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Abstract Anisotropic decompositions using representation systems based on para-
bolic scaling such as curvelets or shearlets have recently attracted significant attention
due to the fact that they were shown to provide optimally sparse approximations of
functions exhibiting singularities on lower dimensional embedded manifolds. The
literature now contains various direct proofs of this fact and of related sparse approx-
imation results. However, it seems quite cumbersome to prove such a canon of results
for each system separately, while many of the systems exhibit certain similarities.

In this paper, with the introduction of the notion of parabolic molecules, we aim to
provide a comprehensive framework which includes customarily employed represen-
tation systems based on parabolic scaling such as curvelets and shearlets. It is shown
that pairs of parabolic molecules have the fundamental property to be almost orthog-
onal in a particular sense. This result is then applied to analyze parabolic molecules
with respect to their ability to sparsely approximate data governed by anisotropic fea-
tures. For this, the concept of sparsity equivalence is introduced which is shown to
allow the identification of a large class of parabolic molecules providing the same
sparse approximation results as curvelets and shearlets. Finally, as another applica-
tion, smoothness spaces associated with parabolic molecules are introduced provid-
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ing a general theoretical approach which even leads to novel results for, for instance,
compactly supported shearlets.

Keywords Curvelets · Nonlinear approximation · Parabolic scaling · Shearlets ·
Smoothness spaces · Sparsity equivalence

Mathematics Subject Classification (2000) Primary 41AXX · Secondary 41A25 ·
53B · 22E

1 Introduction

Recently, a paradigm shift could be observed in applied mathematics, computer sci-
ence, and electrical engineering towards sparsity as key prior information. Sparse
approximations enable not only highly efficient encoding of functions and signals,
but also provide novel methodologies, for instance, for recovery of missing data or
separation of morphologically distinct components. At about the same time, scientists
began to question whether wavelets are indeed perfectly suited for image processing
tasks, the main reason being that images are governed by edges while wavelets are
isotropic objects. This mismatch becomes also evident when recalling that Besov
spaces can be characterized by the decay of wavelet coefficient sequences; however,
Besov models are clearly deficient to adequate capturing of edges.

1.1 Geometric Multiscale Analysis

These two observations have led to the research area of geometric multiscale anal-
ysis whose main goal is to develop representation systems, preferably containing
different scales, which are sensitive to anisotropic features in functions/signals and
provide sparse approximations of those. Such representation systems are typically
based on parabolic scaling, and we exemplarily mention (first and second gener-
ation) curvelets [9], contourlets [16], and shearlets [32]. Browsing through the lit-
erature, it becomes evident that some properties, such as sparse approximation of
so-called cartoon images, are quite similar for some systems, such as curvelets and
shearlets, whereas other systems, such as contourlets, show a somehow different be-
havior. Delving more into the literature we observe that for those systems exhibiting
a similar sparsity behavior many results were proven with quite resembling proofs.
One might ask: Is this cumbersome close repetition of proofs really necessary? We
believe that the answer is no and that a general framework for representation systems
based on parabolic scaling does not only solve this problem but, even more, provides
a fundamental understanding of such systems and allows for a categorization of these.

1.2 Parabolic Molecules

The main goal of this paper is to proclaim the framework of parabolic molecules as
a general concept encompassing in particular curvelets and both band-limited and
compactly supported shearlets. The idea of molecules in geometric multiscale analy-
sis dates back to the seminal work by Candès and Demanet [6], in which they studied
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the curvelet representation of wave propagators by using what they called curvelet
molecules. Later, Guo and Labate adopted this idea and introduced shearlet molecules
in [27].

Both such generalization approaches, however, suffer from the fact that they
are solely designed to weaken the conditions of the particular respective systems,
namely curvelets and shearlets. In contrast to this, our philosophy is to introduce
molecules, which encompass a wide class of directional representation systems by us-
ing parabolic scaling as a unifying concept. This is justified by the fact that all known
systems providing optimally sparse approximation of cartoon images—a customarily
utilized model class for images being governed by anisotropic features [18]—follow
a parabolic scaling law; and it is strongly believed that this is necessary. In fact, our
framework is general enough to, for instance, include all known curvelet-type as well
as shearlet-type constructions to date.

Our main result (Theorem 2.9) will show that the Gramian matrix between any
two systems of parabolic molecules satisfies a strong off-diagonal decay property and
is in that sense very close to a diagonal matrix. This will become key to transfer the
celebrated properties of curvelet systems to other systems based on parabolic scaling;
a fact which we can summarize in the following meta-result:

Meta-Theorem All frame systems based on parabolic scaling (specifically curvelets
and shearlets) possess the exact same approximation properties, whenever the gen-
erating functions are sufficiently smooth, as well as localized in space and frequency.

This meta-theorem has been verified on a case-by-case basis for a number of dif-
ferent systems. In this paper, for the first time, a rigorous framework is provided
which applies to, for instance, all known curvelet or shearlet constructions at once.
This will be exemplarily demonstrated by the results on sparse approximation (The-
orem 4.6) and anisotropic smoothness spaces (Theorem 4.10) which are indeed uni-
versally applicable to all parabolic molecules.

1.3 Sparsity Equivalence

Focusing on the property of sparse approximation of images governed by anisotropic
features, it might be even more beneficial to derive a categorization of parabolic
molecules according to their approximation behavior. We accommodate this request
by introducing the notion of sparsity equivalence in Sect. 4.1, which leads to equiv-
alence classes and further to the sought classification. As a byproduct, our frame-
work yields a simple derivation of the results in [26, 34] from [9]. In fact, our results
provide a systematic way to analyze the sparse approximation of cartoon images of
systems by elements of the class of parabolic molecules categorized by equivalence
classes of sparsity equivalence.

1.4 Contribution and Expected Impact

Summarizing, the significance of the notion of parabolic molecules as a higher level
viewpoint lies in the fact that it not only provides a general framework which contains
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various directional representation systems as special cases and enables a quantitative
comparison of such, but it moreover allows the transfer of results concerning prop-
erties of such systems without repeating quite similar proofs. A few examples for
which this conceptually new approach is fruitful will be presented in Sect. 4 includ-
ing optimally sparse approximations of cartoon images.

We therefore anticipate this novel framework to have the following impacts:

• A thorough understanding of the ingredients of representation systems based on
parabolic scaling which are crucial for an observed behavior such as sparse ap-
proximations of cartoon images, thereby also categorizing different (sparsity) be-
haviors.

• A framework within which results can be directly transferred from one system to
others without repetition of similar proofs. This will allow to establish a desired
result for a system based on parabolic scaling by choosing, for instance, a shearlet
or curvelet system best suited for the proof, and transfer the result subsequently to
any other systems by utilizing the results in this paper.

• An approach to design new representation systems based on parabolic scaling de-
pending on several parameters whose impact on, for instance, sparse approxima-
tion behavior is then known in advance.

1.5 Extensions

The framework introduced in this paper and the derived results are amenable to gen-
eralizations and extensions as future directions. We briefly discuss a few examples:

• Other Systems. This general framework supports the introduction of novel systems
based on parabolic scaling fulfilling a list of desiderata designed according to a
particular application. Such systems can now be objectively compared with other
systems according to, for instance, sparse approximation properties.

• Systems with Continuous Parameters. One might also ask whether a similar gen-
eral framework for systems based on parabolic scaling with continuous parameters
can be introduced. In light of Sect. 4.1, this, however, requires a different sparsity
model; one conceivable path would be to compare their ability to resolve wavefront
sets.

• Homogeneous Systems. We have formulated our results for nonhomogeneous
frame systems (cf. [30]), where negative scales are represented by a scaling func-
tion. An extension of our results to the homogeneous case is possible.

• Further Properties. In this paper, we studied the impact of our general frame-
work on the problems of sparse approximation and anisotropic function spaces.
We strongly believe that this strategy can also be used for other applications, such
as efficient decomposition of the Radon transform, which has been studied both
for shearlets [19] and curvelets [8], as well as the analysis of geometric separation
as studied in [17].

• Weighted Norms. When aiming at transferring results such as sparse decompo-
sitions of curvilinear integrals [7] or sparse decompositions of the Radon trans-
form [8], sometimes weighted �p norms might need to be analyzed.
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• Higher Dimensions. We have formulated our results in the bivariate setting. How-
ever, an extension to arbitrary dimensions is possible using essentially the same
arguments. This is especially relevant since by now several different curvelet and
shearlet constructions exist for three-dimensional data [28, 33, 38].

1.6 Outline

This paper is organized as follows. In Sect. 2, the notion of parabolic molecules is
introduced. It is then shown in Sect. 3 that curvelets and both band-limited and com-
pactly supported shearlets are special cases of this framework. Almost orthogonality
of pairs of parabolic molecules is proven in Sect. 5. Finally, in Sect. 4, this result is
utilized for two applications. First, in Sect. 4.1, using the novel concept of sparsity
equivalence a large class of parabolic molecules providing the same sparse approxi-
mation results as curvelets and shearlets is identified. Second, in Sect. 4.2, smooth-
ness spaces associated with parabolic molecules are studied.

1.7 Notation

We comment on the notation which we shall use in the present work. As usual,
we denote by Lp(Rd) the usual Lebesgue spaces with associated norm ‖ · ‖p . For
a discrete set Λ equipped with the counting measure we denote the correspond-
ing Lebesgue space by �p(Λ) or �p if Λ is known from the context. The associ-
ated norm will again be denoted ‖ · ‖p . We use the symbol 〈·, ·〉 indiscriminately
for the inner product on the Hilbert space L2(R

d) as well as for the Euclidean
inner product on R

d . The Euclidean norm 〈x, x〉1/2 of a vector x ∈ R
d will be

denoted by |x|. For a function f ∈ L1(R
d) we can define the Fourier transform

f̂ (ω) := ∫
Rd f (x) exp(−2πi〈x,ω〉)dx. By density this definition can be extended

to tempered distributions f . We shall also use the notation T to denote the one-
dimensional torus which can be identified with the half-open interval [0,2π). Some-
times we will use the notations (x)+ := max(x,0) �x� := max{l ∈ Z : l ≤ x}, and
〈x〉 := (1 + x2)1/2. Finally, we use the symbol A � B to indicate that A ≤ CB with
a uniform constant C.

2 Parabolic Molecules

All anisotropic transforms based on parabolic scaling which have appeared in the lit-
erature are indexed by a scale parameter describing the amount of anisotropic scaling,
an angular parameter describing the orientation and a spatial parameter describing the
location of an element. Nevertheless, these specific constructions are based on differ-
ent principles: For curvelets the scaling is done by a dilation with respect to polar
coordinates and the orientation is enforced by rotations. Shearlets on the other hand
are based on affine scaling of a single generator and the directionality is generated by
the action of shear matrices.

It is the purpose of this section to introduce the concept of parabolic molecules
which distills the essential properties out of these constructions in terms of time-
frequency localization properties. As it will turn out, all previous constructions of
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curvelets and shearlets are instances of this concept, a fact that enables us to operate
in a much more general setup than in previous work.

2.1 Definition of Parabolic Molecules

Let us now describe our setup. We start by defining our parameter space

P := R+ ×T×R
2,

where a point p = (s, θ, x) ∈ P describes a scale 2s , an orientation θ , and a location x.
Parabolic molecules are defined as systems of functions (mλ)λ∈Λ with each mλ ∈

L2(R
2) satisfying some additional properties. In particular, each function mλ will

be associated with a unique point in P, as we shall make precise below. Since we
are dealing with discrete systems (frames) we would like to operate with discrete
sampling sets contained in P. We call such sampling sets parametrizations as defined
below, where we let Rθ = ( cos(θ) − sin(θ)

sin(θ) cos(θ)

)
denote the rotation matrix of angle θ , and

Da := diag(a,
√

a) be the anisotropic dilation matrix associated with a > 0.

Definition 2.1 A parametrization consists of a pair (Λ,ΦΛ) where Λ is a discrete
index set and ΦΛ is a mapping

ΦΛ :
{

Λ → P,

λ ∈ Λ �→ (sλ, θλ, xλ),

which associate with each λ ∈ Λ a scale sλ, a direction θλ and a location xλ ∈R
2.

We define the canonical parametrization by

Λ0 := {
(j, l, k) ∈ Z

4 : j ≥ 0, l = −2� j
2 �−1, . . . ,2� j

2 �−1},

where for λ = (j, l, k) we define Φ0(λ) := (sλ, θλ, xλ) with sλ := j , θλ := l2−�j/2�π ,
and xλ := R−θλD2−sλ k.

We are now ready to define parabolic molecules. Our definition essentially says
that molecules have frequency support in parabolic wedges associated with a certain
orientation and spatial support in rectangles with parabolic aspect ratio.

Definition 2.2 Let (Λ,ΦΛ) be a parametrization. A family (mλ)λ∈Λ is called a fam-
ily of parabolic molecules of order (R,M,N1,N2) if it can be written as

mλ(x) = 23sλ/4a(λ)
(
D2sλ Rθλ(x − xλ)

)

such that

∣
∣∂β â(λ)(ξ)

∣
∣ � min

(
1,2−sλ + |ξ1| + 2−sλ/2|ξ2|

)M 〈|ξ |〉−N1〈ξ2〉−N2 (1)

for all |β| ≤ R. The implicit constants are uniform over λ ∈ Λ.
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Fig. 1 Top: The weight function min(1,2−sλ +|ξ1|+2−sλ/2|ξ2|)M 〈|ξ |〉−N1 〈ξ2〉−N2 for sλ = 3, M = 3,
N1 = N2 = 2. Bottom: Approximate frequency support of a corresponding molecule m̂λ with θλ = π/4

Remark 2.3 For convenience our definition only poses conditions on the Fourier
transform of mλ. The number R describes the spatial localization, M the number
of directional (almost) vanishing moments and N1,N2 describe the smoothness of an
element mλ. We also refer to Fig. 1 for an illustration of the approximate frequency
support of a parabolic molecule.

We pause to record the following simple estimates: In polar coordinates we have
the representation

m̂λ(r, ϕ) = 2−3sλ/4â(λ)
(
2−sλr cos(ϕ + θλ),2−sλ/2r sin(ϕ + θλ)

)
exp

(
2πi〈xλ, ξ 〉).
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Equation (1) directly implies that in polar coordinates we have the estimate

∣
∣m̂λ(ξ)

∣
∣ � 2−2sλ/4 min

(
1,2−sλ(1 + r)

)M 〈
2−sλr

〉−N1
〈
2−sλ/2r sin(ϕ + θλ)

〉−N2 . (2)

2.2 Metric Properties of Parametrizations

In order to proceed we need to introduce some additional (metric) properties of index
sets and parametrizations. The parameter space P can be equipped with a natural
notion of (pseudo) distance, see [37], which can be extended to a distance between
indices by a pullback via a parametrization.

Definition 2.4 Following [6, 37], we define for two indices λ,μ the index distance

ω(λ,μ) := 2|sλ−sμ|(1 + 2sλ0 d(λ,μ)
)
,

and

d(λ,μ) := |θλ − θμ|2 + |xλ − xμ|2 + ∣
∣〈eλ, xλ − xμ〉∣∣,

where λ0 = argmin(sλ, sμ) and eλ = (cos(θλ), sin(θλ))
.

Remark 2.5 The notation ω(λ,μ) is actually a slight abuse of notation since ω is
acting on P. Therefore it should read

ω
(
ΦΛ(λ),ΦΔ(μ)

)

for indices λ ∈ Λ, μ ∈ Δ with associated parametrizations ΦΛ, ΦΔ. In order not to
overload the notation we stick with the shorter but slightly less accurate definition.

Remark 2.6 We wish to mention that, in fact, real-valued curvelets or shearlets are
not associated with an angle but with a ray, i.e., θ and θ + π need to be identified.
This is not reflected in the above definition, which is a slight inaccuracy. The ‘correct’
definition should assume that |θλ| ≤ π

2 ∈ P
1, the projective line. Therefore, it should

read

d(λ,μ) := ∣
∣{θλ − θμ}∣∣2 + |xλ − xμ|2 + ∣

∣〈θλ, xλ − xμ〉∣∣
with {ϕ} the projection of ϕ onto P

1 ∼= (−π/2,π/2].
However, for our results it will make no difference which definition is used. Thus

we decided to employ Definition 2.4, which avoids additional technicalities.

We need to impose further conditions on an index set Λ in order to arrive at mean-
ingful results. The following definition formalizes a crucial property, which is later
on required to be satisfied by an index set in our results.

Definition 2.7 A parametrization (Λ,ΦΛ) is called k-admissible if

sup
λ∈Λ

∑

μ∈Λ0

ω(λ,μ)−k < ∞,
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and

sup
λ∈Λ0

∑

μ∈Λ

ω(λ,μ)−k < ∞.

Lemma 2.8 The canonical parametrization (Λ0,ΦΛ0) is k-admissible for all k > 2.

Proof We aim to prove that

sup
μ∈Λ0

∑

λ∈Λ0

ω(μ,λ)−k < ∞. (3)

Writing sμ = j ′ in the definition of ω(μ,λ), we need to consider

∑

j∈Z+

∑

λ∈Λ0,sλ=j

2−k|j−j ′|(1 + 2min(j,j ′)d(μ,λ)
)−k

. (4)

According to [6, (A.2)], we have

∑

λ∈Λ0,sλ=j

(
1 + 2qd(μ,λ)

)−2 � 22(j−q)+ (5)

for any q . Hence, for each k > 2, the term (4) can be estimated by

∑

j≥0

2−k|j−j ′|22|j−j ′| < ∞,

which proves (3). �

2.3 Main Result

The main result of this paper essentially states that any two systems of parabolic
molecules behave in the same way as far as approximation properties are concerned.
Specifically, we show the following theorem, whose proof is quite technical, where-
fore we postpone it to Sect. 5.3.

Theorem 2.9 Let (mλ)λ∈Λ, (pμ)μ∈Δ be two systems of parabolic molecules of order
(R,M,N1,N2) with

R ≥ 2N, M > 3N − 5

4
, N1 ≥ N + 3

4
, N2 ≥ 2N. (6)

Then
∣
∣〈mλ,pμ〉∣∣� ω

(
(sλ, θλ, xλ), (sμ, θμ, xμ)

)−N
.

This result shows that the Gramian matrix between any two systems of parabolic
molecules satisfies a strong off-diagonal decay property and is in that sense very close
to a diagonal matrix. As we shall see in Sect. 4, this result has a number of immediate
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applications, most notably for the approximation properties of arbitrary frames which
are systems of parabolic molecules (they turn out to be equivalent!).

We find it particularly interesting that our framework is general enough to include
both curvelet-type, as well as shearlet-type constructions (see Sect. 3). Therefore, as a
consequence of Theorem 2.9, all these systems satisfy the same celebrated properties
of the curvelet construction given in [9]. To demonstrate the importance of our result,
Sect. 4 discusses selected applications of Theorem 2.9 such as sparsity equivalence
and equivalence of associated smoothness spaces.

3 Examples of Parabolic Molecules

Having defined parabolic molecules in Sect. 2 above, it is important to examine the
versatility of this concept. This is done in the present section. The main findings are
that essentially all known constructions in the literature can be cast in our framework
and are thus amenable to the techniques and results developed in this paper.

We divide the section into two subsections. In Sect. 3.1 we study so-called
curvelet-like constructions. These include curvelets as defined in [5] but also other
constructions, such as in [3, 37]. We show that all these function systems are parabolic
molecules. In fact, this result should not come to much as a surprise: In [6] a similar
concept of curvelet molecules is introduced which includes all the above-mentioned
constructions. We also show that curvelet molecules are parabolic molecules.

The real strength of our definition of parabolic molecules is that it includes not
only curvelet-type constructions. In fact, we consider it one of the main findings of
this paper that also shearlet-type systems can be thought of as instances of parabolic
molecules, associated with a specific shearlet parametrization Φσ . We show this re-
sult, as well as the admissibility of Φσ , below in Sect. 3.2. After that, to provide
some concrete examples, we study several specific constructions. In particular, we
show that compactly supported shearlet constructions (see e.g. [31]) are parabolic
molecules.

3.1 Curvelet-Like Constructions

3.1.1 Second Generation Curvelets

It is easily verified that curvelet molecules as defined in [6] are instances of parabolic
molecules associated with the canonical parametrization. In particular, second gener-
ation curvelets [5] are parabolic molecules of arbitrary order. We start by describing
the construction. Pick two window functions W(r), V (t) which are both real, non-
negative, C∞ and supported in ( 1

2 ,2) and in (−1,1), respectively. We further assume
that these windows satisfy

∑

j∈Z
W

(
2j r

)2 = 1 for all r ∈ R+ and

∑

l∈Z
V (t − l)2 = 1 for all t ∈

(

−1

2
,

1

2

)

.
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Now define in polar coordinates

γ̂(j,0,0)(r,ω) := 2−3j/4W
(
2−j r

)
V

(
2�j/2�ω

)
and

γ(j,l,k) := γ(j,0,0)

(
Rθ(j,l,k)

(· − x(j,l,k))
)
,

where (j, l, k) ∈ Λ0. With appropriate modifications for the low-frequency case
j = 0 it is possible to show that the system

Γ 0 := {
γλ : λ ∈ Λ0}

constitutes a Parseval frame for L2(R
2). In order to make the frame elements real-

valued, it is possible to identify elements oriented in antipodal directions. This frame
is customarily referred to as the tight frame of second generation curvelets. We now
show that this frame forms a system of parabolic molecules of arbitrary order.

Proposition 3.1 The second generation curvelet frame constitutes a system of
parabolic molecules of arbitrary order associated with the canonical parametriza-
tion.

Proof Due to rotation invariance we may restrict ourselves to the case θλ = 0. There-
fore, denoting γj := γ(j,0,0), we need to show that the function

a(λ) := 2−3sλ/4γj (D2−sλ ·)
satisfies (1) for (R,M,N1,N2) arbitrary. First note that

â(λ) = 23sλ/4γ̂j (D2sλ ·).
The function â(λ), together with all its derivatives has compact support in a rectangle
away from the ξ1-axis. Therefore, it only remains to show that, on its support, the
function â(λ) has bounded derivatives, with a bound independent of j . But this fol-

lows from elementary arguments. Using r =
√

ξ2
1 + ξ2

2 , ω = arctan(ξ2/ξ1), we obtain

â(λ)(ξ) = γ̂(j,0,0)(D2j ξ ) = W
(
αj (ξ)

)
V

(
βj (ξ)

)
,

where

αj (ξ) := 2−j
√

22j ξ2
1 + 2j ξ2

2 , and βj (ξ) := 2j/2 arctan

(
ξ2

2j/2ξ1

)

.

Now it is a straightforward computation to show that all derivatives of αj and βj are
bounded on the support of â(λ) and uniformly in j . This proves the result. �

3.1.2 Hart Smith’s Parabolic Frame

Historically, the first instance of a decomposition into parabolic molecules can be
found in Hart Smith’s work on Fourier Integral Operators and Wave Equations [37].
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The frame defined in this work, as well as its dual, again forms a system of parabolic
molecules of arbitrary order associated with the canonical parametrization. We re-
fer to [1, 37] for the details of the construction which is essentially identical to
the curvelet construction, with primal and dual frame being allowed to differ. The
same discussion as above for curvelets shows that this system consists of parabolic
molecules.

3.1.3 Borup and Nielsen’s Construction

Another very similar construction has been given in [3]. In this paper, the focus has
been on the study of associated function spaces. Again, it is straightforward to prove
that this system constitutes a system of parabolic molecules of arbitrary order associ-
ated with the canonical parametrization. As a corollary to our results, it will actually
turn out that the spaces defined in [3] coincide with the approximation spaces corre-
sponding to curvelets, shearlets, and Smith’s transform, see Corollary 4.14.

3.1.4 Curvelet Molecules

In [6] the authors introduced the notion of curvelet molecules which are a useful con-
cept in proving sparsity properties of wave propagators. For the sake of completion,
we include the exact definition.

Definition 3.2 Let Λ0 be the canonical parametrization. A family (mλ)λ∈Λ0 is called
a family of curvelet molecules of regularity R if it can be written as

mλ(x) = 23sλ/4a(λ)
(
D2sλ Rθλ(x − xλ)

)

such that for all |β| ≤ R and each N = 0,1,2, . . .

∣
∣∂βa(λ)(x)

∣
∣ � 〈x〉−N (7)

and for M = 0,1, . . .

∣
∣â(λ)(ξ)

∣
∣ � min

(
1,2−sλ + |ξ1| + 2−sλ/2|ξ2|

)M
. (8)

This definition is similar to our definition of parabolic molecules, however, with
two crucial differences: First, (1) allows for arbitrary rotation angles and is therefore
more general. Curvelet molecules on the other hand are only defined for the canonical
parametrization Λ0 (which, in contrast to our definition, is not sufficiently general
to also cover shearlet-type systems). Second, the decay conditions analogous to our
condition (1) are more restrictive in the sense that it requires infinitely many nearly
vanishing moments. In fact, the following result holds:

Proposition 3.3 A system of curvelet molecules of regularity R constitutes a system
of parabolic molecules of order (∞,∞,R/2,R/2).
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Proof The definition of curvelet molecules as above implies that the estimate (8)
also holds for all derivatives of â(λ), see [6]. Furthermore, by (7), all derivatives of
â(λ) can be estimated in modulus by 〈|ξ |〉−R , which in turn can be estimated by
〈|ξ |〉−R/2〈ξ2〉−R/2. This yields the desired estimate. �

In the context of curvelet molecules we mention the work [36], which constructs
compactly supported frames consisting of curvelet molecules of arbitrary order, thus
also falling into our more general framework.

3.2 Shearlets

Shearlets were introduced in 2006 as the first directional representation system which
not only satisfies the same celebrated properties of curvelets, but also provides a
unified treatment of the continuum and digital setting. This key property is achieved
through utilization of a shearing matrix as a means to parameterize orientation, which
is highly adapted to the digital grid in contrast to rotation. For more information on
shearlets, we refer to the book [32].

It is perhaps not surprising that curvelets and their relatives described above fall
into the framework of parabolic molecules. Here we show the crucial fact that shear-
lets can be seen as a special case of parabolic molecules as well. For this, we will first
introduce a framework which specifically encompasses all shearlet systems and show
that this framework, which we coin shearlet molecules of order (R,M,N1,N2), can
be regarded as a special case of parabolic molecules (Proposition 3.6). Subsequently,
the most important shearlet constructions will be proven to fall into this framework,
i.e., Proposition 3.6 is applicable, showing that they can be considered as systems
of parabolic molecules. We wish to emphasize that our shearlet molecules of order
(R,M,N1,N2) are much more general than the shearlet molecules introduced in
[27] (see Sect. 3.2.3), which for instance do not encompass all compactly supported
shearlets.

We start by considering the discrete index set

Λσ := {
(ε, j, l, k) ∈ Z2 ×Z

4 : ε ∈ {0,1}, j ≥ 0, l = −2� j
2 �, . . . ,2� j

2 �}, (9)

and the shearlet system

Σ := {
σλ : λ ∈ Λσ

}
,

with

σ(ε,0,0,k) = ϕ(· − k), σ(ε,j,l,k) = 23j/4ψε
j,l,k

(
Dε

2j S
ε
l,j · −k

)
, j ≥ 1,

where D0
a = Da , D1

a := diag(
√

a, a), Sl,j := (
1 l2−�j/2�
0 1

)
and S1

l,j = (S0
l,j )

. We can
now define shearlet molecules of order (R,M,N1,N2), which is a generalization of
shearlets adapted to parabolic molecules.

Definition 3.4 We call Σ a system of shearlet molecules of order (R,M,N1,N2) if
the functions ϕ, ψ0

j,l,k, ψ1
j,l,k satisfy

∣
∣∂βψ̂ε

j,l,k(ξ1, ξ2)
∣
∣� min

(
1,2−j + |ξ1+ε| + 2−j/2|ξ2−ε|

)M 〈|ξ |〉−N1〈ξ2−ε〉−N2 (10)
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for every β ∈ N
2 with |β| ≤ R, where the notation ξ1+ε =

{
ξ1, ε=0
ξ2, ε=1 and ξ2−ε =

{
ξ2, ε=0
ξ1, ε=1 is used.

Remark 3.5 In our proofs it is nowhere required that the directional parame-

ter l runs between −2� j
2 � and −2� j

2 �. Indeed, l running in any discrete interval

−C2� j
2 �, . . . ,C2� j

2 � would yield the exact same results, as a careful inspection of
our arguments shows. Likewise, in certain shearlet constructions, the translational
sampling runs not through k ∈ Z

2 but through τZ2 with τ > 0 a sampling constant.
Our results are also valid for this case with similar proofs. The same remark applies
to all curvelet-type constructions.

Now we can show the main result of this section, namely that shearlet systems with
generators satisfying (10) are actually instances of parabolic molecules associated
with a specific shearlet-adapted parametrization Φσ .

Proposition 3.6 Assume that the shearlet system Σ constitutes a system of shear-
let molecules of order (R,M,N1,N2). Then Σ constitutes a system of parabolic
molecules of order (R,M,N1,N2), associated with the parametrization (Λσ ,Φσ ),
where

Φσ (λ) = (sλ, θλ, xλ) := (
j, επ/2 + arctan

(−l2−�j/2�),
(
Sε

l

)−1
Dε

2−j k
)
.

Proof We confine the discussion to ε = 0, the other case being the same. Further, we
will suppress the superscript ε as well as the subscript j, l, k in our notation. We need
to show that

a(λ) := ψ
(
D2sλ Sl,sλR


θλ

D2−sλ ·)

satisfies (1). The Fourier transform of a(λ) is given by

â(λ) = ψ̂
(
D2−sλ S−

l,sλ
R

θλ
D2sλ ·).

The matrix S−
l,sλ

R
θλ

has the form

S−
l,sλ

R
θλ

=
(

cos(θλ) sin(θλ)

0 −l2−�sλ/2� sin(θλ) + cos(θλ)

)

=:
(

a b

0 c

)

.

We claim that the quantities a and c are uniformly bounded from above and below,
independent of j, l. To see this, consider the functions

τ(x) := cos
(
arctan(x)

)
and ρ(x) := x sin

(
arctan(x)

) + cos
(
arctan(x)

)
,

which are bounded from above and below on [−1,1], as an elementary discussion
shows (in fact this boundedness holds on any compact interval). We have

a = τ
(−l2� sλ

2 �) and c = ρ
(−l2� sλ

2 �).
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Since we are only considering indices with ε = 0, we have | − l2� sλ
2 �| ≤ 1, which, by

the above implies uniform upper and lower boundedness of the quantities a, c, i.e.,
there exist numbers 0 < δa ≤ Δa < ∞, 0 < δc ≤ Δc < ∞ such that for all j, l we
have

δa ≤ a ≤ Δa and δc ≤ c ≤ Δc.

The matrix D2−sλ R
θλ

S−
l,sλ

D2sλ has the form

(
a 2−sλ/2b

0 c

)

.

Using the upper boundedness of a, b, c and the chain rule, we can estimate for any
|β| ≤ R:

∣
∣∂β â(λ)(ξ)

∣
∣� sup

|γ |≤R

∣
∣
∣
∣∂

γ ψ̂

((
a 2−sλ/2b

0 c

)

ξ

)∣
∣
∣
∣ �

(
2−sλ+|ξ1| + 2−sλ/2|ξ2|

)M
.

For the last estimate we utilized the moment estimate for ψ̂ , which is given by (10).
This gives us the moment property required in (1).

Now we need to show the decay of ∂β â(λ) for large frequencies ξ . Again, due to
the fact that a, b, c are bounded from above and a, c from below, and utilizing the
large frequency decay estimate in (10), we can estimate

∣
∣∂β â(λ)(ξ)

∣
∣ � sup

|γ |≤R

∣
∣
∣
∣∂

γ ψ̂

((
a 2−sλ/2b

0 c

)

ξ

)∣
∣
∣
∣�

〈∣
∣
∣
∣

(
a 2−sλ/2b

0 c

)

ξ

∣
∣
∣
∣

〉−N1

〈cξ2〉−N2

�
〈|ξ |〉−N1〈ξ2〉−N2 .

The statement is proven. �

The following result shows that, just like the canonical parametrization, the shear-
let parametrization Λσ is admissible.

Lemma 3.7 The shearlet parametrization (Λσ ,Φσ ) is k-admissible for k > 2.

Proof We show the analogue to (5) for the shearlet parametrization; the rest of the
proof is analogous to the proof of Lemma 2.8. Hence, we aim to prove that

∑

λ∈Λσ ,sλ=j

(
1 + 2qd(μ,λ)

)−2 � 22(j−q)+ (11)

for any q and μ ∈ Λ0. Without loss of generality we assume that θμ = 0, xμ = 0
(the general case follows identical arguments with slightly more notational effort).
Further, as before we only restrict ourselves to the case ε = 0, the other case being
exactly the same.

First we consider the case q > j . In this situation, the expression in (11) can be
bounded by a uniform constant.
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Now we turn to the other case j ≥ q . In this case we use the fact that, whenever
|l| � 2−j/2, we have

∣
∣arctan

(−l2−� j
2 �)∣∣�

∣
∣l2−� j

2 �∣∣ and
∣
∣S−1

l D2−j k
∣
∣�

∣
∣D2−j k

∣
∣,

to estimate (11) by

∑

l

∑

k

(
1 + 2q

(∣∣l2−� j
2 �∣∣2 + ∣

∣2−� j
2 �k2

∣
∣2 + ∣

∣2−j k1 − l2−� j
2 �k22−� j

2 �∣∣))−2
.

This can be interpreted as a Riemann sum and bounded (up to a constant) by the
corresponding integral

∫

R2

dx

2−3j/2

∫

R

dy

2−j/2

(
1 + 2q

(
y2 + x2

2 + |x1 − x2y|))−2
,

compare [6, (A.3)]. This integral is bounded by a constant times 22(j−q) as can
be seen by making the substitution x1 → 2qx1, x2 → 2q/2x2, y → 2q/2y. This
shows (11) and thus completes the proof. �

These results show that the parabolic molecule concept is a unification of previous
systems. In the remainder of this section we examine the shearlet constructions which
are on the market and show that they indeed fit into our framework.

3.2.1 Bandlimited Shearlets

We start with the classical shearlet construction which yields band-limited generators.
We consider two functions ψ1, ψ2 satisfying

supp ψ̂1 ⊂
[

−1

2
,− 1

16

]

∪
[

1

16
,

1

2

]

, supp ψ̂2 ⊂ [−1,1],

∑

j≥0

∣
∣ψ̂1

(
2−jω

)∣
∣2 = 1 for |ω| ≥ 1

8
,

and

2�j/2�
∑

l=−2�j/2�

∣
∣ψ̂2

(
2�j/2�ω + l

)∣
∣2 = 1 for |ω| ≤ 1.

Now we define our basic shearlet ψ0 via

ψ̂0(ξ) := ψ̂1(ξ1)ψ̂2

(
ξ2

ξ1

)

.

It follows from standard arguments that the system

Σ0 := {
23j/4ψ0(D0

2j S
0
l,j · −k

) : j ≥ 0, l = −2� j
2 �, . . . ,2� j

2 �}
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constitutes a Parseval frame for the Hilbert space L2(C)∨ with

C :=
{

ξ : |ξ1| ≥ 1

8
,
|ξ2|
|ξ1| ≤ 1

}

.

In the same way we can construct a Parseval frame Σ1 for L2(C′)∨,

C′ :=
{

ξ : |ξ2| ≥ 1

8
,
|ξ1|
|ξ2| ≤ 1

}

.

by reversing the coordinate axes and defining ψ1(ξ1, ξ2) := ψ0(ξ2, ξ1). Finally, we
can consider a Parseval frame

Φ := {
ϕ(· − k) : k ∈ Z

2}

for the Hilbert space L2([− 1
8 , 1

8 ]2)∨.

Proposition 3.8 The system Σ := Σ0 ∪ Σ1 ∪ Φ constitutes a shearlet frame which
is a system of parabolic molecules of arbitrary order.

Proof To show this, by Proposition 3.6, all we need to show is that the generators ψ0,
ψ1 satisfy (10) for arbitrary orders (R,M,N1,N2). This, however, follows directly
from the fact that the underlying basis functions are band-limited. �

The band-limited shearlet frame Σ as described above suffers from the fact that we
do not know much about its dual frames. In particular, we do not know whether there
exists a dual frame which is also a system of parabolic molecules. For several results,
such as those in Sect. 4.2, it is, however, necessary to have such a construction.

In [24] this problem was successfully resolved by carefully gluing together the
two band-limited frames associated with the two frequency cones. In other words,
there exist shearlet frames Σ with dual frame Σ ′ such that both Σ and Σ ′ form
systems of parabolic molecules of arbitrary order. In [29] another modification of the
band-limited shearlet construction is given by carefully gluing together two boundary
elements along the seamlines with angle π/4 (cf. also [4] for a solution to a similar
problem in the curvelet setting). It can be shown that this yields a Parseval frame
with smooth and well-localized elements. Again, it is straightforward to check that
the system constructed in [29] constitutes a system of parabolic molecules of arbitrary
order.

3.2.2 Compactly Supported Shearlets

We next analyze compactly supported shearlets [31], and prove that they also form
instances of parabolic molecules. Currently known constructions of compactly sup-
ported shearlets involve separable generators, i.e.,

ψ0(x1, x2) := ψ1(x1)ψ2(x2), ψ1(x1, x2) := ψ0(x2, x1), (12)
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with a wavelet ψ1 and a scaling function ψ2. We would like to find conditions on ψ1,

ψ2 such that (10) is satisfied for given parameters (R,M,N1,N2), i.e., that the asso-
ciated shearlet frame forms a system of shearlet molecules.

First we define the crucial property of vanishing moments for univariate wavelets.

Definition 3.9 A univariate function g possesses M vanishing moments if
∫

R

g(x)xk dx = 0, for all k = 0, . . . ,M − 1.

In the frequency domain, vanishing moments are characterized by polynomial de-
cay near zero, as is well known.

Lemma 3.10 Suppose that g : R → C is continuous, compactly supported and pos-
sesses M vanishing moments. Then

∣
∣ĝ(ξ)

∣
∣ � min

(
1, |ξ |)M

.

Proof First, note that, since g is continuous and compactly supported, it is in L1(R)

and therefore its Fourier transform is bounded. This takes care of frequencies ξ with
|ξ | ≥ 1. For small ξ observe that we have

(−2πi)k
∫

R

g(x)xk dx =
(

d

dξ

)k

ĝ(0).

Hence, if g possesses M vanishing moments, all derivatives of order < M of the
Fourier transform ĝ vanish at 0. Furthermore, since g is compactly supported, its
Fourier transform is analytic. Therefore

∣
∣ĝ(ξ)

∣
∣ � |ξ |M,

which proves the claim. �

This lemma now enables us to show that compactly supported shearlets can be
regarded as a special case of parabolic molecules.

Proposition 3.11 Assume that ψ1 ∈ CN1 is a compactly supported wavelet with
M + R vanishing moments, and ψ2 ∈ CN1+N2 is also compactly supported. Then,
with ψε defined by (12), the associated shearlet system Σ constitutes a system of
parabolic molecules of order (R,M,N1,N2).

Proof In view of Proposition 3.6 we need to show that the estimate (10) holds. We
only consider the case ε = 0 and drop the superscript. The inverse Fourier transform
of ∂βψ is, up to a constant given by xβψ(x). We first handle the case |ξ1| > 1. By
smoothness and compact support of ψ1,ψ2, we find that for any |β| ≤ R the function

∂(N1,N1+N2)xβψ
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is in L1(R), hence it has a bounded Fourier transform which is given, up to a constant,
by

ξ
N1
1 ξ

N1+N2
2 ∂βψ̂(ξ).

It follows that the function

〈ξ1〉N1〈ξ2〉N1+N2∂βψ̂(ξ)

is bounded. Using the simple fact that 〈x〉〈y〉 � 〈√x2 + y2〉, we get

∂βψ(ξ) �
〈‖ξ‖〉−N1〈ξ2〉−N2 .

Now let β be such that |β1| < R. Then the function

xβψ(x) = x
β1
1 x

β2
2 ψ1(x1)ψ2(x2),

restricted to the variable x1 possesses at least M vanishing moments, due to the as-
sumption that ψ1 possesses M +R vanishing moments. Lemma 3.10 then proves the
decay of order min(1, |ξ1|M) for the derivatives of ψ̂ . �

Remark 3.12 Several assumptions on the generators ψ1, ψ2 could be weakened, for
instance the separability of the shearlet generators is not crucial for the arguments
to go through. In particular, our arguments nowhere require neither compact support
nor band-limitedness.

3.2.3 Shearlet Molecules of [27]

In [27] the results of [6] are established for shearlets instead of curvelets. A crucial
tool in the proof is the introduction of a certain type of shearlet molecules which
are similar to curvelet molecules discussed above, but tailored to the shearing op-
eration rather than rotations. Though, in contrast to the shearlet molecules of order
(R,M,N1,N2) introduced in Definition 3.4, compactly supported shearlets do not in
general fall into the framework of shearlet molecules as defined in [27].

Definition 3.13 Let Λσ be the shearlet index set as in (9). A family (mλ)λ∈Λσ is
called a family of shearlet molecules of regularity R if it can be written as

mλ(x) = 23sλ/4a(λ)
(
Dε

2sλ Sε
l,j x − k

)

such that for all |β| ≤ R and each N = 0,1,2, . . .

∣
∣∂βa(λ)(x)

∣
∣ � 〈x〉−N

and for M = 0,1, . . .

∣
∣â(λ)(ξ)

∣
∣ � min

(
1,2−sλ + |ξ1| + 2−sλ/2|ξ2|

)M
.
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By the results in [27], the shearlet molecules defined therein satisfy the inequal-
ity (10) with the choice of parameters (R,N,N1,N2) = (∞,∞,R/2,R/2). There-
fore, in view of Proposition 3.6, shearlet molecules of regularity R as defined in [27]
form systems of parabolic molecules of order (∞,∞,R/2,R/2). Thus, we derive an
analogous result to Lemma 3.3 for shearlet molecules:

Proposition 3.14 A system of shearlet molecules of regularity R constitutes a system
of parabolic molecules of order (∞,∞,R/2,R/2).

4 Applications

In this section we discuss selected applications of the developed theory. A particular
focus will be on approximation properties of parabolic molecule systems (mλ)λ∈Λ,
especially if they form a frame, e.g.,

‖f ‖L2(R)2 ∼
∑

λ∈Λ

∣
∣〈f,mλ〉

∣
∣2

,

see e.g., [10]. It is well known that in this case one can represent any function f ∈
L2(R

2) as a sum

f =
∑

λ∈Λ

〈f,mλ〉m̃λ,

where (m̃λ)λ∈Λ is a dual frame. Approximation properties of a frame system (mλ)λ∈Λ

are usually studied in terms of the sparsity of the coefficient sequence (〈f,mλ〉)λ∈Λ.
Below, in Sect. 4.1 we show that essentially any frame system which consists of
parabolic molecules satisfies the same approximation properties as the curvelet frame
constructed in [5]. This, in particular, implies almost optimal approximation results
for the class of cartoon images (see below for a definition) for all constructions men-
tioned in Sect. 3, for instance compactly supported or band-limited shearlets. The
above-mentioned approximation property may actually be regarded as the main rai-
son d’être of curvelet-like systems and is therefore of central importance.

In Sect. 4.2 we go further and show that practically any reasonable definition of a
function space norm based on a coefficient sequence (〈f,mλ〉)λ∈Λ is equivalent for
any two frame systems consisting of parabolic molecules. This shows for instance
that finiteness of a function space norm defined via the curvelet frame implies finite-
ness of the analogous norm defined via compactly supported shearlet frames, when-
ever the generators possess sufficient smoothness and directional vanishing moments.
This result has not been known before.

Remark 4.1 It is in general not the case that the dual frame (m̃λ)λ∈Λ of a frame
(mλ)λ∈Λ of parabolic molecules needs to consist of parabolic molecules, too. How-
ever, it can be shown, based on the concept of intrinsic localization, that the so-called
canonical dual frame of (mλ)λ∈Λ is of a similar form in a certain sense [25].
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4.1 Sparse Image Approximation

Multivariate problems are typically governed by anisotropic features such as edges in
images. A customarily employed model for such data is the class E2(R2) of so-called
cartoon images which is defined by

E2(
R

2) = {
f ∈ L2(

R
2) : f = f0 + f1 · χB

}
,

where B ⊂ [0,1]2 with ∂B a closed C2-curve and f0, f1 ∈ C2
0([0,1]2). Questions

of efficient encoding of such a model class can be formulated in terms of optimal
approximation properties. Given a frame system (mλ)λ ⊆ L2(R

2), an appropriate
measure for the approximation behavior is the decay rate of the error of best N -term
approximation, i.e., of ‖f −fN‖2

2, where fN denotes the best N -term approximation
by (mλ)λ of some f ∈ E2(R2), obtained as

fN = argmin

∥
∥
∥
∥f −

∑

λ∈ΛN

cλmλ

∥
∥
∥
∥

2

2
s.t. #ΛN ≤ N.

A small technical problem occurs due to the fact that the representation system might
not form an orthonormal basis in which case the computation of the best N -term ap-
proximation is far from being understood. To circumvent this problem, usually the
error of approximation by the N largest coefficients of (〈f,mλ〉)λ∈Λ is considered,
which then certainly also provides a bound for the error of best N -term approxima-
tion.

Typically, the asymptotics of this error are studied in terms of the weak �p-norms
of the coefficient sequences of f for small values of p, which are defined by

∥
∥(cλ)λ∈Λ

∥
∥

p,w
:= sup

t>0
t · #

{
λ ∈ Λ : |cλ| > t

}1/p
.

Indeed, it is easily seen that membership of the coefficient sequence of f in a weak
�p space �p,w for small p implies good N -term approximation rates, whenever the
given representation system constitutes a frame, see, e.g., [14, 34].

Therefore we say that a frame (mλ)λ∈Λ possesses an N -term approximation rate
of order s > 0 for a function f if the associated coefficient sequence (〈f,mλ〉)λ∈Λ

lies in �p,w for p = 1
s+ 1

2
. In [18] it was shown that the optimally achievable decay

rate of the error of approximation of some f ∈ E2(R2) under the natural assumption
of polynomial depth search is

‖f − fN‖2
2 � N−2, as N → ∞.

Furthermore, it was proven in [9] and in [26, 34] that both curvelets and shearlets
attain this rate up to a log-factor. Apparently, these (parabolic) systems behave simi-
larly concerning sparse approximation of anisotropic features.

The next definition provides a formalization of this concept by introducing the
notion of sparsity equivalence. It is based on the connection between best N -term
approximation rate and �p norms.
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Definition 4.2 Let (mλ)λ∈Λ and (pμ)μ∈Δ be systems of parabolic molecules of order
(R,M,N1,N2) and (R̃, M̃, Ñ1, Ñ2), respectively, and let 0 < p ≤ 1. Then (mλ)λ∈Λ

and (pμ)μ∈Δ are sparsity equivalent in �p , if
∥
∥
(〈mλ,pμ〉)

λ∈Λ,μ∈Δ

∥
∥

�p→�p
< ∞.

Intuitively, systems of parabolic molecules being in the same sparsity equivalence
class should have the same sparse approximation behavior with respect to cartoon
images. The next result shows that this is indeed the case.

Proposition 4.3 Let (mλ)λ∈Λ and (pμ)μ∈Δ be systems of parabolic molecules of
order (R,M,N1,N2) and (R̃, M̃, Ñ1, Ñ2), respectively, which are sparsity equiva-
lent in �2/3. If the dual frame (m̃λ)λ∈Λ of (mλ)λ∈Λ possesses an almost best N -term
approximation rate of order N−1+ε for cartoon images for any ε > 0, then so does
(pμ)μ∈Δ.

Proof This is a direct consequence of the definition of sparsity equivalence and stan-
dard arguments, noting that weak �p norms are dominated by strong �p norms in the
sense that we have ‖(cλ)λ∈Λ‖p,w � ‖(cλ)λ∈Λ‖p for all p > 0; see for instance [14]. �

This result enables us to provide a very general class of systems of parabolic
molecules which optimally sparsely approximate cartoon images by using the known
result for curvelets. For this, we first analyze when a system is sparsity equivalent to
the tight frame of band-limited curvelets.

We begin by stating a simple result concerning operator norms on discrete �p

spaces.

Lemma 4.4 Let I, J be two discrete index sets, and let A : �p(I ) → �p(J ), p > 0
be a linear mapping defined by its matrix representation A = (Ai,j )i∈I,j∈J . Then we
have the bound

‖A‖�p(I )→�p(J ) ≤ max

(

sup
i

∑

j

|Ai,j |r , sup
j

∑

i

|Ai,j |r
)1/r

,

where r := min(1,p).

Proof The proof for p < 1 follows easily using the fact that

|a + b|p ≤ |a|p + |b|p for a, b ∈R.

To show the case p ≥ 1 one only shows the assertion for p = 1,∞, which is trivial.
The claim then follows by interpolation. �

The next theorem proves the central fact that any system of parabolic molecules of
sufficiently high order is sparsity equivalent to the band-limited curvelet frame from
Sect. 3.1.1.
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Theorem 4.5 Assume that 0 < p ≤ 1, (Λ,ΦΛ) is a k-admissible parametriza-
tion, and Γ 0 = (γλ)λ∈Λ0 the tight frame of band-limited curvelets. Further, as-
sume that (mλ)λ∈Λ is a system of parabolic molecules associated with Λ of order
(R,M,N1,N2) such that

R ≥ 2
k

p
, M > 3

k

p
− 5

4
, N1 ≥ k

p
+ 3

4
, N2 ≥ 2

k

p
.

Then (mλ)λ∈Λ is sparsity equivalent to Γ 0 in �p .

Proof We need to show that

∥
∥
(〈mλ,γμ〉)

λ∈Λ,μ∈Λ0

∥
∥

�p→�p

= max

(

sup
μ∈Λ

∑

λ∈Λ0

∣
∣〈mλ,γμ〉∣∣p, sup

λ∈Λ0

∑

μ∈Λ

∣
∣〈mλ,γμ〉∣∣p

)1/p

< ∞.

By Theorem 2.9, we have

∣
∣〈mλ,γμ〉∣∣� ω(λ,μ)

− k
p .

It follows that

max

(

sup
μ∈Λ

∑

λ∈Λ0

∣
∣〈mλ,γμ〉∣∣p, sup

λ∈Λ0

∑

μ∈Λ

∣
∣〈mλ,γμ〉∣∣p

)

� max

(

sup
μ∈Λ

∑

λ∈Λ0

ω(λ,μ)−k, sup
λ∈Λ0

∑

μ∈Λ

ω(λ,μ)−k

)

< ∞,

due to the k-admissibility of the parametrization of Λ. �

This result in combination with Proposition 4.3 now leads to the main result of
this section.

Theorem 4.6 Assume that (mλ)λ∈Λ is a system of parabolic molecules of order
(R,M,N1,N2) such that:

(i) (mλ)λ∈Λ constitutes a frame for L2(R
2).

(ii) Λ is k-admissible for all k > 2.
(iii) We have

R ≥ 6, M > 9 − 5

4
, N1 ≥ 3 + 3

4
, N2 ≥ 6.

Then the frame (mλ)λ∈Λ possesses an almost best N -term approximation rate of
order N−1+ε , ε > 0 arbitrary for cartoon images.
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Proof This follows from Proposition 4.3, Theorem 4.5, and the fact, proven in [9],
that Γ 0 provides the respective N -term approximation rate. �

We remark that condition (ii) holds in particular for the shearlet parametrization.
Hence this result allows a simple derivation of the results in [26, 34] from [9]. In
fact, Theorem 4.6 provides a systematic way to, in particular, prove results on sparse
approximation of cartoon images.

4.2 Function Spaces

Based on the concept of decomposition spaces introduced in [20], Borup and Nielsen
have studied curvelet-like function spaces in [3]. We would like to apply our results
to show that these spaces can be characterized by the transform coefficients in any
frame which also forms a system of parabolic molecules. Consider the curvelet frame

Γ 0 := {
γj,l,k : (j, l, k) ∈ Λ0}

introduced in Sect. 3.1.1. Following [3] we define for p,q,α > 1 the function spaces
Gα

p,q given by the norm

‖f ‖Gα
p,q

:=
( ∑

j≥0,l

(

2αj

(∑

k

∣
∣〈f,γj,l,k〉

∣
∣p

)1/p)q)1/q

. (13)

This definition might seem somewhat odd, since the summation with respect to the
directional parameter l is done with respect to the �q norm. For this reason and also
for some minor technical reasons, we study another, similar family of function spaces,
namely the spaces Sα

p,q given by the norm

‖f ‖Sα
p,q

:=
(∑

j≥0

(

2αj

(∑

k,l

∣
∣〈f,γj,l,k〉

∣
∣p

)1/p)q)1/q

. (14)

Remark 4.7 We would like to emphasize that all the results shown in this section also
hold for the spaces defined by (13), but with slightly more technical effort arising
from the need to handle mixed Lebesgue spaces [2]. We also remark that the function
spaces defined via (14) can be interpreted as a decomposition spaces of the form
studied in [3] with a mixed Lebesgue space Y = �q�p (see [3] for more information).

For technical reasons the definition in (14) forces us to work with a slightly
stronger notion of admissibility than given in Definition 2.7:

Definition 4.8 An index set Λ with associated mapping ΦΛ is called strongly (k, l)-
admissible if it is k-admissible and if

∑

λ∈Λj

(
1 + 2qd(μ,λ)

)−k � 2l(j−q)+ ,
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where

Λj := {λ ∈ Λ : sλ = j}.

Lemma 4.9 The canonical parametrization (Λ0,Φ0) and the shearlet parametriza-
tion (Λσ ,Φσ ) are both strongly (k,2)-admissible for any k > 2.

Proof This has already been shown earlier in (5) for the canonical parametrization
and in (11) for the shearlet parametrization. �

The aim of this section is to show the following theorem.

Theorem 4.10 Let Σ = {σλ : λ ∈ Λ} be a frame for L2(R
2) with dual frame

Σ̃ = {σ̃λ : λ ∈ Λ}. Assume further that Σ , Σ̃ are both parabolic molecules of ar-
bitrary order with a strongly (k, l) admissible parametrization for some k, l. Then
the following are equivalent norms on Sα

p.q :

‖f ‖Sα
p,q

∼
(∑

j≥0

(

2αj

( ∑

λ∈Λj

∣
∣〈f,σλ〉

∣
∣p

)1/p)q)1/q

∼
(∑

j≥0

(

2αj

( ∑

λ∈Λj

∣
∣〈f, σ̃λ〉

∣
∣p

)1/p)q)1/q

.

Remark 4.11 Of course, it would be possible to show a quantitative version of Theo-
rem 4.10 in the sense that Σ and Σ̃ are only required to form a system of parabolic
molecules of finite, sufficiently large order, depending on p,q,α.

Before we start with the proof of Theorem 4.10 we recall the following result
which is a very useful inequality, sometimes called the discrete Hardy inequality,
see [15]. To state this result we define for a sequence a = (ak)k∈N the (quasi) norm

‖a‖�α
q

:=
(∑

k∈N

(
2kα|ak|

)q
)1/q

.

The discrete Hardy inequalities are as follows.

Lemma 4.12 Assume that with λ > α and r ≤ q we have either

|bk|� 2−λk

(
k∑

j=0

(
2λj |aj |

)r

)1/r

, (15)

or

|bk| �
( ∞∑

j=k

|aj |r
)1/r

. (16)
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Then we have

‖b‖�α
q
� ‖a‖�α

q
.

Observe that defining ak := ‖(〈f,γλ〉)λ∈Λk
‖p , we have ‖f ‖Sα

p,q
= ‖a‖�α

q
. Armed

with these useful facts, we may now proceed with the proof of Theorem 4.10.

Proof of Theorem 4.10 We start by fixing some notation:

fΓ := (〈f,γμ〉)
μ∈Λ0, fΓj := (〈f,γμ〉)

μ∈Λ0
j
,

fΣ := (〈f,σλ〉
)
λ∈Λ

, fΣj := (〈f,σλ〉
)
λ∈Λj

.

Further, we write Γj = {γμ : μ ∈ Λ0
j } and similar for the systems Σ,Σ̃ . Define

A := 〈Γ,Σ〉, Ai,j := 〈Γi,Σj 〉, Ã := 〈Σ̃,Γ 〉, Ai,j := 〈Σ̃i,Γj 〉.

We have

fΣ = (
fΓ

)A, fΣi =
∑

j≥0

(
fΓj

)Ai,j ,

fΓ = (
fΣ

)A, fΓi =
∑

j≥0

(
fΣj

)Ai,j .

Let us first assume that p ≥ 1. Then we would like to show that

(∑

j≥0

(

2αj

( ∑

λ∈Λj

∣
∣〈f,σλ〉

∣
∣p

)1/p)q)1/q

< ∞,

whenever
(∑

j≥0

(

2αj

( ∑

μ∈Λ0
j

∣
∣〈f,γμ〉∣∣p

)1/p)q)1/q

< ∞.

For this, we obtain

bi := ∥
∥fΣi

∥
∥

p
=

∥
∥
∥
∥
∑

j≥0

(
fΓj

)Ai,j

∥
∥
∥
∥

p

≤
∑

j≥0

∥
∥
(
fΓj

)Ai,j

∥
∥

p
= di + ei, (17)

where

di :=
∑

j>i

∥
∥
(
fΓj

)Ai,j

∥
∥

p
and ei :=

∑

j≤i

∥
∥
(
fΓj

)Ai,j

∥
∥

p
.

Next, we will prove that the inequalities (15), (16) are satisfied for the sequences di ,
ei , respectively. By Lemma 4.12, this proves the desired claim.
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We start by deriving the following estimate for di :

di ≤
∑

j>i

∥
∥(

fΓj
)∥∥

p
‖Ai,j‖�p→�p .

To further analyze ‖Ai,j‖�p→�p , we employ Lemma 4.4 to obtain

‖Ai,j‖�p→�p ≤ max

(

sup
μ∈Λ0

i

∑

λ∈Λj

∣
∣〈γμ,σλ〉

∣
∣, sup

λ∈Λj

∑

μ∈Λ0
i

∣
∣〈γμ,σλ〉

∣
∣
)

. (18)

Using the fact that Γ and Σ are parabolic molecules of arbitrary order, Theorem 2.9
implies that for N arbitrary,

∣
∣〈γμ,σλ〉

∣
∣� ω(μ,λ)−N. (19)

By (19) and the fact that the parametrization for Λ is strongly admissible, we can
further estimate the first term in (18) by

sup
μ∈Λ0

i

∑

λ∈Λj

ω(μ,λ)−N = 2−N |i−j | sup
μ∈Λ0

i

∑

λ∈Λj

(
1 + 2min(i,j)d(μ,λ)

)−N

� 2−(N−l)|i−j |.

The second term is treated similarly, and we wind up with

‖Ai,j‖�p→�p � 2−N |i−j | (20)

for N arbitrarily large. In particular, this implies that

di �
∑

j>i

∥
∥(

fΓj
)∥∥

p
�

(∑

j>i

∥
∥(

fΓj
)∥∥

p

)1/r

with r := min(1, q), and this is (16). Similarly we can estimate

ei �
∑

j≤i

2−N(i−j)
∥
∥
(
fΓj

)∥
∥

p
= 2−Ni

∑

j≤i

2Nj
∥
∥
(
fΓj

)∥
∥

p

� 2−Ni

(∑

j≤i

(
2Nj

∥
∥
(
fΓj

)∥
∥

p

)r
)1/r

,

which is (15). Applying Lemma 4.12 yields

(∑

j≥0

(

2αj

( ∑

λ∈Λj

∣
∣〈f,σλ〉

∣
∣p

)1/p)q)1/q

�
(∑

j≥0

(

2αj

( ∑

μ∈Λ0
j

∣
∣〈f,γμ〉∣∣p

)1/p)q)1/q

,
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which proves one half of the desired norm equivalence. The other half (and the case
of Σ̃ ) can be shown in exactly the same way. Therefore, for p ≥ 1, the claim of the
theorem is proven.

Let us now turn to the case p < 1. For this, we need to replace the estimate (17)
with

|bi | := ∥
∥fΣi

∥
∥

p
=

∥
∥
∥
∥
∑

j≥0

(
fΓj

)Ai,j

∥
∥
∥
∥

p

�
∥
∥
∥
∥
∑

j≤i

(
fΓj

)Ai,j

∥
∥
∥
∥

p

+
∥
∥
∥
∥
∑

j>i

(
fΓj

)Ai,j

∥
∥
∥
∥

p

≤
(∑

j≤i

∥
∥fΓj

∥
∥p

p
‖Ai,j‖p

�p→�p

)1/p

+
(∑

j>i

∥
∥fΓj

∥
∥p

p
‖Ai,j‖p

�p→�p

)1/p

�
(∑

j≤i

∥
∥fΓj

∥
∥r

p
‖Ai,j‖r

�p→�p

)1/r

+
(∑

j>i

∥
∥fΓj

∥
∥r

p
‖Ai,j‖r

�p→�p

)1/r

=: di + ei,

where r := min(p, q). Now we can use (20) and proceed as above to show that the
Hardy inequalities are satisfied for di and ei . Then, the application of Lemma 4.12
finishes the proof. �

As a corollary we can consider the shearlet frames Σ constructed in [24, 29] and
briefly described in Sect. 3.2.1 as well as the frames described in Sects. 3.1.2 and 3.1.3
and arrive at the following theorem.

Theorem 4.13 The curvelet frame Γ 0, the shearlet frames constructed in [24, 29], as
well as the frames constructed in [1, 3, 37] all span the same approximation spaces,
with corresponding norms defined on the frame coefficients as in Theorem 4.10.

Without proof we also mention that Theorem 4.10 and Theorem 4.13 also hold for
the spaces Gα

p,q . The proof is similar but slightly more technical.
We can therefore draw the following corollary.

Corollary 4.14 The curvelet frame Γ 0, the shearlet frames constructed in [24, 29],
as well as the frames constructed in [1, 3, 37] all span the same approximation
spaces, with corresponding norms defined on the frame coefficients as in (13).

We wish to stress that in fact this result for the first time proves the meta-theorem
that curvelet- and shearlet properties are equivalent.

Remark 4.15 A similar result to Theorem 4.13 has recently been shown in [35]. The
proofs in this paper only apply to band-limited constructions which present consider-
ably less technical difficulty.
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Remark 4.16 In [11–13] shearlet function spaces have been studied based on coorbit
space theory [21, 22]. Initially these spaces are constructed for the so-called non-
cone-adapted shearlet transform which does not possess the desirable approximation
properties of curvelets. In [11] suitable weights are introduced which are used to
define shearlet coorbit spaces related to cone-adapted shearlets. We conjecture that
one can show (using the exact same arguments as leading to Theorem 4.10) that
these spaces are actually the same as the corresponding curvelet spaces with the same
discrete norm on the transform coefficients.

5 Proof of Theorem 2.9

The present section presents the proof of our main result, namely the almost orthog-
onality of any two systems of parabolic molecules of sufficient order. Since the argu-
ment is quite involved we start by collecting some useful lemmata below in Sects. 5.1
and 5.2 before we go on to the proof of the main result, Theorem 2.9 in Sect. 5.3.

5.1 Decay Estimates

Here we collect several decay estimates which will turn out to be useful in the proof
of Theorem 2.9. The following lemma can be found in [23, Appendix K.1].

Lemma 5.1 For N > 1 and a, a′ ∈R+, we have the inequality
∫

R

(
1 + a|x|)−N (

1 + a′|x − y|)−N dx � max
(
a, a′)−1(1 + min

(
a, a′)|y|)−N

.

As a corollary we can show the next result.

Lemma 5.2 Assume that |θ | ≤ π
2 and N > 1. Then we have for a, a′ > 0 the inequal-

ity
∫

T

(
1 + a

∣
∣sin(ϕ)

∣
∣
)−N (

1 + a′∣∣sin(ϕ + θ)
∣
∣
)−N dϕ

� max
(
a, a′)−1(1 + min

(
a, a′)|θ |)−N

. (21)

Proof For ϕ ∈ T, we have the estimate

| sin(ϕ)| ≥

⎧
⎪⎨

⎪⎩

|ϕ| ϕ ∈ I1 := [−π
2 , π

2 ],
|ϕ − π | ϕ ∈ I2 := [π

2 ,π],
|ϕ + π | ϕ ∈ I3 := [−π,−π

2 ].
In order to use Lemma 5.1 we now split T into nine intervals depending on ϕ +θ,ϕ ∈
I1, I2, I3. Then the left-hand side of (21) can be estimated by nine terms of the form

∫

R

(
1 + a|ϕ|)−N (

1 + a′|ϕ + ϑ + θ |)−N dϕ,
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where ϑ ∈ {0,±π,±2π}. By Lemma 5.1 this expression can be bounded by a con-
stant times

max
(
a, a′)−1(1 + min

(
a, a′)|θ + ϑ |)−N

.

Now it remains to note that for ϑ ∈ {±π,±2π} and |θ | ≤ π
2 we have |θ + ϑ | ≥ |θ |.

This proves the lemma. �

Define the expression

Sλ,M,N1,N2(r, ϕ) := min
(
1,2−sλ(1 + r)

)M(
1 + 2sλ/2

∣
∣sin(ϕ + θλ)

∣
∣)−N2

× (
1 + 2−sλr

)−N1 . (22)

The following lemma will be used in order to decouple the angular and the radial
variables.

Lemma 5.3 We have the estimate

min
(
1,2−sλ(1 + r)

)M(
1 + 2−sλr

)−N1
(
1 + 2−sλ/2r

∣
∣sin(ϕ + θλ)

∣
∣)−N2

� Sλ,M−L,N1,L(r, ϕ)

for every 0 ≤ L ≤ N2.

Proof After picking L we can estimate the quantity on the left-hand side by

min
(
1,2−sλ(1 + r)

)M−L(
1 + 2−sλr

)−N1

(
min(1,2−sλ(1 + r))

1 + 2−sλ/2r| sin(ϕ + θλ)|
)L

.

We need to show that

min(1,2−sλ(1 + r))

1 + 2−sλ/2r| sin(ϕ + θλ)| �
(
1 + 2sλ/2

∣
∣sin(ϕ + θλ)

∣
∣)−1

. (23)

In order to prove (23), we distinguish three cases:

• r ≥ 2sλ : In this case we derive

min(1,2−sλ(1 + r))

1 + 2−sλ/2r| sin(ϕ + θλ)| ≤ 1

1 + 2−sλ/2r| sin(ϕ + θλ)|
≤ 1

1 + 2−sλ/22sλ | sin(ϕ + θλ)|
≤ (

1 + 2sλ/2
∣
∣sin(ϕ + θλ)

∣
∣
)−1

.

• r ≤ 1: For r ≤ 1 we have

min(1,2−sλ(1 + r))

1 + 2−sλ/2r| sin(ϕ + θλ)| � 2−sλ �
(
1 + 2sλ/2

∣
∣sin(ϕ + θλ)

∣
∣
)−1

.
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• 1 < r < 2sλ : In this case we have

min(1,2−sλ(1 + r))

1 + 2−sλ/2r| sin(ϕ + θλ)| = 1 + r

r

1
2sλ

r
+ 2sλ/2| sin(ϕ + θ)| .

Since r > 1 we have 1+r
r

≤ 2 and since r < 2sλ , we have 2sλ

r
≥ 1. This proves the

statement. �

Lemma 5.4 For A,B > 0 and

M > A − 5

4
, N2 ≥ B, N1 ≥ A + 3/4,

we have the estimate

2− 3
4 (sλ+sμ)

∫

R+

∫

T

Sλ,M,N1,N2(r, ϕ)Sμ,M,N1,N2(r, ϕ)r dr dϕ

� 2−A|sλ−sμ|(1 + 2min(sλ,sμ)/2|θλ − θμ|)−B
.

Proof We assume that sμ ≥ sλ and start by showing the angular decay: By Lemma 5.2
and N2 ≥ B , we have

2− 3
4 (sλ+sμ)

∫

R+

∫

T

Sλ,M,N1,N2(r, ϕ)Sμ,M,N1,N2(r, ϕ)r dr dϕ

� S · 2
3
4 (sμ−sλ)

(
1 + 2sλ/2|θλ − θμ|)−B

,

where

S := 2−2sμ

∫

R+
min

(
1,2−sλ(1 + r)

)M min
(
1,2−sμ(1 + r)

)M(
1 + 2−sλr

)−N1

× (
1 + 2−sμr

)−N1r dr. (24)

The remaining estimate

S � 2−(A+3/4)|sλ−sμ|

is established by splitting up this integral into the four cases r < 1, 1 ≤ r < 2sλ ,
2sλ ≤ r < 2sμ and r ≥ 2sμ .
Case 1: 0 ≤ r ≤ 1
Here we only use the moment property and estimate

(24) � 2−2sμ

∫ 1

0
2−sλM2−sμMr2M+1 dr

≤ 2−sμ(2+M)2−sλM

≤ 2−(A+3/4)(sμ−sλ).

Case 2: 1 ≤ r ≤ 2sλ
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For this case, we estimate

(24) � 2−2sμ

∫ 2sλ

1
2−sμMrM

(
2−sλr

)−N1r dr

= 2−(M+2)sμ2N1sλ

∫ 2sλ

1
rM+1−N1 dr

≤ 2−(M+2)sμ2N1sλ2(M+2−N1)sλ

= 2−(M+2)(sμ−sλ)

≤ 2−(A+3/4)(sμ−sλ).

Case 3: 2sλ ≤ r ≤ 2sμ

For this case, we estimate

(24) � 2−2sμ

∫ 2sμ

2sλ

(
2−sμr

)M(
2−sλr

)−N1r dr

= 2−(2+M)sμ2N1sλ

∫ 2sμ

2sλ

rM+1−N1 dr

� 2−(2+M)sμ2N1sλ2(M+2−N1)sμ

= 2−N1(sμ−sλ)

≤ 2−(A+3/4)(sμ−sλ).

Case 4: 2sμ ≤ r

For this case, we estimate

(24) � 2−2sμ

∫ ∞

2sμ

(
2−sλr

)−N1
(
2−sμr

)−N1r dr

= 2−2sμ2N1sμ2N1sλ

∫ ∞

2sμ

r−2N1+1 dr

= 2−2sμ2N1sμ2N1sλ2(−2N1+2)sμ

= 2−N1(sμ−sλ)

≤ 2−(A+3/4)(sμ−sλ).

The proof is completed. �

5.2 Cancelation Estimates

The estimates in the previous Sect. 5.1 are very useful for controlling the magnitude
of the inner products 〈mλ,pμ〉 in terms of the difference in scale and angle. In order
to ensure also the necessary decay in the spatial component, we will use cancelation
properties in the integral 〈mλ,pμ〉. This is achieved using integration-by-parts with
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an appropriate symmetric differentiation operator Lλ,μ, defined for each index pair
(λ,μ). To this end, define the operator

Lλ,μ := I − 2s0Δ − 22s0

1 + 2s0 |θλ − θμ|2
∂2

∂e2
λ

, (25)

where we recall eλ = (cos(θλ), sin(θλ)).
It turns out that Lλ,μ acts favorably on products

â(λ)(D2−sλ Rθλξ)b̂(μ)(D2−sμ Rθμξ)

of parabolic molecules in the Fourier domain. This is shown in the next two lemmas.

Lemma 5.5 Given two functions a(λ), b(μ) satisfying (1) with R,M,N1,N2, then the
expression

Lλ,μ

(
â(λ)(D2−sλ Rθλξ)b̂(μ)(D2−sμ Rθμξ)

)

can be written as a finite linear combination of terms of the form

ĉ(λ)(D2−sλ Rθλξ)d̂(μ)(D2−sμ Rθμξ)

with c(λ), d(μ) satisfying (1) with R − 2,M,N1,N2.

Proof Without loss of generality we assume that θλ = 0, in which case we have

Lλ,μ = I − 2s0Δ − 22s0

1 + 2s0 |θμ|2
∂2

∂ξ2
1

.

To show this statement we treat the three summands of the operator Lλ,μ separately.
The first part is the identity, and therefore the statement is trivial. To handle the second
part, the frequency Laplacian 2s0Δ, we use the product rule

Δ(fg) = 2
(
∂(1,0)f ∂(1,0)g + ∂(0,1)f ∂(0,1)g

) + (Δf )g + f (Δg),

where we use the shorthand notation

∂(k,l) := ∂k+l

∂ξ k
1 ∂ξ l

2

, for k, l ∈N0.

Therefore we need to estimate the derivatives of degree 1 and the Laplacians of the
two factors in the product

â(λ)(D2−sλ Rθλξ)b̂(μ)(D2−sμ Rθμξ) =: A(ξ)B(ξ).

We start with the first factor,

A(ξ) = â(λ)
(
2−sλ cos(θλ)ξ1 − 2−sλ sin(θλ)ξ2,2−sλ/2 sin(θλ)ξ1 + 2−sλ/2 cos(θλ)ξ2

)
.
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Define

A1(ξ) := ∂(1,0)â(λ)(D2−sλ Rθλξ) and A2(ξ) := ∂(0,1)â(λ)(D2−sλ Rθλξ).

By definition, the functions A1, A2 satisfy (1) with R replaced by R − 1. An appli-
cation of the chain rule shows that

∂(1,0)A(ξ) = 2−sλ cos(θλ)A1(ξ) + 2−sλ/2 sin(θλ)A2(ξ).

Analogously, one can compute

∂(0,1)A(ξ) = −2−sλ sin(θλ)A1(ξ) + 2−sλ/2 cos(θλ)A2(ξ),

and exactly the same expressions for B using the obvious definitions for B1, B2. We
get

∂(1,0)A∂(1,0)B = 2−sλ−sμ cos(θλ) cos(θμ)A1B1

+ 2−sλ/2−sμ sin(θλ) cos(θμ)A2B1

+ 2−sμ/2−sλ sin(θμ) cos(θλ)A1B2

+ 2−sλ/2−sμ/2 sin(θλ) sin(θμ)A2B2.

It follows that 2s0∂(1,0)A∂(1,0)B can be written as a linear combination as claimed (re-
call that s0 = min(sλ, sμ)). The same argument applies to the product
2s0∂(0,1)A∂(0,1)B .

It remains to consider the factor

(ΔA)B + A(ΔB),

where, for symmetry reasons, we only treat the summand

(ΔA)B.

In fact, it suffices to only consider
(
∂(2,0)A

)
B

= (
2−2sλ cos(θλ)

2A11 + 2−3sλ/2+1 sin(θλ) cos(θλ)A12 − 2−sλ sin(θλ)
2A22

)
B

with Aij defined in an obvious way, satisfying (1) with R replaced by R − 2. The
term (∂(2,0)A)B , and hence (ΔA)B , can be handled in the same way, as can A(ΔB).
This takes care of the term 2s0Δ in the definition of Lλ,μ.

Finally we need to handle the last term in the definition of Lλ,μ, namely

22s0

1 + 2s0 |θμ|2
∂2

∂ξ2
1

.

With our notation and using the product rule we need to consider terms of the form
(
∂(2,0)A

)
B,

(
∂(1,0)A

)(
∂(1,0)B

)
, A

(
∂(2,0)B

)
,
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and show that each of them, multiplied by the factor 22s0

1+2s0 |θμ|2 , satisfies the desired

representation. Let us start with

(
∂(2,0)A

)
B,

which, using the fact that sin(θλ) = 0, can be written as

2−2sλA11B,

and which clearly satisfies the desired assertion. Now consider the expression

(
∂(1,0)A

)(
∂(1,0)B

)
,

which can be written as

2−sλ2−sμ cos(θμ)A1B1 + 2−sλ2−sμ/2 sin(θμ)A1B2.

The first summand in this expression clearly causes no problems. To handle the sec-
ond term we need to show that

22s0

1 + 2s0 |θμ|2 2−sλ2−sμ/2 sin(θμ) � 1. (26)

Here we have to distinguish two cases. First, assume that |θμ| ≤ 2−s0/2. Then we can
estimate

sin(θμ)� 2−s0/2,

which readily yields the desired bound for (26). For the case |θμ| ≥ 2−s0/2 we esti-
mate

22s0

1 + 2s0 |θμ|2 2−sλ2−sμ/2 sin(θμ) � 22s0

1 + 2s0/2|θμ|2−s02−s0/2|θμ|

≤ 22s0

2s0/2|θμ|2−s02−s0/2|θμ| = 1,

which shows (26) also for this case.
We are left with estimating the term

A
(
∂(2,0)B

)
,

which can be written as

2−2sμ cos(θμ)2AB11 + 2−3sμ/2+1 sin(θμ) cos(θμ)AB12 + 2−sμ sin(θμ)2AB22.

The first two terms are of a form already treated, and the last term can be handled
using the fact that sin(θμ)2 ≤ θ2

μ. �
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Lemma 5.6 Let (mλ = a(λ)(D2sλ Rθλ(· − xλ)))λ∈Λ and (pμ = b(μ)(D2sμ Rθμ(· −
xμ)))μ∈Δ be two systems of parabolic molecules of order (R,M,N1,N2).

Then we have

∣
∣Lk

λ,μ

(
â(λ)(D2−sλ Rθλξ)b̂(μ)(D2−sμ Rθμξ)

)∣∣ � Sλ,M−N2,N1,N2(ξ)Sμ,M−N2,N1,N2(ξ)

for all k ≤ R/2. The quantity on the right-hand side is defined in (22).

Proof We show that

∣
∣Lk

λ,μ

(
â(λ)(D2−sλ Rθλξ)b̂(μ)(D2−sμ Rθμξ)

)∣
∣

� min
(
1,2−sλ(1 + r)

)M(
1 + 2−sλr

)−N1
(
1 + 2−sλ/2r

∣
∣sin(ϕ + θλ)

∣
∣
)−N2

· min
(
1,2−sμ(1 + r)

)M(
1 + 2−sμr

)−N1
(
1 + 2−sμ/2r

∣
∣sin(ϕ + θμ)

∣
∣)−N2 , (27)

which, using Lemma 5.3 with L = N2, implies the desired statement. To show (27)
we use induction in k, namely we show that if we have two functions a(λ), b(μ) satis-
fying (1) for R,M,N1,N2, then the expression

Lλ,μ

(
â(λ)(D2−sλ Rθλξ)b̂(μ)(D2−sμ Rθμξ)

)

can be written as a finite linear combination of terms of the form

ĉ(λ)(D2−sλ Rθλξ)d̂(μ)(D2−sμ Rθμξ),

with c, d satisfying (1) and R replaced by R − 2, see Lemma 5.5. Iterating this argu-
ment we can establish that for k ≤ R/2

Lk
λ,μ

(
â(λ)(D2−sλ Rθλξ)b̂(μ)(D2−sμ Rθμξ)

)
(28)

can be expressed as a finite linear combination of terms of the form

ĉ(λ)(D2−sλ Rθλξ)d̂(μ)(D2−sμ Rθμξ) (29)

with
∣
∣ĉ(λ)(ξ)

∣
∣ � min

(
1,2−sλ + |ξ1| + 2−sλ/2|ξ2|

)M 〈|ξ |〉−N1〈ξ2〉−N2 , (30)

and an analogous estimate for d(μ). Combining (29) and (30), we obtain

∣
∣(28)

∣
∣ � min

(
1,2−sλ + ∣

∣(D2−sλ Rθλξ)1
∣
∣ + 2−sλ/2

∣
∣(D2−sλ Rθλξ)2

∣
∣
)M

× 〈|D2−sλ Rθλξ |〉−N1
〈∣
∣(D2−sλ Rθλξ)2

∣
∣
〉−N2 .

Transforming this inequality into polar coordinates as in (2) yields (27). This finishes
the proof. �
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5.3 Almost Orthogonality

We now have all ingredients to prove our main result, which is Theorem 2.9.

Proof of Theorem 2.9 To keep the notation simple, we assume that θλ = 0 and define
s0 := min(sλ, sμ). Further, we set

δx := xλ − xμ, δθ := θλ − θμ.

By definition, we can write

mλ = 2
3
4 sλa(λ)

(
D2sλ Rθλ(· − xλ)

)
, pμ = 2

3
4 sμb(μ)

(
D2sμ Rθμ(· − xμ)

)
,

where both a(λ) and b(μ) satisfy (1). We have the equality

〈mλ,pμ〉 = 〈m̂λ, p̂μ〉 = 2− 3
4 (sλ+sμ)

∫

R2
â(λ)(D2−sλ Rθλξ)b̂(μ)(D2−sμ Rθμξ)

× exp(−2πiξ · δx)dξ

= 2− 3
4 (sλ+sμ)

∫

R2
Lk

λ,μ

(
â(λ)(D2−sλ Rθλξ)b̂(μ)(D2−sμ Rθμξ)

)

×L−k
λ,μ

(
exp(−2πiξ · δx)

)
dξ. (31)

From the definition (25) of Lλ,μ it follows that

L−k
λ,μ

(
exp(−2πiξ · δx)

) =
(

1 + 2s0 |δx|2 + 22s0

1 + 2s0 |δθ |2 〈eλ, δx〉2
)−k

× exp(−2πiξ · δx), (32)

where eλ denotes the unit vector pointing in the direction described by the angle θλ.
For k ≤ R

2 , Lemma 5.6 yields the inequality

∣
∣Lk

λ,μ

(
â(λ)(D2−sλ Rθλξ)b̂(μ)(D2−sμ Rθμξ)

)∣∣

� Sλ,M−N2,N1,N2(ξ)Sμ,M−N2,N1,N2(ξ),

where the terms on the right-hand side are defined in (22).
Therefore, by (31) and (32) and the fact that N ≤ R

2 (which is our assumption
on R) we get

∣
∣〈mλ,pμ〉∣∣ � 2− 3

4 (sλ+sμ)

∫

R2
Sλ,M−N2,N1,N2(ξ)Sμ,M−N2,N1,N2(ξ)dξ

×
(

1 + 2s0 |δx|2 + 22s0

1 + 2s0 |δθ |2 〈eλ, δx〉2
)−N

.

Now we can use Lemma 5.4, together with our assumptions on M,N1,N2, to estab-
lish that
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∣
∣〈mλ,pμ〉∣∣

� 2−N |sλ−sμ|(1 + 2s0 |δθ |2)−N
(

1 + 2s0 |δx|2 + 22s0

1 + 2s0 |δθ |2 〈eλ, δx〉2
)−N

≤ 2−N |sλ−sμ|
(

1 + 2s0 |δθ |2 + 2s0 |δx|2 + 22s0

1 + 2s0 |δθ |2 〈eλ, δx〉2
)−N

. (33)

Now we use the arithmetic-geometric mean inequality to conclude that

1 + 2s0 |δθ |2 + 22s0

1 + 2s0 |δθ |2 〈eλ, δx〉2

= (√
1 + 2s0 |δθ |2)2 +

(
2s0 |〈eλ, δx〉|

√
1 + 2s0 |δθ |2

)2

�
√

1 + 2s0 |δθ |2 2s0 |〈eλ, δx〉|
√

1 + 2s0 |δθ |2 = 2s0
∣
∣〈eλ, δx〉∣∣. (34)

Putting the estimate (34) into (33) yields

∣
∣〈mλ,pμ〉∣∣ � 2−N |sλ−sμ|(1 + 2s0

(|δθ |2 + |δx|2 + ∣
∣〈eλ, δx〉∣∣))−N = ω(λ,μ)−N,

as desired. �
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