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Abstract. GROUSE (Grassmannian Rank-One Update Subspace Estimation) is an iterative
algorithm for identifying a linear subspace of Rn from data consisting of partial observations of
random vectors from that subspace. This paper examines local convergence properties of GROUSE,
under assumptions on the randomness of the observed vectors, the randomness of the subset of
elements observed at each iteration, and incoherence of the subspace with the coordinate directions.
Convergence at an expected linear rate is demonstrated under certain assumptions. The case in
which the full random vector is revealed at each iteration allows for much simpler analysis, and
is also described. GROUSE is related to incremental SVD methods and to gradient projection
algorithms in optimization.

Key words. Subspace Identification, Optimization

1. Introduction. We seek to identify an unknown subspace S of dimension d
in Rn, described by an n×d matrix Ū whose orthonormal columns span S. Our data
consist of a sequence of vectors vt of the form

vt = Ūst, (1.1)

where st ∈ Rd is a random vector whose elements are independent and identically
distributed (i.i.d.) in N (0, 1). Critically, we observe only a subset Ωt ⊂ {1, 2, . . . , n}
of the components of vt.

GROUSE [2, 3] (Grassmannian Rank-One Update Subspace Estimation) is an
algorithm that generates a sequence {Ut}t=0,1,... of n× d matrices with orthonormal
columns with the goal thatR(Ut)→ S (whereR(·) denotes range). Partial observation
of the vector vt is used to update Ut to Ut+1. We present GROUSE (slightly modified
from earlier descriptions) as Algorithm 1.

1.1. Applications of Subspace Identification. Subspace identification prob-
lems arise in a great variety of applications. They are the simplest form of the more
general class of problems in which we seek to identify a low-dimensional manifold in
a high-dimensional ambient space from a sequence of incomplete observations. Sub-
space identification finds applications in medical [1] and hyperspectral [14] imaging,
communications [19], source localization and target tracking in radar and sonar [12],
computer vision for object tracking [8], and in control for system identification [21, 20],
where one is interested in estimating the range space of the observability matrix of
a system. Subspaces have also been used to represent images of a single scene un-
der varying illuminations [6] and to model origin-destination flows in a computer
network [13]. Environmental monitoring of soil and crop conditions [10], water con-
tamination [16], and seismological activity [22] can all be summarized efficiently by
low-dimensional subspace representations.

1.2. GROUSE. Each iteration of the GROUSE algorithm (Algorithm 1) essen-
tially performs a gradient projection step onto the Grassmannian manifold of sub-
spaces of dimension d, based on the latest partially observed sample [vt]Ωt of the
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random vector vt ∈ S. In this description, we use [U ]Ωt
to denote the row submatrix

of the n × d matrix U corresponding to the index set Ωt ⊂ {1, 2, . . . , n}. Similarly,
[z]Ωt

denotes the subvector of elements of z ∈ Rn corresponding to elements of Ωt.
We use |Ωt| to denote cardinality of the set Ωt and Ωct to denote the complement
{1, 2, . . . , n} \ Ωt.

Algorithm 1 GROUSE: Partial Data

Given U0, an n× d matrix with orthonormal columns, with 0 < d < n;
Set t := 1;
repeat

Draw a random subset Ωt ⊂ {1, 2, . . . , n} and and observe [vt]Ωt where vt ∈ S;
if the eigenvalues of [Ut]

T
Ωt

[Ut]Ωt
lie in the range [0.5|Ωt|/n, 1.5|Ωt|/n] then

Define wt := arg minw ‖[Ut]Ωt
w − [vt]Ωt

‖22;
Define pt := Utwt; [rt]Ωt

:= [vt]Ωt
− [pt]Ωt

; [rt]Ωc
t

:= 0; σt := ‖rt‖ ‖pt‖;
Choose ηt > 0 and set

Ut+1 := Ut +

[
(cos(σtηt)− 1)

pt
‖pt‖

+ sin(σtηt)
rt
‖rt‖

]
wTt
‖wt‖

. (1.2)

end if
t := t+ 1;

until termination

This description in Algorithm 1 differs from that of [3] only in that the following
condition is required for the eigenvalues of [Ut]

T
Ωt

[Ut]Ωt
:

λi([Ut]
T
Ωt

[Ut]Ωt) ∈
[
.5
|Ωt|
n
, 1.5
|Ωt|
n

]
, i = 1, 2, . . . , d, (1.3)

where λi(·) denotes the ith eigenvalue (in decreasing order). A consequence is that

‖([Ut]TΩt
[Ut]Ωt

)−1‖ ≤ 2n

|Ωt|
. (1.4)

As we see later in Theorem 2.6, this condition ensures that the sample Ωt is such that
[vt]Ωt captures useful information about S; if it is not satisfied, the weight vector wt
may not accurately reflect how the latest observation [vt]Ωt

is explained by the current
basis vectors (the columns of [Ut]Ωt

). Since we need to factor the matrix [Ut]Ωt
in

order to calculate wt, and since we have typically that d � n, the marginal cost of
determining or estimating the singular values of [Ut]Ωt and checking the condition
(1.4) is not excessive. We show in our analysis that the condition (1.3) is satisfied at
most iterations.

We note several elementary facts about the vector quantities that appear in
GROUSE. Let PR(·) denote the projection operator onto the range, and PN(·) de-
note the projection onto the nullspace of a matrix. Since

[pt]Ωt
= PR([Ut]Ωt )([vt]Ωt

), [rt]Ωt
= PN([Ut]TΩt

)([vt]Ωt
),

we have that

pTt rt = [pt]
T
Ωt

[rt]Ωt = 0 (1.5)
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and

‖pt + rt‖2 = ‖pt‖2 + ‖rt‖2. (1.6)

By orthonormality of the columns of Ut, we also have that

‖pt‖ = ‖wt‖. (1.7)

1.3. GROUSE in Context. The derivation of GROUSE as a stochastic gra-
dient algorithm on the Grassmannian manifold can be found in [3], along with a dis-
cussion of its relationship to matrix completion. In this subsection, we discuss several
other aspects of GROUSE’s convergence behavior, focusing on the regime in which
the iterates Ut are close to identifying the correct subspace S, so that ‖rt‖ � ‖pt‖.
We assume that the steplength ηt is chosen to satisfy

sinσtηt =
‖rt‖
‖pt‖

. (1.8)

Since 1 − cosσtηt = O(‖rt‖2/‖pt‖2), by multiplying both sides of (1.2) by wt, and
using (1.7), we have that

Ut+1wt = Utwt +
‖rt‖
‖pt‖

rt
‖rt‖

wTt wt
‖wt‖

+O

(
‖rt‖2

‖pt‖2

)
= pt + rt +O

(
‖rt‖2

‖pt‖2

)
.

It follows from the definition of rt that

[Ut+1wt]Ωt
≈ [pt + rt]Ωt

= [vt]Ωt
, (1.9a)

[Ut+1wt]Ωc
t
≈ [pt + rt]Ωc

t
= [Utwt]Ωc

t
, (1.9b)

where Ωct := {1, 2, . . . , n}\Ωt. Moreover, in any direction z orthogonal to wt, we have
Ut+1z = Utz. Thus, the update (1.2) has the effect of (approximately) matching the
newly revealed information [vt]Ωt

along the direction wt, while leaving the values of
Utwt almost unchanged in the non-revealed components Ωct , and making no change
at all in the remaining (d − 1)-dimensional subspace {z |wTt z = 0}. In this sense,
(1.2) is a “least-change” update, leaving the current iterate Ut undisturbed as far as
possible, but making just enough of a change to match the new information. The least-
change strategy is key to the development of quasi-Newton methods for optimization
[15, Chapter 6], in which low-rank, least-change updates are made to approximate
Hessian matrices, to match the curvature information gained in each step.

The relationship of GROUSE to gradient projection becomes clearer when we
define the following measure of inconsistency between R(Ut) and S, based on the
information revealed in [vt]Ωt

:

E(Ut) := min
w
‖[Ut]Ωt

w − [vt]Ωt
‖22.

It can be shown that

dE
dUt

= −2rtw
T
t .

With the choice (1.8) of ηt, we have from (1.2) that

Ut+1 = Ut +
1

‖pt‖2
rtw

T
t +O

(
‖rt‖2

‖pt‖2

)
,
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so that the GROUSE step is a step in the negative gradient direction for E , projected
onto the space of n× d matrices with orthonormal columns.

GROUSE is related too to an incremental singular value decomposition (ISVD)
approach that maintains an approximation Ut with orthonormal columns, and iterates
in the following way. First, the new random vector vt is appended to Ut to form an
n×(d+1) matrix, with missing elements of vt “imputed” from the current estimate Ut
and the weight vector wt obtained as in GROUSE. Second, the SVD of this expanded
matrix is computed, and the first d columns of its left factor (an n × (d + 1) matrix
with orthonormal columns) are taken as the new iterate Ut+1. (The final column is
discarded.) It is shown in [5] that for a certain choice of steplength parameter ηt in
GROUSE, the ISVD and GROUSE algorithms are equivalent.

In our analysis below, we use the following generalization of (1.8) for the choice
of ηt:

sinσtηt = αt
‖rt‖
‖pt‖

, (1.10)

where αt ∈ (0, 2) is a user-defined “fudge factor.” We show that the best asymptotic
results are obtained by setting αt ≡ 1.

1.4. Summary of Results. Our main result is expected local linear conver-
gence of the sequence of subspaces {R(Ut)} to S. This section outlines the assumptions
needed to prove our result and discusses their relevance to computational experience.

We recall the assumption that the observation vector vt has the form Ūst (1.1),
with the elements of st being i.i.d. normal with zero mean and identical variance. We
assume too that the set Ωt of observed elements of vt is chosen independently at each
iteration.

The discrepancy between the d-dimensional subspaces R(Ut) and S is measured
in terms of the d principal angles between these subspaces, φi(Ut, Ū) [18, Chapter 5],
which are defined by

cosφi(Ut, Ū) = σi(Ū
TUt), i = 1, 2, . . . , d, (1.11)

where σi(Ū
TUt), i = 1, 2, . . . , d are the singular values of UTt Ū . The quantity εt

defined by

εt :=

d∑
i=1

sin2 φi(Ū , Ut) =

d∑
i=1

(1− σ2
i (ŪTUt)) = d− ‖ŪTUt‖2F (1.12)

is central to our analysis. We show that for small εt, we have

εt+1 ≈ εt −
‖rt‖2

‖wt‖2
, (1.13)

and that the expected value of the decrease ‖rt‖2/‖wt‖2 is bounded below by a small
multiple of εt, provided that the eigenvalue check (1.3) is satisfied. (Higher-order
terms complicate the analysis considerably.)

A critical assumption, made precise below, is incoherence of the subspace S with
respect to the coordinate directions. Concepts of incoherence have been well studied
in the context of compressed sensing (see for example [7]). If S were to align closely
with one or two principal axes, then observation subsets Ωt that did not include the
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corresponding index would be missing important information about S. We would
need to choose larger sample sets Ωt (of size |Ωt| related to n), or to take many more
iterations, in order to have a good chance of capturing the components of vt that align
with S.

Our analysis requires another kind of incoherence too. We assume that the error
in Ut revealed by the observation vector — the part of vt that is not explained by the
current iterate Ut — is usually incoherent with respect to the coordinate directions.
(Our computations indicate that such is the case.) This incoherence measure is de-
noted by µ(xt), where xt := (I − UtUTt )vt, and our assumption on this quantity is
spelled out in Lemma 2.9.

High-probability results play a key role in the analysis. Our lower bound on the
quantity ‖rt‖2/‖wt‖2 in (1.13), for instance, is not proved to hold at every iteration
but only at a substantial majority of iterations. In fact, it is possible that εt+1 > εt
for some t; the sequence {εt} may not decrease monotonically.

We state at the outset that the expected linear convergence behavior is proved to
hold in only a limited regime, that is, the main theorem requires εt to be quite small
and each |Ωt| to be on the order of d(log d)(log2 n) in order for the claimed linear
rate to be observed. This requirement on observations is only log d greater than what
is required for batch matrix completion algorithms [17]. The linear convergence rate
observed in computational experiments is, roughly speaking, a factor of (1−Xq/(nd))
per iteration, where q is a lower bound on |Ωt| and X is some number not too much less
than one. We see in Section 4 that this rate appears to hold in a much wider regime
than the analysis would strictly predict, both for much smaller |Ωt| and for much
larger εt. In fact, the same “gap” between theory and practice of local convergence is
seen in many optimization algorithms. We point out too that the mismatch largely
disappears in the full-data case, where Ωt = {1, 2, . . . , n} for all t. In this case, the
theoretical restrictions on εt are mild, incoherence is irrelevant, and the predicted
convergence behavior matches closely the computational observations.

1.5. Outline. Section 2 contains the proof of our claim of expected linear con-
vergence. This long section is broken into subsections, with a “roadmap” given at
the start. Section 3 analyzes the full-data case in which Ωt ≡ {1, 2, . . . , n}. Many of
the complications of the general case vanish here, but the specialized analysis holds
some interest and convergence still occurs only in an expected sense, because of the
random nature of the observation vectors vt.

Notation. As noted earlier, we use N(·) to denote the null space (kernel) of a
matrix and PT to denote projection onto a subspace T .

The notation ‖ · ‖ (without subscript) on either vector or matrix indicates ‖ · ‖2.
Recall that the Frobenius norm is related to ‖ · ‖2 by the following inequalities:

‖A‖2 ≤ ‖A‖F ≤
√
r‖A‖2,

where r is the rank of A. We note too that the norms ‖ · ‖2 and ‖ · ‖F are invariant
under orthogonal transformations of the matrix argument.

We drop the subscripts t frequently during the paper, when it causes no confusion
to do so, and reminding the reader of this practice where appropriate.

2. Expected Linear Convergence. We develop the local convergence results
for GROUSE in this section. The analysis is surprisingly technical for such a simple
method, so we break the exposition into relatively short subsections. We give a brief
outline of our proof strategy here.
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Subsection 2.1 obtains a lower-bounding expression for the improvement in the
measure εt (1.12) made over a single step. This bound involves three different quan-
tities, and the rest of the paper focuses on controlling each of them. Subsection 2.2
shows that the Frobenius-norm difference between Ut and Ū can be bounded above
and below by multiples of εt. Subsection 2.3 examines some consequences of the fact
that only a subset Ωt of the elements of vt is revealed at each iteration. This sub-
section introduces an assumed lower bound q on the cardinality of Ωt, and obtains
bounds on ‖rt‖ and ‖pt‖ (and their ratio) in terms of the norm of the vector st from
(1.1).

Subsection 2.4 examines a particular term (ŪT pt)
T (ŪT rt) that appears in the

lower-bounding expression for εt − εt+1 obtained earlier in Subsection 2.1, deriving
bounds for this quantity in terms of εt, ‖pt‖, and ‖rt‖. These bounds are used in
Subsection 2.5 to make the results of Subsection 2.1 more precise.

Subsection 2.6 defines the concept of coherence used in this paper, and uses a
measure concentration result to show that the eigenvalue condition (1.3) is satis-
fied on most iterations. Subsection 2.7 proves a high-probability bound for the ratio
‖rt‖2/‖pt‖2, which is the dominant term in the error improvement εt − εt+1. This
bound is given in terms of the angle θt that is the angle between R(Ut) and S that
is revealed by the (full) random observation vector vt. Subsection 2.8 shows that the
expected value of sin2 θt is εt/d. Finally, Subsection 2.9 puts the pieces together, prov-
ing expected linear convergence rate by combining bounds for the “good” iterations
with those for the “anomalous” iterations, where the latter category includes those
for which the update is skipped because condition (1.3) fails to hold.

2.1. A Bound for εt − εt+1. In this subsection, we obtain an expression for
εt+1 − εt, where εt is the quantity defined in (1.12). We deal mostly with the case
in which a step is actually taken by the algorithm, that is, condition (1.3) holds. (If
such is not the case, we have trivially that εt+1 = εt.) We start by defining the d× d
orthogonal matrix Wt as

Wt :=

[
wt
‖wt‖

|Zt
]
, (2.1)

where Zt is a d × (d − 1) matrix with orthonormal columns whose columns span
N(wTt ). It is clear that the first column of UtWt is

Utwt
‖wt‖

=
pt
‖pt‖

.

Let us now write the update formula (1.2) as follows

Ut+1 := Ut +

[
yt
‖yt‖

− pt
‖pt‖

]
wTt
‖wt‖

, (2.2)

where
yt
‖yt‖

:= cos(σtηt)
pt
‖pt‖

+ sin(σtηt)
rt
‖rt‖

. (2.3)

By using a trigonometric identity together with (1.5), we can see that the right-hand
side of (2.3) has unit norm. From (2.2), we have

Ut+1Wt = UtWt +

[
yt
‖yt‖

− pt
‖pt‖

]
wTt
‖wt‖

Wt

= UtWt +

[
yt
‖yt‖

− pt
‖pt‖

] [
1 0 0 . . . 0

]
,
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where yt is defined in (2.3). Thus, the update has the effect of replacing the first col-
umn pt/‖pt‖ of UtWt by yt/‖yt‖, and leaving the other columns unchanged. Recalling
that the Frobenius norm is invariant under orthogonal transformations, using (1.12)
and (2.3), and dropping the subscript t freely on scalars and vectors, we obtain

εt − εt+1 = ‖ŪTUt+1‖2F − ‖ŪTUt‖2F
= ‖ŪTUt+1Wt‖2F − ‖ŪTUtWt‖2F

=

∥∥∥∥cos(ση)
ŪT p

‖p‖
+ sin(ση)

ŪT r

‖r‖

∥∥∥∥2

2

−
∥∥∥∥ ŪT p‖p‖

∥∥∥∥2

2

= (cos2(ση)− 1)
‖ŪT p‖2

‖p‖2
+ 2 cos(ση) sin(ση)

(ŪT p)T (ŪT r)

‖p‖‖r‖
+ sin2(ση)

‖ŪT r‖2

‖r‖2

= sin2(ση)

(
‖ŪT r‖2

‖r‖2
− ‖Ū

T p‖2

‖p‖2

)
+ sin(2ση)

(ŪT p)T (ŪT r)

‖p‖‖r‖

≥ − sin2(ση) + sin(2ση)
(ŪT p)T (ŪT r)

‖p‖‖r‖
, (2.4)

where the final inequality follows from ‖ŪT p‖ ≤ ‖p‖ (since the columns of Ū are
orthonormal) and ‖ŪT r‖2/‖r‖2 ≥ 0. Choosing ηt so that (1.10) is satisfied, we have
from sin2(ση) ∈ [0, 1] and for any scalar β that

β

√
1− sin2(ση) ≥ β − |β| sin2(ση),

and thus by substituting (1.10), we have

sin(2ση)β = 2 sin(ση)β

√
1− sin2(ση)

≥ 2 sin(ση)β − 2 sin3(ση)|β| = 2α
‖r‖
‖p‖

β − 2α3 ‖r‖3

‖p‖3
|β|.

By substituting into (2.4), we obtain

εt − εt+1 ≥ −α2 ‖r‖2

‖p‖2
+ 2α

‖r‖
‖p‖

(ŪT p)T (ŪT r)

‖p‖‖r‖
− 2α3 ‖r‖2

‖p‖2
|(ŪT p)T (ŪT r)|

‖p‖2
. (2.5)

We will return to formula (2.5) in Section 2.4. To preview: we will show that

(ŪT p)T (ŪT r) ≈ ‖r‖2, (2.6)

and that the final term on the right-hand side is higher-order. Thus, we can deduce
that the right-hand side of (2.5) is approximately

α(2− α)
‖r‖2

‖p‖2
,

and hence that the approximate maximal improvement εt−εt+1 is obtained by setting
α = 1, as claimed earlier.

2.2. Relating Ut to Ū . We state here a fundamental result about the rela-
tionship between Ut, Ū , and the quantity εt defined in (1.12). After an orthogonal
transformation, the squared-Frobenius-norm difference between Ut and Ū is of the
same order as εt.
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Recalling the definition (1.11) of the principal angles φi(Ut, Ū) between the sub-
spaces spanned by the columns of Ut and the columns of Ū , we define

Σt := diag (sinφi(Ū , Ut)), Γt := diag (cosφi(Ū , Ut)). (2.7)

Recalling (1.12) and using the definitions (1.11) and (2.7), we have

‖Σt‖2F =

d∑
i=1

sin2 φi(Ū , Ut) = εt, (2.8a)

‖Γt‖2F =

d∑
i=1

σi(Ū
TUt) =

d∑
i=1

cos2 φi(Ū , Ut) = d− εt, (2.8b)

‖Ū ŪT − UtUTt ‖2F = 2d− 2‖ŪTUt‖2F = 2εt. (2.8c)

We have the following lemma.
Lemma 2.1. Let εt be as in (1.12) and suppose n ≥ 2d. Then there is an

orthogonal matrix Vt ∈ Rd×d such that

εt ≤ ‖ŪVt − Ut‖2F ≤ 2εt,

and thus ‖ŪTUt − Vt‖2F ≤ 2εt.
Proof. The proof uses [18, Theorem 5.2]. There are unitary matrices Qt, Ȳ , and

Yt such that

QtŪ Ȳ :=


d

d I
d 0
n− 2d 0

, QtUtYt :=


d

d Γt
d Σt
n− 2d 0

, (2.9)

where Γt and Σt are as defined in (2.7). Defining the orthogonal matrix Vt := Ȳ Y Tt
we have that

ŪVt = QTt

I0
0

 Ȳ T Ȳ Y Tt

= QTt

I0
0

Y Tt

= QTt

Γt
Σt
0

Y Tt +QTt

I − Γt
−Σt

0

Y Tt

= Ut +QTt

I − Γt
−Σt

0

Y Tt .

Therefore, using the abbreviated notation φi := φi(Ū , Ut), together with orthogonality
of Qt and Yt, we have

‖ŪVt − Ut‖2F = ‖I − Γt‖2F + ‖Σt‖2F =

d∑
i=1

[(1− cosφi)
2 + sin2 φi].

8



By dropping the cosine part of each summation term, we obtain from (1.12) that

‖ŪVt−Ut‖2F ≥
∑d
i=1 sin2 φi = εt, proving the lower bound. For the upper bound, we

have

‖UTt Ū − V Tt ‖2F =

d∑
i=1

[(1− cosφi)
2 + sin2 φi]

=

d∑
i=1

[2− 2 cosφi] ≤
d∑
i=1

[2− 2 cos2 φi] = 2

d∑
i=1

sin2 φi = 2εt,

as required. The final claim is an immediate consequence of this upper bound.

2.3. Consequences of Sampling. In this subsection we investigate some of
the issues raised by observing the subspace vector vt only on a sample set Ωt ⊂
{1, 2, . . . , n}, seeing how some of the identities and bounds of Sections 2.1 and 2.2 are
affected. We state a lower bound on the cardinality of Ωt and an upper bound on εt
that give sufficient conditions for these looser bounds to hold. These bounds are vital
to the analysis of later subsections.

We start with a simple result about the relationship between [Ū ]Ωt and [Ut]Ωt ,
based on Lemma 2.1.

Lemma 2.2. Let Vt be the matrix from Lemma 2.1. Then ‖[Ū ]Ωt
− [Ut]Ωt

V Tt ‖2F =
‖[Ū ]Ωt

Vt − [Ut]Ωt
‖2F ≤ 2εt.

Proof. We have

‖[Ū ]ΩtVt − [Ut]Ωt‖2F ≤ ‖ŪVt − Ut‖2F ≤ 2εt,

where the last inequality follows from Lemma 2.1.
We now introduce some simplified notation for important quantities in our anal-

ysis, and state the representations of the key vectors wt, pt, wt, and vt in terms of
this notation. We also make use of the vector st defined in (1.1). As in other parts of
the paper, we drop the subscript t freely on vector quantities.

B := ŪΩt
, (2.10a)

C := [Ut]Ωt
, (2.10b)

PN(CT ) = (I − C(CTC)−1CT ), (2.10c)

PN(BT ) = (I −B(BTB)−1BT ), (2.10d)

[vt]Ωt
= Bs, (2.10e)

w = (CTC)−1CTBs, (2.10f)

p = Utw = Ut(C
TC)−1CTBs, (2.10g)

[pt]Ωt
= PR(C)Bs, (2.10h)

[rt]Ωt = Bs− [pt]Ωt = (I − C(CTC)−1CT )Bs = PN(CT )Bs. (2.10i)

The notation B and C from (2.10a) and (2.10b) is used for simplicity in this subsection
and the next. The reader will note that we have used both (BTB)−1 and (CTC)−1

freely. This property requires that our assumption (1.3) holds for Ut. It requires a
similar property for [Ū ]Ωt , something we simply assume for now, but prove later as a
consequence of incoherence; see Theorem 2.6.

Note that we have from (2.10h) and (2.10i) that

PN(CT )[rt]Ωt
= PN(CT )(Bst − Cwt) = PN(CT )Bst. (2.11)

9



For the remainder of the paper, we make the following assumptions on the size of
the sample set Ωt and the size of εt:

|Ωt| ≥ q, (2.12)

εt ≤
1

128

q2

n2d
. (2.13)

In later subsections, we will derive conditions on q that facilitate the convergence
results. For now, we have the following estimates on vectors of interest.

Lemma 2.3. Suppose that (1.3) holds and that (2.12) and (2.13) are satisfied.
Then we have

‖rt‖ ≤
√

2εt‖st‖, (2.14)

‖pt‖ ∈
[

3

4
‖st‖,

5

4
‖st‖

]
, (2.15)

‖rt‖2

‖pt‖2
≤ 32

9
εt (2.16)

Proof. We have from (2.10i), [rt]Ωc
t

= 0, the fact that PN(CT )C = 0, and
Lemma 2.2 that

‖rt‖ = ‖[rt]Ωt‖ = ‖PN(CT )Bst‖ =

‖PN(CT )(B − CV T )st‖ ≤ ‖B − CV T ‖‖st‖ ≤
√

2εt‖st‖,

proving (2.14).
We prove the lower bound in (2.15) (the upper bound is similar). We have from

‖C‖ ≤ ‖Ut‖ = 1, Lemma 2.2, (1.4), (2.12), and (2.13), that

‖pt‖ = ‖wt‖ = ‖(CTC)−1CTBst‖
= ‖(CTC)−1CTBV (V T st)‖
≥ ‖(CTC)−1CTC(V T st)‖ − ‖(CTC)−1CT (BV − C)(V T st)‖
≥ ‖st‖ − ‖(CTC)−1‖‖C‖‖BV − C‖‖st‖

≥ ‖st‖ −
2n

|Ωt|
√

2εt‖st‖

≥ ‖st‖ −
2n

q

√
2εt‖st‖

≥ ‖st‖ −
2n

q

1

8

q

n
√
d
‖st‖

≥ ‖st‖ −
1

4
‖st‖ =

3

4
‖st‖.

The final bound (2.16) follows immediately from the preceding two results.

2.4. Estimating (ŪT p)T (ŪT r). We return now to the key quantity (ŪT p)T (Ūr)
that appears in (2.5), with the goal of establishing a precise form of the estimate (2.6).
Throughout this section, we assume that the conditions (2.12) and (2.13) are satisfied.

10



We start by noting from (2.11) that

ŪT r = BT [rt]Ωt
= BTPN(CT )Bst = BTPN(CT )[rt]Ωt

ŪT p = ŪTUtwt,

and therefore

(ŪT r)T (ŪT p) = [rt]
T
Ωt
PN(CT )BŪ

TUtw. (2.17)

By replacing ŪTUt with V + ŪTUt− V (where V = Vt is the orthogonal matrix from
Lemma 2.1) and manipulating, we obtain

PN(CT )BŪ
TUtw = PN(CT )BV w + PN(CT )B(ŪTUt − V )w

= PN(CT )BV (CTC)−1CTBs+ PN(CT )(BV − C)V T (ŪTUt − V )w

= PN(CT )(BV − C)(CTC)−1CT (C +BV − C)V T s+

PN(CT )(BV − C)V T (ŪTUt − V )w

= PN(CT )(BV − C)(CTC)−1CTCV T s+

PN(CT )(BV − C)(CTC)−1CT (BV − C)V T s+

PN(CT )(BV − C)V T (ŪTUt − V )w

= PN(CT )(B − CV T )s+ PN(CT )(B − CV T )z

= [rt]Ωt + PN(CT )(B − CV T )z, (2.18)

where the final equality comes from (2.11), and we define

z := V (CTC)−1CT (BV − C)V T s+ (ŪTUt − V )(CTC)−1CTBs.

From (1.3), we have

‖C‖ ≤
√

3|Ωt|
2n

.

By using this bound, together with (1.4), ‖B‖ ≤ ‖Ū‖ = 1, Lemma 2.1, and (2.12),
we obtain

‖z‖ ≤ ‖(CTC)−1‖2‖C‖2‖BV − C‖2‖s‖2 + ‖ŪTUt − V ‖2‖(CTC)−1‖2‖C‖2‖B‖2‖s‖2

≤ 2n

|Ωt|

√
3|Ωt|
2n

√
2εt‖s‖2 +

√
2εt

2n

|Ωt|

√
3|Ωt|
2n
‖s‖2

= 4
√

3

√
n

|Ωt|
√
εt‖s‖2 ≤ 4

√
3

√
n

q

√
εt‖s‖2.

By combining this bound with (2.18) and (2.17), we obtain

(ŪT r)T (ŪT p) ≥ ‖r‖2 − ‖[rt]TΩt
PN(CT )(B − CV T )z‖

≥ ‖r‖2 − ‖r‖‖B − CV T ‖‖z‖

≥ ‖r‖2 − ‖r‖
√

2εt4
√

3

√
n

q

√
εt‖s‖2

≥ ‖r‖2 − 8
√

3

√
n

q
ε
3/2
t ‖s‖2, (2.19)

11



where for the final inequality we used (2.14). We apply a similar argument to obtain
an upper bound on (ŪT r)T (ŪT p), leading to a bound on the absolute value:

|(ŪT r)T (ŪT p)| ≤ ‖r‖2 + 8
√

3

√
n

q
ε
3/2
t ‖s‖2. (2.20)

From the bound (2.14), we have ‖st‖2/‖pt‖2 ≤ (4/3)2, and thus from (2.19) we obtain

(ŪT p)T (ŪT r)

‖p‖2
≥ ‖r‖

2

‖p‖2
− 8
√

3

√
n

q
ε
3/2
t

16

9
=
‖r‖2

‖p‖2
− 128

√
3

9

√
n

q
ε
3/2
t . (2.21)

Likewise, from (2.20), we have

|(ŪT p)T (ŪT r)|
‖p‖2

≤ ‖r‖
2

‖p‖2
+

128
√

3

9

√
n

q
ε
3/2
t . (2.22)

Using (2.16) together with the bound (2.13) on εt, we obtain from (2.22) that

|(ŪT p)T (ŪT r)|
‖p‖2

≤ 32

9
εt +

128
√

3

9

√
n

q

1

8
√

2

q

n
√
d
εt

=
32

9
εt +

8
√

6

9

√
q

nd
εt

≤ 64

9
εt, (2.23)

where the last inequality follows from q ≤ n and d ≥ 1.

2.5. Bounding εt+1. We return now to the inequality (2.5), using the bounds
from the previous subsection to refine our upper bound on εt+1. By rearranging (2.5)
and substituting (2.21), (2.22), (2.16), and (2.23), we obtain

εt+1 ≤ εt + α2 ‖r‖2

‖p‖2
− 2α

(ŪT p)T (ŪT r)

‖p‖2
+ 2α3 ‖r‖2

‖p‖2
|(ŪT p)T (ŪT r)|

‖p‖2

≤ εt + α2 ‖r‖2

‖p‖2
− 2α

‖r‖2

‖p‖2
+

256
√

3

9
α

√
n

q
ε
3/2
t + 2α3

(
32

9
εt

)(
64

9
εt

)
.

By bounding ε
1/2
t using (2.13) in the last term, we obtain

εt+1 ≤ εt − α(2− α)
‖r‖2

‖p‖2
+

256
√

3

9
α

√
n

q
ε
3/2
t + α3 64

9
√

2

q

n
√
d
ε
3/2
t

≤ εt − α(2− α)
‖r‖2

‖p‖2
+

(
256
√

3

9
α+

64

9
√

2
α3

)√
n

q
ε
3/2
t ,

where we used q ≤ n and d ≥ 1 in the second inequality. It is evident from this
expression that αt ≡ 1 is a good choice for the steplength “fudge factor” in (1.10).
By fixing αt = 1 and simplifying the numerical constants in the expression above, we
obtain

εt+1 ≤ εt −
‖r‖2

‖p‖2
+ 55

√
n

q
ε
3/2
t . (2.24)

We proceed in Subsection 2.7 to develop a high-probability lower bound on
‖r‖2/‖p‖2, showing that this term is usually at least a small positive multiple of
εt. Before doing this, however, it is necessary to discuss the incoherence assumptions
and their consequences.
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2.6. Incoherence and its Consequences. It is essential to our convergence
results that the subspace S to be identified is incoherent with the coordinate directions,
that is, the projection of each coordinate unit vector onto S should not be too long.
This assumption is needed to ensure that the partially sampled observation vectors
have sufficient expected information content. We make these concept precise in this
subsection.

Definition 2.4. Given a matrix U of dimension n×d with orthonormal columns,
defining the subspace T := R(U), the coherence of T is

µ(T ) :=
n

d
max

i=1,2,...,n
‖PT ei‖22 ,

where ei is the ith unit vector in Rn. Note that 1 ≤ µ(T ) ≤ n/d. Since PT = UUT ,
we have (with a slight change of notation)

µ(U) =
n

d
max

i=1,2,...,n
‖Ui·‖22,

where Ui· denotes the ith row of U . As a special case of this definition, we have for a
vector x ∈ Rn that

µ(x) = n
‖x‖2∞
‖x‖22

.

We have the following result that relates the coherence of R(Ut) to that of R(Ū),
for small values of εt.

Lemma 2.5. Suppose that |Ωt| ≥ q, as in (2.12) and that

εt ≤
d

16n
µ(Ū). (2.25)

Then

µ(Ut) ≤ µ(Ū) + 4

√
n

d
ε
1/2
t µ(Ū)1/2 ≤ 2µ(Ū).

Proof. We have by Lemma 2.1 that

‖(Ut)i·‖2 ≤ ‖Ūi·‖2 + ‖Ūi·Vt − (Ut)i·|‖2 ≤ ‖Ūi·‖2 +
√

2εt, i = 1, 2, . . . , d.

By squaring both sides of this inequality and multiplying by n/d, we obtain

n

d
‖(Ut)i·‖22 ≤

n

d
‖Ūi·‖22 + 23/2ε

1/2
t

n

d
‖Ūi·‖2 + 2

n

d
εt.

By taking the maxima of both sides over i = 1, 2, . . . , d, we have from Definition 2.4
that

µ(Ut) ≤ µ(Ū) + 23/2

√
n

d
ε
1/2
t µ(Ū)1/2 + 2

n

d
εt.

By substituting the bound (2.25) into this expression, we obtain

µ(Ut) ≤ µ(Ū) + 23/2

√
n

d

1

4

√
d

n
µ(Ū) + 2

n

d

d

16n
µ(Ū) ≤ 2µ(Ū),
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as required.
We use coherence to analyze the key condition (1.3) that is used in the algorithm

to check acceptability of the sample Ωt. We show in the following result that the
singular values of UTΩUΩ are all approximately |Ω|/n, under an assumption that relates
the size of Ωt to the coherence of U . The proof of this result appears in Appendix A.

Theorem 2.6. Given an n × d matrix U with orthonormal columns and a pa-
rameter δ > 0, let Ω ⊂ {1, 2, . . . , n} be chosen uniformly with replacement at random
such that

|Ω| > 8

3
dµ(U) log

(
2d

δ

)
.

Then with probability at least 1− δ, the eigenvalues of UTΩUΩ lie in an interval

λi
(
UTΩUΩ

)
∈
[
|Ω|
n

(1− γ),
|Ω|
n

(1 + γ)

]
, i = 1, 2, . . . , d,

where

γ :=

√
8dµ(U)

3|Ω|
log

(
2d

δ

)
. (2.26)

We conclude this subsection with the following result, which quantifies the prob-
ability that the condition (1.3) is satisfied. We provide a specific choice for the lower
bound q on sample size that is excessive for current purposes, but useful in later
subsections.

Corollary 2.7. Suppose that εt satisfies the bounds (2.13) and (2.25). Then
condition (1.3) is satisfied with probability at least 1− δ if |Ωt| ≥ q and q satisfies

δ ≥ 2d exp

(
−3q

64dµ(Ū)

)
. (2.27)

In particular, (2.27) is satisfied provided that the following conditions hold:

δ = .1, q ≥ C1(log n)2dµ(Ū) log(20d), C1 ≥
64

3
. (2.28)

Proof. Note first that (2.27) is equivalent to

log

(
2d

δ

)
≤ 3q

64dµ(Ū)
. (2.29)

Since (2.25) is assumed to hold, we can apply Lemma 2.5 to obtain

|Ωt| ≥ q ≥
64

3
dµ(Ū) log

(
2d

δ

)
≥ 32

3
dµ(Ut) log

(
2d

δ

)
,

so that the condition of Theorem 2.6 is satisfied, with a factor of 4 to spare. By
applying this theorem, we obtain

γ2 =
8dµ(Ut)

3|Ωt|
log

(
2d

δ

)
≤ 16dµ(Ū)

3q
log

(
2d

δ

)
≤ 1

4
, (2.30)
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with the final inequality following from (2.27). Thus (1.3) is satisfied with probability
at least 1− δ.

We now verify that (2.28) implies (2.27). From the inequality for q in (2.28), and
the assumption that C1 ≥ 64/3, we have

q ≥ C1(log n)2dµ(Ū) log(20d) ≥ 64

3
dµ(Ū) log(20d).

We obtain by rearranging this expression that

.1 ≥ 2d exp

(
−3q

64dµ(Ū)

)
,

so that the second condition in (2.27) holds for the specific values of δ and q. Thus, we
have shown that the values of δ and q in (2.28) satisfy (2.27), so that (1.3) is satisfied
with probability at least .9 for these values of δ and q.

2.7. A High-Probability Lower Bound on ‖rt‖2/‖pt‖2. Theorem 2.6 can be
used to derive a high-probability result for a lower bound on the quantity ‖rt‖2/‖pt‖2,
which is the key part of the the error decrease expression (2.24) and is therefore critical
to our analysis.

We have the following result, which is the main result of [4] and is proved there.
Lemma 2.8. Let δ > 0 be given, and suppose that

|Ωt| >
8

3
dµ(Ut) log

(
2d

δ

)
. (2.31)

Then with probability at least 1− 3δ, we have

‖[vt]Ωt
− [pt]Ωt

‖22 ≥

 |Ωt|(1− ξt)− dµ(Ut)
(1+βt)

2

1−γt
n

 ‖vt − UtUTt vt‖22, (2.32)

where we define xt := vt − UtUTt vt, set γt as in (2.26), and define

ξt :=

√
2µ(xt)2

|Ωt|
log

(
1

δ

)
, βt :=

√
2µ(xt) log

(
1

δ

)
. (2.33)

We focus now on the factor in parentheses in (2.32), proposing conditions on µ(xt)
and q under which it can be bounded below. The conditions on µ(xt) are meant to
be “realistic” in the sense that this quantity is observed to vary like log n in practice,
so the upper bounds are designed to be a (possibly large) multiple of this quantity.

Lemma 2.9. Suppose that δ = .1. Suppose that on some iteration t, we have that
|Ωt| ≥ q, where q and C1 satisfy the bounds (2.28) Suppose that εt satisfies the bounds
(2.13) and (2.25) for this value of q, and that µ(xt) satisfies the following two upper
bounds

µ(xt) ≤ log n

[
.045

log 10
C1dµ(Ū) log(20d)

]1/2

(2.34a)

µ(xt) ≤ (log n)2

[
.05

8 log 10
C1 log(20d)

]
, (2.34b)
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where xt = vt − UtUTt vt as in Lemma 2.8. Then we have

|Ωt|(1− ξt)− dµ(Ut)
(1 + βt)

2

1− γt
≥ q

2
, (2.35)

where ξt, βt, and γt are as defined in Lemma 2.8.
Proof. We show first that ξt ≤ .3, where ξt is defined in (2.33). Since |Ωt| ≥ q

and δ = .1, we have

ξ2
t =

2µ(xt)
2

|Ωt|
log

1

δ

≤ 2µ(xt)
2

q
log 10

≤ 1

q

[
2(log n)2 (.045)C1

log 10
log(20d)dµ(Ū)

]
log 10 by (2.34a)

≤ (.09)q

q
by (2.28)

= .09,

establishing the claim.
We show next that the last term on the left-hand side of (2.35) is bounded by

.2q. The first step is to verify that γt ≤ .5 for γt defined in (2.26). When δ = .1 and
q and C1 satisfy the bounds (2.28) (as we assume here), we have

γ2
t =

8dµ(Ut)

3|Ωt|
log

(
2d

δ

)
≤ 16dµ(Ū)

3|Ωt|
log(20d) ≤ C1dµ(Ū)

4q
log(20d) ≤ 1

4
,

where we used Lemma 2.5 in the first inequality and (2.28) for the remaining inequal-
ities.

We obtain next a bound on (1 + βt)
2. From the definition of βt and the fact that

µ(xt) ≥ 1, we have

βt =

√
2µ(xt) log

1

δ
=
√

2µ(xt) log 10 ≥ 1,

so that

(1 + βt)
2 ≤ (2βt)

2

≤ 8µ(xt) log 10

≤ (log n)2(.05)C1 log(20d) by (2.34b)

≤ (.05)
q

dµ(Ū)
by (2.28).

By using these last two bounds in conjunction with Lemma 2.5, we obtain

dµ(Ut)
(1 + βt)

2

1− γt
≤ 2dµ(Ū)

(.05) q
dµ(Ū)

.5
≤ .1

.5
q = .2q.

The result (2.35) follows by combining this bound with 1 − ξt ≥ .7 (proved earlier)
and |Ωt| ≥ q (assumed).
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We now derive a high-probability lower bound on ‖rt‖2/‖pt‖2.
Lemma 2.10. Suppose that |Ωt| ≥ q for all t, where q and C1 satisfy the bounds

(2.28). Suppose that εt satisfies the bounds (2.13) and (2.25). Suppose that there is a
quantity δ̄ ∈ (0, .6) such that the bounds (2.34) are satisfied by xt = vt−UtUTt vt with
probability at least 1− δ̄. Then with probability at least .6− δ̄, we have that

‖rt‖2

‖pt‖2
≥ (.32)

q

n
sin2 θt,

where θt is the angle between vt and R(Ut).
Proof. Since we assume (2.28), and thus that δ = .1, we have from Corollary 2.7

that the check on the eigenvalues of [Ut]
T
Ωt

[Ut]Ωt
in (1.3) is satisfied with probability

at least 1 − δ = 1 − .1 = .9. From Lemma 2.8, we have that (2.32) holds with
probability at least 1− 3δ = 1− .3 = .7. We have assumed further that (2.34) holds
with probability 1− δ̄. Thus, from the union bound, we have under our assumptions
that the bounds (1.3), (2.32), and (2.34) all hold with probability at least .6 − δ̄.
Since, in particular, the conditions (1.3), (2.12), and (2.13) are satisfied under this
scenario, we have from Lemma 2.3 that

‖pt‖ ≤
5

4
‖st‖ =

5

4
‖vt‖.

By using this bound together with the definitions of [rt]Ωt
and [rt]Ωc

t
in Algorithm 1

and Lemmas 2.8 and 2.9, we obtain

‖rt‖2

‖pt‖2
≥ 16

25

‖[rt]Ωt
‖2

‖st‖2
=

16

25

‖[vt]Ωt
− [pt]Ωt

‖2

‖vt‖2
≥ 16

25

q

2n

‖vt − UtUTt vt‖22
‖vt‖2

.

Using orthonormality of the columns of Ut and the definition of cos θt, we obtain

‖vt − UtUTt vt‖22
‖vt‖2

=
‖vt‖2 − vTt UtUTt vt

‖vt‖2
= 1− [vTt (UtU

T
t vt)]

2

‖vt‖2‖UtUTt vt‖2
= 1− cos2 θt = sin2 θt.

We complete the proof by combining the last two expressions.

2.8. Expectation for the Angle Captured by vt. Here we obtain an ex-
pected value for the quantity sin2 θt, where θt is the angle between the (full) random
sample vector and the subspace R(Ut). Noting that vt = Ūst, where st is random, we
have

cos2 θt =
[(Ūst)

T (UtU
T
t Ūst)]

2

‖Ūst‖2‖UtUTt Ūst‖2
=
sTt Ū

TUtU
T
t Ūst

‖st‖2
. (2.36)

We start with two elementary technical results.
Lemma 2.11. Let w ∈ Rd be a random vector whose components wi, i =

1, 2, . . . , d are independent and identically distributed. Then

Ew

(
w2
i∑d

j=1 w
2
j

)
=

1

d
. (2.37)

Proof. By the additive property of expectation, we have

1 = E

(∑d
i=1 w

2
i∑d

j=1 w
2
j

)
=

d∑
i=1

E

(
w2
i∑d

j=1 w
2
j

)
= dE

(
w2
i∑d

j=1 w
2
j

)
, i = 1, 2, . . . , d,
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since each of the wi is identically distributed.
Lemma 2.12. Given any matrix Q ∈ Rd×d, suppose that w ∈ Rd is a random

vector whose components wi, i = 1, 2, . . . , d are all i.i.d. N (0, 1). Then

E

(
wTQw

wTw

)
=

1

d
traceQ.

Proof.

E

(
wTQw

wTw

)
=
∑
i 6=j

E

(
wiwjQij
‖w‖2

)
+

n∑
i=1

E

(
w2
iQii
‖w‖2

)

=

n∑
i=1

QiiE

(
w2
i

‖w‖2

)
=

1

d
traceQ,

where the second equality follows from Lemma 2.11 and the fact that E(wiwj/‖w‖2) =
0 for i 6= j.

The main result of this subsection follows.
Lemma 2.13. Suppose that st ∈ Rd is a random vector whose components are

i.i.d. N (0, 1). Then

E(sin2 θt) = εt/d,

where εt is defined in (1.12).
Proof. From (2.36), Lemma 2.12, and (1.12) we have

E(cos2 θt) =
1

d
trace(ŪTUtU

T
t Ū) =

1

d
‖UTt Ū‖2F =

1

d
(d− εt) = 1− εt

d
,

giving the result.

2.9. Expected Linear Decrease. We now put the pieces of theory derived in
the previous subsections together, to demonstrate the expected decrease in εt over a
single iteration.

Theorem 2.14. Suppose that |Ωt| ≥ q for all t, where q and C1 satisfy the bounds
(2.28). Suppose that εt satisfies the bounds (2.13) and (2.25). Suppose that there is
a quantity δ̄ ∈ (0, .6) such that the bounds (2.34) are satisfied by xt = vt − UtUTt vt
with probability at least 1− δ̄. Suppose that at each iteration, st in (1.1) is a random
vector whose components are i.i.d. N (0, 1). Then

E[εt+1 | εt] ≤ εt − (.32)(.6− δ̄) q
nd
εt + 55

√
n

q
ε
3/2
t . (2.38)

Proof. Under the given assumptions, we have from (2.24) and Lemma 2.10 that

εt+1 ≤ εt − .32
q

n
sin2 θt + 55

√
n

q
ε
3/2
t , with probability at least .6− δ̄,

while

εt+1 ≤ εt + 55

√
n

q
ε
3/2
t , otherwise.
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(“Otherwise” includes iterations on which no step is taken because condition (1.3) fails
to hold; we have εt+1 = εt on these iterations.) We obtain the proof by combining
these two results and using Lemma 2.13.

Corollary 2.15. Suppose that the conditions of Theorem 2.14 hold and that in
addition, εt satisfies the following bound:

εt ≤ (8× 10−6)(.6− δ̄)2 q3

n3d2
. (2.39)

We then have

E[εt+1 | εt] ≤
(

1− (.16)(.6− δ̄) q
nd

)
εt. (2.40)

Proof. Given the bound (2.39), we have

55

√
n

q
ε
1/2
t ≤ 55

√
n

q
(.0029)(.6− δ̄) q

3/2

n3/2d
≤ (.16)(.6− δ̄) q

nd
.

We obtain the result by combining this bound with (2.38).
This result indicates that the rate of decrease in error metric εt is more rapid for

higher values of the sampling ratio q/n, and becomes slower as subspace dimension
d increases. The expected decrease in (2.40) is consistent with the factor (1 − 1/d)
that we prove in the next section for the full-data case (q = n), modulo the factor
(.16)(.6− δ̄). The appearance of the latter factor is of course due to the uncertainty
caused by sampling.

3. The Full-Data Case: q = n. When a random full vector vt ∈ S is available
at each iteration of GROUSE (that is, Ωt ≡ {1, 2, . . . , n}), the algorithm and its
analysis simplify considerably, as we show in this section. The expected decrease
factor in εt at each iteration is asymptotically (1− 1/d).

While the ISVD algorithm is preferred for this no-noise, full-data case, we note
that gradient algorithms are more flexible than algorithms based explicitly on linear
algebra when additional constraints or regularizers are present, such as a sparsity
regularizer on the data fit or factor weights. It may be possible to build on the
full-data analysis presented in this section to obtain a convergence guarantee for a
Grassmannian gradient-descent algorithm on such regularized problems.

Algorithm 2 shown below is the specialization of Algorithm 1 to the full-data
case. Since (Ut)

T
Ωt

(Ut)Ωt
= UTt Ut = I for all i, the eigenvalue check (1.3) is no longer

needed. The definitions of certain quantities above are simplified in the full-data case,
as we demonstrate here (with the introduction of notation At := UTt Ū):

vt = Ūst, (3.2a)

At := UTt Ū , (3.2b)

wt = UTt vt = UTt Ūst = Atst, (3.2c)

pt = Utwt, (3.2d)

rt = vt − Utwt = (I − UtUTt )Ūst. (3.2e)

We continue to use θt to denote the angle between S and R(Ut) that is exposed by
the update vector vt. We have

cos θt =
‖wt‖
‖vt‖

=
‖pt‖
‖vt‖

, sin θt =

√
‖vt‖2 − ‖wt‖2
‖vt‖

=
‖rt‖
‖vt‖

. (3.3)
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Algorithm 2 GROUSE: Full Data

Given U0 and n× d matrix with orthonormal columns, with 0 < d < n;
for t = 0, 1, 2, . . . do

Take vt ∈ S;
Define wt := arg minw ‖Utw − vt‖22 = UTt vt;
Define pt := Utwt; rt := vt − pt; σt := ‖rt‖ ‖pt‖;
Choose ηt > 0 and set

Ut+1 := Ut +

[
(cos(σtηt)− 1)

pt
‖pt‖

+ sin(σtηt)
rt
‖rt‖

]
wTt
‖wt‖

. (3.1)

end for

Thus

σt = ‖rt‖‖pt‖ = ‖vt‖2 sin θt cos θt =
1

2
‖vt‖2 sin 2θt. (3.4)

By using At defined in (3.2b) we have from (1.12) that

εt = d− ‖At‖2F = d− trace(AtA
T
t ). (3.5)

Our first result provides an exact expression for the relationship between εt+1 and
εt. It also motivates an “optimal” choice for ηt consistent with the one discussed in
Subsection 1.3. The proof of this result is quite technical, involving various trigono-
metric identities and elementary linear algebra manipulations, so we relegate it to
Appendix B.

Lemma 3.1. We have for all t that

εt − εt+1 =
sin(σtηt) sin(2θt − σtηt)

sin2 θt

(
1− wTt AtA

T
t wt

wTt wt

)
. (3.6)

Moreover, the right-hand side is nonnegative for σtηt ∈ (0, 2θt), and zero if vt ∈
R(Ut) = St or vt ⊥ St (that is, θt = 0 or θt = π/2).

The expression (3.6) immediately suggests the following choice for ηt:

ηt :=
θt
σt

=
2θt

‖vt‖2 sin 2θt
, (3.7)

for which sinσtηt = ‖rt‖/‖vt‖. (In the regime ‖rt‖ � ‖pt‖, this choice is similar to
(1.8) made for the general case, because of (1.6).) Given (3.7), (3.6) simplifies to

εt − εt+1 =

(
1− wTt AtA

T
t wt

wTt wt

)
(3.8)

We now proceed with an expected convergence analysis for the choice of ηt in
(3.7), for which the convergence bound is (3.8).

Theorem 3.2. Suppose that in Algorithm 2, vt = Ūst, where the components of
st are chosen i.i.d. from N (0, 1), and that ηt chosen as in (3.7) for each t. Suppose
too that εt ≤ ε̄ for some ε̄ ∈ (0, 1/3). Then

E [εt+1 | εt] ≤
(

1− 1− 3εt
d

)
εt. (3.9)

20



Proof. From Lemma 2.1, using the d× d orthogonal matrices Yt and Ȳ defined in
(2.9), we have that

At = UTt Ū = YtΓtȲ
T ,

so that

ATt At = Ȳ Γ2
t Ȳ

T , ATt AtA
T
t At = Ȳ Γ4

t Ȳ
T .

Thus for the critical term in (3.8), using wt = UTt Ūst = Atst, dropping the subscript
t freely, and recalling the definition (2.7) of Γt, we can write

wTAATw

wTw
=
sTATAATAs

sTATAs
=
s̃TΓ4s̃

s̃TΓ2s̃
=

∑d
i=1 s̃

2
i cos4 φi∑d

i=1 s̃
2
i cos2 φi

, (3.10)

where s̃ = Ȳ T s and φi = φi(Ū , Ut). Since the components of s are chosen i.i.d. from
N (0, 1), the components of s̃ are also i.i.d. from N (0, 1).

We make two useful observations before proceeding. First, from the definition of
εt in (1.12), we have

0 ≤
∑d
i=1 s̃

2
i sin2 φi∑d
i=1 s̃

2
i

≤ max
i=1,2,...,d

sin2 φi ≤ εt. (3.11)

Second, for any scalar u with 0 ≤ u ≤ ε̄, for any ε̄ ∈ [0, 1/2), we have

1

1− u
= 1 +

u

1− u
≤ 1 + 2u.

Returning to (3.10), dropping the indices on the summation terms for clarity,
introducing the notation

ψt :=

∑
s̃2
i sin2 φi∑
s̃2
i

, (3.12)

and noting from (3.11) that ψt ∈ [0, εt], we have∑
s̃2
i cos4 φi∑
s̃2
i cos2 φi

=

∑
s̃2
i [1− 2 sin2 φi + sin4 φi]∑

s̃2
i (1− sin2 φi)

≤
∑
s̃2
i − (2− εt)

∑
s̃2
i sin2 φi∑

s̃2
i −

∑
s̃2
i sin2 φi

from (3.11)

=
1− (2− εt)ψt

1− ψt
from (3.12)

≤ [1− (2− εt)ψt]
[
1 +

1

1− εt
ψt

]
= 1−

[
2− εt −

1

1− εt

]
ψt −

2− εt
1− εt

ψ2
t

≤ 1−
[
2− εt −

1

1− εt

]
ψt

≤ 1− [2− εt − (1 + 2εt)]ψt

= 1− (1− 3εt)ψt.
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We have too from Lemma 2.12 that

E(ψt) =
1

d

d∑
i=1

sin2 φi =
εt
d
,

where the expectation is taken over st. Assembling these results, we have that

E

(
1− wTt AtA

T
t wt

wTt wt

)
= E

(
1−

∑
s̃2
i cos4 φi∑
s̃2
i cos2 φi

)
≥ (1− 3εt)E(ψt) = (1− 3εt)

εt
d
.

The result follows by taking the conditional expectation of both sides in (3.8), and
using the bound just derived.

This result shows that the sequence {εt} converges linearly in expectation with
an asymptotic rate of (1 − 1/d). This rate allows for some interesting observations.
First, if d = 1, it suggests convergence in a single step — as indeed we would expect,
as the full vector vt ∈ S would in this case reveal the solution in one step. More
generally, we have from the bound

(1− 1/d)d ≤ 1

e

that a decrease factor of about e can be expected over each set of d consecutive
iterations. By comparison, the same amount of information — d full vectors randomly
drawn from S — is sufficient to reveal the subspace completely (with probability 1).
We could obtain an orthonormal basis by assembling these d vectors into a n × d
matrix and performing a singular value decomposition (SVD). (Of course, extension
of an SVD-based approach to the case of partial data is not straightforward.)

4. Computational Results. We present some computational results on ran-
dom problems to illustrate the convergence behavior of GROUSE in both the partial-
data and full-data cases.

For the full-data case, we implemented Algorithm 2 in Matlab on a problem for
which the n×d subspace S was chosen randomly, as the range space of an n×d matrix
whose elements are i.i.d. in N (0, 1). We used a random starting matrix U0 whose
columns were orthonormalized. Figure 4.1 shows results for n = 10000 and d = 4,
d = 6. The straight line in this semilog plot (t vs log εt) represents the predicted
asymptotic convergence rate (1 − 1/d), while the irregular line represents the actual
error. There is a close correspondence between these results and the predictions of
Theorem 3.2. On early iterations, when εt is large, convergence is slower than the
asymptotic rate, as predicted by the presence of the factor 1 − 3εt in the expression
(3.9). On later iterations, this factor approaches 1, and the asymptotic rate emerges
— the curve of actual errors becomes parallel to the straight line.

For the general case, we chose various values of the dimensions n and d and
the sampling cardinality q, and ran a number of trials that were constructed in the
following manner. The target space S was defined to be the range space of an n× d
matrix T whose entries were chosen i.i.d. from N (0, 1), and Ū was obtained by
orthonormalizing the columns of T . To obtain a starting matrix U0, we added to T
an n×dmatrix whose elements were chosen i.i.d. fromN (0, 1/4), and orthonormalized
the resulting matrix. We then generated vectors from Ū using Gaussian vectors st,
and updated Ut using the GROUSE algorithm. In the computational experiments
we did not check whether condition (1.3) was satisfied, and instead took every step.
When |Ω| was sufficiently large, in alignment with the theory, this bound was almost
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Fig. 4.1. Illustration of convergence on Full-Data Case for n = 10000 with d = 10 (left) and
d = 200 (right).

always satisfied. As a specific example, for n = 10, 000 and |Ω| = d log d log n, out of
1000 trials, the bounds of (1.3) were satisfied 98.5% of the time for d = 10 and 100%
of the time for d = 100.

After running each trial for a large enough number of iterations N to establish
an asymptotic convergence rate, we computed the value X to satisfy the following
expression:

εN = ε0

(
1−X q

nd

)N
, (4.1)

By comparing with (2.40), we see that X absorbs the factor (.16)(.6− δ̄) that is inde-
pendent of n, d, and q, and that arises because of the errors introduced by sampling.

The values of X for various values of n, d, and q are shown in Figure 4.2. For all
q larger than some modest multiple of d, X is not too far from 1, showing that the
actual convergence rate is not too much different from (1 − q/(nd)) and that indeed
the analysis is somewhat conservative.

5. Conclusion. We have analyzed the GROUSE algorithm to find that near a
solution, GROUSE decreases subspace error at a linear rate, in expectation. Our
estimate of the linear rate depends on the problem dimensions and the number of
entries observed per vector, and matches well with our computational observations.

We believe that there are deep connections between our analysis and recent im-
portant work on randomized linear algebra (see, for example, [11]). Often this work
seeks to find a low-rank approximation to a matrix or an approximation to its lead-
ing eigenspace, and randomized column or row sampling is used to make algorithms
more efficient on large matrices. Our work randomly samples matrix entries instead.
A deeper understanding of how these approaches are related is an interesting area
for future investigation. GROUSE’s connections to the ISVD algorithm, which are
explored further in [5], may be a step in this direction.

Several other questions concerning GROUSE’s convergence behavior warrant fur-
ther investigation. We have observed empirically that convergence to a solution oc-
curs from any random starting point, given a sufficiently large number of observed
elements. This motivates us to pursue a better mathematical understanding of the
global convergence properties. Moreover, we observe convergence even for coherent
subspaces, and would like to understand why. Also of interest is the behavior of
GROUSE in the case of noisy observations. A diminishing step size is needed here,
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Fig. 4.2. Observed convergence factor X for various values of d, n, and q. X is computed
using (4.1), using N = 500 iterations of Algorithm 1 per trial. (a) d = 10, showing X averaged
over ten trials for each n and q. (b) d = 200, with X plotted over one trial for each n and q. (c)
n = 10000, with X plotted for d and q, averaged over ten trials. (d) q = 100, with X plotted for n
and d, averaged over ten trials. In (a) and (b), the darkest red takes value 1; in (c) and (d), the
darkest red is from 1 to 1.4. The plots all clearly show a phase transition in X, occurring when q
is some modest multiple of d, but with X otherwise independent of q, n, and d, as suggested by the
analysis.

leading to slower convergence. We would like a better analytical understanding of
this case under different noise models of interest.

Acknowledgments. We are grateful to two referees for helpful and constructive
comments on the original version of this manuscript.

Appendix A. Proof of Theorem 2.6.
We start with a key result on matrix concentration.
Theorem A.1 (Noncommutative Bernstein Inequality [9, 17]). Let X1, . . . , Xm

be independent zero-mean square d× d random matrices. Suppose

ρ2
k := max {‖E[XkX

T
k ]‖2, ‖E[XT

k Xk]‖2}

and ‖Xk‖2 ≤M almost surely for all k. Then for any τ > 0,

P

[∥∥∥∥∥
m∑
k=1

Xk

∥∥∥∥∥
2

> τ

]
≤ 2d exp

(
−τ2/2∑m

k=1 ρ
2
k +Mτ/3

)
.
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We proceed with the proof of Theorem 2.6.
Proof. We start by defining the notation

uk := UTΩ(k)· ∈ Rd,

that is, uk is the transpose of the row of the row of U that corresponds to the kth
element of Ω. We thus define

Xk := uku
T
k −

1

n
Id,

where Id is the d×d identity matrix. Because of orthonormality of the columns of U ,
this random variable has zero mean.

To apply Theorem A.1, we must compute the values of ρk and M that correspond
to this definition of Xk. Since Ω(k) is chosen uniformly with replacement, the Xk are
distributed identically for all k, and ρk is independent of k (and can thus be denoted
by ρ).

Using the fact that

‖A−B‖2 ≤ max{‖A‖2, ‖B‖2} for positive semidefinite matrices A and B, (A.1)

and recalling that ‖uk‖22 = ‖UΩ(k)·‖22 ≤ dµ(U)/n, we have∥∥∥∥ukuTk − 1

n
Id

∥∥∥∥
2

≤ max

{
dµ(U)

n
,

1

n

}
.

Thus we can define M := dµ(U)/n. For ρ, we note by symmetry of Xk that

ρ2 =
∥∥E [X2

k

]∥∥
2

=

∥∥∥∥E [ukuTk ukuTk − 2

n
uku

T
k +

1

n2
Id

]∥∥∥∥
2

=

∥∥∥∥E [uk(uTk uk)uTk
]
− 1

n2
Id

∥∥∥∥
2

, (A.2)

where the last step follows from linearity of expectation, and E(uku
T
k ) = (1/n)Id.

For the next step, we define S to be the n × n diagonal matrix with diagonal
elements ‖Ui·‖22, i = 1, 2, . . . , n. We thus have

‖E[uk(uTk uk)uTk ]‖2 =

∥∥∥∥ 1

n
UTSU

∥∥∥∥ ≤ 1

n
‖U‖22‖S‖2 =

1

n

dµ(U)

n
=
dµ(U)

n2
.

Using (A.1), we have from (A.2) that

ρ2 ≤ max

(∥∥E [uk(uTk uk)uTk
]∥∥ , 1

n2

)
≤ max

(
dµ(U)

n2
,

1

n2

)
=
dµ(U)

n2
,

since dµ(U) ≥ d ≥ 1.
We now apply Theorem A.1. First, we restrict τ to be such that Mτ ≤ |Ω|ρ2 to

simplify the denominator of the exponent. We obtain

2d exp

(
−τ2/2

|Ω|ρ2 +Mτ/3

)
≤ 2d exp

(
−τ2/2

4
3 |Ω|

dµ(U)
n2

)
,
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and thus

P

[∥∥∥∥∥∑
k∈Ω

(
uku

T
k −

1

n
Id

)∥∥∥∥∥ > τ

]
≤ 2d exp

(
−3n2τ2

8|Ω|dµ(U)

)
.

Now take τ = γ|Ω|/n with γ defined in the statement of the lemma. Since γ < 1 by
assumption, Mτ ≤ |Ω|ρ2 holds and we have

P

[∥∥∥∥∥∑
k∈Ω

(
uku

T
k −

1

n
Id

)∥∥∥∥∥
2

≤ |Ω|
n
γ

]
≥ 1− δ. (A.3)

We have, by symmetry of
∑
k∈Ω uku

T
k and the fact that

λi

(∑
k∈Ω

uku
T
k −
|Ω|
n
I

)
= λi

(∑
k∈Ω

uku
T
k

)
− |Ω|

n
,

that ∥∥∥∥∥∑
k∈Ω

(
uku

T
k −

1

n
Id

)∥∥∥∥∥
2

=

∥∥∥∥∥
(∑
k∈Ω

uku
T
k

)
− |Ω|

n
Id

∥∥∥∥∥
2

= max
i=1,2,...,n

∣∣∣∣∣λi
(∑
k∈Ω

uku
T
k

)
− |Ω|

n

∣∣∣∣∣ ,
From (A.3), we have with probability 1− δ that

λi

(∑
k∈Ω

uku
T
k

)
∈
[
(1− γ)

|Ω|
n
, (1 + γ)

|Ω|
n

]
for all i = 1, 2, . . . , n,

completing the proof.

Appendix B. Proof of Lemma 3.1.

We drop the subscript “t” throughout the proof and use A+ in place of At+1.
From (3.1), and using the definitions (3.2), we have

AT+ = ŪTU+

= ŪTU +

{
(cos(ση)− 1)

ŪTUUT Ūs

‖w‖
+ sin(ση)

(I − ŪTUUT Ū)s

‖r‖

}
sT ŪTU

‖w‖

=

{
I + (cos(ση)− 1)

ATAssT

‖w‖2
+ sin(ση)

(I −ATA)ssT

‖r‖‖w‖

}
AT = HAT ,

where the matrix H is defined in an obvious way. Thus

‖A+‖2F = trace(A+A
T
+) = trace(AHTHAT ).
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Focusing initially on HTH we obtain

HTH = I + (cos(ση)− 1)2 ss
TATAATAssT

‖w‖4

+ (cos(ση)− 1)
ssTATA+ATAssT

‖w‖2

+ sin(ση)
2ssT − ssTATA−ATAssT

‖r‖‖w‖

+ 2 sin(ση)(cos(ση)− 1)
ssTATAssT − ssTATAATAssT

‖r‖‖w‖3

+ sin2(ση)
s(sT s− 2sTATAs+ sTATAATAs)sT

‖r‖2‖w‖2
.

It follows immediately that

A+A
T
+ = AAT + (cos(ση)− 1)2Ass

TATAATAssTAT

‖w‖4

+ (cos(ση)− 1)
AssTATAAT +AATAssTAT

‖w‖2

+ sin(ση)
2AssTAT −AssTATAAT −AATAssTAT

‖r‖‖w‖

+ 2 sin(ση)(cos(ση)− 1)
AssTATAssTAT −AssTATAATAssTAT

‖r‖‖w‖3

+ sin2(ση)
As(sT s− 2sTATAs+ sTATAATAs)sTAT

‖r‖2‖w‖2
.

We now use repeatedly the fact that trace abT = aT b to deduce that

trace(A+A
T
+) = trace(AAT ) + (cos(ση)− 1)2 (sTATAs)sTATAATAs

‖w‖4

+ (cos(ση)− 1)
2sTATAATAs

‖w‖2

+ sin(ση)
2sTATAs− 2sTATAATAs

‖r‖‖w‖

+ 2 sin(ση)(cos(ση)− 1)
(sTATAs)2 − (sTATAATAs)(sTATAs)

‖r‖‖w‖3

+ sin2(ση)
‖s‖2sTATAs− 2(sTATAs)2 + (sTATAATAs)(sTATAs)

‖r‖2‖w‖2
.
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Now using w = As (and hence sTATAs = ‖w‖2), we have

trace(A+A
T
+) = trace(AAT ) + (cos(ση)− 1)2 s

TATAATAs

‖w‖2

+ (cos(ση)− 1)
2sTATAATAs

‖w‖2

+ 2 sin(ση)
‖w‖2 − sTATAATAs

‖r‖‖w‖

+ 2 sin(ση)(cos(ση)− 1)
‖w‖2 − sTATAATAs

‖r‖‖w‖

+ sin2(ση)
‖s‖2 − 2‖w‖2 + (sTATAATAs)

‖r‖2
,

For the second and third terms on the right-hand side, we use the identity

(cos(ση)− 1)2 + 2(cos(ση)− 1) = cos2(ση)− 1 = − sin2(ησ),

allowing us to combine these terms with the final sin2(ση) term. Using also the
identity ‖r‖2 = ‖s‖2 −‖w‖2, we obtain for the combination of these three terms that

sin2(ση)

[
1− ‖w‖

2

‖r‖2
+ sTATAATAs

(
1

‖r‖2
− 1

‖w‖2

)]
= sin2(ση)

(
1− ‖w‖

2

‖r‖2

)(
1− sTATAATAs

‖w‖2

)
.

We can also combine the third and fourth terms in the right-hand side above to yield
a combined quantity

2 sin(ση) cos(ση)
‖w‖
‖r‖

(
1− sTATAATAs

‖w‖2

)
.

By substituting these two compressed terms into the expression above, we obtain

trace(A+A
T
+) = trace(AAT )

+ sin(ση)

(
1− sTATAATAs

‖w‖2

)[(
1− ‖w‖

2

‖r‖2

)
sin(ση) + 2 cos(ση)

‖w‖
‖r‖

]
.

We now use the relations (3.3) to deduce that

‖w‖
‖r‖

=
cos θ

sin θ
, 1− ‖w‖

2

‖r‖2
= −cos(2θ)

sin2 θ
,

and thus the increment trace(A+A
T
+)− trace(AAT ) becomes

sin(ση)

(
1− sTATAATAs

‖w‖2

)[
−cos(2θ)

sin2 θ
sin(ση) + 2 cos(ση)

cos θ

sin θ

]
=

sin(ση) sin(2θ − ση)

sin2 θ

(
1− sTATAATAs

‖w‖2

)
.

The result (3.6) follows by substituting w = As and (3.4).
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Nonnegativity of the right-hand side follows from θt ≥ 0, 2θt − σtηt ≥ 0, and
‖ATt wt‖ ≤ ‖ŪTUt‖‖wt‖ ≤ ‖wt‖.

To prove that the right-hand side of (3.6) is zero when vt ∈ S or vt ⊥ S, we take
the former case first. Here, there exists ŝt ∈ Rd such that

vt = Ūst = Utŝt.

Thus

wt = Atst = UTt Ūst = UTt Utŝt = ŝt,

so that ‖vt‖ = ‖wt‖ and thus θt = 0, from (3.3). This implies that the right-hand
side of (3.6) is zero. When vt ⊥ St, we have wt = UTt vt = 0 and so θt = π/2 and
σt = 0, implying again that the right-hand side of (3.6) is zero.
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