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Abstract

Group based moving frames have a wide range of applications, from the classical equiva-
lence problems in differential geometry to more modern applications such as computer vision.
Here we describe what we call a discrete group based moving frame, which is essentially a
sequence of moving frames with overlapping domains. We demonstrate a small set of gen-
erators of the algebra of invariants, which we call the discrete Maurer–Cartan invariants,
for which there are recursion formulae. We show that this offers significant computational
advantages over a single moving frame for our study of discrete integrable systems. We
demonstrate that the discrete analogues of some curvature flows lead naturally to Hamilto-
nian pairs, which generate integrable differential-difference systems. In particular, we show
that in the centro-affine plane and the projective space, the Hamiltonian pairs obtained can
be transformed into the known Hamiltonian pairs for the Toda and modified Volterra lattices
respectively under Miura transformations. We also show that a specified invariant map of
polygons in the centro-affine plane can be transformed to the integrable discretization of the
Toda Lattice. Moreover, we describe in detail the case of discrete flows in the homogeneous
2-sphere and we obtain realizations of equations of Volterra type as evolutions of polygons
on the sphere.

Dedicated to Peter Olver in celebration of his 60th birthday

1 Introduction

The notion of a moving frame is associated with Élie Cartan [3], who used it to solve equiv-
alence problems in differential geometry. Moving frames were further developed and applied
in a substantial body of work, in particular to differential geometry and (exterior) differential
systems, see for example papers by Green [11] and Griffiths [12]. From the point of view of
symbolic computation, a breakthrough in the understanding of Cartan’s methods came in a
series of papers by Fels and Olver [6, 7], Olver [36, 37], Hubert [15, 16, 17], and Hubert and
Kogan [18, 19], which provide a coherent, rigorous and constructive moving frame method free
from any particular application, and hence applicable to a huge range of examples, from classical
invariant theory to numerical schemes.

For the study of differential invariants, one of the main results of the Fels and Olver papers is the
derivation of symbolic formulae for differential invariants and their invariant differentiation. The
book [29] contains a detailed exposition of the calculations for the resulting symbolic invariant
calculus. Applications include the integration of Lie group invariant differential equations, to
the Calculus of Variations and Noether’s Theorem, (see also [25, 10]), and to integrable systems
([31, 32, 33, 34]).

∗This paper is supported by ELM’s EPSRC grant EP/H024018/1, GMB’s NSF grant DMS #0804541 and
JPW’s EPSRC grant EP/I038659/1.
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The first results for the computation of discrete invariants using group-based moving frames
were given by Olver [36] who calls them joint invariants; modern applications to date include
computer vision [37] and numerical schemes for systems with a Lie symmetry [4, 22, 23, 24, 30].
While moving frames for discrete applications as formulated by Olver do give generating sets of
discrete invariants, the recursion formulae for differential invariants that were so successful for
the application of moving frames to calculus based applications do not generalize well to these
discrete invariants. In particular, these generators do not seem to have recursion formulae under
the shift operator that are computationally useful. To overcome this computational problem,
we introduce a discrete moving frame which is essentially a sequence of frames1, and prove
discrete recursion formulae for a small computable generating sets of invariants, which we call
the discrete Maurer–Cartan invariants.

We show that our definitions and constructions arise naturally and are useful for the study of
discrete integrable systems. These arise as analogues of curvature flows for polygon evolutions in
homogeneous spaces, and this is the focus of the second half of the paper. The study of discrete
integrable systems is rather new. It began with discretising continuous integrable systems in
1970s. The most well known discretization of the Korteweg-de Vries equation (KdV) is the Toda
lattice [40]

d2us
dt2

= exp(us−1 − us)− exp(us − us+1). (1)

Here the dependent variable u is a function of time t and discrete variable s ∈ Z. We can obtain
a finite-dimensional version by picking N ∈ N and restricting to 1 ≤ s ≤ N subject to one of
two types of boundary conditions: open-end (u0 = uN = 0) or periodic (us+N = us for all s and
some period N). Using the Flaschka [8, 9] coordinates

qs =
dus
dt

, ps = exp(us − us+1),

we rewrite the Toda lattice (1) in the form

dps
dt

= ps(qs − qs+1),
dqs
dt

= ps−1 − ps. (2)

Its complete integrability was first established by Flaschka and Manakov [8, 9, 28]. They con-
structed the Lax representation of system (2) and further solved it by the inverse scattering
method.

Another famous integrable discretization of the KdV equation is the Volterra lattice [28, 21]

dqs
dt

= qs(qs+1 − qs−1).

By the Miura transformation qs = psps−1, it is related to the equation

dps
dt

= p2s(ps+1 − ps−1), (3)

which is the modified Volterra lattice, an integrable discretization of the modified KdV equation.

Since the establishment of their integrability, a great deal of work has been contributed to the
study of their other integrable properties including Hamiltonian structures, higher symmetry

1A sequence of moving frames was also used in [23] to minimize the accumulation of errors in an invariant
numerical method.

2



flows and r-matrix structures, as well as to the establishment of integrability for other systems
and further discretising differential-difference integrable systems to obtain integrable maps. For
example, the time discretisation of the Toda lattice (2) leads to the integrable map (p, q) 7→ (p̃, q̃)
defined by

p̃s = ps
βs+1

βs
, q̃s = qs + c

(
ps
βs
− ps−1
βs−1

)
, (4)

where c ∈ R is constant and the function β is given by the recurrent relation

βs = 1 + cqs − c2
ps−1
βs−1

.

Some historical background about the development of the theory of discrete integrable systems
can be found in [39]. Some classification results for such integrable systems including the Toda
and Volterra lattice were obtained by the symmetry approach [42].

In this paper, we introduce the concept of discrete moving frames, and under conditions which are
satisfied for the range of examples we study, we prove theorems analogous to the classical results
of the continuous case: generating properties of Maurer–Cartan invariants, a replacement rule,
recursion formulas, and general formulas for invariant evolutions of polygons. Once the ground
work is in place, we study the evolution induced on the Maurer–Cartan invariants by invariant
evolutions of N -gons, the so-called invariantizations. We consider the resulting equations to
be defined on infinite lattices, i.e. s ∈ Z for both N -periodic and non-periodic cases. We will
show that the invariantization of certain time evolutions of N -gons (or so-called twisted N -gons
in the periodic case) in the centro-affine plane and the projective line RP1 naturally lead to
Hamiltonian pairs. Under the Miura transformations, we can transform the Hamiltonian pairs
into the known Hamiltonian pairs for the Toda lattice (2) [1] and modified Volterra lattice (3)
[26] respectively. We also show that a specified invariant map of polygons in the centro-affine
plane naturally leads to the integrable map (4) for the time discretisation of the Toda Lattice.
We will analyze in detail the case of the 2-homogeneous sphere. We will use normalization
equations to obtain Maurer–Cartan invariants and we will prove that they are the classical
discrete arc-lengths (the length of the arcs joining vertices) and the discrete curvatures (π minus
the angle between two consecutive sides of the polygon). We will then write the general formula
for invariant evolutions of polygons on the sphere and their invariantizations. We finally find
an evolution of polygons whose invariantization is a completely integrable evolution of Volterra
type.

The arrangement of the paper is as follows: In Section 2 we introduce moving frames and the
definitions and calculations we will discretize. In Section 3 we introduce discrete moving frames
and discrete Maurer–Cartan invariants and prove the main Theorems of the first part of the pa-
per concerning these invariants. In Section 4 we begin our study of Lie group invariant discrete
evolutions of N -gons in a homogeneous space. We show the discrete moving frame yields an
effective and straightforward reduction or invariantization of the evolution, to produce discrete
analogues of curvature flows. In Section 5 we describe discrete invariant evolutions and demon-
strate their integrability. In Sections 5.1 and 5.2 we study the centro-affine and the projective
cases, including the completely integrable evolutions of polygons and their associated biHamilto-
nian pair. We also briefly describe invariant maps and their invariantizations and demonstrate
that the invariant map in the centro-affine plane leads to the integrable discretization of the
Toda lattice (2). However, we leave their thorough study, including a geometric interpretation
of integrable maps and more examples of maps with a biPoisson invariantization, for a later
paper. Finally, Sections 5.3 describes the more involved example, that of discrete evolutions on
the homogeneous sphere. We conclude with indications of future work.
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2 Background and definitions

We assume a smooth Lie group action on a manifold M given by G×M→M. In the significant
examples we discuss in the later sections, M will be the set of N -gons in a homogeneous space,
that is, N -gons in G/H where H is a closed Lie subgroup, or more generally M = (G/H)N with
the standard action. But in what follows this restriction does not need to be in place.

2.1 Moving Frames

We begin with an action of a Lie Group G on a manifold M.

Definition 2.1. A group action of G on M is a map G ×M → M, written as (g, z) 7→ g · z,
which satisfies either g · (h · z) = (gh) · z, called a left action, or g · (h · z) = (hg) · z, called a right
action.

Definition 2.2 (Invariants). Given a smooth Lie group action G ×M → M, a function I :
M→ R is an invariant of the action if I(g · z) = I(z) for any g ∈ G and any z ∈M.

The set of invariants form an algebra; here we consider local invariants and they will typically
be locally smooth. When we talk about generators of the algebra we are referring to functional
generators.

Let us write g · z as z̃ to ease the exposition in places. Further, we assume the action is free
and regular in some domain Ω ⊂ M, which means, in effect, that for every x ∈ Ω there is a
neighbourhood U ⊂ Ω of x such that:

1. the intersection of the orbits with U have the dimension of the group G and further foliate
U ;

2. there exists a submanifold K ⊂ U that intersects the orbits of U transversally, and the
intersection of an orbit of U with K is a single point. This submanifold K is known as the
cross-section and has dimension equal to dim(M)− dim(G);

3. if we let O(z) denote the orbit through z, then the element h ∈ G that takes z ∈ U to k,
where {k} = O(z) ∩ K, is unique.

Under these conditions, we can make the following definitions.

Definition 2.3 (Moving frame). Given a smooth Lie group action G ×M → M, a moving
frame is an equivariant map ρ : U ⊂M→ G. We say U is the domain of the frame.

Given a cross-sectionK to the orbits of a free and regular action, we can define the map ρ : U → G
such that ρ(z) is the unique element in G which satisfies

ρ(z) · z = k, {k} = O(z) ∩ K,

see Figure 1. We say ρ is the right moving frame relative to the cross-section K, and K provides
the normalization of ρ. This process is familiar to many readers: it is well known that if we
translate a planar curve so that a point p in the curve is moved to the origin, and we rotate
it so that the curve is tangent to the x-axis, the second term in the Taylor expansion at p

4



K

k z
g · z

g

ρ(z)


all

different
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Figure 1: The definition of a right moving frame for a free and regular group action. It can be
seen that ρ(g · z) = ρ(z)g−1 (for a left action). A left moving frame is obtained by taking the
inverse of ρ(z).

is the Euclidean curvature at p. The element of the Euclidean group taking the curve to its
normalization is indeed a right moving frame.

By construction, we have for a left action and a right moving frame that ρ(g · z) = ρ(z)g−1 so
that ρ is indeed equivariant. A left moving frame is the inverse of a right moving frame, so for
a left action and a left moving frame, the equivariance is ρ(g · z) = gρ(z). The cross-section
K is not unique, and is usually selected to simplify the calculations for a given application.
Typically, moving frames exist only locally, that is, in some open domain in M . In what follows,
we conflate U with M to ease the exposition. In applications however, the choice of domain may
be critical.

In practice, the procedure to find a right moving frame is as follows:

1. define the cross-section K to be the locus of the set of equations ψi(z) = 0, for i = 1, ..., r,
where r is the dimension of the group G;

2. find the group element in G which maps z to k ∈ K by solving the normalization equations,

ψi(z̃) = ψi(g · z) = 0, i = 1, ..., r.

Hence, the frame ρ satisfies ψi(ρ(z) · z) = 0, i = 1, ..., r.

Remark 2.4. In practice, both left and right actions occur naturally, as do left and right moving
frames, and the calculations can be considerably easier in one handedness than the other, so
both occur in the examples. However, since the handedness can be changed by taking inverses,
there is no need to consider both in a theoretical development. We will usually work with right
and left moving frames for a left action.

In what follows we will use the terms right and left frames to designate left and right moving
frames since this creates no confusion. Invariants of the group action are easily obtained.

Definition 2.5 (Normalized invariants). Given a left or right action G×M→M and a right
frame ρ, the normalized invariants are the coordinates of I(z) = ρ(z) · z.

Indeed, for a left action we have

I(g · z) = ρ(g · z) · g · z = ρ(z)g−1g · z = ρ(z) · z = I(z).
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The normalized invariants are important because any invariant can be written in terms of them;
this follows from the following:

Theorem 2.6 (Replacement Rule). If F (z) is an invariant of the action G ×M → M, and
I(z) is the normalized invariant for a moving frame ρ on M, then F (z) = F (I(z)).

The theorem is proved by noting that (for a right moving frame) F (z) = F (g ·z) = F (ρ(z) ·z) =
F (I(z)) where the first equality holds for all g ∈ G as F is invariant, the second by virtue of
setting g = ρ(z), and the third by the definition of I(z).

The Replacement Rule shows that the normalized invariants form a set of generators for the
algebra of invariants. Further, if we know a sufficient number of invariants, for example, they
may be known historically or through physical considerations, then the Replacement Rule allows
us to calculate the normalized invariants without knowing the frame.

We can apply this theory to product (also called diagonal) actions, the action with which our
paper is concerned. This move has its shortcomings, as we see next.

Given a Lie group action G×M →M , (g, z) 7→ g · z, the product action is

G× (M ×M × · · · ×M), (g, (z1, z2, . . . , zN )) 7→ (g · z1, g · z2, . . . , g · zN ).

In this case M = MN = M × · · · ×M and the normalized invariants are the invariantized
components2 of I(z); we set I(z) = (I1(z), . . . , IN (z)), and the Replacement Rule for the
invariant F (z1, z2, . . . , zN ) has the form:

F (z1, z2, . . . , zN )= F (I1(z), I2(z), . . . , IN (z))

These were called joint invariants in [36].

Remark 2.7. From now on the manifold where G acts will be the product M = M ×M · · · ×
M , hence, questions like freedom of the action, etc, will refer to the diagonal action on the
product. We will also assume that the number of copies N of the manifold M is high enough to
guarantee that the action is free. In fact, there is a minimal number that achieves this (called
the stabilization order), the proof of this result can be found in [2].

The following simple scaling and translation group action on R will be developed as our main
expository example, as the calculations are easily seen.

Example 2.8.

Let G = R+ nR = {(λ, a) |, λ > 0, a ∈ R} act on M = R as

z 7→ λz + a.

The product action is then given by zn 7→ λzn + a for all n = 1, . . . , N . We write this action as
a left linear action as(

z1 z2 · · · zN
1 1 · · · 1

)
7→
(
λ a
0 1

)(
z1 z2 · · · zN
1 1 · · · 1

)
.

2In the literature the invariantization of a component zi is sometimes denoted as I(zi), ι(zi) or ῑ(zi), here we
use Ii(z)
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There are two group parameters and so we need two independent normalization equations. We
may set

g · z1 = 0, g · z2 = 1

which are solvable if z1 6= z2, and this then defines the domain of this frame. In matrix form
the right frame is,

ρ(z1, z2, · · · , zN ) =

 − 1

z1 − z2
z1

z1 − z2
0 1

 .

Equivariance is easily shown. For h = h(µ, b):

ρ(h · z1, h · z2, . . . , h · zN ) =

 − 1

µ(z1 − z2)
µz1 + b

µ(z1 − z2)
0 1


=

 − 1

z1 − z2
z1

z1 − z2
0 1

 1

µ
− b
µ

0 1


= ρ(z1, z2, . . . , zN )h(µ, b)−1

The normalized invariants are then the components of − 1

z1 − z2
z1

z1 − z2
0 1

( z1 z2 z3 · · · zN
1 1 1 · · · 1

)

=

(
I1(z) I2(z) I3(z) · · · IN (z)

1 1 1 · · · 1

)

=

 0 1
z3 − z1
z2 − z1

· · · zN − z1
z2 − z1

1 1 1 · · · 1

 ,

noting that I1(z) = 0 and I2(z) = 1 are the normalization equations. Any other invariant can
be written in terms of these by the Replacement Rule. For example, it is easily verified that the
invariant (

z5 − z4
zN − z6

)2

=

(
I5(z)− I4(z)
IN (z)− I6(z)

)2

=


z5 − z1
z2 − z1

− z4 − z1
z2 − z1

zN − z1
z2 − z1

− z6 − z1
z2 − z1


2

.

The above example shows both the power and the limits of the moving frame. In applica-
tions involving discrete systems, use of the shift operator T taking zn to zn+1 is central to
the calculations and formulae involved. However, it can be seen in the above example that
T (In(z)) 6= In+1(z) and that instead the Replacement Rule will lead to expressions for T (In(z))
that are as complicated in their new formulae as in the original co-ordinates. By contrast, our
discrete moving frame theory yields a single expression which, together with its shifts, generates
all invariants.

As motivation for our discrete moving frame, the next example will show how an indexed sequence
of moving frames arises naturally in a discrete variational problem. This sequence of frames
arises when Noether’s conservation laws for a discrete variational problem with a Lie group
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symmetry, is written, as far as possible, in terms of invariants. As for the smooth case, the non-
invariant part turns out to be equivariant with respect to the group action, and so by definition
forms a moving frame, indexed by n in this discrete case. These frames are not constructed
by normalisation equations and the calculation of the conservation laws makes no use of the
concepts of moving frame theory. Nevertheless, it is fascinating that frames appear, calculated
“for free” by the formulae for the laws.

Example 2.9.

Consider the discrete variational problem

L[z] =
∑

Ln(z) =
∑ 1

2
J2
n =

∑ 1

2

(
zn+2 − zn+1

zn+1 − zn

)2

for which it is desired to find the sequence (zn) which minimises L[z], possibly subject to
certain boundary conditions. We note that Jn+k = (zn+k+2 − zn+k+1)/(zn+k+1 − zn+k) is
invariant under the scaling and translation action, zn 7→ λzn + a (see Example 2.8) and that
T (Jn+k) = Jn+k+1 where T is the shift operator. The discrete Euler Lagrange equation for a
second order Lagrangian in a single discrete variable is (cf. [20])

0 =
∂Ln
∂zn

+ T −1 ∂Ln
∂zn+1

+ T −2 ∂Ln
∂zn+2

which for this example can, after some calculation, be written as

0 = J2
n+1 − J2

n − J3
n + JnJ

2
n−1

after shifting to balance the indices. The Lie group invariance of the summand Ln implies there
are two conservation laws (in this case, first integrals) arising from the discrete analogue of
Noether’s Theorem [14, 20]. The general formulae for these are complicated and we do not
record them here. The two first integrals can be written in matrix form as

(
c1
c2

)
= An(z)vn(J) =


− 1

zn+1 − zn
0

− zn+1

zn+1 − zn
1




J2
n+1 − J2

n

Jn

J2
n

 ,

where this defines the matrix An(z) and the vector of invariants vn(J), and the ci are the
constants of integration. It can be seen that in this example, the Euler Lagrange equation gives
a recurrence relation for Jn and that once this is solved, the conservation laws yield (if c1 6= 0),

zn+1 =
c2 − J2

n

c1
.

The matrix An(z) is equivariant under the group action, for each n, indeed

An(g · z) =


− 1

µ(zn+1 − zn)
0

−zn+1 + b/µ

zn+1 − zn
1

 =


1

µ
0

b

µ
1


 −

1

zn+1 − zn
0

− zn+1

zn+1 − zn
1


and hence each An(z) is a left moving frame for the group G = R+ n R, albeit for a different
representation for this group. In fact, this is the Adjoint representation of G, placing this result

8



K

M M M M M M

Figure 2: The location of the arguments occurring in the normalization equations for a moving
frame for the product action on M ×M ×· · ·×M , shown here as disjoint copies of M for clarity,
for the Example 2.8.

K1 K2 K3 K4 K5

. . .. . .

Figure 3: The sequence of moving frames for the product action on M × M × · · · × M in
Example 2.9, shown here as disjoint copies of M so the location of the arguments occurring
in the normalization equations can be easily seen. For this example, each Ki is a shift of the
previous. This sequence of moving frames is an example of a discrete moving frame.

in line with Theorems on the equivariance of Noether’s conservation laws for smooth systems
[10, 29].

In Figure 2 is shown, schematically, the location of the arguments occurring in the normalization
equations for the frame of Example 2.8. By contrast, in Figure 3 is shown, schematically, the
location of the arguments occurring in the normalization equations for the sequence of frames
calculated in Example 2.9. In fact, for that example, each of the Ki will be shifts of each other.

In the next section, we will define a discrete moving frame to be a sequence of moving frames
with a nontrivial intersection of domains, and will explore the properties of the structure of the
algebra of invariants that arises.
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3 Discrete moving frames and the example of twisted N-gons in
a homogeneous manifold G/H

3.1 Discrete moving frames and discrete invariants

In this section we will state the definition of discrete group-based moving frame along N -gons
and show that a parallel normalization process will produce right discrete moving frames. A
discrete moving frame gives many sets of generators for the algebra of invariants under the
action of the group. Under conditions that are satisfied in our examples, we will show recursion
relations between these and find a small, useful set of generators which we will denote as discrete
Maurer–Cartan invariants.

Our next definition represents the discrete analog of the group-based moving frame we described
in Section 2.

Definition 3.1 (Discrete moving frame). Let GN denote the Cartesian product of N copies of
the group G. Allow G to act on the left on GN using the diagonal action g · (gr) = (ggr). We
also consider what we call the “right inverse action” g · (gr) = (grg

−1). (We note these are both
left actions according to Definition (2.1).) We say a map

ρ : MN → GN

is a left (resp. right) discrete moving frame if ρ is equivariant with respect to the diagonal
action of G on MN and the left (resp. right inverse) diagonal action of G on GN . Since
ρ((xr)) ∈ GN , we will denote by ρs its sth component, that is ρ = (ρs), where ρs((xr)) ∈ G for
all s. Equivariance means,

ρs(g · (xr)) = ρs((g · xr)) = gρs((xr)) (resp. ρs((xr))g
−1)

for every s. Clearly, if ρ = (ρs) is a left moving frame, then ρ̂ = (ρ−1s ) is a right moving frame.

Definition 3.2. Let F : MN → R be a function defined on N -gons. We say that F is a discrete
invariant if

F ((g · xr)) = F ((xr)) (5)

for any g ∈ G and any (xr) ∈MN .

Notice that the quantities ρs((xr)) · xk = Isk are always invariant as we can readily see from
g · Isk = ρs(g · (xr)) · (g · xk) = ρs((xr))g

−1g · xk = ρs((xr)) · xk = Isk.

Proposition 3.3 (s-Replacement rule). If ρ is a right moving frame, and F ((xr)) is any in-
variant, then

F ((xr)) = F ((ρs · xr)) (6)

Further, the invariants ρs · xr = Isr with s fixed, r = 1, . . . N generate all other discrete
invariants. We call the Isr with s fixed, the s-basic invariants.

Proof. This is the same as Theorem 2.6 for each s. From (5) we need only choose g = ρs in (5).
In particular, Equation (6) means F can be written as a function of the s-basic invariants: one
merely needs to substitute xr by ρs ·xr for s fixed. For those familiar with moving frames, this
proposition follows directly from the fact that each ρs is a moving frame and ρ is a collection of
N moving frames.

10



Locally, a discrete moving frame is uniquely determined by the choice of cross-sections Ks to
the group orbit through (xr), as in figure 3. Often these sections are shifts of a first section,
but that need not be the case in general. The right moving frame component ρs is the unique
element of the group that takes (xr) to the cross section Ks. Notice that ρs will depend, in
general, on several different coordinates, not just xs.

Theorem 3.4. Let K be N local choices K1, . . .KN of cross-sections to the orbit of G through
(xr). Let ρ = (ρs) ∈ G be uniquely determined by the condition

ρs · (xr) ∈ Ks, (7)

for any s. Then ρ = (ρs((xr))) is a right moving frame along the N -gon (xr).

Proof. The proof is entirely analogous to that of a single frame. We will denote by ρs((xr))
the unique element of the group determined by equations (7). On the other hand ρs((xr))g

−1

also satisfies those equations, and so ρs(g · (xr)) = ρs((xr))g
−1. Therefore ρ is a right discrete

moving frame.

As in the continuous case, a practical way to obtain a right discrete moving frame is using
a coordinate cross-section, defined as follows. Denote by xi the coordinates of x ∈ M . Let
ρ = (ρs((xr))) ∈ G be uniquely determined by a number of equations of the form

(ρs((xr)) · xk)i = (csk)
i, (8)

for any s, k in a set that depends on s, and some chosen values of i that depend on s and k,
and where (csr)

i ∈ R. From now on those (xr) for which the map g → (g · xr)i has full rank for
the choice of i’s defining the moving frame will be called regular points. We usually refer to the
(csk)

i ∈M as the normalization constants.

Remark 3.5. In some of our examples, and indeed for all examples we envisage, the normal-
isation equations for the ρr are shifts of each other. However, it is interesting that this is not
necessary to produce the recursion relation (13) we derive in Section 3.2. When normalization
equations are shifts of each other the construction of a discrete moving frame depends only
on a single function of several variables and the different components of the moving frame are
generated by evaluating this function on the corresponding vertices.

3.2 Discrete Maurer–Cartan invariants

A discrete moving frame on MN provides N different sets of generators, since each ρs generates
a complete set. With this abundance of choices one is hard pressed to chose certain distinguished
invariants, and a small group that will generate all others. Although a correct choice will depend
on what you would like to use the invariants for, a good choice in our case are what we will
denote the discrete Maurer–Cartan invariants. They are produced by the discrete equivalent of
the Serret–Frenet equations. From now on we will assume that G ⊂ GL(m,R) and so Kr are
represented by matrices; this is not necessary, but it is convenient.

The following definition appeared in [38].

Definition 3.6 (Twisted N -gon). A twisted N -gon in a manifold M is a map φ : Z→M such
that for some fixed g ∈ G we have φ(k + N) = g · φ(k) for all k ∈ Z. (Recall · represents the
action of G on M given by left multiplication on representatives of the class.) The element
g ∈ G is called the monodromy of the gon.

11



Remark 3.7. The choice of twisted N -gons is one among several ways to make the shift operator
well-defined. Because of the need to apply the shift operator freely on the N -gons, one is forced
to either consider infinite polygons, or to impose some kind of periodicity condition. Although
one could merely choose closed gons, there is an important reason to work with twisted N -
gons instead: twisted N -gons will give rise to N -periodic invariants; however, a general set of
periodic invariants will not, in general, be associated to N -periodic gons, but to twisted ones.
Nevertheless, for much of what follows we can also consider infinite gons and we will occasionally
consider the infinite case in the applications.

The space of twisted N -gons in M can be identified with the Cartesian product of N copies of
the manifold M , and hence our previous theory applies.

Definition 3.8. Let (ρs) be a left (resp. right) discrete moving frame evaluated along a twisted
N -gon, the element of the group

Ks = ρ−1s ρs+1 (resp. ρs+1ρ
−1
s )

is called the left (resp. right) s-Maurer–Cartan matrix for ρ. We will call the equation ρs+1 =
ρsKs the discrete left s-Serret–Frenet equation.

One can directly check that if Ks is a left Maurer–Cartan matrix for the left frame (ρs), then
K−1s is a right one for the right frame ρ̂ = (ρ−1s ), and vice versa.

The equivariance of ρ immediately yields that the Ks are invariant under the action of G. We
show next how the components of the Maurer–Cartan matrices generate the algebra of invariants
by exhibiting recursion relations between them and the normalized invariants, for our expository
example.

Example 2.8 cont. Recall the group is G = R+ n R acting on R as z̃ = (λ, a) · z = λz + a,
which is represented so that the action is left (multiplication) as(

λ a
0 1

)(
z
1

)
=

(
λz + a

1

)
.

If we take the normalization equations of ρs to be z̃s = 1 and z̃s+1 = 0, then the right discrete
frame is

ρs =

 − 1

zs+1 − zs
zs+1

zs+1 − zs
0 1

 .

By definition, ρs · zr = Isr = −(zr − zs+1)/(zs+1 − zs) and then3

Ks = ρsρ
−1
s+1 =

(
−Iss+2 Iss+2

0 1

)
(9)

as can be verified directly. We do not need, however, to have solved for the frame to obtain this
result; it can be obtained directly by noting that we have both

ρs+1

(
zs+1 zs+2

1 1

)
=

(
1 0
1 1

)
, ρs

(
zs+1 zs+2

1 1

)
=

(
0 Iss+2

1 1

)
(10)

3We calculate the left Maurer–Cartan matrix for the left frame ρ−1 as the calculations are simpler.
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or

ρsρ
−1
s+1 =

(
0 Iss+2

1 1

)(
1 0
1 1

)−1
,

verifying the result in (9). Note that for the second calculation, we are using the invariants Irs
symbolically; if we have not solved for the frame, then we may not know what these are.

Calculations similar to those of Equation (10) give recursion relations between the Isr . For
example, we have both

ρs

(
zs+k zs+k+1

1 1

)
=

(
Iss+k Iss+k+1

1 1

)
, ρs+k

(
zs+k zs+k+1

1 1

)
=

(
1 0
1 1

)
so that

KsKs+1 · · ·Ks+k−1 = ρsρ
−1
s+k =

(
Iss+k − Iss+k+1 Iss+k+1

0 1

)
.

However, we also have by direct calculation using our Ki, for example,

KsKs+1 =

(
Iss+2I

s+1
s+3 Iss+2(1− I

s+1
s+3 )

0 1

)
and thus for k = 2 we have Iss+3 = Iss+2(1− I

s+1
s+3 ). In this way, it is possible to obtain all the Isr

from the components of the Kk’s, that is, the Ikk+2. This smaller set of generating invariants we
will denote as the discrete Maurer–Cartan invariants.

Example 3.9.

Our next example is the centro-affine action of SL(2,R) on R2; that is SL(2,R) acts linearly on
R2. We may cast the centro-affine plane in the form G/H by identifying R2 with SL(2,R)/H,

where H is the isotropy subgroup of e2 =

(
0
1

)
. There is a reason why we are choosing e2 rather

than e1; the reader will readily see the connection to Example 3.10, the projective line. In order
to find a moving frame we will use the following normalization equations

ρs · xs = css = e2, ρs · xs+1 = css+1 = − |xs, xs+1| e1

where |xs, xs+1| is the determinant of the two 2-vectors; specifically, the second component of
ρs · xs+1 being zero is the normalization equation, while the first is determined by the previous
normalizations and the fact that ρs ∈ SL(2,R). This results in the left moving frame

ρ−1s =
(
− 1
|xs,xs+1|xs+1 xs

)
.

From here, a complete set of generating invariants will be the components of

ρs · xr = ρsxr =

(
|xr, xs|

1
|xs,xs+1| |xr, xs+1|

)
with s fixed and r = 1, . . . N ; that is, |xs, xr|, |xs+1, xr| with s fixed and r = 1, . . . N . To see
how the r-basic invariants will generate the k-basic invariants it suffices to recognise the relation

|xr, xk| = |ρsxr, ρsxk| =

∣∣∣∣∣∣
|xr, xs| |xk, xs|
|xr, xs+1|
|xs, xs+1|

|xk, xs+1|
|xs, xs+1|

∣∣∣∣∣∣
13



=
1

|xs, xs+1|
(|xr, xs| |xk, xs+1| − |xk, xs| |xr, xs+1|) .

obtained by the Replacement Rule, Proposition 3.3. The left Maurer–Cartan matrix is given by

ρsρ
−1
s+1 =

(
k2s −k1s
1
k1s

0

)
(11)

where k2s = |xs,xs+2|
|xs+1,xs+2| and k1s = |xs, xs+1|. By calculations similar to those of the previous

example, we have that these invariants, with s = 1, . . . , N generate all other invariants. This
follows from observing

ρs · xr = ρsρ
−1
s+1ρs+1ρ

−1
s+2 · · · ρr−1ρ

−1
r (ρr · xr) = KsKs+1 · · ·Kr−1e2

and similarly if r < s. In fact, using k1s+1 we could simplify these generators to the simpler set
|xs, xs+1| , |xs, xs+2|, s = 1, . . . , N , as expected.

Our final expository example before proving our result concerning the discrete Maurer–Cartan
invariants is the projective action of SL(2,R) on N -gons in RP1.

Example 3.10.

Consider local coordinates in RP1 such that a lift from RP1 to R2 is given by x→
(
x
1

)
. In that

case RP1 can be identified with SL(2,R)/H, where H is the isotropy subgroup of x = 0. The
action is given by the fractional transformations

ρs · xr =

(
as bs
cs ds

)
· xr =

asxr + bs
csxr + ds

, asds − bscs = 1.

In this particular case one can use a geometric description to find a simple moving frame without
resorting to normalization equations (most simple normalization equations would produce a
moving frame with no clear geometric meaning). Indeed, we can lift xs to Vs ∈ R2 so that

det(Vs+1, Vs) = 1 for all s. It suffices to define Vs = ts

(
xs
1

)
and solve

tsts+1 det

(
xs xs+1

1 1

)
= 1.

If N is not even, this equation can be uniquely solved for ts, s = 1, . . . , N , using the twisted
condition tN+s = ts for all s. The element

ρs = (Vs+1, Vs)

is clearly a moving frame since the lift of the projective action to R2 is the linear action. It also
satisfies ρs · o = xs, where o = (0, 1)T is the equivalence class of H in SL(2,R)/H, where recall
H is the isotropy subgroup of x = 0. Given that R2 is generated by Vs, Vs+1 for any choice of s,
we have that

Vs+2 = ksVs+1 − Vs
for all s (the coefficient of Vs reflects the fact that det(Vs+1, Vs) = 1 for all s). From here

ρs+1 = ρs

(
ks 1
−1 0

)

14



and so the Maurer–Cartan matrix is given by

Ks =

(
ks 1
−1 0

)
. (12)

This invariant appeared in [38].

Directly from the definition of Maurer–Cartan matrix one can see that their entries, together
with Iss , are generators for all discrete invariants of N -gons.

Proposition 3.11. Let K = (Ks) be the left (resp. right) Maurer–Cartan matrix associated to
a moving frame (ρs). Then K satisfies the recursion relations

Ks · Is+1
r = Isr (resp. Ks · Isr = Is+1

r ) (13)

for all s, r. Furthermore, all discrete invariants are generated by K and Iss , s = 1, . . . N .

Proof. The proof is a direct straightforward calculation. Since Ks = ρ−1s ρs+1, Ks will satisfy

Ks · Is+1
r = ρ−1s · ρs · Isr = Isr

as stated. Since the right Maurer–Cartan matrix for the right frame ρ̂s is the inverse of the left
one for ρ̂−1s , it will satisfy Ks · Isr = Is+1

r .

To prove the generating property, let us denote by I any discrete invariant. We know that I will
be a function of the basic invariants Isr by the Replacement Rule, so it suffices to show that Isr ,
r 6= s, are all generated by the entries of Ks and Iss . And this directly follows from the recursion
formula. Indeed, we can use the recursion formulas for Ks−1, . . . ,K0 to find Is−1s , . . . , I1s , I

0
s from

the values Iss recursively. If we invert the recursion equation to read

Is+1
r = K−1s · Isr

then we can use the equations for Ks,Ks+1, . . .KN−1 to equally generate Is+1
s , Is+2

s , . . . , INs
from the value Iss . Therefore, Ks and Irr will generate Isr for any s, r = 1, . . . , N .

Remark 3.12. If the normalization equations guarantee that ρ is uniquely determined, the
rank of the map g → g · csr will have maximum rank for each fixed s. Thus, it will equally
guarantee that K = (Ks) is uniquely determined by the recursion relations (13) directly from
the normalization constants. Therefore, one is able to find the Maurer–Cartan matrix without
knowing explicitly the moving frame, but merely from the knowledge of the transverse section
used to determine it. As we will see in our examples, this simplifies calculations considerably.

In what follows we will assume that our manifold is homogeneous M = G/H, with H a closed
subgroup. We denote by o ∈ G/H the distinguished class of H. We will finally show that given
Ks, and assuming ρs · o = xs, for the moving frames generating Ks, the N -gon is completely
determined up to the action of the group.

Proposition 3.13. Let (xr) and (x̂r) be two twisted N -gons with left moving frames ρ and ρ̂
such that ρs · o = xs, ρ̂s · o = x̂s and ρ−1s ρs+1 = ρ̂−1s ρ̂s+1 = Ks. Then, there exists g ∈ H such
that xr = gx̂r for all r.
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Proof. Notice that from ρs+1 = ρsKs and ρ̂s+1 = ρ̂sKs it suffices to show that there exists
h ∈ H such that ρ0 = hρ̂0. Indeed, if this is true we will have ρs = hρ̂s for all s, and from here
ρs · o = xs = hρ̂s · o = h · x̂s.

On the other hand, there clearly exists g ∈ H such that ρ0 = gρ̂0, as it suffices to choose
g = ρ0ρ̂

−1
0 , and g ∈ H since both ρ0 and ρ̂0 leave o invariant. The proposition follows.

Notice that the choice of o in this proposition is to some extent arbitrary (although it is geomet-
rically the most convenient base point), and the assumption M = G/H is indeed not needed.
One could have chosen any fixed point p ∈M , define ρs · p = xs, ρ̂s · p = x̂s, and obtain g in the
isotropy subgroup of p. One can even choose different base points for ρ and ρ̂ in the same orbit
and obtain a general element g ∈ G.

4 Lie symmetric evolutions, maps and their invariantizations

In this section we will show how to write any invariant time evolution of twisted N -gons, as
well as any invariant map from the space of twisted N -gons to itself, in terms of the invariants
and the moving frame, in a straight forward and explicit fashion. For simplicity we continue to
assume that our manifold M is G/H and the normalisation equations include ρs · o = xs (for a
left frame) for all s. The analogous theorems in the continuous case were published in [34].

Definition 4.1. An evolution equation is said to have a Lie group symmetry if the Lie group
action takes solutions to solutions. A recurrence map is said to have a Lie group symmetry if it
is equivariant with respect to the action of the group.

Such equations and maps are usually called invariant, and we will do so here. However, it is
important to note that this does not mean that the equations are comprised of invariants of the
action.

Definition 4.2. We say the evolution

(xs)t = fs((xr)) (14)

is an invariant time evolution of the twisted N -gons under the action of the group G if its Lie
symmetry group is G, that is, if (xr) is a solution, so is (g · xr) for any g ∈ G.

Denote by Φg : G/H → G/H the map defined by the action of g ∈ G on G/H, that is
Φg(x) = g · x. Further, denote by TΦg(z) the tangent map of Φg at z ∈ G/H. The map TΦg(z)
is written as TΦg if the base point z is clear from the context4. In local coordinates TΦg is given
by the Jacobian of Φg. We have by the chain rule both that (g ·xs)t = TΦg(xs) ((xs)t) and since
Φgh = Φg ◦ Φh we have that TΦgh = TΦg ◦ TΦh. A recent textbook reference on group actions
and the associated multi-variable calculus, with and without co-ordinates, is [29].

Assume we have a discrete left moving frame ρ in the neighbourhood of a generic twisted N -gon,
with a left action, so that ρs((g · xr)) = gρs((xr)). We can now state the following Theorem.

4Given a manifold M and a map F : M → M , one standard coordinate free definition of the tangent map
TF (z) : TzM → TF (z)M is as follows. If a path γ(t) ⊂ M satisfies γ(0) = z and the vector v ∈ TzM =
d/dt

∣∣
t=0

γ(t), then TF (z)(v) = d/dt
∣∣
t=0

F (γ(t)).
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Theorem 4.3. Any invariant evolution of the form (14) can be written as

(xs)t = TΦρs(o)(vs) (15)

where o = [H], and vs((xr)) ∈ ToM is a vector with invariant components, that is, vs((g ·xr)) =
vs((xr)) for any g ∈ G and for all s.

Proof. We need to prove that
TΦρs((xr))(o)

−1fs((xr))

has invariant components under the action of G, and call it vs; recall that the normalisation
equations include ρs · o = xs for all s, so that vs ∈ ToM . Indeed, since (14) is an invariant
evolution,

(g · xs)t = TΦg(xs) · (xs)t = TΦg(xs) · fs((xr)) = fs((g · xr)).

Also, differentiating Φgρs = ΦgΦρs at o and applying the chain rule yields

TΦρs((g·xr))(o) = TΦgρs((xr))(o) = TΦg(xs) ◦ TΦρs((xr))(o).

From here
TΦρs((g·xr))(o)TΦ−1ρs((xr))(o)fs((xr)) = fs((g · xr)),

which implies that TΦρs((xr))(o)
−1fs((xr)) is invariant.

We now consider invariant maps.

Definition 4.4. We say the map

F (xs) = (Fs((xr))) , (16)

is an invariant map of the twisted N -gons under the action of the group G if its Lie symmetry
group is G, that is, F ((g · xs)) = gF ((xs)) for any g ∈ G.

We have the following theorem. We continue to assume we have a left moving frame and a left
action.

Theorem 4.5. If F is an invariant map of the form (16), then

Fs((xr)) = ρs((xr)) · zs((xr)) (17)

where zs((xr)) ∈ G/H is an invariant element, that is, zs((g · xr)) = zs((xr)) for any g ∈ G.

Proof. It suffices to show that ρ−1s · Fs((xr)) is invariant and to call it zs. For a left moving
frame and a left action we have

ρs((g · xr)) = gρs((xr))

and by invariance of the map we have

F ((g · xs)) = (Fs((g · xr))) = gF ((xs)) = g (Fs((xr))) ,

so that
ρ−1s ((g · xr))Fs((g · xr)) = ρ−1s ((xr))Fs((xr)).
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If either a map or a time evolution is invariant, then there is a corresponding induced map or
evolution on the invariants themselves. The reduction process is at times very involved and time
consuming. Here we will describe a simple and straightforward way to find explicitly this so-
called invariantization of the evolution. Further, in Section 5 we detail how, for a proper choice
of evolutions, the resulting invariantizations are integrable, in the sense that they can be written
in two different ways as a Hamiltonian system, using a Hamiltonian pair. We also illustrate,
in Section 5.1.2, that some invariantized map also results in a discrete integrable (biPoisson)
mapping.

Assumption. From now on we will assume to have chosen ς : M = H → G, a section of the
quotient G/H such that ς(o) = e ∈ G, where e is the identity.

Theorem 4.6. Assume we have an invariant evolution of the form (15) and let ς be a section
such that ς(o) = e ∈ G. Assume ρr · o = xr and ρr = ς(xr)ρ

H
r , where ρHr ∈ H. Then

(Ks)t = KsNs+1 −NsKs (18)

where Ks is the left Maurer–Cartan matrix and Ns = ρ−1s (ρs)t ∈ g. Furthermore, if we split
g = m ⊕ h, where g is the algebra of G, h is the algebra of H and m is a linear complement
that can be identified with the tangent to the image of the section ς, and if Ns = Nh

s +Nm
s splits

accordingly, then
Nm
s = Tς(o)vs. (19)

Proof. The first part of the proof is a straightforward computation

(Ks)t =
(
ρ−1s ρs+1

)
t

= ρ−1s (ρs+1)t − ρ−1s (ρs)tρ
−1
s ρs+1 = KsNs+1 −NsKs.

Before proving the second part we notice that if ς is a section, then

gς(x) = ς(g · x)h(x, g) (20)

for some unique h ∈ H. In fact, one can take this relation as defining uniquely the action of the
group G on a homogeneous space G/H in terms of the section. We will use this relation shortly.

Since ρs = ς(xs)h((xr)), by the product and chain rules of differentiation, we have

Ns = ρ−1s (ρs)t =
(

TLρ−1
s

)(
TRρHs

)
Tς(xs)(xs)t +

(
TL−1

ρHs

)
TρHs ((xr))((xr)t) (21)

where L and R signify left and right multiplication and where TL and TR are their tangent
maps. Very clearly the second term belongs to h and so we will focus on the first term. If we
differentiate (20) evaluated on xr we have

(TLg) Tς(xr)(xr)t =
(
TRh(xr,g)

)
Tς(Φg(xr))TΦg(xr)(xr)t +

(
TLς(g·x)

)
Th(xr, g)(xr)t

for any g, where Th(x, g) is the derivative of h(x, g) as a function of x. If we now substitute
g = ρ−1r and we use (15), ς(o) = e and TΦρ−1

r
(xr) = (TΦρr(o))−1 we have(

TLρ−1
r

)
Tς(xr)(xr)t =

(
TRh(xr,ρ−1

r )

)
Tς(o)vr + Th(xr, ρ

−1
r )(xr)t.

The last term is again an element of h and we can ignore it. Finally, from (20) we see that

(ρHr )−1 = ρ−1r ς(xr) = ς(ρ−1r · xr)h(xr, ρ
−1
r ) = ς(o)h(xr, ρ

−1
r ) = h(xr, ρ

−1
r ).
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Therefore (
TRh(xr,ρ−1

r )

)
Tς(o)vr =

(
TR(ρHr )−1

)
Tς(o)vr.

Going back to the splitting of Nr in (21) we see that

Nm
r =

(
TRρHr

)(
TR(ρHr )−1

)
Tς(o)vr = Tς(o)vr

as stated in the theorem.

It is often the case that conditions (19) allow us to solve explicitly for the Nr directly from
equation (18), as we will see in the examples in the next section. Before going there we do a
quick description of the invariantization of invariant maps. We will next prove the analogous
result to Theorem 4.6 for invariant maps.

Theorem 4.7. Assume F is an invariant map given as in (17). Extend this map naturally to
functions of (xr) using the relation F (`((xr))) = `(F ((xr))). We will abuse notation and denote
both maps with the same letter. Then the map induced on the invariants is given by

F (Ks) = M−1s KsMs+1 (22)

where Ms = ρ−1s F (ρs). Furthermore, if ς is a section as before, and if ρs = ς(xs)ρ
H
s for some

ρHs ∈ H, then Ms = ς(zs)M
H
s where MH

s ∈ H.

Proof. First of all, notice that since by definition F (ρs((xr))) = ρs(F (xr)), F (ρ−1s )F (ρs) =
F (ρ−1s ρs) = F (I) = I and so F (ρ−1s ) = F (ρs)

−1. From here

F (Ks) = F (ρ−1s )F (ρs+1) = F (ρs)
−1ρsρ

−1
s ρs+1ρ

−1
s+1F (ρs+1) = M−1s KsMs+1.

Also, assuming that ρs = ς(xs)ρ
H
s , a direct calculation using (20) shows

Ms = ρ−1s F (ς(xs)ρ
H
s ) = ρ−1s ς(Fs((xr)))F (ρHs ) = ρ−1s ς(ρs · zs)F (ρHs )

= ρ−1s ρsς(zs)h(zs, ρs)F (ρHs ) = ς(zs)h(zs, ρs)F (ρHs ).

It suffices to call MH
s = h(zs, ρs)F (ρHs ) ∈ H to conclude the theorem.

5 Completely integrable systems associated to discrete moving
frames

In this section we will describe invariantizations of general invariant evolutions for our previous
two examples (centro-affine and projective) and we will associate completely integrable systems
to each one of them by choosing the invariant elements vs defining the equation appropriately.
In the centro-affine case we study the invariant maps and produce a well-known biPoisson map
resulting from the invariantization of a particular invariant map among polygons obtained when
choosing specific values for the invariant elements zs. Finally, we introduce a more complicated
example, that of the homogeneous 2- sphere S2 ∼= SO(3)/SO(2).
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5.1 Centro-affine case

5.1.1 Invariant evolutions

In the centro-affine case (see Example 3.9) the action is linear and so dΦρs(o)vs = ρsvs. The
general invariant evolution is given by

(xs)t = − v1s
|xs, xs+1|

xs+1 + v2sxs = ρ−1s

(
v1s
v2s

)
where v1s , v

2
s are arbitrary functions of the invariants previously obtained in (11) (recall that ρs

was in this case a right frame and we need a left one here). If we want to find the evolution
induced on k1s and k2s as in (11), then we will recall that the space H is the isotropy subgroup
of e2, which is the subgroup of strictly lower triangular matrices. A section for the quotient is
given by

ς

(
a
b

)
=

(
b−1 a
0 b

)
(23)

if b 6= 0 (we work in a neighborhood of o = e2). Clearly ρs = ς(xr)ρ
H
r since ς(xr)

−1ρs ∈ H. A
complement m to h is given by the upper triangular matrices. In that case

dς(o)vs =

(
−v2s v1s

0 v2s

)
and so

Ns =

(
−v2s v1s
αs v2s

)
where αs is still to be determined. From equation (18) we have(

(k2s)t −(k1s)t
((k1s)

−1)t 0

)
=

(
k2s −k1s
1
k1s

0

)(
−v2s+1 v1s+1

αs+1 v2s+1

)
−
(
−v2s v1s
αs v2s

)(
k2s −k1s
1
k1s

0

)

=

−k2sv2s+1 − k1sαs+1 + v2sk
2
s −

v1s
k1s

k2sv
1
s+1 − k1sv2

s+1 − v2sk1s
−v2s+1

k1s
− αsk2s −

v2s
k1s

v1s+1

k1s
+ αsk

1
s

 .

The entry (2, 2) of this system is given by 0 = k1sαs + (k1s)
−1v1s+1, which allows us to solve for

the missing entry

αs = −
v1s+1

(k1s)
2
.

The other entries give us the evolution of the invariants. These are(
(k1s)t
(k2s)t

)
=

(
k1sv

2
s+1 + k1sv

2
s − k2sv1s+1

−k2sv2s+1 −
v1s
k1s

+ k2sv
2
s + k1s

(k1s+1)
2 v

1
s+2

)
:= A

(
v2s
v1s

)
, (24)

where the matrix difference operator is

A =

(
k1s(T + 1) −k2sT
−k2s(T − 1) − 1

k1s
+ k1s

(k1s+1)
2T 2

)
(25)

and where T is the shift operator T as = as+1.
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Let us define a diagonal matrix

P =

(
(T − 1)−1k1s 0

0 −T −1k1s

)
. (26)

and compute the pseudo-difference operator

AP =

(
k1s(T + 1)(T − 1)−1k1s k1sk

2
s

−k1sk2s 1
k1s
T −1k1s − k1sT 1

k1s

)
(27)

which is clearly anti-symmetric. We denote it by H[k1s , k
2
s ].

Theorem 5.1. The operator H[k1s , k
2
s ], given by (27) is a Hamiltonian operator. It forms a

Hamiltonian pair with Hamiltonian operator

H0[k
1
s , k

2
s ] =

(
0 k1s
−k1s 0

)
.

Proof. Let us introduce the following Miura transformation

ps =
k1s
k1s+1

, qs = k2s . (28)

Its Fréchet derivative is

D(ps,qs) =

(
1

k1s+1
− k1s

(k1s+1)
2T 0

0 1

)
=

(
1

k1s+1
− psT 1

k1s
0

0 1

)
.

Under this transformation the operators H0[k
1
s , k

2
s ] and H[k1s , k

2
s ] become

H̃0[ps, qs] = D(ps,qs)H0[k
1
s , k

2
s ]D

?
(ps,qs)

=

(
0 ps(1− T )

−(1− T −1)ps 0

)
and

H̃[ps, qs] = D(ps,qs)H[k1s , k
2
s ]D

?
(ps,qs)

=

(
1

k1s+1
−psT 1

k1s
0

0 1

)(
k1s(T +1)(T −1)−1k1s k1sqs

−k1sqs T−1ps−psT

)( 1
k1s+1
− 1
k1s
T−1ps 0

0 1

)

=

(
psT −1ps − psT ps ps(1− T )qs
−qs(1− T −1)ps T −1ps − psT

)
.

These two operators form a Hamiltonian pair for the well-known Toda lattice (2) in Flaschka
coordinates [1, 39]. Indeed, we have(

(ps)t
(qs)t

)
=

(
ps(qs − qs+1)
ps−1 − ps

)
= H̃δqs = H̃0δ(

(
1

2
q2s + ps

)
(29)

and thus we proved the statement.

If we take
(
v2s , v1s

)
=
(

0, −k1s−1
)

in (24), then the evolution of the invariants for k1s and k2s
becomes (

(k1s)t
(k2s)t

)
=

(
k1sk

2
s

k1s−1

k1s
− k1s

k1s+1

)
= H0δ

(
(k2s)

2

2
+

k1s
k1s+1

)
= Hδk2s ,

which is an integrable differential difference equation and can be transformed into Toda lattice
(29) under the transformation (28). We summarize our results as a Theorem.
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Theorem 5.2. The evolution of polygons in the centro-affine plane described by the equation

(xs)t =
k1s−1

|xs, xs+1|
xs+1

induces a completely integrable system in its curvatures k1s , k
2
s equivalent to the Toda Lattice.

The pseudo-difference operator P is really a formal operator as T − 1 is not invertible in the
periodic case. It means that we apply the operator only to Hamiltonians whose gradients are in
the image of T − 1, as is the case here.

5.1.2 Invariant maps

In the centro-affine case an invariant map is of the form

F (xs) = − z1s
|xs, xs+1|

xs+1 + z2sxs = ρ−1s

(
z1s
z2s

)
.

Although in this simple case we could directly find the transformation of the invariants, we will
follow the process described in Section 4. Our example in Section 5.3 will provide a stronger
case for the effectiveness of the method. Using section (23), the transformation under F of k1s
and k2s will be built up using the matrix Ms = −ρs+1ρ

−1
s given by

Ms =

(
(z2s )−1 z1s

0 z2s

)(
1 0
αs 1

)
where αs needs to be found. The equations relating Ks and Ms are given by

F

(
k2s −k1s

(k1s)
−1 0

)
=

(
1 0
−αs 1

)(
z2s −z1s
0 (z2s )−1

)(
k2s −k1s

(k1s)
−1 0

)(
(z2s+1)

−1 z1s+1

0 z2s+1

)(
1 0

αs+1 1

)
.

The (2, 2) entry of this equation will allow us to solve for αs. It is given by

αs

(
1

k1s
z1sz

1
s+1 + z2s (z2s+1k

1
s − z1s+1k

2
s)

)
+
z1s+1

z2sk
1
s

= 0.

The other entries of the system will solve for the transformation of k1s and k2s . They are given
by

F (k1s) =
1

k1s
z1sz

1
s+1 + (z2s+1k

1
s − z1s+1k

2
s)z

2
s

F (k2s) =

(
(k2sz

1
s+1 − z2s+1k

1
s)z

2
s −

1

k1s
z1sz

1
s+1

)
αs+1 −

z1s
z2s+1k

1
s

+
z2sk

2
s

z2s+1

Now we take z2s = 1
c , where c 6= 0 is constant and z1s satisfying the relation

1

k1s
z1sz

1
s+1 +

k1s
c2
−
z1s+1k

2
s

c
= z1s+1 (30)
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Then the above maps become

F (k1s) = z1s+1 (31)

F (k2s) = c

(
z1s+1

k1s+1

− z1s
k1s

)
+ k2s . (32)

Let as = k1s
k1s+1

, bs = k2s and βs = k1s
z1s+1

. Then using (31) and (32) we have

F (as) =
F (k1s)

F (k1s+1)
=
k1s
βs

βs+1

k1s+1

= as
βs+1

βs

F (bs) = bs + c

(
k1s

k1s+1βs
−

k1s−1
k1sβs−1

)
= bs + c

(
as
βs
− as−1
βs−1

)
.

The constraint (30) on z1s becomes

as−1
βs−1βs

+
1

c2
− bs
c βs

=
1

βs
,

that is,

βs = 1 + c bs − c2
as−1
βs−1

.

Thus we obtain the integrable discretization of the Toda lattice as the formulas (3.8.2) and
(3.8.3) in [39]. Thus we obtain the following result:

Theorem 5.3. The invariant map of polygons in the centro-affine plane described by the equa-
tion

F (xs) = − z1s
|xs, xs+1|

xs+1 +
xs
c
,

where c 6= 0 is constant and z1s satisfying (30) induces a completely integrable map in its curva-
tures k1s , k

2
s equivalent to the integrable discretization of the Toda Lattice.

5.2 The projective case

In the projective example the subgroup H is the isotropy subgroup of 0, that is, H is given by
lower triangular matrices. Thus, a section can be chosen to be

ς(x) =

(
1 x
0 1

)
.

One can check directly that ς(xr)
−1ρr ∈ H and also

dς(0)v =

(
0 v
0 0

)
.

A general invariant evolution in this case would be of the form

(xs)t = dΦρs(0)vs =
1

a2s
vs (33)
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where vs is a function of (kr) and where as is the (2, 2) entry of ρs. The evolution induced on
ks is given by the equation (18) with

Ns =

(
αs vs
βs −αs

)
.

We have (
(ks)t 0

0 0

)
=

(
ks 1
−1 0

)(
αs+1 vs+1

βs+1 −αs+1

)
−
(
αs vs
βs −αs

)(
ks 1
−1 0

)
.

The entries (2, 2) and (1, 2) of this system will allow us to solve for βr and αr. Indeed, the (2, 2)
entry is given by

0 = −βs − vs+1

and so
βs = −vs+1.

The (1, 2) entry is given by
αs+1 + αs − ksvs+1 = 0.

This leads to
αs = (T + 1)−1ksvs+1,

where T is the shift operator. Notice that T + 1 is an invertible operator. Assuming N is not
even we can solve the equation (T + 1)αs = ws to obtain

αs =
(−1)s

2

(
s−1∑
i=0

(−1)i+1wi −
n−1∑
i=s

(−1)i+1wi

)
.

Finally, the (1, 1) entry gives the evolution for ks

(ks)t = vs − vs+2 + ks(αs+1 − αs)
=

(
T −1 − T + ks(T − 1)(T + 1)−1ks

)
vs+1 . (34)

Theorem 5.4. The anti-symmetric operators

H1[ks] = T − T −1

and
H2[ks] = ks(T − 1)(T + 1)−1ks

form a Hamiltonian pair.

Proof. Let us introduce the following Miura transformation

us =
1

ks
. (35)

We compute its Fréchet derivative Dks = −1/u2s . Under the transformation (35) the operators
H1[ks] and H2[ks] become

H̃1[us] = D−1ks H1[ks]D
?−1
ks

= u2s
(
T − T −1

)
u2s;

H̃2[us] = D−1ks H2[ks]D
?−1
ks

= us(T − 1)(T + 1)−1us.

These two operators form a Hamiltonian pair for the well-known modified Volterra lattice (3)
[26].

(us)t = u2s(us+1 − us−1) = H̃1[us]δus lnus = H̃2[us]δus(usus−1). (36)

This implies that H1[ks] and H2[ks] form a Hamiltonian pair and the statement is proved.
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Take vs+1 = δks ln ks in (34). The evolution for ks becomes

(ks)t =
1

ks−1
− 1

ks+1
,

which is an integrable difference equation. Under the transformation (35), it leads to the modified
Volterra lattice (36).

At this moment it seems natural to wonder if one could also obtain this modified Volterra
evolution in the centro-affine case (5.1), via a reduction to the space k1s = 1 for all s. And
indeed such is the case.

Assume k1s = 1 and choose those evolutions that leave k1s invariant. That is, assume (k1s)t = 0.
Then, from (24) we have

v2s+1 + v2s − k2sv1s+1 = 0

and from here
v2s = (T + 1)−1k2sv

1
s+1.

Substituting in (24) we get

(k2s)t = −k2sT (T + 1)−1k2sT v1s − v1s + k2s(T + 1)−1k2sT v1s + T 2v1s

=
[
T − T −1 − k2s(T − 1)(T + 1)−1k2s

]
T v1s ,

which is identical to the projective one with identifications ks = k2s and vs = −v1s . Hence,
choosing T v1s = −δk2s ln |k2s | will result in a modified Volterra equation for the centro-affine
invariant k2s , as far as the initial polygon satisfy k1s = 1, that is, as far as the area of the
parallelogram formed by xs and xs+1 in the plane is equal 1 for all s and they are properly
oriented. Other constant values can be chosen with minimal changes. Notice that this evolution
is well-defined in the periodic case.

5.3 The homogenous sphere S2 ∼= SO(3)/SO(2)

In this section we consider invariant evolutions on the homogeneous sphere, S2 ∼= SO(3)/SO(2).
We first consider a local section using which we can describe our calculations of a discrete frame,
the associated discrete Maurer–Cartan matrices, and invariantizations. We then show that, for
a certain choice of polygon evolution the resulting curvature flow is integrable, of Volterra type.

If G = SO(3) and H = SO(2), we consider the following splitting of the Lie algebra into
subspaces so(3) = m⊕ h with (

0 y
−yT 0

)
∈ m

(
A 0
0 0

)
∈ h (37)

where y ∈ R2 and A ∈ so(2). Associated to this splitting we have a local factorization in the
group into factors belonging to H = SO(2) and exp(m). This factorization is given by

g = g(Θ, y) =

(
Θ 0
0 1

)(
I + cosy yy

T siny y
− siny y

T cos(||y||)

)
(38)

where cosy =
cos(||y||)− 1

||y||2
, siny =

sin(||y||)
||y||

and ||y||2 = yT y. The factorization exists locally in a

neighborhood of the identity.
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Let ς : S2 → SO(3) be the section defined by the exponential, that is

ς(x) = exp

(
0 x
−xT 0

)
=

(
I + cosx xx

T sinx x
− sinx x

T cos(||x||)

)
,

where we are using local coordinates around the south pole (whose coordinates are zero). One
clearly has that dς(o) : ToS

2 → m is an isomorphism given by

dς(o)v =

(
0 v
−vT 0

)
.

The action of SO(3) on the sphere associated to this section, let’s denote it by g ·x, is determined
by the relation

gς(x) = ς(g · x)h

for some h ∈ SO(2) which is also determined by this relation. Let g be as in (38). Straightforward
calculations show that, if η = g · x, then

sinη η = sinx Θx+
(
cosy sinx y

Tx+ siny cos(||x||)
)

Θy (39)

and
cos(||η||) = cos(||y||) cos(||x||)− sinx siny y

Tx. (40)

The last equation can be expressed in terms of the cosine of a certain angle using the spherical
law of cosines, as we will see later. To have a better idea of what the coordinates given by this
section are, recall the standard geometric identification of SO(3)/SO(2) with the sphere:

Given an element in SO(3) we can identify the last column with a point on the sphere and the
first two columns as vectors tangent to the sphere at the point. The element of SO(2) acts on
the two tangent vectors. With this identification, our coordinates result on

p =

(
sinx x

||x||
cos(||x||)

)
being the point on the sphere. If we consider θ and φ to be the standard spherical angles, then

||x|| = φ and x
||x|| =

(
cos θ
sin θ

)
. Therefore, the coordinates x describe the projection of p on the

xy plane, multiplied by the angle φ. See the picture below. This might seem as a cumbersome
choice, but the advantages in calculations will be worthy, plus our Serret–Frenet equations will
look very familiar to the reader.

5.3.1 Moving frame and invariants

Next we will determine a moving frame using the normalization constants crr = 0 and crr+1 = are1,
where ar is an invariant still to be identified. Assume ρr = g(Θr, yr) as in (38). The equation

ρr · xr = 0

determines the choice yr = −xr, and ρr · xr+1 is determined by the equation ρr · xr+1 = are1
implicitly written as

sinare1 are1 = Θr

(
sinxr+1 xr+1 + (cosxr sinxr+1 x

T
r xr+1 − sinxr cos(||xr+1||))xr

)
. (41)

The invariant ar is determined by the condition Θr ∈ SO(2), while this equation determines Θr.
If we impose the further condition ar > 0 for all r, then Θr is uniquely determined (it might
belong to different connected components of SO(2) for different r’s).
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pr

||xr||||xr+1||

xr+1

xrpr+1

θr

Figure 4: Local coordinates on the sphere

Theorem 5.5. The right Maurer–Cartan matrices associated to ρr as above are given by

Kr = exp

 0 kr 0
−kr 0 0

0 0 0

 exp

 0 0 −ar
0 0 0
ar 0 0

 . (42)

We call ar the discrete spherical arc-length invariant, and kr the discrete spherical curvature of
the polygon.

Proof. Let us call Kr = g(Υ, κ) as in (38). To prove the theorem we can use the recursion
equations (13) for Kr to determine it. For a right matrix the equations are given by Kr · crr+1 =
cr+1
r+1, which, when substituted in (39), and after minor simplifications, becomes

0 = sinar are1 +
(
cosκ sinar arκ

T e1 + sinκ cos ar
)
κ.

Let us re-write this as 0 = sinar are1 + Xrκ so that κ = − sinar ar
Xr

e1. We can in fact use the
expression for Xr to solve for it. Indeed, again after minor simplifications we obtain

Xr = cosκ sinar arκ
T e1 + sinκ cos ar = Xr

(
1− cos

(
sin ar
Xr

)
+

cos ar
sin ar

sin

(
sin ar
Xr

))
.

This results in the relation

sin

(
sin ar
Xr

)
cos ar − cos

(
sin ar
Xr

)
sin ar = sin

(
sin ar
Xr

− ar
)

= 0

which results in Xr = sinar and κ = −are1.

This calculation determines the m component of Kr as in the statement of the theorem. Notice
that the h component Υ depends on only one parameter and therefore we can write it as in the
statement, even if we do not give its explicit formula.

Both invariants ar and kr have a very simple geometric description, as shown in our next theorem.

Theorem 5.6. The spherical arc-length invariant ar is the length of the arc joining xr to xr+1.
Let βr,s be the counterclockwise angle formed by the arc xrxs and the arc xsN , where N is the
north pole. Then,

kr−1 = π − (βr,r+1 + βr+1,r+2)
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pr

||xr||||xr+2||

pr+2
pr+1

||xr+1||

θr,r+1 = θr − θr+1

θr,r+1

βr,r+1βr+2,r+1

αr+2,r+1 αr,r+1

Figure 5: Description of the discrete curvature. Notice that when βr+1,r+2 + βr,r+1 = π the
curvature is zero.

Proof. Calculating the length of the vector in equation (41) we see that

sin2(ar) = sin ||xr+1||2 + ((cos ||xr|| − 1) sin ||xr+1|| cos θr,r+1 − sin ||xr|| cos ||xr+1||)2

where θr,r+1 = θr − θr+1 and θr is the polar angle of xr. After some simplifications this equality
becomes

sin2(ar) = 1− (cos ||xr|| cos ||xr+1||+ sin ||xr|| sin ||xr+1|| cos θr,r+1)
2 .

Using the spherical law of cosines (see figure 3) we obtain that

cos ||xr|| cos ||xr+1||+ sin ||xr|| sin ||xr+1|| cos(θr,r+1) = cosαr,r+1,

where αr,r+1 is the angle between pr and pr+1, the points on the sphere corresponding to xr and
xr+1. Using this fact, the above becomes

− cos2 αr,r+1 + 1 = sin2 αr,r+1 = sin2 ar.

Therefore, ar = |αr,r+1| since it is a positive number, as stated.

a

c
b

A

C

B

cos c = cos b cos a+ sin b sin a cosC

sin a

sinA
=

sin b

sinB
=

sin c

sinC

Law of sines:

Law of cosines:

Figure 6: Spherical trigonometric law of cosines and sines. The angles A, B and C are the
corner angles while a, b, c are the angles corresponding to the indicated arc as measured from
the center of the sphere.

A similar calculation, although a more involved one, describes kr. Using the recursion relation

Kr · cr+1
r+1 = cr+2

r+1,
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the fact that cr+1
r+1 = 0, the expression of Kr and the formula (39) for the action, we have that

sincr+2
r+1

cr+2
r+1 = sin ar

(
− cos kr
sin kr

)
.

Therefore, π − kr is the polar angle of cr+2
r+1 (while ||cr+2

r+1|| = ar). Now, we do know that ρr+2 ·
xr+1 = cr+2

r+1, where ρ is the right moving frame; therefore, we can again use (39) to find

sincr+2
r+1

cr+2
r+1 = Θr+2Vr+1,r+2 (43)

where
Vi,j = sinxi xi +

(
cosxj sinxi xj · xi − sinxj cos ||xi||

)
xj .

We clearly see that the polar angle of cr+2
r+1 is a combination of the polar angle of Θr+2 and

the one of Vr+1,r+2. Now, we know that Θr is determined by the equation (41). That is, Θr+2

rotates Vr+3,r+2 to the x-axis

Θr+2

(
sinxr+3 xr+3 +

(
cosxr+2 sinxr+3 xr+2 · xr+3 − sinxr+2 cos ||xr+3||

)
xr+2

)
= Θr+2Vr+3,r+2 = sinar+2e1 ar+1e1.

If we denote by P (v) the polar angle of the vector v, from here we get that π−kr = P (Vr+1,r+2)−
P (Vr+3,r+2).

Next, we can write xr in terms of the polar coordinates of pr, that is,

xr =

(
sin ||xr|| cos θr
sin ||xr|| sin θr

)
and substitute in the expression for Vi,j . After some minor trigonometric manipulations we
obtain

Vi,j =

(
cos θj − sin θj
sin θj cos θj

)(
cos ||xj || sin ||xi|| cos(θi,j)− sin ||xj || cos ||xi||

sin ||xi|| sin(θi,j)

)
Form here P (Vr+1,r+2)− P (Vr+3,r+2) = P (vr+1,r+2)− P (vr+3,r+2), where

vi,j =

(
cos ||xj || sin ||xi|| cos(θi,j)− sin ||xj || cos ||xi||

sin ||xi|| sin(θi,j)

)
. (44)

Notice that, as before, after basic trigonometric manipulations

||vi,j ||2 = 1− (cos(||xi||) cos(||xj ||) + sin(||xi||) sin(||xj ||) cos(θi,j))
2 = 1− cos2 αi,j = sin2 αi,j .

where we have used the spherical law of cosines once more. Notice that 0 ≤ αi,j ≤ π and so
from (44) the sine of the polar angle of vi,j is given by

sin ||xi|| sin(θi,j)

sinαi,j
.

Let us assume all the angles involved are in the first two quadrants. Then, the spherical law of
sines tells us that

sinαr+1,r+2

sin θr+1,r+2
=

sin ||xr||
sinβr+1,r+2

and so the sine of the polar angle of vr+1,r+2 is given by

sin ||xr+1|| sin(θr+1,r+2)

sinαr+1,r+2
= sinβr+1,r+2.

Likewise, the polar angle of vr+3,r+2 is βr+3,r+2 = −βr+2,r+3. Therefore,

π − kr = βr+1,r+2 + βr+2,r+3

as stated.
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5.3.2 Invariantization of invariant evolutions and its associated integrable system

We will next describe the evolution induced on Kr by an invariant evolution of polygons on the
sphere. According to (15) and using our definition of moving frame, the most general form for
an invariant evolution of polygons on the sphere is given by

(xs)t =

(
sin−1xs

(
I − xsx

T
s

||xs||2

)
+
xsx

T
s

||xs||2

)
Θ−1s rs

for some invariant vector rs =

(
r1s
r2s

)
depending on (kr) and (ar).

Theorem 5.7. Assume the twisted polygons (xr) are solutions of an invariant evolution of the
form above. Then the invariants as and ks evolve following the equations

(as)t = −r1s + r1s+1 cos ks − r2s+1 sin ks (45)

(ks)t = r2s
1

sin as
− r2s+1

cos as+1

sin as+1
+ r1s+2

sin ks+1

sin as+1
+ r2s+2

cos ks+1

sin as+1
(46)

− r1s+1

cos as
sin as

sin ks − r2s+1

cos as
sin as

cos ks (47)

Proof. Assume the polygons are evolving following this evolution; then, our left Maurer–Cartan
matrices K̂s = K−1s will follow the evolution

K̂−1s (K̂s)t = Ns+1 − K̂−1s NsK̂s (48)

where

Ns = (ρs)tρ
−1
s =

 0 ns r1s
−ns 0 r2s
−r1s −r2s 0

 .

Next, we remark that

(
0 −κ
κT 0

)
commutes with its derivative since κ is a multiple of e1. This

means (
exp

(
0 −κ
κT 0

))
t

=

 0 0 (as)t
0 0 0

−(as)t 0 0

 exp

(
0 −κ
κT 0

)
.

Using the expression of Kr in the previous theorem, one has that

K̂−1s (K̂s)t =

 0 −(ks)t (as)t cos ks
(ks)t 0 −(as)t sin ks

−(as)t cos ks (as)t sin ks 0

 .

Substituting this into (48) and multiplying out matrices we get

(ks)t = −ns+1 + ns cos as + r2s sin as

and (
cos ks sin ks
− sin ks cos ks

)(
(as)t

0

)
=

(
cos ks sin ks
− sin ks cos ks

)(
−r1s

−r2s cos as + ns sin as

)
+

(
r1s+1

r2s+1

)
.
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From here we get

ns = r2s
cos as
sin as

− 1

sin as

(
r1s+1 sin ks + r2s+1 cos ks

)
and

(as)t = −r1s − r2s+1 sin ks + r1s+1 cos ks.

Substituting the vale of ns in the evolution of ks completes the proof.

In particular, if we ask that the evolution preserves the spherical arc-length (i.e. (as)t = 0) and
we choose the value tan as = 1 as constant value, then choosing r1s = 1 for all s produces the
curvature evolution

(ks)t =
√

2

(
1− cos ks+1

sin ks+1
− 1− cos ks−1

sin ks−1

)
.

Let us = 1−cos ks
sin ks

. The above equation becomes

(us)t =

√
2

2
(1 + u2s)(us+1 − us−1), (49)

which is a special case of equation (V1) in the list of integrable Volterra-type equations [42].
It is a bi-Hamiltonian equation [43], where the second Hamiltonian operator was not explicitly
given. Here we give its compatible Hamiltonian and symplectic operators [5]. Equation (49) can
be written as

(us)t =

√
2

4
Hδus ln(1 + u2s) and I(us)t =

√
2

2
δus((1 + u2s)us+1us−1 +

1

2
u2su

2
s−1)

where

H = (1 + u2s)
(
T − T −1

)
(1 + u2s)

is Hamiltonian and

I = T − T −1 +
2us

1 + u2s
(T − 1)−1(us+1 + us−1) + (us+1 + us−1)T (T − 1)−1

2us
1 + u2s

is a symplectic operator. Furthermore, these two operators satisfy

HI = <2 =

(
(1 + u2s)T + 2usus+1 + (1 + u2s)T −1 + (us)t(T − 1)−1

2us
1 + u2s

)2

,

where < is a Nijenhuis recursion operator of (49). Its recursion operator < can not be written as
the product of weakly nonlocal Hamiltonian and symplectic operators. A similar example was
presented in [41].

Notice that, as before, T − 1 is not invertible in the periodic case. That means we will need
to work on infinite gons, or assume we are working with Hamiltonians whose gradient is in the
image of the operator, as it is the case with this example.
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6 Conclusion and Future Work

In this paper, we have developed a notion of a discrete moving frame and shown it has com-
putational advantages over a single frame for the invariantization of discrete evolution flows
and mappings. Further, we have shown in our examples that the use of discrete moving frames
greatly aids the identification of discrete integrable systems and biPoisson maps that can be
obtained as invariantizations of invariant flows of gons.

Investigations are under way on how the Hamiltonian structures might appear in the general
case, and in particular how they appear in the projective plane. Further work also remains to
illustrate and detail how our constructions of invariant mappings and their invariantizations lead
in general to discrete integrable mappings, as seen in Section 5.1.2. This work is different in
nature to the previous one and it will be greatly aided by understanding the differential-difference
problem.

Hamiltonian structures in the projective plane could be relevant to the results in [38]. There
the authors proved that the so-called pentagram map is completely integrable, but they did not
provide a biHamiltonian structure for its invariantization. A structure obtained in this setting
would be a natural candidate to prove that the pentagram map is biPoisson.

The study of discrete moving frames for more general applications, and insight into how our
theorems in Section 3 here may generalize, remains to be achieved. One such application is to
the discrete Calculus of Variations, as briefly indicated in Example 2.9. We believe however,
that eventually the applications for a more general theory of discrete moving frames will extend
to invariant numerical schemes and computer graphics, amongst others.
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