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Abstract

This article is concerned with Monte-Carlo methods for the estimation of
the trace of an implicitly given matrix A whose information is only available
through matrix-vector products. Such a method approximates the trace by
an average of N expressions of the form wt(Aw), with random vectors w
drawn from an appropriate distribution. We prove, discuss and experiment
with bounds on the number of realizations N required in order to guarantee a
probabilistic bound on the relative error of the trace estimation upon employ-
ing Rademacher (Hutchinson), Gaussian and uniform unit vector (with and
without replacement) probability distributions.

In total, one necessary bound and six sufficient bounds are proved, im-
proving upon and extending similar estimates obtained in the seminal work of
Avron and Toledo (2011) in several dimensions. We first improve their bound
on N for the Hutchinson method, dropping a term that relates to rank(A) and
making the bound comparable with that for the Gaussian estimator.

We further prove new sufficient bounds for the Hutchinson, Gaussian and
the unit vector estimators, as well as a necessary bound for the Gaussian esti-
mator, which depend more specifically on properties of the matrix A. As such
they may suggest for what type of matrices one distribution or another provides
a particularly effective or relatively ineffective stochastic estimation method.
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1 Introduction

The need to estimate the trace of an implicit square matrix is of fundamental im-
portance [15] and arises in many applications; see for instance [10, 5, 4, 9, 7, 18, 13,
11, 8, 3] and references therein. By “implicit” we mean that the matrix of interest
is not available explicitly: only probes in the form of matrix-vector products for any
appropriate vector are available. The standard approach for estimating the trace of
such a matrix A is based on a Monte-Carlo method, where one generates N random
vector realizations wi from a suitable probability distribution D and computes

trND (A) :=
1

N

N∑
i=1

wt
iAwi. (1)

For the popular case where A is symmetric positive semi-definite (SPSD), the orig-
inal method for estimating its trace, tr(A), is due to Hutchinson [10] and uses the
Rademacher distribution for D.

Until the work by Avron and Toledo [4], the main analysis and comparison of
such methods was based on the variance of one sample. It is known that compared
to other methods the Hutchinson method has the smallest variance, and as such
it has been extensively used in many applications. In [4] so-called (ε, δ) bounds
are derived in which, using Chernoff-like analysis, a lower bound is obtained on the
number of samples required to achieve a probabilistically guaranteed relative error
of the estimated trace. More specifically, for a given pair (ε, δ) of small (say, < 1)
positive values and an appropriate probability distribution D, a lower bound on N is
provided such that

Pr
(
|trND (A)− tr(A)| ≤ ε tr(A)

)
≥ 1− δ. (2)

These authors further suggest that minimum-variance estimators may not be practi-
cally best, and conclude based on their analysis that the method with the best bound
is the one using the Gaussian distribution. Let us denote

c = c(ε, δ) := ε−2 ln(2/δ), (3a)

r = rank(A). (3b)

Then [4] showed that, provided A is real SPSD, (2) holds for the Hutchinson method
if N ≥ 6(c+ ε−2 ln r) and for the Gaussian distribution if N ≥ 20c.

In the present paper we continue to consider the same objective as in [4], and our
first task is to improve on these bounds. Specifically, in Theorems 1 and 3 we show
that (2) holds for the Hutchinson method if

N ≥ 6c(ε, δ), (4)

and for the Gaussian distribution if

N ≥ 8c(ε, δ). (5)
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The bound (4) removes a previous factor involving the rank of the matrix A, conjec-
tured in [4] to be indeed redundant. Note that these two bounds are astoundingly
simple and general: they hold for any SPSD matrix, regardless of size or any other
matrix property. Thus, we cannot expect them to be tight in practice for many
specific instances of A that arise in applications.

Although practically useful, the bounds on N given in (4) and (5) do not pro-
vide insight into how different types of matrices are handled with each probability
distribution. Our next contribution is to provide different bounds for the Gaussian
and Hutchinson trace estimators which, though generally not computable for implicit
matrices, do shed light on this question.

Furthermore, for the Gaussian estimator we prove a practically useful necessary
lower bound on N , for a given pair (ε, δ).

A third probability distribution we consider was called the unit vector distribution
in [4]. Here, the vectors wi in (1) are uniformly drawn from the columns of a scaled
identity matrix,

√
nI, and A need not be SPSD. We slightly generalize the bound

in [4], obtained for the case where the sampling is done with replacement. Our bound,
although not as simply computed as (4) or (5), can be useful in determining which
types of matrices this distribution works best on. We then give a tighter bound
for the case where the sampling is done without replacement, suggesting that when
the difference between the bounds is significant (which happens when N is large),
a uniform random sampling of unit vectors without replacement may be a more
advisable distribution to estimate the trace with.

This paper is organized as follows. Section 2 gives two bounds for the Hutchinson
method as advertised above, namely the improved bound (4) and a more involved
but potentially more informative bound. Section 3 deals likewise with the Gaussian
method and adds also a necessary lower bound, while Section 4 is devoted to the unit
vector sampling methods.

In Section 5 we give some numerical examples verifying that the trends predicted
by the theory are indeed realized. Conclusions and further thoughts are gathered in
Section 6.

In what follows we use the notation trNH (A), trNG (A), trNU1
(A), and trNU2

(A) to refer,
respectively, to the trace estimators using Hutchinson, Gaussian, and uniform unit
vector with and without replacement, in lieu of the generic notation trND (A) in (1) and
(2). We also denote for any given random vector of size n, wi = (wi1, wi2, . . . , win)t.
We restrict attention to real-valued matrices, although extensions to complex-valued
ones are possible, and employ the 2-norm by default.

2 Hutchinson estimator bounds

In this section we consider the Hutchinson trace estimator, trNH (A), obtained by
setting D = H in (1), where the components of the random vectors wi are i.i.d
Rademacher random variables (i.e., Pr(wij = 1) = Pr(wij = −1) = 1

2
).
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2.1 Improving the bound in [4]

Theorem 1 Let A be an n× n SPSD matrix. Given a pair (ε, δ), the inequality (2)
holds with D = H if N satisfies (4).

Proof Since A is SPSD, it can be diagonalized by a unitary similarity transformation
as A = U tΛU . Consider N random vectors wi, i = 1, . . . , N , whose components are
i.i.d and drawn from the Rademacher distribution, and define zi = Uwi for each. We
have

Pr
(
trNH (A) ≤ (1− ε)tr(A)

)
= Pr

(
1

N

N∑
i=1

wt
iAwi ≤ (1− ε)tr(A)

)

= Pr

(
1

N

N∑
i=1

ztiΛzi ≤ (1− ε)tr(A)

)

= Pr

(
N∑
i=1

r∑
j=1

λjz
2
ij ≤ N(1− ε)tr(A)

)

= Pr

(
r∑
j=1

λj
tr(A)

N∑
i=1

z2ij ≤ N(1− ε)

)

≤ exp{tN(1− ε)}E

(
exp{

r∑
j=1

λj
tr(A)

N∑
i=1

−tz2ij}

)
,

where the last inequality holds for any t > 0 by Markov’s inequality.
Next, using the convexity of the exp function and the linearity of expectation, we

obtain

E

(
exp{

r∑
j=1

λj
tr(A)

N∑
i=1

−tz2ij}

)
≤

r∑
j=1

λj
tr(A)

E

(
exp{

N∑
i=1

−tz2ij}

)

=
r∑
j=1

λj
tr(A)

E

(
N∏
i=1

exp{−tz2ij}

)

=
r∑
j=1

λj
tr(A)

N∏
i=1

E
(
exp{−tz2ij}

)
,

where the last equality holds since, for a given j, zij’s are independent with respect
to i.

Now, we want to have that exp{tN(1 − ε)}
∏N

i=1 E
(
exp{−tz2ij}

)
≤ δ/2. For this

we make use of the inequalities in the end of the proof of Lemma 5.1 of [2]. Following
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inequalities (15)–(19) in [2] and letting t = ε/(2(1 + ε)), we get

exp{tN(1− ε)}
N∏
i=1

E
(
exp{−tz2ij}

)
< exp{−N

2
(
ε2

2
− ε3

3
)}.

Next, if N satisfies (4) then exp{−N
2

( ε
2

2
− ε3

3
)} < δ/2, and thus it follows that

Pr
(
trNH (A) ≤ (1− ε)tr(A)

)
< δ/2.

By a similar argument, making use of inequalities (11)–(14) in [2] with
the same t as above, we also obtain with the same bound for N so that
Pr
(
trNH (A) ≥ (1 + ε)tr(A)

)
≤ δ/2. So finally using the union bound yields the de-

sired result. �

It can be seen that (4) is the same bound as the one in [4] with the important
exception that the factor r = rank(A) does not appear in the bound. Furthermore,
the same bound on N holds for any SPSD matrix.

2.2 A matrix-dependent bound

Here we derive another bound for the Hutchinson trace estimator which may shed
light as to what type of matrices the Hutchinson method is best suited for.

Let us denote by ak,j the (k, j)th element of A and by aj its jth column, k, j =
1, . . . , n.

Theorem 2 Let A be an n× n symmetric positive semi-definite matrix, and define

KjH :=
‖aj‖2 − a2j,j

a2j,j
=
∑
k 6=j

a2k,j / a
2
j,j, KH := max

j
KjH . (6)

Given a pair of positive small values (ε, δ), the inequality (2) holds with D = H if

N > 2KHc(ε, δ). (7)

Proof Elementary linear algebra implies that since A is SPSD, aj,j ≥ 0 for each j.
Furthermore, if aj,j = 0 then the jth row and column of A identically vanish, so we
may assume below that aj,j > 0 for all j = 1, . . . , n. Note that

trNH (A)− tr(A) =
1

N

n∑
j=1

N∑
i=1

n∑
k=1
k 6=j

aj,kwijwik.
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Hence

Pr
(
trNH (A) ≤ (1− ε)tr(A)

)
= Pr

 n∑
j=1

N∑
i=1

n∑
k=1
k 6=j

−aj,kwijwik ≥ Nε tr(A)


= Pr

 n∑
j=1

aj,j
tr(A)

N∑
i=1

n∑
k=1
k 6=j

−aj,k
aj,j

wijwik ≥ Nε


≤ exp{−tNε}E

exp{
n∑
j=1

aj,j
tr(A)

N∑
i=1

n∑
k=1
k 6=j

−aj,kt
aj,j

wijwik}

 ,

where the last inequality is again obtained for any t > 0 by using Markov’s inequality.
Now, again using the convexity of the exp function and the linearity of expectation,
we obtain

Pr
(
trNH (A) ≤ (1− ε)tr(A)

)
≤ exp{−tNε}

n∑
j=1

aj,j
tr(A)

E

exp{
N∑
i=1

n∑
k=1
k 6=j

−aj,kt
aj,j

wijwik}


= exp{−tNε}

n∑
j=1

aj,j
tr(A)

N∏
i=1

E

exp{
n∑
k=1
k 6=j

−aj,kt
aj,j

wijwik}


by independence of wijwik with respect to the index i.

Next, note that

E

exp{
n∑
k=1
k 6=j

aj,kt

aj,j
wik}

 = E

exp{
n∑
k=1
k 6=j

−aj,kt
aj,j

wik}

 .

Furthermore, since Pr(wij = −1) = Pr(wij = 1) = 1
2
, and using the law of total

expectation, we have

E

exp{
n∑
k=1
k 6=j

−aj,kt
aj,j

wijwik}

 = E

exp{
n∑
k=1
k 6=j

aj,kt

aj,j
wik}

 =
n∏
k=1
k 6=j

E
(

exp{aj,kt
aj,j

wik}
)
,

so

Pr
(
trNH (A) ≤ (1− ε)tr(A)

)
≤ exp{−tNε}

n∑
j=1

aj,j
tr(A)

N∏
i=1

n∏
k=1
k 6=j

E
(

exp{aj,kt
aj,j

wik}
)
.
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We want to have the right hand side expression bounded by δ/2.

Applying Hoeffding’s lemma we get E
(

exp{aj,kt
aj,j

wik}
)
≤ exp{a

2
j,kt

2

2a2j,j
}, hence

exp{−tNε}
N∏
i=1

n∏
k=1
k 6=j

E
(

exp{aj,kt
aj,j

wik}
)
≤ exp{−tNε+KjHNt

2/2} (8a)

≤ exp{−tNε+KHNt2/2}. (8b)

The choice

t = ε/KH

minimizes the right hand side. Now if (7) holds then

exp(−tNε)
N∏
i=1

n∏
k=1
k 6=j

E
(

exp{aj,kt
aj,j

wik}
)
≤ δ/2,

hence we have

Pr(trNH (A) ≤ (1− ε)tr(A)) ≤ δ/2.

Similarly, we obtain that

Pr(trNH (A) ≥ (1 + ε)tr(A)) ≤ δ/2,

and using the union bound finally gives desired result. �

Comparing (7) to (4), it is clear that the bound of the present subsection is only
worthy of consideration if KH < 3. Note that Theorem 2 emphasizes the relative
`2 energy of the off-diagonals: the matrix does not necessarily have to be diagonally
dominant (i.e., where a similar relationship holds in the `1 norm) for the bound on
N to be moderate. Furthermore, a matrix need not be “nearly” diagonal for this
method to require small sample size. In fact a matrix can have off-diagonal elements
of significant size that are far away from the main diagonal without automatically
affecting the performance of the Hutchinson method. However, note also that our
bound can be pessimistic, especially if the average value or the mode of KjH in (6)
is far lower than its maximum, KH . This can be seen in the above proof where
the estimate (8b) is obtained from (8a). Simulations in Section 5 show that the
Hutchinson method can be a very efficient estimator even in the presence of large
outliers, so long as the bulk of the distribution is concentrated near small values.

The case KH = 0 corresponds to a diagonal matrix, for which the Hutchinson
method yields the trace with one shot, N = 1. In agreement with the bound (7), we
expect the actual required N to grow when a sequence of otherwise similar matrices
A is envisioned in which KH grows away from 0, as the energy in the off-diagonal
elements grows relatively to that in the diagonal elements.
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3 Gaussian estimator bounds

In this section we consider the Gaussian trace estimator, trNG (A), obtained by setting
D = G in (1), where the components of the random vectors wi are i.i.d standard
normal random variables. We give two sufficient and one necessary lower bounds for
the number of Gaussian samples required to achieve an (ε, δ) trace estimate. The
first sufficient bound (5) improves the result in [4] by a factor of 2.5. Our bound is
only worse than (4) by a fraction, and it is an upper limit of the potentially more
informative (if less available) bound (10), which relates to the properties of the matrix
A. The bound (10) provides an indication as to what matrices may be suitable
candidates for the Gaussian method. Then we present a practically computable,
necessary bound for the sample size N .

3.1 Sufficient bounds

The proof of the following theorem closely follows the approach in [4].

Theorem 3 Let A be an n×n SPSD matrix and denote its eigenvalues by λ1, . . . , λn.
Further, define

KjG :=
λj

tr(A)
, KG := max

j
KjG =

‖A‖
tr(A)

. (9)

Then, given a pair of positive small values (ε, δ), the inequality (2) holds with D = G
provided that (5) holds. This estimate also holds provided that

N > 8KGc(ε, δ). (10)

Proof Since A is SPSD, we have ‖A‖ ≤ tr(A), so if (5) holds then so does (10). We
next concentrate on proving the result assuming the tighter bound (10) on the actual
N required in a given instance.

Writing as in the previous section A = U tΛU , consider N random vectors wi, i =
1, . . . , N , whose components are i.i.d and drawn from the normal distribution, and
define zi = Uwi. Since U is orthogonal, the elements zij of zi are i.i.d Gaussian
random variables. We have as before,

Pr
(
trNG (A) ≤ (1− ε)tr(A)

)
= Pr

(
N∑
i=1

r∑
j=1

λjz
2
ij ≤ N(1− ε)tr(A)

)

≤ exp{tN(1− ε)tr(A)}E

(
exp{

N∑
i=1

r∑
j=1

−tλjz2ij}

)

≤ exp{tN(1− ε)tr(A)}
N∏
i=1

r∏
j=1

E
(
exp{−tλjz2ij}

)
.
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Here z2ij is a χ2 random variable of degree 1 (see [12]), and hence for the charac-
teristics we have

E
(
exp{−tλjz2ij}

)
= (1 + 2λjt)

− 1
2 .

This yields the bound

Pr
(
trNG (A) ≤ (1− ε)tr(A)

)
≤ exp{tN(1− ε)tr(A)}

r∏
j=1

(1 + 2λjt)
−N

2 .

Next, it is easy to prove by elementary calculus that given any 0 < α < 1, the
following holds for all 0 ≤ x ≤ 1−α

α
,

ln(1 + x) ≥ αx. (11)

Setting α = 1 − ε/2, then by (11) and for all t ≤ (1 − α)/(2α‖A‖), we have that
(1 + 2λjt) > exp{2αλj}t, so

Pr
(
trNG (A) ≤ (1− ε)tr(A)

)
≤ exp{tN(1− ε)tr(A)}

r∏
j=1

exp(−Nαλjt)

= exp{tN(1− ε− α)tr(A)}.

We want the latter right hand side to be bounded by δ/2, i.e., we want to have

N ≥
ln
(
2/δ
)

(α− (1− ε))tr(A)t
=

2εc(ε, δ)

tr(A)t
,

where t ≤ (1 − α)/(2α‖A‖). Now, setting t = (1 − α)/(2α‖A‖) = ε/(2(2 − ε)‖A‖),
we obtain

N ≥ 4(2− ε)c(ε, δ)KG,

so if (10) holds then

Pr
(
trNG (A) ≤ (1− ε)tr(A)

)
≤ δ/2.

Using a similar argument we also obtain

Pr
(
trNG (A) ≥ (1 + ε)tr(A)

)
≤ δ/2,

and subsequently the union bound yields the desire result. �

The matrix-dependent bound (10), proved to be sufficient in Theorem 3, provides
additional information over (5) about the type of matrices for which the Gaussian
estimator is (probabilistically) guaranteed to require only a small sample size: if the
eigenvalues of an SPSD matrix are distributed such that the ratio ‖A‖/tr(A) is small
(e.g., if they are all of approximately the same size), then the Gaussian estimator
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bound requires a small number of realizations. This observation is reaffirmed by
looking at the variance of this estimator, namely 2‖A‖2F . It is easy to show that
among all the matrices with a fixed trace and rank, those with equal eigenvalues have
the smallest Frobenius norm.

Furthermore, it is easy to see that the stable rank (see [17] and references therein)
of any real rectangular matrix C which satisfies A = CtC equals 1/KG. Thus, the
bound constant in (10) is inversely proportional to this stable rank, suggesting that
estimating the trace using the Gaussian distribution may become inefficient if the
stable rank of the matrix is low. Theorem 5 in Section 3.2 below further substantiates
this intuition.

As an example of an application of the above results, let us consider finding the
minimum number of samples required to compute the rank of a projection matrix
using the Gaussian estimator [4, 6]. Recall that a projection matrix is SPSD with
only 0 and 1 eigenvalues. Compared to the derivation in [4], here we use Theorem 3
directly to obtain a similar bound with a slightly better constant.

Corollary 4 Let A be an n × n projection matrix with rank r > 0, and denote the
rounding of any real scalar x to the nearest integer by round(x). Then, given a positive
small value δ, the estimate

Pr
(
round(trNG (A)) 6= r

)
≤ δ (12a)

holds if

N ≥ 8 r ln
(
2/δ
)
. (12b)

Proof The result immediately follows using Theorem 3 upon setting ε = 1/r, ‖A‖ = 1
and tr(A) = r. �

3.2 A necessary bound

Below we provide a rank-dependent, almost tight necessary condition for the minimum
sample size required to obtain (2). This bound is easily computable in case that
r = rank(A) is known.

Before we proceed, recall the definition of the regularized Gamma functions

P (α, β) :=
γ (α, β)

Γ (α)
, Q (α, β) :=

Γ (α, β)

Γ (α)
,

where γ (α, β) ,Γ (α, β) and Γ (α) are, respectively, the lower incomplete, the upper
incomplete and the complete Gamma functions, see [1]. We also have that Γ (α) =
Γ (α, β) + γ (α, β). Further, define

Φθ(x) := P

(
x

2
,
τ(1− θ)x

2

)
+Q

(
x

2
,
τ(1 + θ)x

2

)
, (13a)
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where

τ =
ln(1 + θ)− ln(1− θ)

2θ
. (13b)

Theorem 5 Let A be a rank-r SPSD n×n matrix, and let (ε, δ) be a tolerance pair.
If the inequality (2) with D = G holds for some N , then necessarily

Φε(Nr) ≤ δ. (14)

Proof As in the proof of Theorem 3 we have

Pr
(
|trNG (A)− tr(A)| ≤ ε tr(A)

)
= Pr

(
|
N∑
i=1

r∑
j=1

λjz
2
ij −Ntr(A)| ≤ εNtr(A)

)

= Pr

(
(1− ε) ≤

N∑
i=1

r∑
j=1

λj
tr(A) N

z2ij ≤ (1 + ε)

)
.

Next, applying Theorem 3 of [16] gives

Pr
(
|trNG (A)− tr(A)| ≤ ε tr(A)

)
≤ Pr

(
c(1− ε) ≤ 1

Nr
X 2
Nr ≤ c(1 + ε)

)
,

where X 2
M denotes a chi-squared random variable of degree M with the cumulative

distribution function

CDFX 2
M

(x) = Pr
(
X 2
M ≤ x

)
=
γ
(
M
2
, x
2

)
Γ
(
M
2

) .

A further straightforward manipulation yields the stated result. �

Having a computable necessary condition is practically useful: given a pair of
fixed sample size N and error tolerance ε, the failure probability δ cannot be smaller
than δ0 = Φε(Nr).

Since our sufficient bounds are not tight, it is not possible to make a direct com-
parison between the Hutchinson and Gaussian methods based on them. However,
using this necessary condition can help for certain matrices. Consider a low rank
matrix with a rather small KH in (7). For such a matrix and a given pair (ε, δ),
the condition (14) will probabilistically necessitate a rather large N , while (7) may
give a much smaller sufficient bound for N . In this situation, using Theorem 5, the
Hutchinson method is indeed guaranteed to require a smaller sample size than the
Gaussian method.
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The condition in Theorem 5 is almost tight in the following sense. Note that in
(13b), τ ≈ 1 for θ = ε sufficiently small. So, 1 − Φε(Nr) would be very close to
Pr
(
(1− ε) ≤ trNG (A∗) ≤ (1 + ε)

)
, where A∗ is an SPD matrix of the same rank as

A whose eigenvalues are all equal to 1/r. Next note that the condition (14) should
hold for all matrices of the same rank; hence it is almost tight. Figures 1 and 4
demonstrate this effect.

Notice that for a very low rank matrix and a reasonable pair (ε, δ), the necessary
N given by (14) could be even larger than the matrix size n, rendering the Gaussian
method useless for such instances; see Figure 1.

(a) ε = δ = 0.02 (b) n = 10, 000, ε = δ = 0.1

Figure 1: Necessary bound for Gaussian estimator: (a) the log-scale of N according
to (14) as a function of r = rank(A): larger ranks yield smaller necessary sample size.
For very low rank matrices, the necessary bound grows significantly: for n = 1000
and r ≤ 30, necessarily N > n and the Gaussian method is practically useless; (b)
tightness of the necessary bound demonstrated by an actual run as described for
Example 4 in Section 5 where A has all eigenvalues equal.

4 Random unit vector bounds, with and without

replacement, for general square matrices

An alternative to the Hutchinson and Gaussian estimators is to draw the vectors wi

from among the n columns of the scaled identity matrix
√
nI. Note that if wi is

the ith (scaled) unit vector then wt
iAwi = naii. Hence the trace can be recovered in

N = n deterministic steps upon setting in (1) i = j, j = 1, 2, . . . , n. However, our
hope is that for some matrices a good approximation for the trace can be recovered
in N � n such steps, with wi’s drawn as mentioned above.

There are typically two ways one can go about drawing such samples: with or
without replacement. The first of these has been studied in [4]. However, in view
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of the exact procedure, we may expect to occasionally require smaller sample sizes
by using the strategy of sampling without replacement. In this section we make this
intuitive observation more rigorous.

In what follows, U1 and U2 refer to the uniform distribution of unit vectors with
and without replacement, respectively. We first find expressions for the mean and
variance of both strategies, obtaining a smaller variance for U2.

Lemma 6 Let A be an n× n matrix and let N denote the sample size. Then

E
(
trNU1

(A)
)

= E
(
trNU2

(A)
)

= tr(A), (15a)

V ar
(
trNU1

(A)
)

=
1

N

(
n

n∑
j=1

a2jj − tr(A)2

)
, (15b)

V ar
(
trNU2

(A)
)

=
(n−N)

N(n− 1)

(
n

n∑
j=1

a2jj − tr(A)2

)
, N ≤ n. (15c)

Proof The results for U1 are proved in [4]. Let us next concentrate on U2, and group
the randomly selected unit vectors into an n×N matrix W . Then

E
(
trNU2

(A)
)

=
1

N
E
(
tr
(
W tAW

))
=

1

N
E
(
tr
(
A WW t

))
=

1

N
tr
(
A E

(
WW t

))
.

Let yij denote the (i, j)th element of the random matrix WW t. Clearly, yij = 0 if
i 6= j. It is also easily seen that yii can only take on the values 0 or n. We have

E (yii) = nPr (yii = n) = n

(
n−1
N−1

)(
n
N

) = N,

so E(WW t) = N · I, where I stands for the identity matrix. This, in turn, gives
E
(
trNU2

(A)
)

= tr(A).
For the variance, we first calculate

E
[(
trNU2

(A)
)2]

=
1

N2
E

(
N∑
i=1

N∑
j=1

(
wt
iAwi

) (
wt
jAwj

))

=
1

N2

 N∑
i=1

E
[(

wt
iAwi

)2]
+

N∑
i=1

N∑
j=1
j 6=i

E
[(

wt
iAwi

) (
wt
jAwj

)] . (16)

Let ej denote the jth column of the scaled identity matrix,
√
nI. Using the law of

total expectation (i.e., the tower rule), we have for any two random vectors wi and
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wj with i 6= j,

E
[(

wt
iAwi

) (
wt
jAwj

)]
=

n∑
k=1

E
[(

wt
iAwi

) (
wt
jAwj

)
|wi = ek

]
· Pr (wi = ek)

=
n∑
k=1

nakk · E
[(

wt
jAwj

)
|wi = ek

]
· 1

n

=
n∑
k=1

akk

n∑
l=1
l 6=k

E
[(

wt
jAwj

)
|wj = el

]
· Pr (wj = el|wi = ek)

=
n∑
k=1

akk

n∑
l=1
l 6=k

nall
1

n− 1
=

n

n− 1

n∑
k=1

n∑
l=1
k 6=l

akkall

=
n

n− 1
(tr(A)2 −

n∑
j=1

a2jj).

Substituting this in (16) gives

E
[(
trNU2

(A)
)2]

=
1

N2

(
nN

n∑
j=1

a2jj +
nN(N − 1)

n− 1
(tr(A)2 −

n∑
j=1

a2jj)

)
.

Next, the variance is

V ar
(
trNU2

(A)
)

= E
[(
trNU2

(A)
)2]− [E (trNU2

(A)
)]2

,

which gives (15c). �

Note that V ar
(
trNU2

(A)
)

= n−N
n−1 V ar

(
trNU1

(A)
)
. The difference in variance between

these sampling strategies is small for N � n, and they coincide if N = 1. Moreover,
in case that the diagonal entries of the matrix are all equal, the variance for both
sampling strategies vanishes.

We now turn to the analysis of the sample size required to ensure (2) and find a
slight improvement over the bound given in [4] for U1. A similar analysis for the case
of sampling without replacement shows that the latter may generally be a somewhat
better strategy.

Theorem 7 Let A be a real n× n matrix, and denote

K(i,j)
U =

n

tr(A)
|aii − ajj| , KU = max

1≤i,j≤n
i 6=j

K(i,j)
U . (17)

Given a pair of positive small values (ε, δ), the inequality (2) holds with D = U1 if

N >
K2
U

2
c(ε, δ) ≡ F , (18)
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and with D = U2 if

N ≥ n+ 1

1 + n−1
F
. (19)

Proof This proof is refreshingly short. Note first that every sample of these estima-
tors takes on a Rayleigh value in [nminj ajj, nmaxj ajj].

The proof of (18), for the case with replacement, uses Hoeffding’s inequality in
exactly the same way as the corresponding theorem in [4]. We obtain directly that
if (18) is satisfied then (2) holds with D = U1.

For the case without replacement we use Serfling’s inequality [14] to obtain

Pr
(
|trNU2

(A)− tr(A)| ≥ εtr(A)
)
≤ 2 exp

{
−2Nε2

(1− fN−1)K2
U

}
,

where fN is the sampling fraction defined as

fN =
N − 1

n− 1
.

Now, for the inequality (2) to hold, we need

2 exp

{
−2Nε2

(1− fN−1)K2
U

}
≤ δ,

so we require that
N

1− fN−1
≥ F .

The stated result (19) is obtained following some straightforward algebraic manipu-
lation. �

Looking at the bounds (18) for U1 and (19) for U2 and observing the expression (17)
for KU , one can gain insight as to the type of matrices which are handled efficiently
using this estimator: this would be the case if the diagonal elements of the matrix all
have similar values. In the extreme case where they are all the same, we only need
one sample. The corresponding expression in [4] does not reflect this result.

An illustration of the relative behaviour of the two bounds is given in Figure 2.
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Figure 2: The behaviour of the bounds (18) and (19) with respect to the factor
K = KU for n = 1000 and ε = δ = 0.05. The bound for U2 is much more resilient to
the distribution of the diagonal values than that of U1. For very small values of KU ,
there is no major difference between the bounds.

5 Numerical Examples

In this section we experiment with several examples, comparing the performance of
different methods with regards to various matrix properties and verifying that the
bounds obtained in our theorems indeed agree with the numerical experiments.

Example 1 In this example we do not consider δ at all. Rather, we check numerically
for various values of ε what value of N is required to achieve a result respecting this
relative tolerance. We have calculated maximum and average values for N over 100
trials for several special examples, verifying numerically the following considerations.

• The matrix of all 1s (in Matlab, A=ones(n,n)) has been considered in [4].
Here tr(A) = n, KH = n− 1, and a very large N is often required if ε is small
for both Hutchinson and Gauss methods. For the unit vector method, however,
KU = 0 in (17), so the latter method converges in one iteration, N = 1. This
fact yields an example where the unit vector estimator is far better than either
Hutchinson or Gaussian estimators; see Figure 3.

• Another extreme example, where this time it is the Hutchinson estimator which
requires only one sample whereas the other methods may require many more, is
the case of a diagonal matrix A. For a diagonal matrix, KH = 0, and the result
follows from Theorem 2.

• If A is a multiple of the identity then, since KU = KH = 0, only the Gaussian
estimator from among the methods considered requires more than one sample;
thus, it is worst.
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Figure 3: Example 1. For the matrix of all 1s with n = 10, 000, the plot depicts the
numbers of samples in 100 trials required to satisfy the relative tolerance ε = .05,
sorted by increasing N . The average N for both Hutchinson and Gauss estimators
was around 50, while for the uniform unit vector estimator always N = 1. Only the
best 90 results (i.e., lowest resulting values of N) are shown for reasons of scaling.
Clearly, the unit vector method is superior here.

• Examples where the unit vector estimator is consistently (and significantly)
worst are obtained by defining A = QtDQ for a diagonal matrix D with differ-
ent positive elements which are of the same order of magnitude and a nontrivial
orthogonal matrix Q.

• We have not been able to come up with a simple example of the above sort where
the Gaussian estimator shines over both others, although we have seen many
occasions in practice where it slightly outperforms the Hutchinson estimator
with both being significantly better than the unit vector estimators.

Example 2 Consider the matrix A = xxt/‖x‖2, where x ∈ Rn, and for some θ > 0,
xj = exp(−jθ), 1 ≤ j ≤ n. This extends the example of all 1s of Figure 3 (for which
θ = 0) to instances with rapidly decaying elements.

It is easy to verify that

tr(A) = 1, r = 1, KG = 1,

KjH = ‖x‖2x−2j − 1, KH = ‖x‖2x−2n − 1,

K(i,j)
U =

n

‖x‖2
|x2i − x2j |, KU =

n

‖x‖2
(x21 − x2n),

‖x‖2 =
exp(−2θ)− exp(−2(n+ 1)θ)

1− exp(−2θ)
.
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Figure 4: Example 2. For the rank-1 matrix arising from a rapidly-decaying vector
with n = 1000, this log-log plot depicts the actual sample size N required for (2) to
hold with ε = δ = 0.2, vs. various values of θ. In the legend, “Unit” refers to the
random sampling method without replacement.

Figure 4 displays the “actual sample size” N for a particular pair (ε, δ) as a
function of θ for the three distributions. The values N were obtained by running the
code 100 times for each θ to calculate the empirical probability of success.

In this example the distribution of KjH values gets progressively worse with heavier
tail values as θ gets larger. However, recall that this matters in terms of the sufficient
bounds (4) and (7) only so long as KH < 3. Here the crossover point happens roughly
when θ ∼ 1/(2n). Indeed, for large values of θ the required sample size actually drops
when using the Hutchinson method: Theorem 2, being only a sufficient condition,
merely distinguishes types of matrices for which Hutchinson is expected to be efficient,
while making no claim regarding those matrices for which it is an inefficient estimator.

On the other hand, Theorem 5 clearly distinguishes the types of matrices for which
the Gaussian method is expected to be inefficient, because its condition is necessary
rather than sufficient. Note that N (the red curve in Figure 4) does not change much
as a function of θ, which agrees with the fact that the matrix rank stays fixed and low
at r = 1.

The unit vector estimator, unlike Hutchinson, deteriorates steadily as θ is in-
creased, because this estimator ignores off-diagonal elements. However, for small
enough values of θ the K(i,j)

U ’s are spread tightly near zero, and the unit vector method,
as predicted by Theorem 7, requires a very small sample size.

For Examples 3 and 5 below, given (ε, δ), we plot the probability of success, i.e.,
Pr
(
|trND (A)− tr(A)| ≤ ε tr(A)

)
for increasing values of N , starting from N = 1. We

stop when for a given N , the probability of success is greater than or equal to 1− δ.
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In order to evaluate this for each N , we run the experiments 500 times and calculate
the empirical probability.

In the figures below, ‘With Rep.’ and ‘Without Rep.’ refer to uniform unit
sampling with and without replacement, respectively. In all cases, by default, ε =
δ = .05. We also provide distribution plots of the quantities KjH , K

j
G and K(i,j)

U

appearing in (6), (9) and (17), respectively. These quantities are indicators for the
performance of the Hutchinson, Gaussian and unit vector estimators, respectively, as
evidenced not only by Theorems 2, 3 and 7, but also in Examples 1 and 2, and by the
fact that the performance of the Gaussian and unit vector estimators is not affected
by the energy of the off-diagonal matrix elements.

Example 3 (Data fitting with many experiments) A major source of applica-
tions where trace estimation is central arises in problems involving least squares data
fitting with many experiments. In its simplest, linear form, we look for m ∈ IRl so
that the misfit function

φ(m) =
n∑
i=1

‖Jim− di‖2, (20a)

for given data sets di and sensitivity matrices Ji, is either minimized or reduced
below some tolerance level. The m× l matrices Ji are very expensive to calculate and
store, so this is avoided altogether, but evaluating Jim for any suitable vector m is
manageable. Moreover, n is large. Next, writing (20a) using the Frobenius norm as

φ(m) = ‖C‖2F , (20b)

where C is m×n with the jth column Cj = Jjm−dj, and defining the SPSD matrix
A = CtC, we have

φ(m) = tr(A). (20c)

Cheap estimates of the misfit function φ(m) are then sought by approximating the
trace in (20c) using only N (rather than n) linear combinations of the columns of
C, which naturally leads to expressions of the form (1). Hutchinson and Gaussian
estimators in a similar or more complex context were considered in [9, 11, 18].

Drawing the wi as random unit vectors instead is a method proposed in [7] and
compared to others in [13], where it is called “random subset”: this latter method
can have efficiency advantages that are beyond the scope of the presentation here.
Typically, m� n, and thus the matrix A is dense and often has low rank.

Furthermore, the signs of the entries in C can be, at least to some extent, consid-
ered random. Hence we consider below matrices A = CtC whose entries are Gaussian
random variables, obtained using the Matlab command C = randn(m,n). We use
m = 200 and hence the rank is, almost surely, r = 200.
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(a) Convergence Rate (b) Kj
H distribution

(c) K(i,j)
U distribution (d) Eigenvalue distribution

Figure 5: Example 3. A dense SPSD matrix A is constructed using Matlab’s randn.
Here n = 1000, r = 200, tr(A) = 1,KG = 0.0105, KH = 8.4669 and KU = 0.8553.
The method convergence plots in (a) are for ε = δ = .05.

It can be seen from Figure 5(a) that the Hutchinson and the Gaussian methods
perform similarly here. The sample size required by both unit vector estimators is
approximately twice that of the Gaussian and Hutchinson methods. This relative
behaviour agrees with our observations in the context of actual application as described
above, see [13]. From Figure 5(d), the eigenvalue distribution of the matrix is not very
badly skewed, which helps the Gaussian method perform relatively well for this sort of
matrix. On the other hand, by Figure 5(b) the relative `2 energies of the off-diagonals
are far from being small, which is not favourable for the Hutchinson method. These
two properties, in combination, result in the similar performance of the Hutchinson
and Gaussian methods despite the relatively low rank. The contrast between K(i,j)

U ’s is
not too large according to Figure 5(c), hence a relatively decent performance of both
unit vector (or, random sampling) methods is observed. There is no reason to insist
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on avoiding repetition here either.

Example 4 (Effect of rank and KG on the Gaussian estimator) In this ex-
ample we plot the actual sample size N required for (2) to hold. In order to eval-
uate (2), we repeat the experiments 500 times and calculate the empirical probability.
In all experiments, the sample sizes predicted by (4) and (5) were so pessimistic com-
pared with the true N that we simply did not include them in the plots.

(a) sprandn, n = 5, 000 (b) diagonal, n = 10, 000

Figure 6: Example 4. The behaviour of the Gaussian method with respect to rank
and KG. We set ε = δ = .05 and display the necessary condition (14) as well.

In order to concentrate only on rank and KG variation, we make sure that in all
experiments KH � 1. For the results displayed in Figure 6(a), where r is varied for
each of two values of KG, this is achieved by playing with Matlab’s normal random
generator function sprandn. For Figure 6(b), where KG is varied for each of two
values of r, diagonal matrices are utilized: we start with a uniform distribution of
the eigenvalues and gradually make this distribution more skewed, resulting in an
increased KG. The low KH values cause the Hutchinson method to look very good, but
that is not our focus here.

It can be clearly seen from Figure 6(a) that as the matrix rank gets lower, the
sample size required for the Gaussian method grows significantly. For a given rank,
the matrix with a smaller KG requires smaller sample size. From Figure 6(b) it can
also be seen that for a fixed rank, the matrix with more skewed KjG’s distribution
(marked here by a larger KG) requires a larger sample size.

Example 5 (Method performance for different matrix properties) Next we
consider a much more general setting than that in Example 4, and compare the perfor-
mance of different methods with respect to various matrix properties. The matrix A is
constructed as in Example 3, except that also a uniform distribution is used. Further-
more, a parameter d controlling denseness of the created matrix is utilized. This is
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(a) Convergence Rate (b) Kj
H distribution (Kj

H ≤ 100)

(c) K(i,j)
U distribution (d) Eigenvalue distribution

Figure 7: Example 5. A sparse matrix (d = 0.1) is formed using sprandn. Here
r = 50, KG = 0.0342, KH = 15977.194 and KU = 4.8350.

achieved in Matlab using the commands C=sprandn(m,n,d) or C=sprand(m,n,d).
By changing m and d we can change the matrix properties KH , KG and KU while
keeping the rank r fixed across experiments. We maintain n = 1000, tr(A) = 1 and
ε = δ = .05 throughout. In particular, the four figures related to this example are
comparable to Figure 5 but for a lower rank.

By comparing Figures 7 and 8, as well as 9 and 10, we can see how not only the
values of KH , KG and KU , but also the distribution of the quantities they maximize
matters. Note how the performance of both unit vector strategies is negatively affected
with increasing average values of K(i,j)

U ’s. From the eigenvalue (or KjG) distribution
of the matrix, it can also be seen that the Gaussian estimator is heavily affected by
the skewness of the distribution of the eigenvalues (or KjG’s): given the same r and
n, as this eigenvalue distribution becomes increasingly uneven, the Gaussian method
requires larger sample size.
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(a) Convergence Rate (b) Kj
H distribution (Kj

H ≤ 100)

(c) K(i,j)
U distribution (d) Eigenvalue distribution

Figure 8: Example 5. A sparse matrix (d = 0.1) is formed using sprand. Here
r = 50,KG = 0.0919, KH = 11624.58 and KU = 3.8823.

Note that comparing the performance of the methods on different matrices solely
based on their values KH , KG or KU can be misleading. This can be seen for instance
by considering the performance of the Hutchinson method in Figures 7, 8, 9 and 10
and comparing their respective KjH distributions as well as KH values. Indeed, none
of our 6 sufficient bounds can be guaranteed to be generally tight. As remarked also
earlier, this is an artifact of the generality of the proved results.

Note also that rank and eigenvalue distribution of a matrix have no direct effect
on the performance of the Hutchinson method: by Figures 9 and 10 it appears to only
depend on the KjH distribution. In these figures, one can observe that the Gaussian
method is heavily affected by the low rank and the skewness of the eigenvalues. Thus,
if the distribution of KjH ’s is favourable to the Hutchinson method and yet the eigen-
value distribution is rather skewed, we can expect a significant difference between the
performance of the Gaussian and Hutchinson methods.
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(a) Convergence Rate (b) Kj
H distribution (Kj

H ≤ 50)

(c) K(i,j)
U distribution (d) Eigenvalue distribution

Figure 9: Example 5. A very sparse matrix (d = 0.01) is formed using sprandn.
Here r = 50, KG = 0.1186, KH = 8851.8 and KU = 103.9593.

6 Conclusions and further thoughts

In this article we have proved six sufficient bounds for the minimum sample size
N required to reach, with probability 1 − δ, an approximation for tr(A) to within a
relative tolerance ε. Two such bounds apply to each of the three estimators considered
in Sections 2, 3 and 4, respectively. In Section 3 we have also proved a necessary bound
for the Gaussian estimator. These bounds have all been verified numerically through
many examples, some of which are summarized in Section 5.

Two of these bounds, namely, (4) for Hutchinson and (5) for Gaussian, are im-
mediately computable without knowing anything else about the SPSD matrix A. In
particular, they are independent of the matrix size n. As such they may be very
pessimistic. And yet, in some applications (for instance, in exploration geophysics)
where n can be very large and ε need not be very small due to uncertainty, these
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(a) Convergence Rate (b) Kj
H distribution (Kj

H ≤ 50)

(c) K(i,j)
U distribution (d) Eigenvalue distribution

Figure 10: Example 5. A very sparse matrix (d = 0.01) is formed using sprand.
Here r = 50, KG = 0.1290, KH = 1611.34 and KU = 64.1707.

bounds may indeed provide the comforting assurance that N � n suffices (say, n is
in the millions and N in the thousands). Generally, these two bounds have the same
quality.

The underlying objective in this work, which is to seek a small N satisfying (2),
is a natural one for many applications and follows that of other works. But when
it comes to comparing different methods, it is by no means the only performance
indicator. For example, variance can also be considered as a ground to compare
different methods. However, one needs to exercise caution to avoid basing the entire
comparison solely on variance: it is possible to generate examples where a linear
combination of X 2 random variables has smaller variance, yet higher tail probability.

The lower bound (14) that is available only for the Gaussian estimator may allow
better prediction of the actual required N , in cases where the rank r is known. At the
same time it also implies that the Gaussian estimator can be inferior in cases where
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r is small. The Hutchinson estimator does not enjoy a similar theory, but empirically
does not suffer from the same disadvantage either.

The matrix-dependent quantities KH , KG and KU , defined in (6), (9) and (17),
respectively, are not easily computable for any given implicit matrix A. However,
the results of Theorems 2, 3 and 7 that depend on them can be more indicative than
the general bounds. In particular, examples where one method is clearly better than
the others can be isolated in this way. At the same time, the sufficient conditions in
Theorems 2, 3 and 7, merely distinguish the types of matrices for which the respective
methods are expected to be efficient, and make no claims regarding those matrices
for which they are inefficient estimators. This is in direct contrast with the necessary
condition in Theorem 5.

It is certainly possible in some cases for the required N to go over n. In this con-
nection it is important to always remember the deterministic method which obtains
tr(A) in N applications of unit vectors: if N grows above n in a particular stochastic
setting then it may be best to abandon ship and choose the safe, deterministic way.
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