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Abstract. Finite element exterior calculus (FEEC) has been developed over

the past decade as a framework for constructing and analyzing stable and
accurate numerical methods for partial differential equations by employing

differential complexes. The recent work of Arnold, Falk and Winther [4] in-
cludes a well-developed theory of finite element methods for Hodge Laplace

problems, including a priori error estimates. In this work we focus on develop-

ing a posteriori error estimates in which the computational error is bounded by
some computable functional of the discrete solution and problem data. More

precisely, we prove a posteriori error estimates of residual type for Arnold-Falk-

Winther mixed finite element methods for Hodge-de Rham Laplace problems.
While a number of previous works consider a posteriori error estimation for

Maxwell’s equations and mixed formulations of the scalar Laplacian, the ap-

proach we take is distinguished by unified treatment of the various Hodge
Laplace problems arising in the de Rham complex, consistent use of the lan-

guage and analytical framework of differential forms, and the development of

a posteriori error estimates for harmonic forms and the effects of their approx-
imation on the resulting numerical method for the Hodge Laplacian.

1. Introduction

In this paper we study a posteriori error estimation for finite element methods
for the Hodge Laplacian for the de Rham complex generated by the Finite Element
Exterior Calculus (FEEC) framework of Arnold, Falk, and Winther (abbreviated
AFW below). Finite element exterior calculus has been developed over the past
decade as a general framework for constructing and analyzing mixed finite element
methods for approximately solving partial differential equations. In mixed meth-
ods two or more variables are approximated simultaneously, for example, stresses
and displacements in elasticity or pressures and velocities in fluid problems. The
essential feature of FEEC is that differential complexes are systematically used in
order to develop and analyze stable and efficient numerical methods. Historically
speaking, some aspects of mixed finite element theory such as the so-called “com-
muting diagram property” (cf. [10]) are related to differential complexes, and some
early work by geometers such as Dodziuk [15] and computational electromagnet-
ics researchers such as Bossavit and others [7] also contains ideas related to finite
element exterior calculus. However, around 2000 researchers working especially in
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electromagnetics and elasticity [16, 2] independently began to realize that differen-
tial complexes can be systematically exploited in the numerical analysis of PDEs.
This work has culminated in the recent publication of the seminal work of Arnold,
Falk, and Winther [4] containing a general framework for FEEC (cf. also [3]).

Error analysis of numerical methods for PDE is generally divided into two cate-
gories, a priori and a posteriori. To fix thoughts, let u solve −∆u = f in a polygonal
domain Ω with Neumann boundary conditions ∂u

∂n = 0 on ∂Ω and
∫

Ω
u = 0 assumed

in order to guarantee uniqueness. Also let uh ∈ Sh be a finite element approxi-
mation to u, where Sh ⊂ H1(Ω) is the continuous piecewise polynomials of fixed
degree r with respect to a mesh Th. A classical a priori estimate is

(1.1) ‖u− uh‖H1 ≤ Chr‖u‖r+1.

Such estimates are useful for verifying optimality of methods with respect to poly-
nomial degree and are commonly used to verify code correctness. However, they
provide no information about the actual size of the computational error in any given
practical problem and often assume unrealistic regularity of the unknown solution.
A posteriori error estimates provide a complementary error analysis in which the
error is bounded by a computable functional of uh and f :

(1.2) ‖u− uh‖ ≤ E(uh, f).

Such estimates provide no immediate information about asymptotic error decrease,
but do ideally yield concrete and reliable information about the actual size of the
error in computations. In addition, E(uh, f) and related quantities are typically
used to derive adaptive finite element methods in which information from a given
computation is used to selectively refine mesh elements in order to yield a more
efficient approximation. We do not directly study adaptivity here.

While there are many types of a posteriori error estimators [1, 5], we focus our
attention on residual-type error estimators. Roughly speaking, residual estimators
are designed to control u− uh by controlling the residual f + ∆uh, which is not a
function (since ∇uh is only piecewise continuous) but is a functional lying in the
dual space of H1(Ω)/R. Given a triangle K ∈ Th, let hK = diam(T ). We define
the elementwise a posteriori error indicator

(1.3) η(K) = hK‖f + ∆uh‖L2(K) + h
1/2
K ‖J∇uhK‖L2(∂K).

The volumetric residual hK‖f + ∆uh‖L2(K) may roughly be seen as bounding the
regular portion of the residual f+∆uh. J∇uhK is defined as the jump in the normal
component of ∇uh across interior element boundaries and as ∇uh · n on element
faces e ⊂ ∂Ω. Since natural boundary conditions are satisfied only approximately in
the finite element method, the latter quantity is not generally 0. The corresponding
term in (1.3) may be thought of as measuring the singular portion of the distribution
f + ∆uh. A standard result is that under appropriate assumptions on Th,

(1.4) ‖u− uh‖H1(Ω)/R ≤ C(
∑
K∈Th

η(K)2)1/2.

That is, E(uh, f) = C(
∑
K∈Th η(K)2)1/2 is a reliable error estimator for the energy

error ‖u − uh‖H1(Ω)/R. An error estimator E is said to be efficient if E(uh, f) ≤
C̃‖u−uh‖, perhaps up to higher-order terms. Given K ∈ Th, let ωK be the “patch”
of elements touching K. We also define osc(K) = hK‖f − Pf‖L2(K), where Pf is
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the L2(K) projection onto the polynomials having degree one less than the finite
element space. Then

(1.5) η(K)2 ≤ C

(
‖u− uh‖2H1(ωK) +

∑
K⊂ωK

osc(K)2

)
.

In our development below we recover (1.4) and (1.5) and also develop similar results
for other Hodge Laplace problems such as the vector Laplacian.

We pause to remark that residual estimators are usually relatively rough estima-
tors in the sense that the ratio E(uh, f)/‖u − uh‖ is often not close to 1 as would
be ideal, and there are usually unknown constants in the upper bounds. However,
they have a structure closely related to the PDE being studied, generally provide
unconditionally reliable error estimates up to constants, and can be used as build-
ing blocks in the construction and analysis of sharper error estimators. Thus they
are studied widely and often used in practice.

In this work we prove a posteriori error estimates for mixed finite element meth-

ods for the Hodge Laplacian for the de Rham complex. Let HΛ0 d→ HΛ1 d→ · · · d→
HΛn−1 d→ L2 be the n-dimensional de Rham complex. Here Λk consists of k-forms
and HΛk consists of L2-integrable k-forms ω with L2 integrable exterior derivative

dω. For n = 3, the de Rham complex is H1 ∇→ H(curl)
curl→ H(div)

div→ L2. For
0 ≤ k ≤ n, the Hodge Laplacian problem is given by δdu+ dδu = f , where δ is the
adjoint (codifferential) of the exterior derivative d. When n = 3, the 0-Hodge Lapla-
cian is the standard scalar Laplacian, and the AFW mixed formulation reduces to
the standard weak formulation of the Laplacian with natural Neumann boundary
conditions. The 1- and 2-Hodge Laplacians are instances of the vector Laplacian
curl curl−∇div with different boundary conditions, and the corresponding FEEC
approximations are mixed approximations to these problems. The 3-Hodge Lapla-
cian is again the scalar Laplacian, but the AFW mixed finite element method now
coincides with a standard mixed finite element method such as the Raviart-Thomas
formulation, and Dirichlet boundary conditions are natural. We also consider es-
sential boundary conditions below.

Next we briefly outline the scope of our results and compare them with previous
work. First, in the context of mixed methods for the scalar Laplacian and espe-
cially FEM for Maxwell’s equations two technical tools have proved essential for
establishing a posteriori error estimates. These are regular decompositions [17, 22]
and locally bounded commuting quasi-interpolants [24]. Relying on recent analyti-
cal literature and modifying existing results to meet our needs, we provide versions
of these tools for differential forms in arbitrary space dimension. Next, our goal
is to prove a posteriori estimates simultaneously for mixed approximations to all
k-Hodge Laplacians (0 ≤ k ≤ n) in the de Rham complex. Focusing individually
on the various Hodge Laplace operators, we are unaware of previous proofs of a
posteriori estimates for the vector Laplacian, although a posteriori estimates for
Maxwell’s equations are well-represented in the literature; [6, 24, 27] among many
others. The estimators that we develop for the standard mixed formulation for the
well-studied case of the scalar Laplacian are also modestly different from those pre-
viously appearing in the literature (cf. §6.4 below). In addition, our work extends
beyond the two- and three-dimensional setting assumed in these previous works.
Throughout the paper we also almost exclusively use the notation and language
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of, and analytical results for, differential forms. The only exception is §6, where
we use standard notation to write down our results for all four three-dimensional
Hodge-Laplace operators. This use of differential forms enables us to systematically
highlight properties of finite element approximations to Hodge Laplace problems
in a unified fashion. A final unique feature of our development is our treatment of
harmonic forms. In §2.4, we give an abstract framework for bounding a posteriori
the gap between the spaces Hk of continuous forms and Hkh of discrete harmonic
forms (defined below). This framework is an important part of our theory for the
Hodge Laplacian and is also potentially of independent interest in situations where
harmonic forms are a particular focus. Since our results include bounds for the
error in approximating harmonic forms, our estimators also place no restrictions
on domain topology. We are not aware of previous works where either errors in
approximating harmonic forms or the effects of such errors on the approximation
of related PDE are analyzed a posteriori.

We next briefly describe an interesting feature of our results. The AFW mixed
method for the k-Hodge Laplace problem simultaneously approximates the solu-
tion u, σ = δu, and the projection p of f onto the harmonic forms by a discrete
triple (σh, uh, ph). The natural starting point for error analysis is to bound the
HΛk−1 ×HΛk × L2 norm of the error, since this is the variational norm naturally
related to the “inf-sup” condition used to establish stability for the weak mixed
formulation. Abstract a priori bounds for this quantity are given in Theorem 3.9 of
[4] (cf. (2.8) below), and we carry out a posteriori error analysis only in this natural
mixed variational norm. Aside from its natural connection with the mixed varia-
tional structure, this norm yields control of the error in approximating the Hodge
decomposition of the data f when 1 ≤ k ≤ n− 1, which may be advantageous.

As in the a priori error analysis, the natural variational norm has some dis-
advantages. Recall that residual estimators for the scalar Laplacian bound the
residual f + ∆uh in a negative-order Sobolev norm. For approximations of the
vector Laplacian, establishing efficient and reliable a posteriori estimators in the
natural norm requires that different portions of the Hodge decomposition of the
residual f − dσh − ph − δduh be measured in different norms. Doing so requires
access to the Hodge decomposition of f , but it is rather restrictive to assume access
to this decomposition a priori. We are able to access the Hodge decomposition of f
weakly in our estimators below, but at the expense of requiring more regularity of f
than is needed to write the Hodge Laplace problem (cf. §4.2). In the a priori setting
it is often possible to obtain improved error estimates by considering the discrete
variables and measuring their error separately in weaker norms; cf. Theorem 3.11
of [4]. This is an interesting direction for future research in the a posteriori setting
as it may help to counteract this “Hodge imbalance” in the residual.

The paper is organized as follows. In Section 2 we review the Hilbert complex
structure employed in finite element exterior calculus, begin to develop a posteri-
ori error estimates using this structure, and establish a framework for bounding
errors in approximating harmonic forms. In Section 3, we recall details about the
de Rham complex and also prove some important auxiliary results concerning com-
muting quasi-interpolants and regular decompositions. Section 4 contains the main
theoretical results of the paper, which establish a posteriori upper bounds for er-
rors in approximations to the Hodge Laplacian for the de Rham complex. Section 5
contains corresponding elementwise efficiency results. In Section 6 we demonstrate
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how our results apply to several specific examples from the three-dimensional de
Rham complex and where appropriate compare our estimates to previous literature.

2. Hilbert complexes, harmonic forms, and abstract error analysis

In this section we recall basic definitions and properties of Hilbert complexes,
then begin to develop a framework for a posteriori error estimation.

2.1. Hilbert complexes and the abstract Hodge Laplacian. The definitions
in this section closely follow [4], which we refer the reader to for a more detailed
presentation. We assume that there is a sequence of Hilbert spaces W k with inner
products 〈·, ·〉 and associated norms ‖ · ‖ and closed, densely defined linear maps
dk from W k into W k+1 such that the range of dk lies in the domain of dk+1 and
dk+1 ◦ dk = 0. These form a Hilbert complex (W,d). Letting V k ⊂ W k be the
domain of dk, there is also an associated domain complex (V, d) having inner prod-
uct 〈u, v〉V k = 〈u, v〉Wk + 〈dku, dkv〉Wk+1 and associated norm ‖ · ‖V . The complex
...→ V k−1 → V k → V k+1 → ... is then bounded in the sense that dk is a bounded
linear operator from V k into V k+1.

The kernel of dk is denoted by Zk = Bk ⊕ Hk, where Bk is the range of dk−1

and Hk is the space of harmonic forms Bk⊥W ∩Zk. The Hodge decomposition is an
orthogonal decomposition of W k into the range Bk, harmonic forms Hk, and their
orthogonal complement Zk⊥W . Similarly, the Hodge decomposition of V k is

(2.1) V k = Bk ⊕ Hk ⊕ Zk⊥,

where henceforth we simply write Zk⊥ instead of Zk⊥V except as noted. The dual
complex consists of the same spaces W k, but now with increasing indices, along
with the differentials consisting of adjoints d∗k of dk−1. The domain of d∗k is denoted
by V ∗k , which is dense in W k.

The Poincaré inequality also plays a fundamental role; it reads

(2.2) ‖v‖V . ‖dkv‖W , v ∈ Zk⊥.

Here and in what follows, we write a . b when a ≤ Cb with a constant C that
does not depend on essential quantities. Finally, we assume throughout that the
complex (W,d) satisfies the compactness property described in §3.1 of [4].

The immediate goal of the finite element exterior calculus framework presented in
[4] is to solve the “abstract Hodge Laplacian” problem given by Lu = (dd∗+d∗d)u =
f . L : W k → W k is called the Hodge Laplacian in the context of the de Rham
complex (in geometry, this operator is often called Hodge-de Rham operator). This
problem is uniquely solvable up to harmonic forms when f ⊥ Hk. It may be
rewritten in a well-posed weak mixed formulation as follows. Given f ∈ W k, we
let p = PHkf be the harmonic portion of f and solve Lu = f − p. In order to
ensure uniqueness, we require u ⊥ Hk. Writing σ = d∗u, we thus seek (σ, u, p) ∈
V k−1 × V k × Hk solving

(2.3)
〈σ, τ〉 − 〈dτ, u〉 = 0, τ ∈ V k−1,

〈dσ, v〉+ 〈du, dv〉+ 〈v, p〉 = 〈f, v〉, v ∈ V k,
〈u, q〉 = 0, q ∈ Hk.

So-called inf-sup conditions play an essential role in analysis of mixed formula-
tions. We define B(σ, u, p; τ, v, q) = 〈σ, τ〉−〈dτ, u〉+〈dσ, v〉+〈du, dv〉+〈v, p〉−〈u, q〉,
which is a bounded bilinear form on [V k−1×V k×Hk]× [V k−1×V k×Hk]. We will
employ the following, which is Theorem 3.1 of [4].
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Theorem 1. Let (W,d) be a closed Hilbert complex with domain complex (V, d).
There exists a constant γ > 0, depending only on the constant in the Poincaré
inequality (2.2), such that for any (σ, u, p) ∈ V k−1×V k×Hk there exists (τ, v, q) ∈
V k−1 × V k × Hk such that

(2.4) B(σ, u, p; τ, v, q) ≥ γ(‖σ‖V + ‖u‖V + ‖p‖)(‖τ‖V + ‖v‖V + ‖q‖).

2.2. Approximation of solutions to the abstract Hodge Laplacian. Assum-
ing that (W,d) is a Hilbert complex with domain complex (V, d) as above, we now
choose a finite dimensional subspace V kh ⊂ V k for each k. We assume also that

dV kh ⊂ V k+1
h , so that (V kh , d) is a Hilbert complex in its own right and a subcom-

plex of (V, d). It is important to note that while the restriction of d to V kh acts as
the differential for the subcomplex, d∗ and the adjoint d∗h of d restricted to V kh do
not coincide. The discrete adjoint d∗h does not itself play a substantial role in our
analysis, but the fact that it does not coincide with d∗ should be kept in mind.

The Hodge decomposition of V kh is written

(2.5) V kh = Bk
h ⊕ Hkh ⊕ Zk⊥h .

Here Bk
h = dV kh , with similar definitions of Hkh and Zk⊥h where ⊥ is in Vh. This

discrete Hodge decomposition plays a fundamental role in numerical methods, but
it only partially respects the continuous Hodge decomposition (2.1). In particular,
we have:

Bk
h ⊂ Bk,

Hkh ⊂ Zk but Hkh 6⊂ Hk,

Zk⊥h 6⊂ Zk⊥.

(2.6)

Bounded cochain projections play an essential role in finite element exterior
calculus. We assume the existence of an operator πh : V k → V kh which is bounded
in both the W -norm ‖ · ‖ and the V -norm ‖ · ‖V and which commutes with the

differential: dk ◦ πkh = πk+1
h ◦ dk. In contrast to the a priori analysis of [4], our a

posteriori analysis does not require that πh be a projection, that is, we do not require
that πh act as the identity on Vh. In more concrete situations we shall however
require certain other properties that are not needed in a priori error analysis.

Approximations to solutions to (2.3) are constructed as follows. Let (σh, uh, ph) ∈
V k−1
h × V kh × Hkh satisfy

(2.7)
〈σh, τh〉 − 〈dτh, uh〉 = 0, τh ∈ V k−1

h ,
〈dσh, vh〉+ 〈duh, dvh〉+ 〈vh, ph〉 = 〈f, vh〉, vh ∈ V kh ,

〈uh, qh〉 = 0, qh ∈ Hkh.

Existence and uniqueness of solutions to this problem are guaranteed by our as-
sumptions. A discrete inf-sup condition analogous to (2.4) with constant γh depend-
ing on stability constants of the projection operator πh but otherwise independent
of Vh is contained in [4]; we do not state it as we do not need it for our analy-
sis. In addition, Theorem 3.9 of [4] contains abstract error bounds: So long as the
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subcomplex (Vh, d) admits uniformly V -bounded cochain projections,

‖σ − σh‖V + ‖u− uh‖V + ‖p− ph‖
. inf
τ∈V k−1

h

‖σ − τ‖V + inf
v∈V k

h

‖u− v‖V

+ inf
q∈V k

h

‖p− q‖V + µ̃ inf
v∈V k

h

‖PBu− v‖V ,
(2.8)

where µ̃ = supr∈Hk,‖r‖=1 ‖(I−πkh)r‖. We will use the notation PS for the orthogonal
projection onto the subspace S as in the case of PB above.

2.3. Abstract a posteriori error analysis. We next begin an a posteriori error
analysis, remaining for the time being within the framework of Hilbert complexes.
A working principle of a posteriori error analysis is that if a corresponding a priori
error analysis employs a given tool, one looks for an a posteriori “dual” of that
tool in order to prove corresponding a posteriori results. Thus while the proof of
(2.8) employs a discrete inf-sup condition, we shall employ the continuous inf-sup
condition (2.4). Writing eσ = σ − σh, eu = u − uh, and ep = p − ph, we use the
triangle inequality and (2.4) to compute

‖eσ‖V +‖eu‖V + ‖ep‖ ≤ (‖eσ‖V + ‖eu‖V + ‖p− PHph‖) + ‖PHph − ph‖

≤ 1

γ
sup

(τ,v,q)∈V k−1×V k×Hk,
‖τ‖V +‖v‖V +‖q‖=1

B(eσ, eu, p− PHph; τ, v, q) + ‖PHph − ph‖

≤ 1

γ
sup

(τ,v,q)∈V k−1×V k×Hk,
‖τ‖V +‖v‖V +‖q‖=1

(
〈eσ, τ〉 − 〈dτ, eu〉+ 〈deσ, v〉+ 〈deu, dv〉

+ 〈v, ep〉+ 〈eu, q〉
)

+ (1 +
1

γ
)‖PHph − ph‖.

(2.9)

Employing Galerkin orthogonality implied by subtracting the first two lines of (2.7)
and (2.3) in order to insert πhτ and πhv into (2.9) and then again employing (2.3)
finally yields

‖eσ‖V +‖eu‖V + ‖ep‖

≤ 1

γ
sup

(τ,v,q)∈V k−1×V k×Hk,
‖τ‖V +‖v‖V +‖q‖=1

(
〈σh, τ − πhτ〉 − 〈d(τ − πhτ), uh〉

+ 〈f − dσh − ph, v − πhv〉 − 〈duh, d(v − πhv)〉+ 〈eu, q〉
)

+ (1 +
1

γ
)‖PHph − ph‖.

(2.10)

The terms 〈σh, τ−πhτ〉−〈d(τ−πhτ), uh〉 and 〈f−dσh−ph, v−πhv〉+〈duh, d(v−
πhv)〉 in (2.9) can be attacked in concrete situations with adaptations of standard
techniques for residual-type a posteriori error analysis, but no further progress can
be made on this abstract level without further assumptions on the finite element
spaces. The terms 〈eu, q〉 and (1 + 1

γ )‖PHph − ph‖, on the other hand, are nonzero

only when Hkh 6= Hk. In this case (2.7) is a generalized Galerkin method, and further
abstract analysis is helpful in elucidating how these nonconformity errors may be
bounded. We carry out this analysis in the following subsection.
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2.4. Bounding the “harmonic errors”. We next lay groundwork for bounding
the terms ‖ph−PHph‖ and supq∈Hk〈eu, q〉. Since ph ∈ Hkh, (2.6) and Zk = Bk⊕Hk

imply that ph − PHph ∈ Bk. Recalling that v ∈ Bk implies that v = dφ for some
φ ∈ V k−1 and also that PHph ∈ Hk ⊥ Bk yields

‖ph − PHph‖ = sup
v∈Bk,‖v‖=1

〈ph − PHph, v〉 = sup
φ∈V k−1,‖dφ‖=1

〈ph, dφ〉.(2.11)

The discrete Hodge decomposition (2.5) implies that πkhdφ = dπk−1
h φ ∈ Bk

h ⊥ Hkh 3
ph. Also note that by the Poincaré inequality (2.2), supφ∈V k−1,‖dφ‖=1〈ph, dφ〉 is

uniformly equivalent to supφ∈V k−1,‖φ‖V =1〈ph, dφ〉. Thus

(2.12) ‖ph − PHph‖ . sup
φ∈V k−1,‖φ‖V =1

〈ph, d(φ− πhφ)〉.

We do not manipulate (2.12) any further without making more precise assumptions
about the spaces and exterior derivative involved. Recall that the goal of (2.12)
is to measure the amount by which the discrete harmonic function ph fails to be a
continuous harmonic function. If ph were in fact in Hk, we would have d∗ph = 0,
which would immediately imply that the right-hand-side of (2.12) is 0. In (2.12) we
measure the degree by which this is not true by testing weakly with a test function
dφ, minus a discrete approximation to the test function.

Before bounding the term supq∈Hh,‖q‖=1〈eu, q〉 we consider the gap between Hk

and Hkh. Given closed subspaces A,B of a Hilbert space W , let

δ(A,B) = sup
x∈A,‖x‖=1

dist(x,B) = sup
x∈A,‖x‖=1

‖x− PBx‖.(2.13)

The gap between the subspaces A and B is defined as

gap(A,B) = max(δ(A,B), δ(B,A)).(2.14)

In the situation below, we will require information about δ(Hk,Hkh), but are able
to directly derive a posteriori bounds only for δ(Hkh,H

k). Thus it is necessary to
understand the relationship between δ(A,B) and δ(B,A).

Lemma 2. Assume that A and B are subspaces of the Hilbert space W , both having
dimension n <∞. Then

(2.15) δ(A,B) = δ(B,A) = gap(A,B).

Proof. The result is essentially found in [18], Theorem 6.34, pp. 56-57. Assume
first that δ(A,B) < 1. The assumption that dimA = dimB then implies that
the nullspace of PB is 0 and that PB maps A onto B bijectively. Thus Case i of
Theorem 6.34 of [18] holds, and (2.15) follows from (6.51) of that theorem by noting
that δ(A,B) = ‖I − PB‖(A,W ) = ‖(I − PB)PA‖(W,W ).

If δ(A,B) = 1, then there is 0 6= b ∈ B which is orthogonal to PB(A). Let-

ting {ai}i=1,..,M be an orthonormal basis for A, we have PAb =
∑M
i=1(ai, b)ai =∑M

i=1(PBai, b)ai = 0, since b ⊥ PB(A). Thus 1 = ‖I −PA‖(B,A) = δ(B,A), so that
(2.15) holds in this case also. �

Thus we can bound gap(Hk,Hkh) by bounding only δ(Hkh,H
k), which we now turn

our attention to. First write δ(Hkh,H
k) = supqh∈Hk

h,‖qh‖=1 ‖qh−PHkqh‖. For a given
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qh ∈ Hkh, we may employ exactly the same arguments as in (2.11) and (2.12) above
to find

‖qh − PHqh‖ . sup
φ∈V k−1,‖φ‖V =1

〈qh, d(φ− πhφ)〉.(2.16)

We now let {q1, ..., qM} be an orthonormal basis for Hkh and assume that we have a
posteriori bounds

sup
φ∈V k−1,‖φ‖V =1

〈qi, d(φ− πhφ)〉 ≤ µi, i = 1, ...,M.(2.17)

We obtain such bounds for the de Rham complex below. Given an arbitrary unit

vector qh ∈ Hkh, we write qh =
∑M
i=1 aiqi, where |~a| = 1. Inserting this relationship

into (2.16) yields δ(Hkh,H
k) ≤ sup|~a|=1

∑M
i=1 aiµi. This expression is maximized by

choosing ~a = ~µ/|~µ|, where ~µ = {µ1, .., µM}. Thus

δ(Hkh,H
k) ≤ |~µ|.(2.18)

Combining (2.18) with (2.15), we thus also have

gap(Hk,Hkh) ≤ |~µ|.(2.19)

Now we turn our attention to bounding ‖PHuh‖ = supq∈Hk,‖q‖=1〈eu, q〉. Our
analysis of this term is slightly unusual in that we suggest two possible approaches.
One is likely to be sufficient for most applications and is less computationally in-
tensive. The other more accurately reflects the actual size of the term at hand, but
requires additional computational expense with possibly little practical payoff.

We first describe the cruder approach. Because uh ⊥ Hkh,

‖PHuh‖ = sup
q∈Hk,‖q‖=1

〈q, uh〉 = sup
q∈Hk,‖q‖=1

〈q − PHk
h
q, uh〉

≤ δ(Hk,Hkh)‖uh‖ = gap(Hk,Hkh)‖uh‖.
(2.20)

(2.19) may then be used in order to bound gap(Hk,Hkh).
Next we describe the sharper approach. Since uh ⊥ Hkh, we have uh = ũh + u⊥h ,

where ũh ∈ Bk
h and u⊥h ∈ Zk⊥h . Since Bk

h ⊂ Bk ⊥ Hk, u⊥h ⊥ Hkh, and Hkh and Hk

are both perpendicular to Zk⊥, we thus have for any q ∈ Hk with ‖q‖ = 1 that

〈uh, q〉 = 〈u⊥h , q〉 = 〈u⊥h , q − PHh
q〉 = 〈u⊥h − PZ⊥u

⊥
h , q − PHh

q〉

≤ ‖u⊥h − PZk⊥u⊥h ‖‖q − PHh
q‖ ≤ gap(Hk,Hkh)‖u⊥h − PZk⊥u⊥h ‖.

(2.21)

But

u⊥h − PZ⊥u
⊥
h = PBu

⊥
h + PHu

⊥
h = PBu

⊥
h + PHuh.(2.22)

Here the relationship PHu
⊥
h = PHuh holds because Bk

h ⊂ Bk and so PHũh = 0.
Thus ‖u⊥h − PZ⊥u

⊥
h ‖ ≤ ‖PBu

⊥
h ‖+ ‖PHuh‖. ‖PBu

⊥
h ‖ may be bounded as in (2.12)

and (2.16) above:

‖PBu
⊥
h ‖ = sup

φ∈V k−1,‖dφ‖=1

〈u⊥h , d(φ− πhφ)〉

. sup
φ∈V k−1,‖φ‖V =1

〈u⊥h , d(φ− πhφ)〉.
(2.23)

Assuming a posteriori bounds gap(Hk,Hkh) . µ and ‖PBu
⊥
h ‖ . ε, we thus have

‖PHuh‖ . µ(ε+ ‖PHuh‖).(2.24)
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Inserting (2.20) into (2.24) then finally yields

‖PHuh‖ . εµ+ µ2‖uh‖.(2.25)

We now discuss the relative advantages of (2.20) and (2.25). The corresponding
term in the a priori bound (2.8) is µ̃ infv∈V k

h
‖PBu − v‖V , which is a bound for

‖PHh
u‖ (note the symmetry between the a priori and a posteriori bounds). The

term µ̃ (defined following (2.8)) is easily seen to be bounded by gap(Hk,Hkh) at
least in the case that πh is a W -bounded cochain projection. Also, it is easily seen
that µ̃ is generally of the same or higher order than other terms in (2.8) when
standard polynomial approximation spaces are used. Carrying this over to the a
posteriori context, (2.20) will yield a bound for ‖PHuh‖ that while crude is not
likely to dominate the estimator or drive adaptivity in generic situations.

If a sharper bound for ‖PHuh‖ proves desirable (e.g., if gap(Hk,Hkh)‖uh‖ dom-
inates the overall error estimator), then one can instead employ (2.25). This cor-
responds in the a priori setting to employing the term infv∈V k

h
‖PBu − v‖V and

is likely to lead to an asymptotically much smaller estimate for ‖PHuh‖. How-
ever, computing the term ε in (2.25) requires computation of the discrete Hodge
decomposition of uh, which may add significant computational expense.

2.5. Summary of abstract bounds. We summarize our results above in the
following lemma.

Lemma 3. Assume that (W,d) is a Hilbert complex with subcomplex (Vh, d) and
commuting, V -bounded cochain operator πh : V → Vh, and in addition that (σ, u, p)
and (σh, uh, ph) solve (2.3) and (2.7), respectively. Then for some (τ, v, q) ∈ V k−1×
V k × Hk with ‖τ‖V + ‖v‖V + ‖q‖ = 1 and some φ ∈ V k−1 with ‖φ‖V = 1,

‖eσ‖V + ‖eu‖V + ‖ep‖ . |〈eσ, τ − πhτ〉 − 〈d(τ − πhτ), eu〉|
+ |〈f − dσh − ph, v − πhv〉 − 〈duh, d(v − πhv)〉|

+ |〈ph, d(φ− πhφ)〉|+ µ‖u⊥h − PZ⊥u
⊥
h ‖.

(2.26)

Here µ = (
∑M
i=1 µ

2
i )

1/2, where supφ∈V k−1,‖φ‖V =1〈qi, d(φ − πhφ)〉 . µi for an or-

thonormal basis {q1, ...., qM} of Hkh. For the last term in (2.26) we may either use
the simple bound ‖u⊥h − PZ⊥u

⊥
h ‖ ≤ ‖uh‖ or employ the bound µ‖u⊥h − PZ⊥u

⊥
h ‖ .

µε+ µ2‖uh‖, where

sup
φ∈V k−1,‖φ‖V =1

〈u⊥h , d(φ− πhφ)〉 . ε.(2.27)

3. The de Rham complex and commuting quasi-interpolants

As above, we for the most part follow [4] in our notation. Also as above, we shall
often be brief in our description of concepts contained in [4] and refer the reader to
§4 and §6 of that work for more detail.

3.1. The de Rham complex. Let Ω be a bounded Lipschitz polyhedral domain
in Rn, n ≥ 2. Let Λk(Ω) represent the space of smooth k-forms on Ω. Λk(Ω) is
endowed with a natural L2 inner product 〈·, ·〉 and L2 norm ‖·‖ with corresponding
space L2Λk(Ω). Letting also d be the exterior derivative, HΛk(Ω) is then the
domain of dk consisting of L2 forms Ω for which dω ∈ L2Λk+1(Ω); we denote by ‖·‖H
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the associated graph norm. (L2Λk(Ω), d) forms a Hilbert complex (corresponding
to (W,d) in the abstract framework of the preceding section) with domain complex

0→HΛ0(Ω)
d→ HΛ1(Ω)

d→ · · · d→ HΛn(Ω)→ 0(3.1)

corresponding to (V, d) above. In addition, we denote by W r
pΛk(Ω) the correspond-

ing Sobolev spaces of forms and set HrΛk(Ω) = W r
2 Λk(Ω). Finally, for ω ⊂ Rn, we

let ‖ · ‖ω = ‖ · ‖L2Λk(ω) and ‖ · ‖H,ω = ‖ · ‖HΛk(ω); in both cases we omit ω when
ω = Ω.

Given a mapping φ : Ω1 → Ω2, we denote by φ∗ω ∈ Λk(Ω1) the pullback of
ω ∈ Λk(Ω2), i.e.,

(φ∗ω)x(v1, ..., vk) = ωφ(x)(Dφx(v1), ..., Dφx(vk)).(3.2)

The trace tr is the pullback of ω from Λk(Ω) to Λk(∂Ω) under the inclusion. tr is
bounded as an operator HΛk(Ω) → H−1/2Λk(∂Ω) and H1Λk(Ω) → H1/2Λk(∂Ω),

and thus also H1Λk(Ω) → L2Λk(∂Ω). We may now define H̊Λk(Ω) = {ω ∈
HΛk(ω) : tr ω = 0 on ∂Ω}. In addition, we define the space H1

0 Λk(Ω) as the
closure of C∞0 Λk(Ω) in H1Λk(Ω). H1

0 Λk(Ω) essentially consists of forms which are
0 in every component on ∂Ω, which is in general a stricter condition than tr ω = 0.

The wedge product is denoted by ∧. The Hodge star operator is denoted by ?
and for ω ∈ Λk, µ ∈ Λn−k satisfies

ω ∧ µ = 〈?ω, µ〉vol,

∫
Ω0

ω ∧ µ = 〈?ω, µ〉L2Λn−k(Ω0).(3.3)

? is thus an isometry between L2Λk and L2Λn−k. The coderivative operator δ :
Λk → Λk−1 is defined by

?δω = (−1)kd ? ω.(3.4)

Applying Stokes’ theorem leads to the integration-by-parts formula

〈dω, µ〉 = 〈ω, δµ〉+

∫
∂Ω

tr ω ∧ tr ? µ, ω ∈ HΛk−1, µ ∈ H1Λk.(3.5)

The coderivative coincides with the abstract codifferential introduced in §2.1 when
tr ∂Ω ? µ = 0. That is, the domain of the adjoint d∗ of d is the space H̊∗Λk(Ω)
consisting of forms µ ∈ L2Λk whose weak coderivative is in L2Λk−1 and for which
tr ? µ = 0. We will also use the space H∗Λk = ?(HΛn−k) consisting of L2 forms
whose weak codifferential lies in L2; note that v ∈ H∗Λk implies that tr ?v ∈ H−1/2.

The Hodge decomposition L2Λk(Ω) = Bk⊕Hk⊕B∗k consists of the range Bk =
{dϕ : ϕ ∈ HΛk−1(Ω)}, harmonic forms Hk = {ω ∈ HΛk(Ω) : dω = 0, δω =

0, tr ? ω = 0}, and range B∗k = {δω : ω ∈ H̊∗Λk+1(Ω)} of δ. dimHk is the k-th
Betti number of Ω. The mixed Hodge Laplacian problem corresponding to (2.3)
now reads: Find (σ, u, p) ∈ HΛk−1 ×HΛk × Hk satisfying

σ = δu, dσ + δdu = f − p in Ω,(3.6)

tr ? u = 0, tr ? du = 0 on ∂Ω,(3.7)

u ⊥ Hk.(3.8)

The boundary conditions (3.7) are enforced naturally in the weak formulation (2.3)
and so do not need to be built into the function spaces for the variational form.
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The additional boundary conditions

tr ? σ = 0, tr ? δdu = 0 on ∂Ω(3.9)

are also satisfied. To see this, note that d and tr commute since tr is a pullback,
and that tr ?σ and tr ?δdu are both well defined inH−1/2 since δσ = 0 and δδdu = 0
imply that σ, δdu ∈ H∗. Thus by (3.4), tr ? σ = tr (−1)kd ? u = (−1)kd tr ? u = 0.
Similarly, tr ? δdu = tr (−1)kd ? du = (−1)kdtr ? du = 0. These relationships are
roughly akin to noting that for a scalar function u, the boundary condition u = 0
on ∂Ω implies that the tangential derivatives of u along ∂Ω are also 0.

We also consider the Hodge Laplacian with essential boundary conditions, that
is: Find (σ, u, p) ∈ H̊Λk−1 × H̊Λk × H̊k satisfying

σ = δu, dσ + δdu = f − p in Ω,(3.10)

tr σ = 0, tr u = 0 on ∂Ω,(3.11)

u ⊥ H̊k.(3.12)

This is the Hodge Laplace problem for the de Rham sequence (3.1) with each

instance of HΛk(Ω) replaced by H̊Λk(Ω). Here we have denoted the correspond-

ing parts of the Hodge decomposition using similar notation, e.g., H̊k = {ω ∈
Z̊k|〈ω, µ〉 = 0, µ ∈ B̊k}.

3.2. Finite element approximation of the de Rham complex. Let Th be a
shape-regular simplicial decomposition of Ω. That is, for any K1,K2 ∈ Th, K1∩K2

is either empty or a complete subsimplex (edge, face, vertex, etc.) of both K1 and
K2, and in addition all K ∈ Th contain and are contained in spheres uniformly
equivalent to hK := diam(K).

Denote by (Vh, d) any of the complexes of finite element differential forms con-
sisting of Pr and P−r spaces described in §5 of [4]. We do not give a more precise
definition as we only use properties of these spaces which are shared by all of them.
The finite element approximation to the mixed solution (σ, u, p) of the Hodge Lapla-

cian problem is denoted by (σh, uh, ph) ∈ V kh ×V
k−1
h ×Hkh and is taken to solve (2.7),

but now within the context of finite element approximation of the de Rham com-
plex. In order to solve (3.10)–(3.12) we naturally employ spaces V̊ kh = V kh ∩H̊Λk(Ω)
of finite element differential forms.

3.3. Regular decompositions and commuting quasi-interpolants. We also
employ a regular decomposition of the form ω = dϕ + z, where ω ∈ HΛ only, but
ϕ, z ∈ H1. In the context of Maxwell’s equations the term “regular decomposition”
first appeared in the numerical analysis literature in the survey [17] by Hiptmair
(although similar results were previously available in the analysis literature). Pub-
lished at about the same time, the paper [22] of Pasciak and Zhao contains a similar
result for H(curl) spaces which is also often cited in this context. Below we rely
on the paper [20] of Mitrea, Mitrea, and Monniaux, which contains regularity re-
sults for certain boundary value problems for differential forms that may easily be
translated into regular decomposition statements. Recent work of Costabel and
McIntosh [14] contains similar results for forms, though with handling of boundary
conditions that seems slightly less convenient for our purposes.

We first state a lemma concerning the bounded invertibility of d; this is a special
case of Theorem 1.5 of [20].
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Lemma 4. Assume that B is a bounded Lipschitz domain in Rn that is homeomor-
phic to a ball. Then the boundary value problem dϕ = g ∈ L2Λk(B) in B, tr ϕ = 0
on ∂B has a solution ϕ ∈ H1

0 Λk−1(B) with ‖ϕ‖H1Λk−1(B) . ‖g‖B if and only if

dg = 0 in B, and in addition, tr g = 0 on ∂B if 0 ≤ k ≤ n − 1 and
∫
B
g = 0 if

k = n.

Employing Lemma 4, we obtain the following regular decomposition result.

Lemma 5. Assume that Ω is a bounded Lipschitz domain in Rn, and let 0 ≤ k ≤
n− 1. Given v ∈ HΛk(Ω), there exist ϕ ∈ H1Λk−1(Ω) and z ∈ H1Λk(Ω) such that
v = dϕ+ z, and

‖ϕ‖H1Λk−1(Ω) + ‖z‖H1Λk(Ω) . ‖v‖HΛk(Ω).(3.13)

Similarly, if v ∈ H̊Λk(Ω), then there exist ϕ ∈ H1
0 Λk−1(Ω) and z ∈ H1

0 Λk(Ω) such
that v = dϕ + z and (3.13) holds. In the case k = n, HΛn(Ω) is identified with
L2Λn(Ω). The same results as above hold with the exception that z ∈ L2Λn(Ω) only
and satisfies ‖z‖L2Λn(Ω) . ‖v‖HΛk(Ω).

Proof. We first consider the case v ∈ HΛk(Ω). By Theorem A of [21], the assump-
tion that ∂Ω is Lipschitz implies the existence of a bounded extension operator
E : HΛk(Ω) → HΛk(Rn). Without loss of generality, we may take Eω to have
compact support in a ball B compactly containing Ω, since if not we may multiply
Ev by a fixed smooth cutoff function that is 1 on Ω and still thus obtain an HΛ-
bounded extension operator. Assuming that 0 ≤ k ≤ n− 1, we solve dz = dEv for
z ∈ H1

0 (B) and dϕ = Ev − z for ϕ ∈ H1
0 Λk−1(B), as in Lemma 4. The necessary

compatibility conditions may be easily verified using d ◦ d = 0, dtr = tr d, and
dEv = dz. Restricting ϕ and z to Ω, we obtain (3.13) by employing the bounded-
ness of E along with Lemma 4. In the case k = n, we let z = (|B|−1

∫
B
Ev)vol,

where vol is the volume form. We then have
∫
B

(Ev − z) = 0, and proceeding by
solving dϕ = Ev − z as above completes the proof in this case also.

In the case v ∈ H̊Λk(Ω), Lemma 5 may be obtained directly from Lemma 4 when
Ω is simply connected by applying the procedure in the previous paragraph with
B = Ω. The general case follows by a covering argument. Let {Ωi} be a finite open
covering of Ω such that Ω ∩ Ωi is Lipschitz for each i, and let {χi} be a partition
of unity subordinate to {Ωi}. When 0 ≤ k ≤ n− 1, we first solve dzi = d(χiv) for
zi ∈ H1

0 Λk(Ωi ∩ Ω) and let z =
∑

Ωi
zi ∈ H1

0 Λk(Ω). A simple calculation shows
that the compatibility conditions of Lemma 4 are satisfied, and in addition dz = dv
since

∑
Ωi
χi = 1. Similarly, we solve dϕi = χi(v − z) for ϕi ∈ H1

0 Λk−1(Ωi) and

set ϕ =
∑

Ωi
ϕi. In the case k = n, let zi =

(
|Ωi ∩ Ω|−1

∫
Ωi∩Ω

χiv
)

vol and let

ϕi ∈ H1
0 Λn−1(Ω ∩ Ωi) solve dϕi = χiv − zi. Setting ϕ =

∑
Ωi
ϕi, z = v − dϕ, and

employing Lemma 4 completes the proof. �

Our next lemma combines the regular decomposition result of Lemma 5 with a
commuting quasi-interpolant in order to obtain approximation results suitable for
a posteriori error estimation. Schöberl defined such an interpolant in [23] for the
classical three-dimensional de Rham complex and extended his results to include
essential boundary conditions in [24]. We generally follow Schöberl’s construction
here, although our notation appears quite different since we use the unified notation
of differential forms. Schöberl instead employed classical notation, which makes
the necessary patterns clear and perhaps more concrete but also requires a different
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definition of the interpolant for each degree of forms (H1, H(curl), H(div), and L2).
Our development also has many similarities to that of Christiansen and Winther
in [13], who develop a commuting projection operator for differential forms. Their
operator is however global and not suitable for use in a posteriori error estimation.

In [24] Schöberl defines and analyzes a regular decomposition of the difference
between a test function and its interpolant over local element patches for the three-
dimensional de Rham complex, whereas we first carry out a global regular de-
composition and then interpolate. The only advantage of Schöberl’s approach in
the context of a posteriori error estimation seems to be localization of domain-
dependent constants, which appears to be mainly a conceptual advantage since the
constants are not known. Also, commutativity of the quasi-interpolant is not nec-
essary for the proof of a posteriori error estimates, although it may simplify certain
arguments. See [12] for proofs of a posteriori estimates for Maxwell’s equations that
employ a global regular decomposition but not a commuting interpolant. Commu-
tativity may however be useful in other contexts. For example, one may modify
the proofs of quasi-optimality of an AFEM for Maxwell’s equations in [27] to use
a global regular decomposition and a quasi-interpolant instead of a local regular
decomposition of the interpolation error so long as the interpolant commutes.

Lemma 6. Assume that v ∈ HΛk(Ω) with ‖v‖H ≤ 1. Then there exists an operator

Πk
h : L2Λk(Ω) → V kh such that dk+1Πk

h = Πk+1
h dk, and in addition the following

hold. If k = 0, HΛ0 = H1 holds and we have∑
K∈Th

[
h−2
K ‖v −Πhv‖2K + h−1

K ‖tr (v −Πhv)‖2∂K + |v −Πhv|2H1(K)

]
. 1.(3.14)

If 1 ≤ k ≤ n−1, there exist ϕ ∈ H1Λk−1(Ω) and z ∈ H1Λk(Ω) such that v = dϕ+z,

Πk
hv = dΠk−1

h ϕ+ Πk
hz, and for any K ∈ Th,∑

K∈Th

[
h−2
K (‖ϕ−Πhϕ‖2K + ‖z −Πhz‖2K)

+ h−1
K (‖tr (ϕ−Πhϕ)‖2∂K + ‖tr (z −Πhz)‖2∂K)

]
. 1.

(3.15)

In the case k = n, the space HΛk(Ω) is L2Λk(Ω), and there exist ϕ ∈ H1Λk−1(Ω),
z ∈ L2Λn(Ω) such that v = dϕ+ z, Πhv = dΠhϕ+ Πhz, and∑

K∈Th

[
h−2
K (‖ϕ−Πhϕ‖2L2Λk−1(K) + ‖z −Πhz‖2L2Λk(K))

+ h−1
K ‖tr (ϕ−Πhϕ)‖2L2(∂K)

]
. 1.

(3.16)

Assume that 1 ≤ k ≤ n and φ ∈ HΛk−1(Ω) with ‖φ‖H ≤ 1. Then there exists
ϕ ∈ H1Λk−1(Ω) such that dϕ = dφ, Πhdφ = dΠhφ = dΠhϕ, and∑

K∈Th

[
h−2
K ‖ϕ−Πhϕ‖2K + h−1

K ‖tr (ϕ−Πhϕ)‖2∂K
]
. 1.(3.17)

Finally, the above statements hold with HΛk(Ω) replaced by H̊0Λk(Ω) and H1Λk(Ω)

replaced by H1
0 Λk(Ω), and in this case Πh : H̊Λk(Ω)→ V̊ kh .

Proof. Let Πh = IhR
ε
h, where following [24, 13] Ih is the canonical interpolant for

smooth forms and Rεh is a smoothing operator with smoothing parameter ε which
we detail below. (Note that the construction in [13] involves a further operator Jεh,
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which is the inverse of Πh applied to V kh . Jεh is non-local and thus not suitable for
use here.) We conceptually follow [24] in our definition of Rεh but also use some
technical tools from and more closely follow the notation of [13]. We omit a number
of details, so a familiarity with these works would be helpful to the reader.

Following [13], there is a Lipschitz-continuous vector field X(x) defined on a
neighborhood of Ω such that X(x) ·~n(x) > 0 for all outward unit normals ~n(x), x ∈
∂Ω. Let gh(x) be the natural Lipschitz-continuous mesh size function. There is then
δ > 0 so that for ε > 0 sufficiently small depending on Ω, Bε(x + δεgh(x)X(x)) ⊂
Rn \Ω for all x ∈ Ω with dist(x, ∂Ω) < εgh(x), and Bε(x−δεgh(x)X(x)) ⊂ Ω for all
x ∈ ∂Ω. Let χV be the standard piecewise linear “hat” function associated to the
vertex V , and let N∂ be the set of boundary vertices. Extending χV and gh by re-
flection over ∂Ω via X (cf. [13]), we define ΦD(x) = x+

∑
V ∈N∂

χV (x)δεgh(x)X(x)

and ΦN (x) = x−
∑
V ∈N∂

χV (x)δεgh(x)X(x).

Following [24], we associate to each vertex V in Th a control volume ΩV . Let ΩV
be the ball of radius εgh(V )/2 centered at V if V is an interior or Dirichlet boundary
node, and at ΦN (V ) if V is a boundary Neumann node. Also let fV ∈ Pn satisfy∫

ΩV

p(x)fV (x) dx = p(V ), p ∈ Pn.(3.18)

V

ΦD(V )

ΩV

V

ΩV ΦN (V )

Figure 1. Schematic of transformations and control volumes for
the Dirichlet (left) and Neumann (right) cases.

Given K ∈ Th, let {V1, ..., Vn+1} be the vertices with associated barycentric co-

ordinates {λ1(x), ..., λn+1(x)} for x ∈ K. Let x̂(x, y1, ...., yn+1) =
∑n+1
i=1 λi(x)yi =

x +
∑n+1
i=1 λi(x)(yi − Vi) for yi ∈ ΩVi

. We also denote by ω the extension of ω by
0 to Rn in the case of Dirichlet boundary conditions, and the extension of ω to a
neighborhood of Ω by smooth reflection via X in the case of Neumann boundary
conditions (cf. [13]). Letting x̃ = x̂ in the case of natural boundary conditions and
x̃ = ΦD ◦ x̂ in the case of essential boundary conditions, we define

(Rεhω)x =

∫
ΩV1

· · ·
∫

ΩVn+1

fV1
(y1) · · · fVn+1

(yn+1)(x̃∗ω)x dyn+1 · · · dy1.(3.19)

Commutativity of Rεh and thus of Πh immediately follows as in [23, 24, 13]. In
addition, ω = 0 on Rn \ Ω implies that (Rεhω)x = 0 for x ∈ ∂Ω in the case of
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essential boundary conditions, since in this case dist(x̂(x), ∂Ω) < gh(x)ε for all
(y1, ..., yn+1) ∈ ΩV1 × · · · × ΩVn+1 so that ΦD ◦ x̂(x, y1, ..., yn+1) ∈ Rn \ Ω.

We now establish that Rεh preserves constants locally on elements sufficiently
removed from ∂Ω. This implies the same of Πh since Ih preserves constants. Let
ω be a constant k-form, and let x ∈ Ω lie in K ∈ Th which in the Neumann
case satisfies K ∩ ∂Ω = ∅ and which in the Dirichlet case satisfies ωK ∩ ∂Ω = ∅.
Noting that now x̃ = x̂ on ωK , computing that Dx̂(x, y1, ..., yn+1) = I+

∑n+1
i=1 (yi−

Vi)⊗∇λi(x), applying (3.2), and applying the multilinearity of ω, we find that for
n-vectors v1, ..., vk

(Rεhω)x(v1, ..., vk) =

∫
Ωv1

· ·
∫

ΩVn+1

fV1(y1) · · · fVn+1(yn+1)

× ω

(
v1 +

n+1∑
i=1

(∇λi(x) · v1)(yi − Vi), ..., vk +

n+1∑
i=1

(∇λi(x) · vk)(yi − Vi)

)
× dyn+1 · · · dy1

= ω(v1, ..., vk) + Φ.

(3.20)

Here Φ consists of a sum of constants multiplying terms of the form ω(z1, ..., zk),
where zi = yj − Vj for at least one entry vector zi and for some 1 ≤ j ≤ n +
1. (3.18) then implies that

∫
Ωv1
· · ·
∫

ΩVn+1
fV1(y1) · · · fVn+1(yn+1)Φ dyn+1 · · · dy1 =

0. Observing that
∫

ΩV
fV (y) dy = 1 completes the proof that Rεhω(v1, ..., vk) =

ω(v1, ..., vk) in the case that x lies in an interior element.
Arguments as in [13, 23, 24] show that for ω ∈ L2Λk, ‖Πhω‖K . ‖ω‖K∗ , where

K∗ = ωK if K is an interior element and K∗ = ωK ∪ {x ∈ Rn : dist(x,K) . εhK}
otherwise; cf. Figure 4.2 of [13]. In the latter case the definition of the extension
of ω to Rn \ Ω as either 0 or the pullback of ω under a smooth reflection implies
that the values of ω on K∗ in fact depend only on values of ω on ωK so long as ε is
sufficiently small, which in turn implies that ‖Πhω‖K . ‖ω‖K∗ . ‖ω‖ωK

. ForK not
abutting ∂Ω we may combine the above properties of Πh with the Bramble-Hilbert
Lemma (cf. [9]) in order to yield h−1

K ‖z−Πhz‖K + |z−Πhz|H1Λk(K) . |z|H1Λk(ωK)

for z ∈ H1Λk(Ω). A standard scaled trace inequality for z ∈ H1Λk(K) reads

‖tr (z − Πhz)‖∂K . h
−1/2
K ‖z − Πhz‖K + h

1/2
K |z − Πhz|H1Λk(K). Combining these

inequalities with the finite overlap of the patches ωK implies (3.15), (3.14), and
(3.16) modulo boundary elements.

When V k = HΛk(Ω) and x ∈ K with K ∩ ∂Ω 6= ∅, the above argument that
constants are locally preserved and a standard Bramble-Hilbert argument applies
holds so long as the convex hull of ΩV1

, ...,ΩVn+1
lies in Ω for the vertices V1, .., Vn+1

of K. This is true if hK ≤ h0 for some h0 depending on Ω. To prove this, let
V1, ..., Vk be the vertices of K lying on ∂Ω. Our assumptions imply that ΩVi

⊂ Ω,
i = 1, ..., k. We must show that the convex hull of ΩV1 , ...,ΩVk

also is a subset of

Ω. This set is the union of all balls Bεgh(y)/2(y), where y =
∑k
i=1 λiΦN (Vi) for

0 ≤ λi ≤ 1 satisfying
∑k
i=1 λi = 1. Fixing such a y, let ỹ =

∑k
i=1 λiVi ∈ ∂K ∩ ∂Ω.

Then dist(ΦN (ỹ), ∂Ω) ≥ εgh(ỹ). But |ΦN (ỹ) − y| ≤ εgh(y)hK‖DX‖L∞ , so that
Bεgh(y)/2(y) ⊂ Ω so long as hK‖DX‖L∞(K) ≤ 1

2 . We thus take h0 = 1
2‖DX‖L∞(Ω)

.

Thus the results of Lemma 6 follow as above when hK ≤ h0. If the convex hull of
ΩV1

, ...,ΩVn+1
does not lie in Ω, then the integral (3.19) may sample values of ωx

for x /∈ Ω. Extension by pullback of a reflection does not preserve constant forms,
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and so in this case Πh does not necessarily preserve constants locally. The operator
Πh is however still locally L2 bounded, and since in this case we have hK > h0 we
may think of hK as merely a constant depending on Ω and thus still obtain the
approximation estimates of Lemma 6 after elementary manipulations.

In the case where V k = H̊Λk(Ω) and x lies in a patch ωK with K ∩ ∂Ω 6= ∅,
Πh does not preserve constants locally, but is still locally L2 bounded. Because we
in this case apply Πh to forms z, ϕ ∈ H1

0 (that is, to forms which are identically
0 on ∂Ω), we may apply a Poincaré inequality in conjunction with elementary
manipulations in order to obtain (3.15), (3.14), and (3.16) in this case as well.

(3.17) follows by a similar argument, that is, by extending φ H-continuously to
a ball B in the Neumann case, solving the boundary value problem dϕ = dφ on
B or Ω as appropriate, employing the H1 regularity result of Lemma 4, and then
applying properties of Πh. �

4. Reliability of a posteriori error estimators

In this section we define and prove the reliability of a posteriori estimators. We
will establish a series of lemmas bounding in turn each of the terms in (2.26). Below
we denote by JχK the jump in a quantity χ across an element face e. In case e ⊂ ∂Ω,
JχK is simply interpreted as χ. All of our results and discussion below are stated for
the case of natural boundary conditions; results for essential boundary conditions
are the same with the modification that edge jump terms are taken to be 0 on
boundary edges.

4.1. Reliability: Testing with τ ∈ HΛk−1.

Lemma 7. Given K ∈ Th, let

η−1(K) =


0 for k = 0,

hK‖σh − δuh‖K + h
1/2
K ‖Jtr ? uhK‖∂K for k = 1,

hK(‖δσh‖K + ‖σh − δuh‖K)

+h
1/2
K (‖Jtr ? σhK‖∂K + ‖Jtr ? uhK‖∂K) for 2 ≤ k ≤ n.

(4.1)

Let (σ, u, p) be the weak solution to (3.6)-(3.8), let (σh, uh, ph) be the corresponding
finite element solution having errors (eσ, eu, ep), and assume τ ∈ HΛk−1(Ω) with
‖τ‖HΛk−1(Ω) ≤ 1. Then

|〈eσ, (τ −Πhτ)〉 − 〈d(τ −Πhτ), eu〉| .

( ∑
K∈Th

η−1(K)2

)1/2

.(4.2)

Proof. If k = 0, then τ is vacuous and so the term above disappears. We next
consider the case 2 ≤ k ≤ n. Using Lemma 6, we write τ = dϕ + z, where
ϕ ∈ H1Λk−2(Ω) and z ∈ H1Λk−1(Ω). Since Πhτ = dΠhϕ+ Πhz and d ◦ d = 0, we
have d(τ −Πhτ) = d(z−Πhz). Thus using the first line of (2.3) and the integration
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by parts formula (3.5) on each element K ∈ Th, we have

−〈eσ,τ −Πhτ〉+ 〈d(τ −Πhτ), eu〉 = 〈σh, τ −Πhτ〉 − 〈d(τ −Πhτ), uh〉

=
∑
K∈Th

〈σh, d(ϕ−Πhϕ) + z −Πhz〉K − 〈d(z −Πhz), uh〉K

=
∑
K∈Th

〈δσh, ϕ−Πhϕ〉K +

∫
∂K

tr (ϕ−Πhϕ) ∧ tr ? σh

+ 〈σh − δuh, z −Πhz〉K −
∫
∂K

tr (z −Πhz) ∧ tr ? uh.

(4.3)

Note next that tr (z−πhz) is single-valued on an edge e = K1∩K2 , since z ∈ H1Λk

and Πhz ∈ HΛk. tr ? uh on the other hand is different depending on whether it
is computed as a limit from K1 or from K2, and we use Jtr ? uhK to denote its
jump (Jtr ? uhK = tr ? uh on ∂Ω). A similar observation holds for tr (ϕ − Πhϕ)
and tr ? σh. Let Eh denote the set of faces (n− 1-dimensional subsimplices) in Th,
and let ?∂K denote the Hodge star on Λj(∂K) (with j determined by context). We
then have using (3.3) and the fact that the Hodge star is an L2-isometry that∑

K∈Th

∫
∂K

tr (ϕ−Πhϕ) ∧ tr ? σh =
∑
e∈Eh

〈?∂K tr (ϕ−Πhϕ), Jtr ? σhK〉

.
∑
K∈Th

‖tr (ϕ−Πhϕ)‖∂K‖Jtr ? σhK‖∂K .
(4.4)

Similarly manipulating the other boundary terms in (4.3) and employing (3.15)
yields

〈σh,τ −Πhτ〉 − 〈d(τ −Πhτ), uh〉

.
∑
K∈Th

η−1(K)
[
h−1
K (‖z −Πhz‖K + ‖ϕ−Πhϕ‖K)

+ h
−1/2
K (‖tr (z −Πhz)‖∂K + ‖tr (ϕ−Πhϕ)‖∂K)

]
.
( ∑
K∈Th

η−1(K)2
)1/2

×
( ∑
K∈Th

[
h−2
K (‖ϕ−Πhϕ‖2K + ‖z −Πhz‖2K)

+ h−1
K (‖tr (ϕ−Πhϕ)‖2∂K + ‖tr (z −Πhz)‖2∂K)

])
.
( ∑
K∈Th

η−1(K)2
)1/2

.

(4.5)

Thus the proof is completed for the case 2 ≤ k ≤ n.
For the case k = 1 we have by definition that z = τ ∈ HΛ0(Ω) = H1(Ω). Thus

the proof proceeds as above but with terms involving δσh and tr ? σh omitted. �

4.2. Reliability: Testing with v ∈ HΛk. In our next lemma we bound the term
〈f − dσh − ph, v − Πhv〉 − 〈duh, d(v − Πhv)〉 from (2.26). Before doing so we note
that Hn and Hnh are always trivial, so in this case p = ph = 0. We however leave
the harmonic term ph in our indicators even when k = n for the sake of consistency
with the other cases.
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Lemma 8. Let K ∈ Th, and assume that f ∈ H1Λk(K) for each K ∈ Th. Let

η0(K) =


hK‖f − ph − δduh‖K + h

1/2
K ‖Jtr ? duhK‖∂K for k = 0,

hK(‖f − dσh − ph − δduh‖K + ‖δ(f − dσh − ph)‖K)

+h
1/2
K (‖Jtr ? duhK‖∂K + ‖Jtr ? (f − dσh − ph)K‖∂K)

for 1 ≤ k ≤ n− 1
‖f − dσh − ph‖K for k = n.

(4.6)

Under the above assumptions on the regularity of f and with all other definitions
as in Lemma 7 above, we have for any v ∈ HΛk(Ω) with ‖v‖HΛk(Ω) ≤ 1

〈f − dσh − ph, v −Πhv〉 − 〈duh, d(v −Πhv)〉 .

( ∑
K∈Th

η0(K)2

)1/2

.(4.7)

Proof. For k = n, the term 〈duh, d(v−Πhv)〉 is vacuous, and Galerkin orthogonality

implies that 〈f − dσh − ph, v −Πhv〉 = 〈f − dσh − ph, v〉 .
(∑

K∈Th η0(K)2
)1/2

.

For 0 ≤ k ≤ n−1, noting that d(v−Πhv) = d(z−Πhz+d(ϕ−Πhϕ)) = d(z−Πhz)
and integrating by parts yields

〈duh, d(v −Πhv)〉 = 〈duh, d(z −Πhz)〉

=
∑
K∈Th

〈δduh, z −Πhz〉+

∫
∂K

tr (z −Πhz) ∧ tr ? duh.
(4.8)

For k = 0 both ϕ and σh are vacuous, so we may complete the proof by employing
(4.8) and proceeding as in (4.4) and (4.5) to obtain

〈f−dσh − ph, v −Πhv〉 − 〈duh, d(v −Πhv)〉

=
∑
K∈Th

〈f − ph − δduh, v −Πhv〉 −
∫
∂K

tr (v −Πhv) ∧ tr ? duh

.
( ∑
K∈Th

η0(K)2
)1/2

‖v‖H1(Ω) .
( ∑
K∈Th

η0(K)2
)1/2

.

(4.9)

For 1 ≤ k ≤ n− 1, we write v = dϕ+ z as in Lemma 6 and employ (4.8) to find

〈f − dσh − ph, v −Πhv〉 − 〈duh, d(v −Πhv)〉

=
[
〈f − dσh − ph, d(ϕ−Πhϕ)〉K

]
+
[ ∑
K∈Th

〈f − dσh − ph − δduh, z −Πhz〉K
∫
∂K

tr (z −Πhz) ∧ tr ? duh

]
≡ [I] + [II].

(4.10)

The term II above may be manipulated as in (4.9) above in order to obtain

II .
( ∑
K∈Th

h2
K‖f − dσh − ph − δduh‖2K + hK‖Jtr ? duhK‖∂K

)1/2

.(4.11)
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We now turn our attention to the term I. Integrating by parts while proceeding
as in (4.4) and (4.5) yields

I =
∑
K∈Th

〈δ(f − dσh − ph), ϕ−Πhϕ〉K

+

∫
∂K

tr (ϕ−Πhϕ) ∧ tr ? (f − dσh − ph).

.
( ∑
K∈Th

h2
K‖δ(f − dσh − ph)‖2K + hK‖Jtr ? (f − dσh − ph)K‖2∂K

)1/2

.

(4.12)

Combining (4.11) and (4.12) yields (4.7) for 1 ≤ k ≤ n−1, completing the proof. �

We finally remark on an important feature of our estimators. The term hK‖δ(f−
dσh − ph)‖K + h

1/2
K ‖Jtr ? (f − dσh − ph)K‖∂K is in a sense undesirable because it

requires higher regularity of f than merely f ∈ L2. In particular, evaluation of the
first term requires f ∈ H∗Λk(K) for each K ∈ Th, and evaluation of the trace term
requires tr ? f ∈ L2Λ(∂K) for each K. (Note however that f is not included in
the jump terms if f ∈ H∗Λk(Ω).) Both relationships are implied by f ∈ H1Λk(K),
K ∈ Th, so we simply make this assumption.

In order to understand why such terms appear, note that the Hodge decompo-
sition of f reads f = dσ + p + δdu. The first two terms dσ + p are approximated
directly in L2 in the mixed method by dσh + ph, while the latter term δdu is only
approximated weakly in a negative order norm (roughly speaking, in the space dual
to HΛ∗k) in the mixed method. In our indicators, ‖(dσ+ p)− (dσh + ph)‖K is thus
a naturally scaled and efficient residual for the mixed method, but ‖δdu− δduh‖K
is one Sobolev index too strong. The latter term should instead be multiplied by
a factor of hK in order to mimic a norm with Sobolev index −1, as in the term
hK‖f − dσh − ph − δduh‖K appearing in η0.

This “Hodge imbalance” implies that it is necessary to carry out a Hodge de-
composition of f in order to obtain error indicators that are correctly scaled for
all variables. When this decomposition is unavailable a priori, the Hodge decom-
position must be carried out weakly in order to obtain a computable and reliable
estimator in which the appropriate parts of the Hodge decomposition of f are scaled
correctly. This is accomplished above. Since δ(δdu) = 0, hK‖δ(f − dσh − ph)‖K =
hK(‖δdeσ + δep‖K). This scales roughly as a Sobolev norm with order −1 of δdeσ
and dep, which in turn scales as the terms ‖deσ‖ + ‖ep‖ appearing in the original
error we seek to bound. For an element face e ∈ ∂Ω, (3.9) along with tr ? p = 0 on
∂Ω imply that Jtr ? (f − dσh − ph)K = tr ? (dσ − dσh − ph) on ∂Ω. Similarly, for
an interior face e we have Jtr ? fK = Jtr ? (dσ − dσh − ph)K.

If a partial Hodge decomposition of f is known, it is possible to redefine η0

so that only f ∈ L2 is required. If f = dσ + ψ with ψ = p + δdu known a

priori, we may replace hK‖δ(f − dσh− ph)‖K +h
1/2
K ‖Jtr ? (f − dσh− ph)K‖∂K with

hK‖δph‖K + ‖dσ − dσh‖K + h
1/2
K ‖Jtr ? phK‖∂K . If f = Θ + δdu with Θ = dσ + p

known a priori, we may instead replace this term with ‖Θ−dσh−ph‖K . We do not
assume such a decomposition is known, since it if were one would likely decompose
the Hodge Laplace problem into B and B∗ problems, as described in [4].

We finally note that a similar situation occurs in residual-type estimates for the
time-harmonic Maxwell problem curl curlu−ω2u = f , where the elementwise indi-

cators include a term hK‖div(f+ω2uh)‖K+h
1/2
K ‖(f+ω2uh)·n‖∂K (cf. [27]). There
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however the assumption div f ∈ L2 is natural as it represents the charge density,
and to our knowledge the connection of this term with the Hodge decomposition
has not been previously explained.

4.3. Reliability: Harmonic terms. Next we turn to bounding the terms in
(2.26) related to harmonic forms.

Lemma 9. Given qh ∈ V kh and K ∈ Th, let

ηH(K, qh) = hK‖δqh‖K + h
1/2
K ‖Jtr ? qhK‖∂K .(4.13)

Then if 1 ≤ k ≤ n and φ ∈ HΛk−1(Ω) with ‖φ‖HΛk−1(Ω) = 1,

〈qh, d(φ−Πhφ)〉 .
( ∑
K∈Th

ηH(K, qh)2
)1/2

.(4.14)

Given an orthonormal basis {q1, ..., qM} for Hkh, let µi =
(∑

K∈Th ηH(K, qi)
2
)1/2

.
Then we additionally have

gap(Hk,Hkh) . µ :=

(
M∑
i=1

µ2
i

)1/2

.(4.15)

Finally, if u⊥h ∈ Zk⊥h ,

‖PBu
⊥
h ‖ .

( ∑
K∈Th

ηH(K,u⊥h )2
)1/2

.(4.16)

Proof. Let ϕ ∈ H1Λk−1(Ω) boundedly solve dϕ = dφ, as in (3.17) and preceding of
Lemma 6. Employing (3.17), integrating by parts as in (4.8), and proceeding as in
(4.9) immediately yields

〈qh, d(φ−Πhφ)〉 =
∑
K∈Th

〈δqh, ϕ−Πhϕ〉K +

∫
∂K

tr (ϕ−Πhϕ) ∧ tr ? qh

.
( ∑
K∈Th

ηH(K, qh)2
)1/2

.

(4.17)

(4.15) immediately follows from (2.19) and (4.14), while (4.16) follows from (2.23)
and (4.14). �

4.4. Summary of reliability results. We summarize our reliability results in the
following theorem.

Theorem 10. Assume that Ω ⊂ Rn is a bounded Lipschitz domain of arbitrary
topological type. Let 0 ≤ k ≤ n. Let η−1 be as defined in Lemma 7, let η0 be as
defined in Lemma 8, and let ηH be as defined in Lemma 9. Let also {q1, ...qM} be
an orthonormal basis for Hkh and let µ be as in (4.15). Then

‖eσ‖HΛk−1(Ω) + ‖eu‖HΛk(Ω) + ‖ep‖

.
( ∑
K∈Th

η−1(K)2 + η0(K)2 + ηH(ph)2
)1/2

+ µ‖uh‖.
(4.18)
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Let also u⊥h be the projection of uh onto Zk⊥h . Then the term µ‖uh‖ in (4.18) may
be replaced by

µ
( ∑
K∈Th

ηH(K,u⊥h )2
)1/2

+ µ2‖uh‖.(4.19)

Proof. The four terms on the right hand side of (2.26) may be bounded by employ-
ing Lemma 7, Lemma 8, Lemma 9, and once again Lemma 9, respectively. �

5. Efficiency of a posteriori error estimators

We consider efficiency of the various error indicators employed in §4 in turn.
Before doing so, we provide some context for our proofs along with some basic
technical tools.

Efficiency results for residual-type a posteriori error estimators such as those
we employ here are typically proved by using the “bubble function” technique
of Verfürth [25] (cf. [11, 6] for applications of this technique in mixed methods
for the scalar Laplacian and electromagnetism). Given K ∈ Th, let bK be the
bubble function of polynomial degree n+1 obtained by multiplying the barycentric
coordinates of K together and scaling so that maxx∈K bK = 1. Extending by 0
outside of K yields bK ∈ W 1

∞(Ω) with supp(bK) = K. Similarly, given an n − 1-
dimensional face e = K1 ∩ K2, where K1,K2 ∈ Th and K2 is void if e ⊂ ∂Ω, we
obtain an edge bubble function be defined on K1,K2 by multiplying together the
corresponding barycentric coordinates except that corresponding to e and scaling
so that maxKi

be = 1.
Given a polynomial form v of arbitrary but uniformly bounded degree defined

on either K ∈ Th or a face e ⊂ K ∈ Th,

‖v‖K ' ‖
√
bKv‖K , ‖v‖e ' ‖

√
bev‖e.(5.1)

Also, given a polynomial k-form v defined on a face e = K1 ∪K2, we wish to define
a polynomial extension χv of v to K1 ∪K2. First extend v in the natural fashion
to the plane containing e. We then extend v to Ki, i = 1, 2 by taking χv to be
constant in the direction normal to e. Shape regularity implies that e, K1, and K2

are all contained in a ball having diameter equivalent to hK = hK1
' hK2

, so that
an elementary computation involving inverse inequalities yields

‖χv‖L2(K1∪K2) . h
1/2
K ‖v‖L2(e).(5.2)

5.1. Efficiency of η−1. We first consider the error indicator η−1.

Lemma 11. Let K ∈ Th. Then for 1 ≤ k ≤ n,

η−1(K) . ‖eσ‖ωK
+ ‖eu‖ωK

.(5.3)

Proof. We begin with the term hK‖σh − δuh‖K . Let ψ = bK(σh − δuh) ∈ HΛk−1;
note that tr ∂Kψ = 0. Employing (5.1), the first line of (2.3), and the integration-
by-parts formula (3.5), we obtain

‖σh − δuh‖2K ' 〈σh − δuh, ψ〉 = 〈σh − σ, ψ〉+ 〈dψ, u− uh〉
. ‖eσ‖K‖ψ‖K + ‖eu‖K‖dψ‖K .

(5.4)
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Employing an inverse inequality and bK ≤ 1 yields ‖dψ‖K . h−1
K ‖ψ‖K . h

−1
K ‖σh−

δuh‖K . Multiplying (5.4) through by hK/‖σh − δuh‖K while noting that hK . 1
yields

hK‖σh − δuh‖K . ‖eσ‖K + ‖eu‖K .(5.5)

Let now k ≥ 2. Recall that δσ = δδu = 0. Thus with ψ = bKδσh, we have

‖δσh‖2K ' 〈δσh, ψ〉 = 〈δ(σh − σ), ψ〉 = 〈σh − σ, dψ〉
. h−1

K ‖eσ‖K‖ψ‖K . h
−1
K ‖eσ‖K‖δσh‖K .

(5.6)

Multiplying through by hK/‖δσh‖K yields

hK‖δσh‖K . ‖eσ‖K .(5.7)

We now consider edge terms. Note from (3.7) and the fact that u ∈ H∗Λk(Ω)
(since δu = σ ∈ L2Λk−1(Ω)) that we always have Jtr ? uK = 0 (suitably interpreted
in H−1/2). Let Eh 3 e = K1 ∩K2, where K2 = ∅ if e ⊂ ∂Ω. Jtr ? uhK ∈ Λk(e), so
we let ψ ∈ Λn−1−k(e) satisfy ?ψ = Jtr ?uhK. The definition of ? implies that ψ is a
polynomial form because Jtr ?uhK is. Note also that multiplication by be commutes
with tr and ? since both are linear operations, so that be?ψ = ?(beψ) = ?tr (beχψ).
Employing the polynomial extension χψ defined in (5.2) and surrounding along with
the second relationship in (3.3) thus yields

‖Jtr ? uhK‖2e ' 〈be ? ψ, Jtr ? uhK〉e

= 〈?tr (beχψ), Jtr ? uhK〉e =

∫
e

tr (beχψ) ∧ Jtr ? uhK.
(5.8)

Employing the integration-by-parts formula (3.5) individually on K1 and K2 yields∫
e

tr (beχψ) ∧ Jtr ? uhK = 〈d(beχψ), uh〉K1∪K2
− 〈beχψ, δhuh〉K1∪K2

.(5.9)

Here δh is δ computed elementwise, which is necessary because uh /∈ H∗Λk glob-
ally. Also, beχψ ∈ HΛk−1(Ω) with support in K1 ∪ K2. Inserting the rela-
tionship 〈σ, beχψ〉 − 〈d(beχψ), u〉 = 0 into (5.9) and using an inverse inequal-

ity ‖d(beχψ)‖K . h−1
K ‖beχψ‖K , (5.2), and the Hodge star isometry relationship

‖ψ‖e ' ‖Jtr ? uhK‖e then yields

‖Jtr ? uhK‖2e ' 〈σ, beχψ〉 − 〈beχψ, δhuh〉+ 〈d(beχψ), uh − u〉
= 〈eσ, beχψ〉 − 〈beχψ, σh − δhuh〉+ 〈d(beχψ), eu〉
. ‖beχψ‖K1∪K2(‖eσ‖K1∪K2 + h−1

K ‖eu‖K1∪K2 + ‖σh − δhuh‖K1∪K2)

. h1/2
K ‖Jtr ? uhK‖e(‖eσ‖K1∪K2

+ h−1
K ‖eu‖K1∪K2

+ ‖σh − δuh‖K1∪K2
).

(5.10)

Multiplying both (5.10) through by h
1/2
K /‖Jtr ? uhK‖e and employing (5.5) thus

finally yields

h
1/2
K ‖Jtr ? uhK‖e . ‖eu‖K1∪K2 + ‖eσ‖K1∪K2 .(5.11)

A similar computation yields

h
1/2
K ‖Jtr ? σhK‖e . ‖eσ‖K1∪K2

,(5.12)

thus completing the proof of Lemma 11. �
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5.2. Efficiency of η0. We next consider the various error indicators η0 in Lemma
8. First we define three types of data oscillation. First,

osc(K) = hK‖f − Pf‖K ,(5.13)

where Pf is the L2 projection of f onto a space of polynomial k-forms of fixed but
arbitrary degree. Note that Pf is in general globally discontinuous. We do not
specify the space further, since it is only necessary that it be finite dimensional in
order to allow the use of inverse inequalities. Similarly, we define the edge oscillation

osc(∂K) = h
1/2
K ‖Jtr ? (f − Pf)K‖L2(∂K).(5.14)

Finally, we define

oscδ(K) = hK‖δ(f − Pf)‖L2(K).(5.15)

For a mesh subdomain ω of Ω, let osc(ω) =
(∑

T⊂ω osc(K)2
)1/2

and similarly
for oscδ. The last two oscillation notions measure oscillation of dσ only, since the
Hodge decomposition yields Jtr ? fK = Jtr ? dσK and δf = δdσ.

Lemma 12. Let K ∈ Th, and consider the error indicators defined in Lemma 8.
For k = 0, we have

η0(K) . ‖eu‖H,ωK
+ osc(ωK)(5.16)

When k = n,

η0(K) . ‖deσ‖K + ‖ep‖K .(5.17)

For 1 ≤ k ≤ n− 1,

η0(K) .‖eu‖H,ωK
+ ‖eσ‖H,ωK

+ ‖ep‖ωK

+ osc(ωK) + oscδ(ωK) + osc(∂K).
(5.18)

Proof. For the case k = n, (5.17) follows trivially from the Hodge decomposition
f = dσ + p and the triangle inequality.

For the case 0 ≤ k ≤ n− 1, let ψ = bK(Pf − dσh − ph − δduh). Then

‖Pf − dσh − ph − δduh‖2K ' 〈Pf − dσh − ph − δduh, ψ〉K
= 〈Pf − f, ψ〉K + 〈f − dσh − ph − δduh, ψ〉K .

(5.19)

Employing the Hodge decomposition f = dσ + p + δdu and then integrating by
parts while recalling that bK and thus ψ vanishes on ∂K yields

〈f − dσh − ph − δduh, ψ〉K = 〈deσ + ep + δdeu, ψ〉K
= 〈eσ, δψ〉K + 〈ep, ψ〉K + 〈deu, dψ〉K .

(5.20)

Collecting (5.19) and (5.20) and then employing the inverse inequality ‖dψ‖K +
‖δψ‖K . h−1

K ‖ψ‖K , multiplying the result through by hK , and dividing through
by ‖Pf −dσh−ph− δduh‖K after recalling that ‖ψ‖K . ‖Pf −dσh−ph− δduh‖K
yields

hK‖Pf − dσh − ph − δduh‖K . ‖eσ‖K + ‖deu‖K + hK‖ep‖K + osc(K).(5.21)

Employing the triangle inequality completes the proof that hK‖f − dσh − ph −
δduh‖K is bounded by the right hand side of (5.18) when 1 ≤ k ≤ n − 1, or by
the right hand side of (5.16) when k = 0 after noting that in this case p = ph is a
constant and recalling that σ − σh is vacuous.
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We next consider the term h
1/2
K ‖Jtr ? duhK‖∂K in (4.6). Manipulations similar

to those in the previous subsection yield

h
1/2
K ‖Jtr ? duhK‖e . ‖deu‖K1∪K2 + hK‖δdeu‖K1∪K2 .(5.22)

Employing the Hodge decomposition f = dσ + p + δdu yields δdeu = (f − dσh −
ph − δduh)− deσ − ep. Thus

h
1/2
K ‖Jtr ? duhK‖e . ‖deu‖K1∪K2

+ hK(‖f − dσh − ph − δduh‖K1∪K2 + ‖deσ‖K1∪K2 + ‖ep‖K1∪K2).
(5.23)

Employing (5.21) on K1 and K2 individually completes the proof that h
1/2
K ‖Jtr ?

duhK‖e is bounded by the right hand side of (5.18) in the case 1 ≤ k ≤ n − 1 and
of (5.16) when k = 0.

We now consider the term hK‖δ(f − dσh − ph)‖K . First note that hK‖δ(f −
dσh−ph)‖K ≤ oscδ(K)+hK‖δ(Pf−dσh−ph)‖K . Letting ψ = bKδ(Pf−dσh−ph)
and recalling the identities δf = δdσ and δp = 0, we integrate by parts to compute

‖δ(Pf − dσh − ph)‖2K ' 〈δ(Pf − dσh − ph), ψ〉
= 〈δ(Pf − f), ψ〉+ 〈δ(deσ + ep), ψ〉
≤ h−1

K oscδ(K)‖ψ‖K + |〈deσ + ep, dψ〉|
. h−1

K (oscδ(K) + ‖deσ‖K + ‖ep‖K)‖ψ‖K .

(5.24)

Further elementary manipulations as in (5.19) and following complete the proof
that hK‖δ(f − dσh − ph)‖K is bounded by the right hand side of (5.18).

We finally turn to the edge term h
1/2
K ‖Jtr ? (f − dσh − ph)K‖∂K . Note first that

Jtr ?(p+δdu)K = 0 on all element faces e. On interior faces this is a result of the fact
that p+ δdu ∈ H∗Λk, while for boundary edges this is a result of (3.9) along with
the definition of Hk. Thus Jtr ?fK = Jtr ?dσK. Setting ?ψ = Jtr ? (Pf−dσh−ph)K
and letting χψ be the polynomial extension of ψ as above, we compute for a face
e = K1 ∩K2 that

‖Jtr ? (Pf − dσh − ph)K‖2e ' 〈be ? ψ, Jtr ? (Pf − dσh − ph)K〉

≤ h−1/2
K osc(∂K)‖ψ‖e + |〈beψ, Jtr ? (deσ − phK〉|

= h
−1/2
K osc(∂K)‖ψ‖e + |〈d(beχψ), deσ − ph〉K1∪K2

+ 〈beχψ, δ(deσ − ph)〉K1∪K2 |.

(5.25)

Next note that 〈d(beχψ), p〉 = 0, so that 〈d(beχψ),−ph〉 = 〈d(beχψ), ep〉. Using an
inverse inequality and (5.2) then yields

‖Jtr ? (Pf − dσh − ph)K‖2e . h
−1/2
K

[
osc(∂K) + ‖ep‖K1∪K2

+ ‖deσ‖K1∪K2

+ hK‖δ(f − dσh − ph)‖K1∪K2

]
‖ψ‖e.

(5.26)

Further elementary manipulations as above complete the proof that h
1/2
K ‖Jtr ? (f−

dσh − ph)K‖e is bounded by the right hand side of (5.18).
�
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5.3. Efficiency of harmonic indicators. We finally state efficiency results for
the various harmonic terms.

In this section we prove efficiency of the individual harmonic terms appearing
in Lemma 9. As we discuss more thoroughly below, however, we do not obtain
efficiency of all of the terms that we originally sought to bound.

Lemma 13. Let vh ∈ V kh . Then

ηH(K, vh) . ‖PBvh‖ωK
.(5.27)

In particular, we have for u⊥h , qi ∈ Hkh, and ph

ηH(K,u⊥h ) . ‖PBu
⊥
h ‖ωK

,(5.28)

ηH(K, qi) . ‖PBqi‖ωK
= ‖qi − PHqi‖ωK

,(5.29)

ηH(K, ph) . ‖ep‖ωK
.(5.30)

Thus with µ and µi as in Lemma 9,

µ . gap(Hk,Hkh)(5.31)

Proof. The proof of (5.27) is a straightforward application of the bubble function
techniques used in the previous subsections. (5.28) and (5.29) are special cases of
(5.27), while (5.30) may be proved similarly. Finally, summing (5.29) in `2 over
K ∈ Th while employing the finite overlap of the patches ωK (which is a standard
consequence of shape regularity) implies that

µi . ‖qi − PHqi‖ωK
,(5.32)

which yields (5.31) when summed over 1 ≤ i ≤M . �

Remark 1. Lemma 13 gives efficiency results for the terms in our a posteriori
bounds for gap(Hk,Hkh) and for ‖PBu

⊥
h ‖, but not for the quantity ‖PHuh‖ itself

that we originally sought to bound. More generally, we have not bounded all of
the harmonic terms (4.18) and (4.19) by the error on the left hand side of (4.18) as
would be ideal. The offending terms are due to the nonconforming nature of our
method which arises from the fact that Hkh 6= Hk. Establishment of efficiency of
reliable estimators for this harmonic nonconformity error remains an open problem.

6. Examples

In this section we translate our results into standard notation for a posteriori
error estimators in the context of the canonical three-dimensional Hodge-de Rham
Laplace operators. Below we always assume that n = 3.

6.1. The Neumann Laplacian. When k = 0, σ and the first equation in (2.3))
are vacuous. Also, V k−1 = V −1 = ∅, V k = V 0 = H1(Ω), d = ∇, and δ = −div. In
addition, p = ph = −

∫
Ω
f , and δdu = −∆u. The weak mixed problem (2.3) reduces

to the standard weak form of the Laplacian and naturally enforces homogeneous
Neumann boundary conditions. In Lemma 7 and Lemma 9 we have η−1 ≡ 0 and
µ = ‖PBu

⊥
h ‖ = 0, respectively. Thus η1 is thus the only nontrivial indicator for

this problem, and it reduces to the standard indicator η(K) from (1.3). Thus we
recover standard results for the Neumann Laplacian.
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6.2. The vector Laplacian: k = 1. For k = 1 and k = 2, the Hodge Lapla-
cian corresponds to the vector Laplace operator curl curl−∇div, but with different
boundary conditions. For k = 1, u ∈ H(curl), σ = −div u ∈ H1, and the boundary
conditions are u · n = 0, curlu × n = 0 on ∂Ω. H1 consists of vector functions p
satisfying curl p = 0, div p = 0 in Ω and p · n = 0 on ∂Ω. From (4.1),

η−1(K) = hK‖σh + div uh‖K + h
1/2
K ‖Juh · nK‖∂K .(6.1)

Here n is a unit normal on ∂K. From (4.6) we find

η0(K) = hK(‖f −∇σh − ph − curl curluh‖K + ‖ div(f −∇σh − ph)‖K)

+ h
1/2
K (‖J(curluh)tK‖∂K + ‖J(f −∇σh − ph) · nK‖∂K),

(6.2)

where a subscript t denotes a tangential component. Finally, in Lemma 9 we have

ηH(K, qh) = hK‖ div qh‖K + h
1/2
K ‖Jqh · nK‖∂K .(6.3)

6.3. The vector Laplacian: k = 2. In the case k = 2 the mixed form of the
vector Laplacian yields σ = curlu, u ∈ H(div), and u× n = 0, div u = 0 on ∂Ω. In
addition, H2 consists of vector functions p satisfying curl p = 0, div p = 0 in Ω and
p× n = pt = 0 on ∂Ω. We then have from (4.1) that

η−1(K) = hK(‖ div σh‖K + ‖σh − curluh‖K)

+ h
1/2
K (‖Jσh · nK‖∂K + ‖Juh,tK‖∂K).

(6.4)

From (4.6) we have

η0(K) = hK(‖f − curlσh − ph +∇div uh‖K + ‖ curl(f − curlσh − ph)‖K)

h
1/2
K (‖Jdiv uhK‖∂K + ‖J(f − curlσh − ph)tK‖∂K).

(6.5)

Finally, in Lemma 9 we have

ηH(K, qh) = hK‖ curl qh‖K + h
1/2
K ‖Jqh,tK‖∂K .(6.6)

6.4. Mixed form of the Dirichlet Laplacian. For k = 3, (2.3) is a standard
mixed method for the Dirichlet Laplacian −∆u = 0 in Ω, u = 0 on ∂Ω, and
σ = −∇u. d2 = div, d3 is vacuous, H3 = H3

h = ∅, V k−1 = H(div), and V k = L2.
Taking σh and uh now to be proxy vector fields for σh and uh, we have in (4.1)
that δσh = curlσh, δuh = −∇uh, tr ? σh = σh,t (i.e., the tangential component of
σh), and tr ? uh = uh.

η−1(K) = hK(‖ curlσh‖K + ‖σh +∇uh‖K) + h
1/2
K (‖Jσh,tK‖K + ‖JuhK‖K).(6.7)

In addition, (4.6) yields

η0(K) = ‖f − div σh‖K .(6.8)

The “harmonic estimators” in Lemma 9 are all vacuous in this case. Combining
Theorem 10 with the corresponding efficiency bounds of §5 thus yields

‖eu‖L2(Ω) + ‖eσ‖H(div;Ω) ' (
∑
K∈Th

η−1(K)2 + η0(K)2)1/2.(6.9)

In contrast to the vector Laplacian, many authors have proved a posteriori error
estimates for the mixed form of Poisson’s problem, so we compare our results with
existing ones. We focus mainly on two early works bounding a posteriori the natural
mixed variational norm H(div)×L2. In [8], Braess and Verfürth prove a posteriori
estimates for ‖eσ‖H(div;Ω) + ‖eu‖, as we do here, but their estimates are only valid
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under a saturation assumption (which is not a posteriori verifiable) and are not
efficient. Salient to our discussion is their observation on pp. 2440–2441 that
the traces of H(div) test functions lie only in H−1/2. This prevented them from
employing the mixed variational form in a straightforward way, that is, using an
inf-sup condition in order to test with functions in H(div) × L2. Doing so using
their techniques would have led to a duality relationship between traces lying in
incompatible spaces, or more particularly, between traces lying in H−1/2 and some
space less regular than H1/2. Following ideas used in [11] in the context of the
mixed scalar Laplacian and developed more fully in [24] for Maxwell’s equations,
we insert the essential additional step of first taking the Hodge decomposition of
test functions. Only the regular (H1) portion of the test function is then integrated
by parts, thus avoiding trace regularity issues. Note finally that the elementwise

indicators of [8] are of the form ‖ div σh−f‖K+‖σh+∇uh‖K+h
−1/2
K ‖JuhK‖∂K , which

includes our indicator η0 and parts of our indicator η−1. However, the jump term

h
−1/2
K ‖JuhK‖∂K is scaled too strongly (by h

−1/2
K instead of h

1/2
K in our estimator),

and the resulting bounds are thus not efficient; cf. (4.20) of [8].
In [11] Carstensen provided a posteriori estimators for the natural H(div) ×

L2 norm which are equivalent to the actual error as in (6.9). In our notation,
Carstensen’s elementwise indicators have the form ‖f−div σh‖K+hK‖ curlσh‖K+

hK minvh∈Lh
‖σh + ∇vh‖K + h

1/2
K ‖Jσh,tK‖∂K . Here Lh is an appropriate space of

piecewise polynomials. Thus our terms hK‖σh+∇uh‖K+h
1/2
K ‖JuhK‖∂K are replaced

in Carstensen’s work by hK minvh∈Lh
‖σh +∇vh‖K , and our estimators are other-

wise the same. However, Carstensen’s results were proved only under the restrictive
assumption that Ω is convex, which we avoid. [11] also makes use of a Helmholtz
(Hodge) decomposition, but a commuting quasi-interpolant was not available at the
time and thus full usage of the Hodge decomposition was not possible.

Most works on a posteriori error estimation for mixed methods subsequent to
[11] have focused on measuring the error in other norms, e.g., ‖eσ‖L2

(cf. [19, 26]).
One essential reason for this is that the H(div)× L2 norm includes the term ‖f −
div σh‖ which directly approximates the data f and which can thus be trivially
computed a posteriori. Thus while the H(div) × L2 norm is natural to consider
from the standpoint of the mixed variational formulation, it is perhaps not the most
important error measure in practical settings. Even with this caveat, our estimators
for mixed methods for the Dirichlet Laplacian seem to be the first estimators that
are directly proved to be reliable and efficient for the natural mixed variational
norm under reasonably broad assumptions on the domain geometry.
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