖pLp(ωz∗ )

)2/p
.

Since every T ∗ ∈ T ∗ belongs to exactly three stars ωz∗ , this immediately gives (7.3) with constant

A = 31/p for 1 < p ≤ 2 and A = 31/2 for p > 2.

It remains to consider d̃(z) given by (7.2). Since the argument is identical to that above,

with |ωz∗ | replaced by |C ∩ ωz∗ |, we omit the proof. 2

7.2 A Modified AFEM

We may now consider our AFEM based on the surrogate data indicators d̃(z). The algorithm has

some slight changes compared to the version proposed in §3.1, which we now describe. Choose

parameters 0 < θ < 1, and an initial conforming mesh T0 satisfying the initial labeling of §2.

Set k = 0 and T +
−1 := T0, and iterate

Uk = SOLVE(Tk);{
jk(z), d̃k(z)

}

z∈Nk

= ESTIMATE(Tk, Uk, f);

Mk = MARK({ẽk(z)}z∈Nk
, Tk, θ);

if D̃k > σk := θ
3 Ẽk

T +
k = ADAPTDATA(T +

k−1, f,
σk
2A);

else

T +
k = T +

k−1;

Tk+1 = REFINE(Tk,Mk)⊕ T +
k ;

k ← k + 1,

where A = 31/ min{p,2} is the constant of Lemma 7.1. Note that the modified AFEM com-

putes two sequences of meshes {Tk+1, T +
k }∞k=−1 with Tk+1 ≥ T +

k ; Tk controls the error whereas

T +
k deals with data adaptation. This is due to the structure of ADAPTDATA discussed in §7.4.

The modules SOLVE and REFINE are left unchanged. The module ESTIMATE now deter-

mines the jump indicators jk(z) and surrogate data indicators d̃k(z) for each z ∈ Nk. The

module MARK is now based on the bulk criterion

Ẽ(f, Uk,Mk; Tk) ≥ θẼk.
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The procedure ADAPTDATA builds a conforming refinement of T +
k−1 such that the new data

estimator is smaller than a prescribed tolerance: T +
k = ADAPTDATA(T +

k−1, f, τ) should satisfy

D̃+
k := D̃(f, T +

k ) ≤ τ.

Note that the tolerance parameter of AFEM has been modified from σk

2
√

3
to σk

2A .

With such modifications, similar results as those of §3 can be obtained with exactly the same

proofs. In particular, we reach the contraction property

|||u− Uk+1|||2Ω + γ Ẽ2
k+1 ≤ α2

(
|||u− Uk|||2Ω + γ Ẽk

2
)
. (7.4)

Likewise, similar results to those of §4 can be obtained under the Assumption A(s) for the

modified module ADAPTDATA, with constant F̃s. We denote the constants appearing in the

modified estimates by C̃1, C̃2, etc. If we assume

the bulk parameter satisfies 0 < θ < θ̃∗ with θ̃∗ :=

√
eC1

1+ eC2
L

, (7.5)

then we see that θ̃∗ < 1 and we obtain the following optimal convergence result.

Theorem 7.2 (optimality of the modified AFEM). Let u ∈ As and f and ADAPTDATA be such

that Assumption A(s) is satisfied with constant F̃s. Assume that the bulk parameter satisfies

(7.5). If (Tk,Vk, Uk)k≥0 is a sequence of conforming meshes, nested spaces Vk and Galerkin

solutions Uk ∈ Vk generated by our AFEM, then

Ẽ(u, f, Tk) .
(
|u|As + F̃s

)
#(Tk)−s. (7.6)

Proof: Upon replacing #(T +
j ) −#(Tj) by #(M+

j ) in (5.11), this proof is identical to that of

Theorem 5.4. 2

7.3 Membership in B 1

2 : Constructive Proof

We now give a constructive proof that both forcing functions f of §7.1 satisfy f ∈ B 1

2 . To create

a suitable approximation to f , we use the following greedy algorithm which, starting from the

initial mesh T0, iteratively marks the node z corresponding to the largest data indicator d̃(z)

(with ties handled in an arbitrary way) and refines the corresponding star ωz, until the data

estimator is below the prescribed tolerance τ :

T = GREEDY(T0, f, τ)
T = T0;
do while D̃(f, T ) > τ

z := argmax{d̃(z) = d̃(f, z, T ) : z ∈ N (T )};
T = REFINE(T , {z});

end do
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Theorem 7.3 (Lp(Ω) is contained in B 1

2 ). Assume that f ∈ Lp(Ω) for 1 < p ≤ ∞ and that d̃(z)

is given by (7.1). Then, for any τ > 0, the cardinality of T = GREEDY(T0, f, τ) is controlled by

#(T )−#(T0) ≤ K2
p‖f‖2Lp(Ω)τ

−2, (7.7)

where Kp depends only on T0 and on p. In particular, f ∈ B 1

2 with ‖f‖B 1
2

. F̃ 1

2

:= Kp‖f‖Lp(Ω).

Proof: Let N be the number of iterations of the GREEDY algorithm for the prescribed tolerance

τ , and {zi, T i}Ni=0 be the nodes marked and meshes generated by GREEDY with T 0 = T0. Let

us define N i = N (T i) for 0 ≤ i ≤ N − 1 and

δ := d̃(f, zN−1, T N−1) = max{d̃(f, z, T N−1) : z ∈ NN−1}.

We thus have

τ ≤ D̃(f, T N−1) ≤
√

#(NN−1)δ. (7.8)

On the other hand, it is easily seen that for 0 ≤ i ≤ N − 1 we have

d̃(f, zi, T i) ≥ δ. (7.9)

Indeed any star ωz of T N−1 is contained in a star ωz′ of T i which has larger diameter, and in

view of the particular form (7.1) of the data indicator, we have

d̃(f, z, T N−1) ≤ d̃(f, z′, T i),

whence

max{d̃(f, z, T i) : z ∈ N i} ≥ max{d̃(f, z, T N−1) : z ∈ NN−1} = δ,

which proves (7.9). We thus have

|ωzi |1/q‖f‖Lp(ωzi ) ≥ δ,

and this implies that for each i, we can find at least one triangle T i ∈ T i contained in the star

ωzi with measure |T i| and such that

|T i|1/q‖f‖Lp(T i)
>∼ δ.

The triangles T 0, · · · , TN−1 are distinct from each other because each T i is bisected in the

refinement process from T i to T i+1. We denote by B = {T 0, · · · , TN−1} this collection of

triangles, and by Bj the set of T i’s satisfying

2−(j+1)|Ω| < |T i| ≤ 2−j |Ω|, j ≥ 0.

We observe that |Ω|2−(j+1)#(Bj) < |Ω|, whence #(Bj) < 2j+1. Moreover, if T i ∈ Bj , we have

δ <∼ |T
i|1/q‖f‖Lp(T i) <∼ 2−j/q|Ω|1/q‖f‖Lp(T i).

Assume now 1 < p < ∞. Raising the last inequality to the power p and summing up on the

triangles T i ∈ Bj , which are pairwise disjoint, we find that

#(Bj) <∼ δ−p2−jp/q|Ω|p/q‖f‖pLp(Ω).
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Therefore

N = #(B) =
∑

j≥0

#(Bj) ≤
∑

j≥0

min
{
C2−jp/qδ−p‖f‖pLp(Ω), 2

j+1
}
,

where C only depends on T0 and |Ω|.
Let us denote by j0 the smallest j such that the second term dominates the first in the

minimum, and assume first that j0 > 0. By definition of j0 we have

2j0 ≤ C2−(j0−1)p/qδ−p‖f‖pLp(Ω),

whence

2j0 ≤ Apδ
− pq

q+p ‖f‖
pq

q+p

Lp(Ω) = Apδ
−1‖f‖Lp(Ω)

with Ap a constant which only depends on T0, |Ω| and p. We thus have

N ≤∑
j<j0

2j+1 + Cδ−p‖f‖pLp(Ω)

∑
j≥j0

2−jp/q

≤ 2j0+1 + C
2p/q−1

δ−p‖f‖pLp(Ω)2
−(j0−1)p/q

≤ Bpδ
−1‖f‖Lp(Ω),

with Bp a constant which only depends on T0, |Ω|, and p. Combining this bound on N with

(7.8), and the following relation ensuing from (2.1)

#(NN−1)−#(N 0) ≤ C0N

due to the proportionality between #(T i) and #(N i),we obtain

τ ≤
√

#(NN−1)δ ≤ Bp

√
#(N 0) + C0N

N
‖f‖Lp(Ω) <∼ Bp

1√
N
‖f‖Lp(Ω).

This is the asserted estimate (7.7) for 1 < p <∞ and j0 > 0. If 1 < p <∞ and j0 = 0 instead,

then we infer that δ−p‖f‖pLp(Ω) . 1. This implies

N . δ−p‖f‖pLp(Ω) . δ−1‖f‖Lp(Ω),

and (7.7) follows as before. It remains to examine the case p = ∞, for which we have δ .

|T i|‖f‖L∞(T i). Consequently, squaring and summing over all T i ∈ Bj , we deduce

δ2#(Bj) . 2−j |Ω|
∑

i

|T i|‖f‖2L∞(T i) ≤ 2−j |Ω|2‖f‖2L∞(Ω).

The argument from now on proceeds as before. This concludes the proof. 2.

Theorem 7.4 (line Dirac masses belong to B 1

2 ). Assume that f := vδC where C is a Lipschitz

curve and v ∈ Lp(C) with 1 < p ≤ ∞, and that d̃(z) is given by (7.2). Then, for any τ > 0, the

cardinality of T = GREEDY(T0, f, τ) is controlled by

#(T )−#(T0) ≤ K2
C‖v‖2Lp(C)τ

−2, (7.10)

where the constant KC depends on T0 and on the length of curve C. In particular, f ∈ B 1

2 with

‖f‖B 1
2

. F̃s := KC‖v‖Lp(C).

37



Proof: The proof is essentially the same as the previous one so we just sketch it. We define the

sets Bj in a similar way, and we now obtain

δ <∼ |C ∩ T
i|1/q‖v‖Lp(C∩T i) ≤ AC2−j/2q‖v‖Lp(C∩T i),

for all T i ∈ Bj , where AC is a constant that depends on T0 and on the ratio |C∩T i|/|T i|1/2, which

is uniformly bounded for C Lipschitz. Raising this bound for δ to the power p and summing up

on the triangles T i ∈ Bj , we find that

#(Bj) <∼ δ−pAp
C2

−jp/2q‖f‖pLp(C).

On the other hand, we also have that

2−(j+1)/2|Ω|1/2#(Bj) <∼ |C|

and therefore

#(Bj) ≤ BC2j/2,

where BC is a constant that depends on T0 and on the length |C| of C. This is due to the fact

that the triangles of Bj should have a vertex z such that ωz captures a substantial portion of C
on ωz. The rest of the proof is similar to the previous one and is thus omitted. 2

7.4 Optimal Data Adaptation: Greedy Algorithm

We finally show that Assumption A(s) is met for the optimal rate s = 1
2 by a simple concrete

realization of the new ADAPTDATA procedure, via the above greedy algorithm. If T +
−1 = T0, the

following algorithm generates the meshes T +
k for k ≥ 0

T +
k = GREEDY(T +

k−1, f, τk).

Corollary 7.5 (assumption A(1
2)). Let f be any one of the distributions from §7.1 and let F̃ 1

2

be as defined in Theorems 7.3 and 7.4. Then T +
k = GREEDY(T +

k−1, f, τk) satisfies Assumption

A(1
2) with constant F̃ 1

2

.

Proof: We note that D̃(f, T +
k−1) ≤ τk−1 for k ≥ 1. If τk ≥ τk−1, then T +

k = T +
k−1 and there

is nothing to prove. On the contrary, if τk < τk−1 then we observe that the concatenation

T +
k = GREEDY(GREEDY(T0, f, τk−1), f, τk) is equivalent GREEDY(T0, f, τk), because the deci-

sions within GREEDY are independent of the tolerance. Consequently, using Theorems 7.3 and

7.4, we deduce

#(T +
k )−#(T +

k−1) ≤ #(T +
k )−#(T +

0 ) ≤ F̃ 1

2

τ−2
k .

This is Assumption A(1
2) with constant F̃ 1

2

. 2
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8 Conclusions and Extensions

We finally summarize our rather technical results and discuss possible extensions.

• H−1 data: We provided a natural framework for a posteriori error estimation with rough

data f . This framework consists of localization of f to stars ωz via a partition of unity and

a corresponding localization of the H−1 norms. We discussed two relevant and practical

examples in detail.

• Data estimator: We introduced data indicators d(z) = ‖f‖H−1(ωz) which measure local

data resolution in H−1, and corresponding global data estimators D(f, T ). We explored

their connection to the often used data oscillation osc(f, T ) which is defined only for data

f ∈ L2(Ω).

• Contraction property and optimality of our AFEM: We presented an AFEM with an inner

loop to reduce the data estimator, and showed that the main iterative step of the AFEM

induces a contraction for the scaled sum of energy error and error estimator. We proved

that the AFEM exhibits optimal performance relative to the best decay rates allowed by

the solution and data.

• Approximation classes for the solution and the data: We proved that, with no further

assumptions on f beyond H−1(Ω), the decay rate N−s of D(f, T ) is ensured if u ∈ As

provided s < 1/2. We explored the exceptional case s = 1/2 and construct a coun-

terexample. We also discussed two important examples that lead to surrogate estimators

D̃(f, T ), which are computable, and for which the decay rate N−1/2 is ensured for this

data estimator.

• Variable coefficients: If the diffusion matrix A(x) is no longer piecewise constant over

T0, then the terms ‖f‖H−1(ωz) that constitute D(f, T ) are replaced by the local residuals

‖f+divT (A∇U)‖H−1(ωz) and therefore depend on the discrete solution U ; here divT stands

for the divergence computed elementwise. This setting has been studied by Cascón et al

in [5] under the restriction f ∈ L2(Ω).

• Higher dimensions: The restriction to d = 2 is made for simplicity. Most results of this

paper are valid for d > 2 with minor modifications.

• Higher polynomial degree: If V ∈ V(T ) is piecewise polynomial of degree m > 1, then the

quantity div(A∇V ) consists of two terms, the usual jump residual J(V ) on the skeleton of

T and a polynomial of degree less or equal to m− 2 inside each element T ∈ T . This sug-

gests how to modify the definition (3.11) of the data indicators d(z), or the definitions (7.1)

and (7.2) of the surrogate quantities d̃(z), to reach the larger range of convergence rates

s ≤ m/2. Concerning the surrogate definitions, there are several posibilities depending on

m and f . For instance, take m = 2 and f ∈ B1
r (Lr(Ω)), the Besov space with differentia-

bility order 1 and integrability 2
3 < r ≤ 2; note that B1

r (Lr(Ω)) ⊂ Lp(Ω) ⊂ H−1(Ω) for
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p = 2r
2−r . If we let d(z) := ‖f − fz‖H−1(ωz), as discussed in §3.4, then it can be proved that

d(z) . h
3− 2

r
z ‖f‖B1

r (Lr(ωz)) =: d̃(z),

The proof of Theorem 7.3 extends, thereby showing that f ∈ B1 with ‖f‖B1 . ‖f‖B1
r (Lr(Ω).

The proof of Theorem 7.2 is also valid and the modified AFEM exhibits optimal complexity

Ẽ(u, f, Tk) .
(
|u|A1 + ‖f‖B1

r (Lr(ωz))

)
#(Tk)−1.

If f is a line Dirac mass, instead, then u ∈ A1 but the definition above of d(z) is inadequate

for the decay rate s = 1. We could replace fz by a linear combination of Dirac masses∑
σ∈Γz

cσδσ, supported on the skeleton γz of ωz, or incorporate the line integral somehow

into the jump residual as is proposed in [11]. The situation gets even more involved for

m > 2. Finally, we point out that in order to relate the approximation classes As and Bs,

namely to extend Theorem 6.1 to m > 1, we would need a definition of data indicator d(z)

that includes both a bulk correction fz and a suitable Dirac distribution supported on γz.

We leave these issues open.
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