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Abstract

This paper studies sparse spikes deconvolution over the space of mea-
sures. We focus on the recovery properties of the support of the measure
(i.e. the location of the Dirac masses) using total variation of measures
(TV) regularization. This regularization is the natural extension of the `1

norm of vectors to the setting of measures. We show that support identi-
fication is governed by a specific solution of the dual problem (a so-called
dual certificate) having minimum L2 norm. Our main result shows that
if this certificate is non-degenerate (see the definition below), when the
signal-to-noise ratio is large enough TV regularization recovers the exact
same number of Diracs. We show that both the locations and the ampli-
tudes of these Diracs converge toward those of the input measure when the
noise drops to zero. Moreover the non-degeneracy of this certificate can
be checked by computing a so-called vanishing derivative pre-certificate.
This proxy can be computed in closed form by solving a linear system.
Lastly, we draw connections between the support of the recovered measure
on a continuous domain and on a discretized grid. We show that when
the signal-to-noise level is large enough, and provided the aforementioned
dual certificate is non-degenerate, the solution of the discretized problem
is supported on pairs of Diracs which are neighbors of the Diracs of the
input measure. This gives a precise description of the convergence of the
solution of the discretized problem toward the solution of the continuous
grid-free problem, as the grid size tends to zero.

1 Introduction

1.1 Sparse Spikes Deconvolution

Super-resolution is a central problem in imaging science, and loosely speak-
ing corresponds to recovering fine scale details from a possibly noisy input signal
or image. This thus encompasses the problems of data interpolation (recovering
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missing sampling values on a regular grid) and deconvolution (removing acqui-
sition blur). We refer to the review articles [27, 24] and the references therein
for an overview of these problems.

We consider in our article an idealized super-resolution problem, known as
sparse spikes deconvolution. It corresponds to recovering 1-D spikes (i.e. both
their positions and amplitudes) from blurry and noisy measurements. These
measurements are obtained by a convolution of the spikes train against a known
kernel. This setup can be seen as an approximation of several imaging devices.
A method of choice to perform this recovery is to introduce a sparsity-enforcing
prior, among which the most popular is a `1-type norm, which favors the emer-
gence of spikes in the solution.

1.2 Previous Works

Discrete `1 regularization. `1-type techniques were initially proposed
in geophysics [10, 28, 23] to recover the location of density changes in the
underground for seismic exploration. They were later studied in depth by
David Donoho and co-workers, see for instance [14]. Their popularity in sig-
nal processing and statistics can be traced back to the development of the basis
pursuit method [9] for approximation in redundant dictionaries and the Lasso
method [31] for statistical estimation.

The theoretical analysis of the `1-regularized deconvolution was initiated by
Donoho [14]. Assessing the performance of discrete `1 regularization methods is
challenging and requires to take into account both the specific properties of the
operator to invert and of the signal that is aimed at being recovered. A popular
approach is to assess the recovery of the positions of the non-zero coefficients.
This requires to impose a well-conditioning constraint that depends on the signal
of interest, as initially introduced by Fuchs [20], and studied in the statistics
community under the name of “irrepresentability condition”, see [34]. A similar
approach is used by Dossal and Mallat in [15] to study the problem of support
stability over a discrete grid.

Imposing the exact recovery of the support of the signal to recover might
be a too strong assumption. The inverse problem community rather focuses on
the L2 recovery error, which typically leads to a linear convergence rate with
respect to the noise amplitude. The seminal paper of Grasmair et al. [21] gives
a necessary and sufficient condition for such a convergence, which corresponds
to the existence of a non-saturating dual certificate (see Section 2 for a precise
definition of certificates). This can be understood as an abstract condition,
which is often difficult to check on practical problems such as deconvolution.

Note that the continuous setting adopted in the present paper might be seen
as a limit of such discrete problems, and in Section 5, we relate our results to
well-known results on discrete grids.

Let us also note that, although we focus here on `1-based methods, there is a
vast literature on various non-linear super-resolution schemes. This includes for
instance greedy [26, 25], root finding [3, 11], matrix pencils [13] and compressed
sensing [18, 16] approaches.
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Inverse problems regularization with measures. Working over a dis-
crete grid makes the mathematical analysis difficult. Following recent propos-
als [12, 4, 8, 2], we consider here this sparse deconvolution over a continuous do-
main, i.e. in a grid-free setting. This shift from the traditional discrete domain
to a continuous one offers considerable advantages in term of mathematical anal-
ysis, allowing for the first time the emergence of almost sharp signal-dependent
criteria for stable spikes recovery (see references below). Note that while the
corresponding continuous recovery problem is infinite dimensional in nature, it
is possible to find its solution using either provably convergent algorithms [4] or
root finding methods for ideal low pass filters [8].

Inverse problem regularization over the space of measures is now well under-
stood (see for instance [29, 4]), and requires to perform variational analysis over
a non-reflexive Banach space (as in [22]), which leads to some mathematical
technicalities. We capitalize on these earlier works to build our analysis of the
recovery performance.

Theoretical analysis of deconvolution over the space of measures. For
deconvolution from ideal low-pass measurements, the ground-breaking paper [8]
shows that it is indeed possible to construct a dual certificate by solving a linear
system when the input Diracs are well-separated. This work is further refined
in [7] that studies the robustness to noise. In a series of paper [2, 30] the authors
study the prediction (i.e. denoising) error using the same dual certificate, but
they do not consider the reconstruction error (recovery of the spikes). In our
work, we use a different certificate to assess the exact recovery of the spikes
when the noise is small enough.

In view of the applications of superresolution, it is crucial to understand
the precise location of the recovered Diracs locations when the measurements
are noisy. Partial answers to this questions are given in [19] and [1], where it is
shown (under different conditions on the signal-to-noise level) that the recovered
spikes are clustered tightly around the initial measure’s Diracs. In this article,
we fully answer the question of the position of the recovered Diracs in the setting
where the signal-to-noise ratio is large enough.

1.3 Formulation of the Problem and Contributions.

Let m0 =
∑N
i=1 a0,iδx0,i

be a discrete measure defined on the torus T = R/Z,
where a0 ∈ RN and x0 ∈ TN . We assume we are given some low-pass filtered
observation y0 = Φm0 ∈ L2(T). Here Φ denotes a convolution operator with
some kernel ϕ ∈ C2(T). The observation might be noisy, in which case we are
given y0 + w = Φm0 + w, with w ∈ L2(T), instead of y0.

Following [8, 12], we hope to recover m0 by solving the problem

min
Φm=y0

||m||TV. (P0(y0))

among all Radon measures, where ||m||TV refers to the total variation (defined
below) of m. Note that in our setting, the total variation is the natural extension
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of the `1 norm of finite dimensional vectors to the setting of Radon measures,
and it should not be mistaken for the total variation of functions, which is
routinely used to recover signals or images.

We may also consider reconstructing m0 by solving the following penalized
problem for λ > 0, also known as the Beurling LASSO (see for instance [1]):

min
m

1

2
||Φm− y0||22 + λ||m||TV. (Pλ(y0))

This is especially useful if the observation is noisy, in which case y0 should be
replaced with y0 + w.

Four questions immediately arise:

1. Does the resolution of (P0(y0)) for y0 = Φm0 actually recover interesting
measures m0?

2. How close is the solution of (Pλ(y0)) to the solution of (P0(y0)) when λ
is small enough?

3. How close is the solution of (Pλ(y0 +w)) to the solution of (Pλ(y0)) when
both λ and w/λ are small enough?

4. What can be said about the above questions when solving (Pλ(y0)) with
measures supported on a fixed finite grid?

The first question is addressed in the landmark paper [8] in the case of
ideal low-pass filtering: measures m0 whose spikes are separated enough are the
unique solution of (P0(y0)) (for data y0 = Φm0). Several other cases (using
observations different from convolutions) are also tackled in [12], particularly in
the case of non-negative measures.

The second and third questions receive partial answers in [4, 7, 1, 19]. In [4]
it is shown that if the solution of (P0(y0)) is unique, the measures recovered
by (Pλ(y0 +w)) converge to the solution of (P0(y0)) in the sense of the weak-*

convergence when λ → 0 and
||w||22
λ → 0. In [7], the authors measure the re-

construction error using the L2 norm of a low-pass filtered version of recovered
measures. In [1], error bounds are derived from the amplitudes of the recon-
structed measure. In [19], bounds are given in terms of the original measure.
However, those works provide little information about the structure of the mea-
sures recovered by (Pλ(y0 +w)): are they made of less spikes than m0 or, in the
contrary, do they present lots of parasitic spikes? What happens if one compels
the spikes to belong to a finite grid?

The fourth question is of primary importance since most numerical schemes
for sparse regularization solve a finite dimensional optimization problem over
a fixed discretization grid. Following [8], one can remark that in the noiseless
setting, if m0 is recovered over the continuous domain and if its support is
included in the grid, m0 is also guaranteed to be recovered by the discretized
problem. But this is of little interest in practice because the noise is likely to
impact in a different manner the discrete problem and the input measure might
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fall outside the grid locations. Dossal and Mallat in [15] study the stability of the
position of the Diracs on the grid, which leads to overly pessimistic conclusions
because noise typically forces the spikes to translate over the domain. Studying
the convergence of the discretized problem toward the continuous one is thus
important to obtain a precise description of the discretized solution. To the best
of our knowledge, the work of [2] is the only one to provide some conclusion
about this convergence in term of denoising error. No previous work has studied
the capability of the discretized problem to estimate in a precise manner the
location of the spikes of the input measure.

Contributions. The present paper studies in detail the structure of the re-
covered measure. For this purpose, we define the minimal L2-norm certificate.
This certificate fully governs the behavior of the regularization when both λ and
||w||2/λ are small.

Our first contribution is a set of results indicating that the regions of satura-
tion of the certificate (when it reaches +1 or −1) are approximately stable when
λ and ||w||2/λ are small enough. This means that the recovered measures are
supported closely to the support of the input measure if the latter is identifiable
(solution of the noiseless problem (P0(y0))).

Our second contribution introduces the Non Degenerate Source Condition,
which imposes that the second derivative of the minimal-norm certificate does
not vanish on the saturation points. Under this condition, we show that for
λ and ||w||2/λ small enough, the reconstructed measure has exactly the same
number of spikes as the original measure and that their locations and amplitudes
converge to those of the original one.

Our third contribution shows that under the Non Degenerate Source Condi-
tion, the minimal norm certificate can actually be computed in closed form by
simply solving a linear system. This in turn also implies that the errors in the
amplitudes and locations decay linearly with respect to the noise level.

Our fourth and last contribution focuses on the regularization over a discrete
finite grid, which corresponds to the so-called Lasso or Basis Pursuit Denoising
problem. We show that when λ and ||w||2/λ are small enough, and provided that
the Non Degenerate Source Condition holds, the discretized solution is located
on pairs of Diracs adjacent to the input Diracs location. This gives a precise
description of how the solution to the discretized problem converges to the one
of the continuous problem when the stepsize of the grid vanishes.

Throughout the paper, the proposed definitions and results are illustrated in
the case of the ideal low-pass filter, showing that the assumptions are actually
relevant. Note that the code to reproduce the figures of this article is available
online1.

Outline of the paper. Section 2 defines the framework for the recovery of
Radon measures using total variation minimization. We also expose basic results
that are used throughout the paper. Section 3 is devoted to the main result of

1https://github.com/gpeyre/2013-FOCM-SparseSpikes/
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the paper: we define the Non Degenerate Source Condition and we show that
it implies the robustness of the reconstruction using (Pλ(y0 +w)). In Section 4
we show how the specific dual certificate involved in the Non Degenerate Source
Condition can be computed numerically by solving a linear system. Lastly,
Section 5 focuses on the recovery of measures on a discrete grid.

1.4 Notations

For any Radon measure m defined on T, we denote its support by Supp(m).
If Supp(m) is a finite set (in which case we say that m is a discrete measure)

and m 6= 0, then m is of the form m =
∑N
i=1 aiδxi , where N ∈ N∗, a ∈ RN ,

x ∈ TN and ai 6= 0 and xi 6= xj for all 1 6 i, j 6 N . In the rest of the paper,
we shall write m = ma,x to hint that m has the above decomposition (implying
that ai 6= 0 and xi 6= xj for all 1 6 i, j 6 N).

We also define the signed support :

Supp±m = (Suppm+)× {1} ∪ (Suppm−)× {−1} ⊂ T× {+1,−1}

where m+ (resp. m−) denotes the positive (resp. negative) part of m. For a
discrete measure m = ma,x,

Supp±m = {(t, v) ∈ T× {+1,−1}, m({t}) 6= 0 and signm({t}) = v}
= {(xi, sign ai), 1 6 i 6 N}.

We shall consider restrictions of measures and functions to subsets of T. For
m ∈M(T) a discrete measure and J = {x1, . . . , xk} ⊂ T a finite set, we define

m|J = a ∈ Tk where ∀ i = 1, . . . , k, ai = m({xi}).

For η ∈ C(T) a continuous function defined on T, we define

η|J = (η(xj))
k
j=1 ∈ Tk.

Given a convolution operator Φ with kernel t 7→ ϕ(−t), we define Φx : RN →
L2(T) (resp. Φ′x, Φ′′x) by

∀a ∈ RN , Φx(a) = Φ(ma,x) =

N∑
i=1

aiϕ(xi − ·), (1)

Φ′x(a) = (Φx(a))′ =

N∑
i=1

aiϕ
′(xi − ·), (2)

Φ′′x(a) = (Φx(a))′′ =

N∑
i=1

aiϕ
′′(xi − ·). (3)

We define

Γx = (Φx,Φ
′
x) : (u, v) ∈ RN × RN 7→ Φxu+ Φ′xv ∈ L2(T), (4)

Γ′x = (Φ′x,Φ
′′
x) : (u, v) ∈ RN × RN 7→ Φ′xu+ Φ′′xv ∈ L2(T). (5)
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Eventually, in order to study small noise regimes, we shall consider domains
Dα,λ0 , for α > 0, λ0 > 0, where:

Dα,λ0
=
{

(λ,w) ∈ R+ × L2(T) ; 0 6 λ 6 λ0 and ||w||2 6 αλ
}
. (6)

2 Preliminaries

In this section, we precise the framework and we state the basic results
needed in the next sections. We refer to [5] for aspects regarding functional
analysis and to [17] as far as duality in optimization is concerned.

2.1 Topology of Radon Measures

Since T is compact, the space of Radon measuresM(T) can be defined as the
dual of the space C(T) of continuous functions on T, endowed with the uniform
norm. It is naturally a Banach space when endowed with the dual norm (also
known as the total variation), defined as

∀m ∈M(T), ||m||TV = sup

{ ∫
ψdm ; ψ ∈ C(T), ||ψ||∞ 6 1

}
. (7)

In that case, the dual of M(T) is a complicated space, and it is strictly larger
than C(T) as C(T) is not reflexive.

However, if we endowM(T) with its weak-* topology (i.e. the coarsest topol-
ogy such that the elements of C(T) define continuous linear forms on M(T)),
then M(T) is a locally convex space whose dual is C(T).

In the following, we endow C(T) (respectively M(T)) with its weak (re-
spectively its weak-*) topology so that both have symmetrical roles: one is the
dual of the other, and conversely. Moreover, since C(T) is separable, the set
{m ∈M(T) ; ||m||TV 6 1} endowed with the weak-* topology is metrizable.

Given a function ϕ ∈ C2(T,R), we define an operator Φ :M(T)→ L2(T) as

∀m ∈M(T), Φ(m) : t 7→
∫
T
ϕ(x− t)dm(x).

It can be shown using Fubini’s theorem that Φ is weak-* to weak continuous.
Moreover, its adjoint operator Φ∗ : L2(T)→ C(T) is defined as

∀ y ∈ L2(T), Φ∗(y) : t 7→
∫
T
ϕ(t− x)y(x)dx.

2.2 Subdifferential of the Total Variation

It is clear from the definition of the total variation in (7) that it is convex
lower semi-continuous with respect to the weak-* topology. Its subdifferential
is defined as

∂||m||TV =

{
η ∈ C(T) ; ∀m̃ ∈M(T), ||m̃||TV > ||m||TV +

∫
η d(m̃−m)

}
, (8)
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for any m ∈M(T) such that ||m||TV < +∞.
Since the total variation is a sublinear function, its subgradient has a special

structure. One may show (see Proposition 12 in Appendix A) that

∂||m||TV =

{
η ∈ C(T) ; ||η||∞ 6 1 and

∫
η dm = ||m||TV

}
. (9)

In particular, when m is a measure with finite support, i.e. m =
∑N
i=1 aiδxi

for some N ∈ N, with (ai)16i6N ∈ (R∗)N and distinct (xi)16i6N ∈ TN

∂||m||TV = {η ∈ C(T) ; ||η||∞ 6 1 and ∀ i = 1, . . . , N, η(xi) = sign(ai)} . (10)

2.3 Primal and Dual Problems

Given an observation y0 = Φm0 ∈ L2(T) for some m0 ∈ M(T), we consider
reconstructing m0 by solving either the relaxed problem for λ > 0

min
m∈M(T)

1

2
||Φ(m)− y0||22 + λ||m||TV, (Pλ(y0))

or the constrained problem

min
Φ(m)=y0

||m||TV. (P0(y0))

If m0 is the unique solution of (P0(y0)), we say that m0 is identifiable.
In the case where the observation is noisy (i.e. the observation y0 is replaced

with y0 +w for w ∈ L2(T)), we attempt to reconstruct m0 by solving Pλ(y0 +w)
for a well-chosen value of λ > 0.

Existence of solutions for (Pλ(y0)) is shown in [4], and existence of solutions
for (P0(y0)) can be checked using the direct method of the calculus of variations
(recall that for (P0(y0)), we assume that the observation is y0 = Φm0).

A straightforward approach to studying the solutions of Problem (Pλ(y0))

is then to apply Fermat’s rule: a discrete measure m = ma,x =
∑N
i=1 aiδxi is a

solution of (Pλ(y0)) if and only if there exists η ∈ C(T) such that

Φ∗(Φm− y0) + λη = 0,

with ||η||∞ 6 1 and η(xi) = sign(ai) for 1 6 i 6 N .
Another source of information for the study of Problems (Pλ(y0)) and (P0(y0))

is given by their associated dual problems. In the case of the ideal low-pass fil-
ter, this approach is also the key to the numerical algorithms used in [2, 8, 1]:
the dual problem can be recast into a finite-dimensional problem.

The Fenchel dual problem to (Pλ(y0)) is given by

max
||Φ∗p||∞61

〈y0, p〉 −
λ

2
||p||22, (Dλ(y0))
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which may be reformulated as a projection on a closed convex set (see [4, 1])

min
||Φ∗p||∞61

||y0

λ
− p||22. (D′λ(y))

This formulation immediately yields existence and uniqueness of a solution
to (Dλ(y0)).

The dual problem to (P0(y0)) is given by

sup
||Φ∗p||∞61

〈y0, p〉. (D0(y0))

Contrary to (Dλ(y0)), the existence of a solution to (D0(y0)) is not always
guaranteed, so that in the following (see Definition 5) we make this assumption.

Existence is guaranteed when for instance Im Φ∗ is finite-dimensional (as is
the case in the framework of [8]). If a solution to (D0(y0)) exists, the unique
solution of (Dλ(y0)) converges to a certain solution of (D0(y0)) for λ → 0+ as
shown in Proposition 1 below.

2.4 Dual Certificates

The strong duality between (Pλ(y0)) and (Dλ(y0)) is proved in [4, Prop. 2]
by seeing (D′λ(y)) as a predual problem for (Pλ(y0)). As a consequence, both
problems have the same value and any solution mλ of (Pλ(y0)) is linked with
the unique solution pλ of (Dλ(y0)) by the extremality condition{

Φ∗pλ ∈ ∂||mλ||TV,
−pλ = 1

λ (Φmλ − y0).
(11)

Moreover, given a pair (mλ, pλ) ∈ M(T) × L2(T), if relations (11) hold, then
mλ is a solution to Problem (Pλ(y0)) and pλ is the unique solution to Prob-
lem (Dλ(y0)).

As for (P0(y0)), a proof of strong duality is given in Appendix A (see Propo-
sition 13). If a solution p? to (D0(y0)) exists, then it is linked to any solution
m? of (P0(y0)) by

Φ∗p? ∈ ∂||m?||TV, (12)

and similarly, given a pair (m?, p?) ∈M(T)×L2(T), if relation (12) hold, then
m? is a solution to Problem (P0(y0)) and p? is a solution to Problem (D0(y0))).

Since finding η = Φ∗p? which satisfies (12) gives a quick proof that m? is
a solution of (P0(y0)), we call η a dual certificate for m?. We may also use a
similar terminology for ηλ = Φ∗pλ and Problem (Pλ(y0)).

In general, dual certificates for (P0(y0)) are not unique, but we consider in
the following definition a specific one, which is crucial for our analysis.

Definition 1 (Minimal-norm certificate). When it exists, the minimal-norm
dual certificate associated with (P0(y0)) is defined as η0 = Φ∗p0 where p0 ∈
L2(T) is the solution of (D0(y0)) with minimal norm, i.e.

η0 = Φ∗p0, where p0 = argmin
p

{||p||2 ; p is a solution of (D0(y0))} . (13)
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Observe that in the above definition, p0 is well-defined provided there exists
a solution to Problem (D0(y0)), since p0 is then the projection of 0 onto the
non-empty closed convex set of solutions. Moreover, in view of the extremality
conditions (12), given any solution m? to (P0(y0)), it may be expressed as

p0 = argmin
p

{||p||2 ; Φ∗p ∈ ∂||m?||TV} . (14)

Proposition 1 (Convergence of dual certificates). Let pλ be the unique solution
of Problem (Dλ(y0)), and p0 be the solution of Problem (D0(y0)) with minimal
norm defined in (13). Then

lim
λ→0+

pλ = p0 for the L2 strong topology.

Moreover the dual certificates ηλ = Φ∗pλ for Problem (Pλ(y0)) converge to the
minimal norm certificate η0 = Φ∗p0. More precisely,

∀k ∈ {0, 1, 2}, lim
λ→0+

η
(k)
λ = η

(k)
0 , (15)

in the sense of the uniform convergence.

Proof. Let pλ be the unique solution of (Dλ(y0)). By optimality of pλ (resp.
p0) for (Dλ(y0)) (resp. (D0(y0)))

〈y0, pλ〉 − λ||pλ||22 > 〈y0, p0〉 − λ||p0||22, (16)

〈y0, p0〉 > 〈y0, pλ〉. (17)

As a consequence ||p0||22 > ||pλ||22 for all λ > 0.
Now, let (λn)n∈N be any sequence of positive parameters converging to 0.

The sequence pλn being bounded in L2(T), we may extract a subsequence (de-
noted λn′) such that pλn′ weakly converges to some p? ∈ L2(T). Passing to the
limit in (16), we get 〈y0, p

?〉 > 〈y0, p0〉. Moreover, Φ∗pλn weakly converges to
Φ∗p? in C(T), so that ||Φ∗p?||∞ 6 lim infn′ ||Φ∗pλn′ ||∞ 6 1, and p? is therefore a
solution of (D0(y0)).

But one has
||p?||2 6 lim inf

n′
||pλn′ ||2 6 ||p0||2,

hence p? = p0 and in fact limn′→+∞ ||pλn′ ||2 = ||p0||2. As a consequence, pλn′
converges to p0 for the L2(T) strong topology as well. This being true any
sequence λn → 0+, we get the result claimed for pλ: assume by contradiction
that there exists ε0 > 0 and a sequence λn ↘ 0 such that ‖p0 − pλn‖2 > ε0

for all n ∈ N. By the above argument we may extract a subsequence λn′ which
converges towards p0, which contradicts ‖p0−pλ′n‖2 > ε0. Hence limλ→0 pλ = p0

strongly in L2.
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It remains to prove the convergence of the dual certificates. Observing that

η
(k)
λ (t) =

∫
ϕ(k)(t− x)pλ(x)dx, we get

|η(k)
λ (t)− η(k)

0 (t)| =
∣∣∣ ∫

T
ϕ(k)(t− x)(pλ − p0)(x)dx

∣∣∣
6

√∫
T
|ϕ(k)(t− x)|2dx

√∫
T
|(pλ − p0)(x)|2dx

6 C||pλ − p0||2,

where C > 0 does not depend on t nor k, hence the uniform convergence.

2.5 Application to the ideal Low-pass filter

In this paragraph, we apply the above duality results to the particular case
of the Dirichlet kernel, defined as

ϕ(t) =

fc∑
k=−fc

e2iπkt =
sin ((2fc + 1)πt)

sin(πt)
. (18)

It is well known that in this case the spaces Im Φ and Im Φ∗ are finite-dimensional,
being the space of real trigonometric polynomials with degree less than or equal
to fc.

We first check that a solution to (D0(y0)) always exists. As a consequence,
given any measure m0, the minimal norm certificate is well defined.

Proposition 2 (Existence of p0). Let m0 ∈ M(T) and y0 = Φm0 ∈ L2(T).
There exists a solution of (D0(y0)). As a consequence, p0 ∈ L2(T) is well
defined.

Proof. We rewrite (D0(y0)) as

sup
||η||∞61,η∈Im Φ∗

〈m0, η〉.

Let (ηn)n∈N be any maximizing sequence. Then (ηn)n∈N is bounded in the finite-
dimensional space of trigonometric polynomials with degree fc or less. We may
extract a subsequence converging to η? ∈ C(T). But ||η?||∞ 6 1 and η? ∈ Im Φ∗,
so that η? = Φ∗p? for some p? solution of (D0(y0)).

A striking result of [8] is that discrete measures are identifiable provided
that their support is separated enough, i.e. ∆(m0) > C

fc
for some C > 0, where

∆(m0) is the so-called minimum separation distance.

Definition 2 (Minimum separation). The minimum separation of the support
of a discrete measure m is defined as

∆(m) = inf
(t,t′)∈Supp(m)

|t− t′|,

where |t− t′| is the distance on the torus between t and t′ ∈ T, and we assume
t 6= t′.

11



In [8] it is proved that C 6 2 for complex measures (i.e. of the form ma,x

for a ∈ CN and x ∈ TN ) and C 6 1.87 for real measures (i.e. of the form
ma,x for a ∈ RN and x ∈ TN ). Extrapolating from numerical simulations on a
finite grid, the authors conjecture that for complex measures, one has C > 1.
In this section we apply results from Section 2.4 to show that for real measures,
necessarily C > 1

2 .
We rely on the following theorem, proved by P. Turán [32].

Theorem 1 (Turán). Let P (z) be a non trivial polynomial of degree n such
that |P (1)| = max|z|=1 |P (z)|. Then for any root z0 of P on the unit circle,
| arg(z0)| > π

n . Moreover, if | arg(z0)| = π
n , then P (z) = c(1 + zn) for some

c ∈ C∗.

From this theorem we derive necessary conditions for measures that can be
reconstructed by (P0(y0)).

Corollary 1 (Non identifiable measures). There exists a discrete measure m0

with ∆(m0) = 1
2fc

such that m0 is not a solution of (P0(y0)) for y0 = Φm0.

Proof. Let m0 = δ− 1
2fc

+δ0−δ 1
2fc

, assume by contradiction that m is a solution

of (P0(y0)), and let η ∈ C(T) be an associated dual certificate (which exists
since Im Φ∗ is finite-dimensional). Then necessarily η(− 1

2fc
) = η(0) = 1 and

η( 1
2fc

) = −1 and by the intermediate value theorem, there exists t0 ∈ (0, 1
2fc

)

such that η(t0) = 0.

Writing η(t) =
∑fc
k=−fc dke

2iπkt, the polynomial P (z) =
∑2fc
k=0 dk−fcz

k sat-

isfies P (1) = 1 = sup|z|=1 |P (z)| = |P (e
2iπ
2fc )|, and P (e2iπt0) = 0.

By Theorem 1, we cannot have |2πt0−0| < π
2fc

nor |2πt0− 2π
2fc
| < π

2fc
, hence

t0 = 1
4fc

and P (z) = c(1 + z2fc), so that η(t) = cos(2πfct). But this implies

η(− 1
2fc

) = −1, which contradicts the optimality of η.

In a similar way, we may also deduce the following corollary.

Corollary 2 (Opposite spikes separation). Let m? ∈ M(T) be any discrete
measure solution of Problem Pλ(y0 + w) or P0(y0) where y0 = Φm0 for any
data m0 ∈ M(T) and any noise w ∈ L2(T). If there exists x?0 ∈ T (resp.
x?1 ∈ T) such that m?({x?0}) > 0 (resp. m?({x?1}) < 0), then |x?0 − x?1| > 1

2fc
.

3 Noise Robustness

This section is devoted to the study of the behavior of solutions to Pλ(y0+w)
for small values of λ and ||w||. In order to study such regimes, as already defined
in (6), we consider sets of the form

Dα,λ0
=
{

(λ,w) ∈ R+ × L2(T) ; 0 6 λ 6 λ0 and ||w||2 6 αλ
}
,

for α > 0 and λ0 > 0.
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First, we introduce the notion of extended support of a measure. Then we
show that this concept governs the structure of solutions at small noise regime.
After introducing the Non Degenerate Source Condition, we state the main
result of the paper, i.e. that under this assumption, the solutions of Pλ(y0 +w)
have the same number of spikes as the original measure, and that these spikes
converge smoothly to those of the original measure.

3.1 Extended signed support

Our first step in understanding the behavior of solutions to Pλ(y0 + w) at
low noise regime is to introduce the notion of extended signed support.

Definition 3 (Extended signed support). Let m0 ∈M(T) such that there exists
a solution to (D0(y0)) (where as usual y0 = Φm0), and let η0 ∈ C(T) be the
associated minimal norm certificate.

The extended support of m0 is defined as:

Ext(m0) = {t ∈ T ; η0(t) = ±1} , (19)

and the extended signed support of m0 as:

Ext±(m0) = {(t, v) ∈ T× {+1,−1} ; η0(t) = v} . (20)

Notice that Extm0 and Ext±m0 actually depend on y0 = Φm0 rather than
on m0 itself. For any measure m0 ∈ M(T), the (signed) support and the
extended (signed) support of m0 are in general not related. Yet, from the
optimality conditions (12) we observe:

Proposition 3. Let m0 ∈M(T) and y0 = Φm0 such that there exists a solution
to (D0(y0)). Then:

• m0 is a solution to (P0(y0)) if and only if Supp±m0 ⊂ Ext±m0.

• In any case, if ΦExtm0
has full rank, the solution to (P0(y0)) is unique.

Here, following the notation (1), we have denoted by ΦExtm0
the restric-

tion of Φ to the space of measures with support in Extm0. The link between
Proposition 3 and the source condition [6] is discussed in Section 3.3

3.2 Local behavior of the support

In this paragraph, we focus on the local properties of the support of solutions
to Pλ(y0 +w) at low noise regime. As usual, we denote y0 = Φm0 for some m0 ∈
M(T). For now, we make as few assumptions as possible on m0. In particular,
we do not assume that ΦExtm0

has full rank. Any solution to Pλ(y0 +w) (which
is not necessarily unique) is denoted by m̃λ.

13



Lemma 1. Assume that there exists a solution to (D0(y0)) and let ε > 0. Then
there exists α > 0, λ0 > 0 such that for all (λ,w) ∈ Dα,λ0 ,

Supp± m̃λ ⊂
(
Ext±m0

)
⊕ ((−ε,+ε)× {0}) , (21)

where given two sets A and B, A ⊕ B = {a+ b ; a ∈ A, b ∈ B} denotes their
Minkowski sum.

In particular, if Extm0 consists in isolated points x0,1, . . . x0,N , Lemma 1
states that all the mass of m̃λ is concentrated in boxes (xi,0− ε, xi,0 + ε), where
ε→ 0 when λ, ||w|| → 0. Moreover, in each box, m̃λ has the sign of η0(x0,i).

Also, if Ext±m0 = ∅ (i.e. y = 0), we see that m̃λ = 0 for λ and ||w||2λ small
enough (in fact, any λ0 > 0 and α = 1

||Φ∗||2,∞ suffices, as can be seen from (11)).

Proof. We split the proof in several parts.

Behavior of the minimal norm certificate. Let us consider the sets:

Ext+ = {t ∈ T ; η0(t) = 1} , Ext− = {t ∈ T ; η0(t) = −1} ,
Ext+,ε = Ext+⊕(−ε, ε), Ext−,ε = Ext−⊕(−ε, ε).

From the uniform continuity of η0, for ε small enough, η0 >
1
2 in Ext+,ε and

η0 < − 1
2 in Ext−,ε, so that Ext+,ε ∩Ext−,ε = ∅.

If Ext+,ε ∪Ext−,ε ( T, the set Kε = T \
(
Ext+,ε ∪Ext−,ε

)
being compact,

supKε |η0| < 1. We define r = 1− supKε |η0|.
If Ext+,ε ∪Ext−,ε = T, the connectedness of T implies that Ext+,ε = T and

Ext−,ε = ∅, or conversely. In that case we define r = 1.
In any case, we see that for all g ∈ C(T), if ||g − η0||∞ < r, then

{t ∈ T ; g(t) = 1} ⊂ Ext+,ε and {t ∈ T ; g(t) = −1} ⊂ Ext−,ε . (22)

Variations of dual certificates. Let pλ be the solution of the noiseless prob-
lem (Dλ(y0)) and p̃λ be the solution of the noisy dual problem Dλ(y0 + w) for
w ∈ L2(T). Since the mapping y0

λ 7→ pλ is a projection onto a convex set
(see (D′λ(y))), it is non-expansive, i.e.

||pλ − p̃λ||2 6
||w||2
λ

. (23)

As a consequence, if ηλ = Φ∗pλ (resp. η̃λ = Φ∗p̃λ) is the dual certificate of
the noiseless (resp. noisy) problem, we have

||ηλ − η̃λ||∞ 6M
||w||2
λ

(24)

for some M > 0 (in fact M =
√∫

T |ϕ(t)|2dt = ||Φ∗||∞,2).
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From now on, we set α = r
2M and we impose ||w||2λ 6 α. Writing

||η0 − η̃λ||∞ 6 ||η0 − ηλ||∞ + ||ηλ − η̃λ||∞,

6 ||η0 − ηλ||∞ +
r

2
,

we see using Proposition 1 that for λ small enough η̃λ satisfies (22).

Structure of the reconstructed measure. By (22) for g = η̃λ and using the
extremality conditions we obtain that |m̃λ|(Kε) = 0 and that m̃λ (resp. −m̃λ)
is non-negative in Ext+,ε (resp. Ext−,ε). Indeed, the extremality conditions
impose that η̃λ = sign dm̃λ

d|m̃λ| , m̃λ-almost everywhere, hence the claimed result.

Lemma 1 does not make any assumption on the local structure of Ext±m0,
and does not provide any information on the local structure of m̃λ either (it
might even not be discrete). If we assume that η′′0 (x) 6= 0 for some x ∈ Extm0,
then the reconstructed measure has at most one spike in the neighborhood of x.

Lemma 2. Assume that there exists a solution to (D0(y0)) and that η′′0 (x) 6= 0
for some x ∈ Extm0. Then for ε > 0 small enough, there exists α > 0, λ0 > 0
such that for all (λ,w) ∈ Dα,λ0

, the restriction of m̃λ to (x− ε, x+ ε) is

• either the null measure,

• or of the form ãλ,wδx̃λ,w where sign ãλ,w = η0(x) and x̃λ,w ∈ (x−ε, x+ε).

If, in addition, m0 is identifiable and |m0|((x − ε, x + ε)) 6= 0, only the second
case may happen.

Proof. The proof follows the same steps as those of Lemma 1.

Behavior of the minimal norm certificate. First, observe that if η′′0 (x) 6= 0
and η0(x) = 1 (resp. −1) for x ∈ Extm0, then η′′0 (x) < 0 (resp. > 0). As
a consequence, x is an isolated point of Extm0. For ε > 0 small enough,

Extm0 ∩ (x− ε, x+ ε) = {x} and |η′′0 (t)| > |η′′0 (x)|
2 > 0 for all t ∈ (x− ε, x+ ε).

Variations of dual certificates. From (23), we infer that

||η′′λ − η̃′′λ||∞ 6M
||w||2
λ

(25)

with M > 0 (here M =
√∫

T |ϕ′′(t)|2dt = ||(Φ′′)∗||∞,2).

We set α = r
2M with r =

|η′′0 (x)|
2 and we impose ||w||2λ 6 α, so that

||η′′0 − η̃′′λ||∞ 6 ||η′′0 − η′′λ||∞ + ||η′′λ − η̃′′λ||∞,

6 ||η′′0 − η′′λ||∞ +
r

2
,

thus ||η′′0 − η̃′′λ||∞ <
|η′′0 (x)|

2 for λ small enough.
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Structure of the reconstructed measure. From the above inequality, we
know that η̃λ is strictly concave (resp. strictly convex) in (x − ε, x + ε). As a
result, there is at most one point x̃λ,w in (x− ε, x+ ε) such that η̃λ(x̃λ,w) = 1
(resp. −1).

If m0 is identifiable, it remains to prove that there is indeed one spike in (x−
ε, x+ ε). This is obtained by relying on a result by Bredies and Pikkarainen [4]
which is an application of [22, Th. 3.5]. It guarantees that m̃λ converges to
m for the weak-* topology when λ, ||w||2 → 0. We recall the result below (see
Proposition 4) for the convenience of the reader.

By weak-* convergence of m̃λ to m for λ→ 0+ and ||w||2 → 0, m̃λ((x−ε, x+
ε)) must converge to m0((x−ε, x+ε)). By the optimality conditions, we see that
|m0((x−ε, x+ε))| = |m0({x})|, so that m0({x}) 6= 0 and signm0({x}) = η0(x),
hence the result.

In the proof of Lemma 2 we have relied on the following result.

Proposition 4 ([22, Th. 3.5],[4, Prop. 5]). Let m0 be an identifiable measure,

if λ→ 0 and ||w|| → 0 with
||w||22
λ → 0, then m̃λ converges to m0 with respect to

the weak-* topology.

3.3 Non Degenerate Source Condition

The notion of extended signed support has strong connections with the
source condition introduced in [6] to derive convergence rates for the Bregman
distance.

Definition 4 (Source Condition). A measure m0 satisfies the source condition
if there exists p ∈ L2(T) such that

Φ∗p ∈ ∂||m0||TV.

In a finite-dimensional framework, the source condition is simply equivalent
to the optimality of m0 for (P0(y0)) given y0 = Φm0. In the framework of
Radon measures, the source condition amounts to assuming that m0 is a solution
of (P0(y0)) and that there exists a solution to (D0(y0)). In fact, the source
condition simply means that the conditions of Proposition 3 hold.

If one is interested in m0 being the unique solution of (P0(y0)) for y0 = Φm0

(in which case we say that m0 is identifiable), the source condition may be
strengthened to give a sufficient condition.

Proposition 5 ([12, Lemma 1.1]). Let m0 = mx0,a0 be a discrete measure. If
Φx0

has full rank, and if

• there exists η ∈ Im Φ∗ such that η ∈ ∂||m0||TV,

• ∀ s /∈ Supp(m0), |η(s)| < 1,
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then m0 is the unique solution of (P0(y0)).

In this paper, in view of Lemma 2, we strengthen a bit more the Source
Condition so as to derive a global stability result concerning the support of the
solutions of P(y0 + w) (see Theorem 2).

Definition 5 (Non Degenerate Source Condition). Let m0 = mx0,a0 be a dis-
crete measure, and {x0,1, . . . x0,N} = Suppm0. We say that m0 satisfies the
Non Degenerate Source Condition (NDSC) if

• there exists η ∈ Im Φ∗ such that η ∈ ∂||m0||TV.

• the minimal norm certificate η0 satisfies

∀ s ∈ T \ {x0,1, . . . x0,N}, |η0(s)| < 1,

∀ i ∈ {1, . . . N}, η′′0 (x0,i) 6= 0.

In that case, we say that η0 is not degenerate.

The first assumption in the above definition is the standard Source Con-
dition. The last two assumptions impose conditions on the extended signed
support, namely that Supp±m0 = Ext±(m0) and η′′0 (t) 6= 0 for all t ∈ Suppm0.

When Φ is an ideal low-pass filter with cutoff frequency fc, there are numer-
ical evidences that measures having a large enough separation distance (propor-
tional to fc) satisfy the non degenerate source condition, see Section 4.

3.4 Main Result

The following theorem, which is the main result of this paper, gives a global
result on the precise structure of the solution when the signal-to-noise ratio is
large enough and λ is small enough.

Theorem 2 (Noise robustness). Let m0 = ma0,x0
=
∑N
i=1 a0,iδx0,i

be a discrete
measure. Assume that Γx0

(defined in (4)) has full rank and that m0 satisfies
the Non Degenerate Source Condition.

Then there exists α > 0, λ0 > 0, such that for (λ,w) ∈ Dα,λ0 , the solution
m̃λ of Pλ(y + w) is unique and is composed of exactly N spikes.

Moreover, up to a permutation of indices, we may write m̃λ =
∑N
i=1 ãλ,iδx̃λ,i

with ãλ,i 6= 0 and sign(ãλ,i) = sign(a0,i) (for 1 6 i 6 N), and writing (ã0, x̃0) =
(a0, x0), the mapping

(λ,w) ∈ Dα,λ0
7→ (ãλ, x̃λ) ∈ RN × TN ,

is Ck−1 whenever ϕ ∈ Ck(T) (k > 2).
In particular, for λ = 1

α ||w||2, we have

∀i ∈ {1, . . . N}, |x̃λ,i − x0,i| = O(||w||2) and |ãλ,i − a0,i| = O(||w||2). (26)
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Proof. Applying Lemma 2 at each point x0,i for 1 6 i 6 N and Lemma 1, we
see that for ε > 0 small enough, there exists α > 0, λ0 > 0 such that m̃λ has at
most one spike in each interval (xi,0 − ε, xi,0 + ε), and

|m̃λ|

(
T \

N⋃
i=1

(xi,0 − ε, xi,0 + ε)

)
= 0.

In fact, since Γx0 has full rank, ΦExtm0 has full rank as well and m0 is
identifiable (by Proposition 3). Therefore, Lemma 2 ensures that there is indeed
one spike in each interval, with sign equal to η0(x0,i).

It remains to prove the uniqueness of the amplitudes and locations (ãλ, x̃λ)
and their smoothness as function of (λ,w). To this end, we observe that they
satisfy the following implicit equation

Es0(ãλ, x̃λ, λ, w) = 0

where s0 = sign(a0) = (η0(xi,0))16i6N , and

Es0(a, x, λ, w) =

(
Φ∗x(Φxa− y0 − w) + λs0

Φ′x
∗
(Φxa− y0 − w)

)
= Γ∗x(Φxa− y0 − w) + λ

(
s0

0

)
.

Indeed, this implicit equation simply states that η̃λ(x̃λ,i) = sign(a0,i) = sign(ãλ,i),
and that η̃′λ(x̃λ,i) = 0.

Since ((a, x), (λ,w)) 7→ Es0(a, x, λ, w) is a C1 function defined on (RN ×
TN )× (R× L2(TN )), we may apply the implicit functions theorem.

The derivative of Es0 with respect to x and a reads

∂E

∂a
(a, x, λ, w) = Γ∗xΦx

∂E

∂x
(a, x, λ, w) =

(
diag(Φ∗x

′(Φxa− y0 − w))
diag(Φ∗x

′′(Φxa− y0 − w))

)
+ Γ∗xΦ′x diag(a).

so that for λ = 0, w = 0 and using y0 = Φx0a0, one obtains

∂Es
∂(a, x)

(a0, x0, 0, 0) = Γ∗x0

(
Φx0

, Φ′x0
diag(a0)

)
= (Γ∗x0

Γx0)

(
Id 0
0 diag(a0)

)
.

Since we assume Γx0 has full rank, then
∂Es0
∂(a,x) (a0, x0, 0, 0) is invertible and the

implicit functions theorem applies: there is a neighborhood V ×W of (a0, x0)×
{(0, 0)} in (RN × TN )× (R× L2(T)) and a function f : W → V such that

((a, x), λ, w) ∈ V ×W and Es0(a, x, λ, w) = 0

⇐⇒ (λ,w) ∈W and (a, x) = f(λ,w).

Moreover, writing (âλ,w, x̂λ,w) = f(λ,w) ∈ RN × TN , we have
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• (â0,0, x̂0,0) = (a0, x0),

• for any (λ,w) ∈W , sign(âλ,w) = s0,

• if ϕ ∈ Ck(T) (for k > 2), then f ∈ Ck−1(W ).

The constructed amplitudes and locations (âλ,w, x̂λ,w) coincide with those of
the solutions of Pλ(y0 + w) for all (λ,w) ∈ W such that ||w||2 6 αλ. Possibly
changing the value of λ0 so that Dα,λ0

⊂W , we obtain the desired result.

Remark 1. Although this paper focuses on identifiable measures, Theorem 2
describes the evolution of the solutions of Pλ(y0 +w) for any input measure m1

such that there exists m0 which satisfies the non degenerate source condition
and y0 = Φm1 = Φm0. Instead of converging towards m1, the solutions will
converge towards m0.

3.5 Extensions

Theorem 2 extends in a straightforward manner to higher dimensions, i.e.
when replacing T by Td for d > 1. In the NDSC introduced in Definition 5, one
should replace, for i = 1, . . . , N , the constraint η′′0 (x0,i) 6= 0 by the constraint
that the Hessian D2η0(x0,i) ∈ Rd×d is invertible.

The proof also extends to non-stationary filtering operators, i.e. which can
be written as

∀ t ∈ Td, Φm(t) =

∫
Td
ϕ(x, t)dm(x)

where ϕ ∈ C2(Td × Td).

3.6 Application to the ideal Low-pass filter

We first observe that the injectivity condition on Γx assumed in Theorem 2
always holds.

Proposition 6 (Injectivity of Γx). Let x = (x1, . . . xN ) ∈ TN with xi 6= xj for
i 6= j and N 6 fc. Then Γx = (Φx,Φ

′
x) has full rank.

The proof is given in Appendix B.
As to whether or not the Non Degenerate Source Condition holds for discrete

measures, we will discuss this matter in Section 4 more in depth. For now, let
us mention that we have observed empirically that this condition holds under
the hypotheses of Theorem 1.2 in [8], namely that ∆(m) > 1.87

fc
, but also with

measures with far smaller values of ∆(m).
Figure 1 shows the whole solution path λ 7→ m̃λ of the solutions of Pλ(Φm0+

w) when fc = 10 and the input measure is identifiable and has three spikes
separated by ∆(m0) = 0.7/fc. Such a measure satisfies the Non-degenerate
Source Condition as shown in plot (a). The plots (b,c,d) illustrate the conclusion
of Theorem 2. For values of λ which are too small with respect to ||w||, the
solution m̃λ is perturbed with spurious spikes, but as soon as λ is large enough,
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Figure 1: (a) Input measure m0, and corresponding minimal norm certificate.
(b,c,d) Regularization paths λ 7→ m̃λ that are solutions of Pλ(Φm0 + w) for
three different noise levels ||w||. Each “strip” represents the evolution of a spike
as λ varies. The color refers to the sign of the spike (blue for negative and red
for positive) and the (vertical) width is proportional to its amplitude. The exact
location is given by the middle of each band.

m̃λ has a support that closely (but not exactly) matches the one of m0. For large
value of λ, spikes starts disappearing, and the support is not correctly estimated.
Figure 2 shows the solutions of Pλ(Φm0 +λw0), i.e. the noise w = λw0 is scaled
by the regularization parameter λ. In accordance with Theorem 2, this shows
that for ‖w‖2/λ = ‖w0‖2 6 0.07, the support of the spikes is precisely estimated.

4 Vanishing Derivatives Pre-certificate

We show in this section that, if the Non Degenerate Source Condition holds,
the minimal norm certificate η0 is characterized by its values on the support of
m0 and the fact that its derivative must vanish on the support of m0. Thus, one
may compute the minimal norm certificate simply by solving a linear system,
without handling the cumbersome constraint ||η0||∞ 6 1.

4.1 Dual Pre-certificates

Loosely speaking, we call pre-certificate any “good candidate” for a solution
of (12). Typically, a pre-certificate is built by solving a linear system (with
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Figure 2: Same plots as Figure 1 except that the solutions of P(Φm0 + λw0)
are displayed instead of those of Pλ(Φm0 + w).

possibly a condition on its norm). The following pre-certificate appears naturally
in our analysis.

Definition 6 (Vanishing derivative pre-certificate). The vanishing derivative
pre-certificate associated with a measure m0 = ma0,x0

is ηV = Φ∗pV where

pV = argmin
p∈L2(T)

||p||2 subj. to ∀ 1 6 i 6 N,

{
(Φ∗p)(x0,i) = sign(a0,i),
(Φ∗p)′(x0,i) = 0.

(27)

It is clear that if the Source Condition (see Definition 4) holds, then pV

exists (since Problem (27) is feasible). Observe that, in general, ηV is not a
certificate for m0 since it does not satisfy the constraint ‖ηV‖∞ 6 1. The
following proposition gathers several facts about the vanishing derivative pre-
certificate which show that it is indeed a good candidate for the minimal norm
certificate.

Proposition 7. Let m0 = ma0,x0
=
∑N
i=1 a0,iδx0,i

be a discrete measure. The
following assertions hold.

• Problem (27) is feasible and ‖ηV‖∞ 6 1 if and only if the Source Condition
holds and ηV = η0.

• If Problem (27) is feasible and Γx0
has full rank, i.e. Γ∗x0

Γx0
∈ R2N×2N
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is invertible, then

ηV = Φ∗Γ+,∗
x0

(
sign(a0)

0

)
where Γ+,∗

x0
= Γx0(Γ∗x0

Γx0)−1.

• If Γx0 has full rank, then m0 satisfies the Non Degenerate Source Condi-
tion if and only if Problem (27) is feasible and

∀ s ∈ T \ {x0,1, . . . x0,N}, |ηV(s)| < 1,

∀ i ∈ {1, . . . N}, η′′V(x0,i) 6= 0.

The third assertion of Proposition 7 states that it is equivalent to check the
Non Degenerate Source Condition on η0 (Definition 5) or to check the same
conditions on ηV. In case those conditions hold, one even has ηV = η0 (first
assertion). The main point of this equivalence is that the second assertion
yields a practical expression to compute ηV which may be used in numerical
experiments (see Section 4.3).

Proof. For the first assertion, we observe that if Problem (27) is feasible (and
thus pV exists) and ‖ηV‖∞ 6 1, then ηV ∈ ∂||m0||TV and the Source Condition
holds. Hence, ‖pV‖2 > ‖p0‖2. On the other hand the minimal norm certificate
η0 must satisfy all the constraints of (27), thus the minimality of the norms of
both ηV and η0 implies that ηV = η0. The converse implication is obvious.

For the second assertion, Problem (27) can be written as

ηV = argmin
η=Φ∗p

||p||2. subj. to

{
Φ∗x0

p = sign(a0),
Φ′∗x0

p = 0,

which is a quadratic optimization problem in a Hilbert space with a finite num-
ber of affine equality constraints. Moreover, the assumption that Γx0

has full
rank implies that the constraints are qualified. Hence it can be solved by intro-
ducing Lagrange multipliers u and v for the constraints. One should therefore
solve the following linear system to obtain the value of p = pV Id Φx0 Φ′x0

Φ∗x0
0 0

Φ′x0

∗
0 0

pu
v

 =

0
s
0

 .

Solving for (u, v) in these equations gives the result.
For the third assertion, if the Non Degenerate Source condition holds, we

apply Theorem 2 which yields a C1 path λ 7→ (ãλ, x̃λ) of solutions of Pλ(y0)
(we consider the case w = 0). Then from Proposition 8 below, we obtain that
ηV is a valid certificate and ηV = η0, hence ηV is non-degenerate. The converse
implication is a straightforward consequence of the first assertion.
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4.2 Necessary condition for support recovery

There is a priori no reason for the vanishing derivative pre-certificate ηV to
satisfy ||ηV||∞ 6 1. Here, we prove that that is in fact a necessary condition for
(noiseless) exact support recovery to hold on some interval [0, λ0) with λ0 > 0,
i.e. the solutions of Pλ(y0) having exactly N spikes which converge smoothly
towards those of the original measure.

Proposition 8. Let m0 = ma0,x0 =
∑N
i=1 a0,iδx0,i be a discrete measure such

that Γx0
has full rank. Assume that there exists λ0 > 0 and a C1 path [0, λ0)→

RN × TN , λ 7→ (aλ, xλ) such that for all λ ∈ [0, λ0) the measure mλ = maλ,xλ

is a solution to Pλ(y0) (the noiseless problem).
Then ηV exists, ‖ηV‖∞ 6 1 and ηV = η0.

Proof. Let pλ = 1
λ (y0 − Φmλ) = 1

λ (Φx0
a0 − Φxλaλ) be the certificate de-

fined by the optimality conditions (11). We show that Φ∗pλ converges towards

Φ∗Γ+,∗
x0

(
sign(a0)

0

)
= ηV (and that the latter exists).

Writing

a′λ =
daλ
dλ
∈ RN and x′λ =

dxλ
dλ
∈ RN ,

we observe that for any i ∈ {1, . . . N} and any x ∈ T,

aλ,iϕ(xλ,i − x)− a0,iϕ(x0,i − x)

λ
−
[
a0,iϕ

′(x0,i − x)x′0,i + a′0,iϕ(x0,i − x)
]

=

∫ 1

0

[
aλt,iϕ

′(xλt,i − x)x′λt,i + a′λt,iϕ(xλt,i − x)
]

−
[
a0,iϕ

′(x0,i − x)x′0,i + a′0,iϕ(x0,i − x)
]

dt,

and the latter integral converges (uniformly in x) to zero when λ → 0+ by
uniform continuity of its integrand (since a, x and ϕ are C1). As a consequence,

we obtain that
y0−Φxλaλ

λ converges uniformly to −Γx0

(
Id 0
0 diag(a0)

)(
a′0
x′0

)
.

On the other hand, we observe that for λ small enough, sign(aλ) = sign(a0),
and using the notations of the proof of Theorem 2, the implicit equation Es0(aλ, xλ, λ, 0) =
0 holds. Differentiating that equation at λ = 0 we obtain:(

∂Es0
∂(a, x)

(a0, x0, 0, 0)

)(
a′0
x′0

)
+
∂Es0
∂λ

(a0, x0, 0, 0) = 0,

or equivalently

(Γ∗x0
Γx0)

(
Id 0
0 diag(a0)

)(
a′0
x′0

)
= −

(
s0

0

)
.

As a consequence, Problem (27) is feasible and we see that
y0−Φxλaλ

λ con-

verges uniformly (and thus in the L2 strong topology) to Γx0
(Γ∗x0

Γx0
)−1

(
sign(a0)

0

)
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and Φ∗
(
y0−Φxλ

λ

)
converges uniformly to Φ∗Γ+,∗

x0

(
sign(a0)

0

)
(which is precisely

ηV from the second assertion of Proposition 7).

Since ‖Φ∗
(
y0−Φxλaλ

λ

)
‖∞ = ‖Φ∗pλ‖∞ 6 1 for all λ > 0, we obtain that

‖ηV‖∞ 6 1, hence the claimed result.

4.3 Application to the Ideal Low-pass Filter

In order to prove their identifiability result for measures, the authors of [8]
also introduce a “good candidate” for a dual certificate associated with m =
ma,x for a ∈ CN and x ∈ RN . For K being the square of the Fejer kernel, they
build a trigonometric polynomial

ηCF(t) =

N∑
i=1

(αiK(t− xi) + βiK
′(t− xi)) with K(t) =

 sin
((

fc
2 + 1

)
πt
)

(
fc
2 + 1

)
sinπt

4

and compute (αi, βi)
N
i=1 by imposing that ηCF(xi) = sign(ai) and (ηCF)′(xi) = 0.

They show that the constructed pre-certificate is indeed a certificate, i.e.
that ||ηCF||∞ 6 1, provided that the support is separated enough (i.e. when
∆(m) > C/fc). This result is important since it proves that measures that have
sufficiently separated spikes are identifiable. Furthermore, using the fact that
ηCF is not degenerate (i.e. (ηCF)′′(xi) 6= 0 for all i = 1, . . . , N), the same authors
derive an L2 robustness to noise result in [7], and Fernandez-Granda and Azais
et al. use the constructed certificate to analyze finely the local averages of the
spikes in [19, 1].

From a numerical perspective, we have investigated how this pre-certificate
compares with the vanishing derivative pre-certificate that appears naturally
in our analysis, by generating real-valued measures for different separation dis-
tances and observing when each pre-certificate η satisfies ||η||∞ 6 1.

As predicted by the result of [8], we observe numerically that the pre-
certificate ηCF is a certificate (i.e. ||ηCF||∞ 6 1) for any measure with ∆(m0) >
1.87/fc. We also observe that this continues to hold up to ∆(m0) > 1/fc. Yet,
below 1/fc, it may happen that some measures are still identifiable (as asserted
using the vanishing derivative pre-certificate ηV) but ηCF stops being a certifi-
cate, i.e. ||ηCF||∞ > 1. A typical example is shown in Figure 3, where, for fc = 6
we have used three equally spaced masses as an input, their separation distance
being ∆(m0) ∈ { 0.8

fc
, 0.7
fc
, 0.6
fc
, 0.5
fc
}. Here, we have computed an approximation

of the minimal norm certificate η0 by solving (Dλ(y0)) with very small λ.
For ∆(m0) = 0.8

fc
, both ηV and ηCF are certificates, so that the vanishing

derivatives pre-certificate ηV is equal to the minimal norm certificate η0. For
∆(m0) = 0.7

fc
, ηCF violates the constraint ||ηCF||∞ 6 1 but the vanishing deriva-

tive pre-certificates is still a certificate (even showing that the measure is iden-
tifiable). For ∆(m0) = 0.6

fc
and 0.5

fc
, neither ηV nor ηCF satisfy the constraint,

hence ηV 6= η0. Yet, η0 ensures that m0 is a solution to (P0(y0)).
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Figure 3: Pre-certificates for three equally spaced masses. The blue curves with
dots is the Fejer pre-certificate ηCF, while red continuous line is the vanishing
derivative ηV. The black dashed line is the minimal norm precertificate η0.

From the experiments we have carried out, we have observed that the vanish-
ing derivative pre-certificate ηV behaves in general at least as well as the square
Fejer ηCF. The only exceptions we have noticed is for a large number of peaks
(when N is close to fc), with ∆(m0) 6 1.5

fc
. This is illustrated in Figure 4 which

shows a measure m0 for which ηCF is a non-degenerate certificate (which shows
that it is identifiable), but for which η0 6= ηV since ||ηV||∞ > 1 (thus ηV is not
a certificate). Typically, we have in this case Supp±m0 ( Ext±(m0). Such a
measure is identifiable but there is no support recovery for λ > 0 (in the sense
of Proposition 8), hence its support is not stable.

Such pathological cases are relatively rare. An intuitive explanation for this
is the fact that having η0(x) = ±1 for x ∈ T \ Supp(m0) or η′′0 (x) = 0 for
some x ∈ Supp(m0) tend to impose a large L2 norm, thus contradicting the
minimality of p0 (recall that when ϕ is an ideal low pass filter ||η||2 = ||p||2).

5 Discrete Sparse Spikes Deconvolution

5.1 Finite Dimensional `1 Regularization

A popular way to compute approximate solutions to (Pλ(y0)) with fast al-
gorithms is to solve this problem on a finite discrete grid G ⊂ T. Denoting by
P the cardinal of the grid G, and by g ∈ TP the finite sequence of elements of
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Figure 4: Example of measure for which ηV 6= η0.

G, the idea is to solve Pλ(y0) (or P0(y0)) with the additional constraint that

m =
∑P
i=1 aiδgi for some a ∈ RP .

This is nothing but the so-called basis pursuit denoising problem [9], also
known as the Lasso [31] in statistics. Indeed, defining the linear operator Ψ
through

Ψa = Φm =

P∑
i=1

(Φδgi)ai,

the problem amounts to:

min
a∈RP

1

2
||y0 −Ψa||2 + λ||a||1 where ||a||1 =

P∑
i=1

|ai|, (P̃Gλ (y0))

where Ψ : RP → L2(T) is a linear operator (L2(T) may as well be replaced with
RQ or any Hilbert space), and ai denotes the mass at each point i of the grid.
In the noiseless case, the exact reconstruction problem reads:

min
Ψa=y0

||a||1. (P̃G0 (y0))

The aim of the present section is to study the asymptotic of Problems (P̃Gλ (y0))

and (P̃G0 (y0)) as the stepsize of the grid G vanishes. To this end, we keep the
framework of measures and we reformulate the constraint that Supp(m) ⊂ G,
i.e. that m can be written as m = ma,x, where x = (x1, . . . , xN ) ∈ GN . Recall
that the notation ma,x hints that ai 6= 0 for all i and that the xi’s are all distinct,
so that in general N 6 P . We thus adopt the following penalization term

||m||TV,G = sup

{∫
ψdm ; ψ ∈ C(T),∀t ∈ G |ψ(t)| 6 1

}
, (28)

so that ||m||TV,G = +∞ when Supp(m) 6⊂ G, and
∑N
i=1 |ai| otherwise.

Problems (P̃Gλ (y0)) and (P̃G0 (y0)) are then respectively equivalent to:

min
m∈M(T)

1

2
||Φ(m)− y0||2 + λ||m||TV,G (PGλ (y0))
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and
min

Φm=y0
||m||TV,G , (PG0 (y0))

Let us stress the fact that the results of Sections 5.2 and 5.3 hold for any
finite dimensional matrix Ψ ∈ RP×Q or linear operator Ψ : RP → L2(T): the
columns of Ψ need not be the samples of a convolution operator.

5.2 Certificates over a Discrete Grid

As in Section 2, we may compute the subdifferential of the `1 norm. For
m = ma,x =

∑N
i=1 aiδxi with support in G:

∂||m||TV,G = {η ∈ C(T) ; ||η||∞,G 6 1,∀ i = 1, . . . , N, η(xi) = sign(ai)} . (29)

where
||η||∞,G = max {|η(t)| ; t ∈ G} .

We also introduce the corresponding dual problems:

min
||Φ∗p||∞,G61

∥∥∥y0

λ
− p
∥∥∥2

2
, (DGλ (y0))

sup
||Φ∗p||∞,G61

〈y0, p〉. (DG0 (y0))

Remark 2. Let us denote by G the image by Φ of all measures with support in
G. It may happen (for instance if the grid is too rough) that y0 /∈ G, in which
case (PG0 (y0)) is not feasible and (DG0 (y0)) has infinite value. But (PGλ (y0)) is
then equivalent to PGλ (y0,G) where y0 = y0,G+y0,G⊥ is an orthogonal decompo-

sition. Problem (PGλ (y0)) is thus an approximation of PG0 (y0,G), and the relevant
dual problems are DGλ (y0,G) and DG0 (y0,G). For the sake of simplicity, we shall
assume from now on that y0 ∈ G, but the reader may keep in mind that this
hypothesis can be withdrawn by replacing y with y0,G.

In view of Remark 2, we observe that problems (DGλ (y0)) and (DG0 (y0)) are
in fact finite dimensional. Indeed, their constraints being invariant by addition
of elements of G⊥, we may consider their quotient with the space G⊥. Therefore
the condition p ∈ L2(T) may be reduced to p ∈ G where G is a finite dimensional
space.

As a consequence, a solution to (DG0 (y0)) always exists, so that we may define
the discrete minimal norm certificate:

ηG0 = Φ∗pG0 , where pG0 = argmin
p

{
||p||2 ; p is a solution of (DG0 (y0))

}
. (30)

The solutions of (PGλ (y0)) and (DGλ (y0)) (resp. (PG0 (y0)) and (DG0 (y0))) are re-
lated by the extremality conditions (11) (resp. (12)) where the total variation
is replaced with its discrete counterpart || · ||TV,G .
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5.3 Noise Robustness

As in the continuous case (cf. Section 3), the support of the solutions of
PGλ (y0 + w) for λ → 0+ and ||w||2 = O(λ) is governed by the minimal norm
certificate. We introduce here the discrete counterpart of the extended support
of a measure.

Definition 7 (Extended support). Let m0 ∈M(T) such that y0 = Φ(m0) ∈ G,
and let ηG0 be the discrete minimal norm certificate defined in (30). The extended
support of m0 relatively to G is defined as

ExtG(m0) =
{
t ∈ G ; |ηG0 (t)| = 1

}
, (31)

and the extended signed support relatively to G as

Ext±G (m0) =
{

(t, v) ∈ G × {−1,+1} ; ηG0 (t) = v
}
. (32)

It is important to notice that the assumption y0 ∈ G does not mean that the
support of m0 is included in G, but that there exists a measure with support
included in G which produces the same observation y0. Therefore the support
of m0 and its extended support may even be disjoint.

As in the continuous case, notice that m0 is a solution of (PG0 (y0)) if and
only if Supp±(m0) ⊂ Ext±G (m0).

Theorem 3 (Noise robustness, discrete case). Let m0 ∈ M(T) such that y0 =
Φ(m0) ∈ G. Then, there exists α > 0, λ0 > 0, such that for (λ,w) ∈ Dα,λ0

(defined in (6)) any solution m̃λ,w of PGλ (y0 + w) satisfies:

Supp±(m̃λ,w) ⊂ Ext±G (m0). (33)

If, in addition, ΦExtG(m0) has full rank and m0 is a solution of (PG0 (y0)), then
the solution m̃λ,w is unique, m0 is identifiable and choosing λ = ||w||2/α ensures
||m̃λ,w −m||2,G = O(||w||), where

||m̃λ,w −m||22,G =
∑
x∈G
|m({x})− m̃λ,w({x})|2.

Proof. The proof is essentially the same as in the continuous case, therefore we
only sketch it. To simplify the notation, we write J = ExtG(m0). The solutions
of (DGλ (y0)) converge to pG0 ∈ L2(T) for λ→ 0+, where Φ∗pG0 = ηG0 is the discrete
minimal norm certificate.

By the triangle inequality

||η̃λ − ηG0 ||∞,G 6 ||η̃λ − ηGλ ||∞,G︸ ︷︷ ︸
6C ||w||2λ

+||ηGλ − η
G
0 ||∞,G

Thus, there exist two constants α > 0 and λ0 > 0, such that for ||w||2λ 6
α and 0 < λ < λ0, |η̃λ(x)| < 1 for any x ∈ G \ J . Then, the primal-dual
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extremality conditions imply that for any solution m̃λ,w of PGλ (y0 +w), one has
Supp(m̃λ,w) ⊂ J and equality of the signs.

Now, if ΦJ has full rank, we can invert the extremality condition:

1

λ
Φ∗J
(
y0 + w − ΦJ(m̃λ,w|J)

)
= η̃λ|J ,

so that m̃λ,w|J = m|J + Φ+
J w−λ(ΦJΦ∗J)−1η̃λ|J .

Observing that ||η̃λ|J ||∞,G 6 1, we obtain the `2-robustness result.

Theorem 3 is analogous to Lemma 1 for the continuous problem. The discrete
nature of the problem makes its conclusions more precise. Although the `2-
robustness results are similar to those of Theorem 2, the focus here is a bit
more general, in the sense that this theorem does not assert that the support of
the recovered measures matches the support of the input measure m0. In fact,
if m0 is a solution to (P̃G0 (y0)), Supp±(m0) ⊂ Ext±G (m0), so that the recovered

solutions to PGλ (y0 +w) have in general more spikes than m0, and the spikes in
ExtG(m0) \ Supp(m0) must vanish as λ→ 0, ||w||2 → 0.

In order to get the exact recovery of the signed support for small noise, we
may assume in addition that Supp±(m0) = Ext±G (m0) so as to obtain a result
analogous to Theorem 2. Precisely, we obtain the following theorem which was
initially proved by Fuchs [20]. First, we introduce a pre-certificate.

Definition 8 (Fuchs pre-certificate). Let m0 ∈M(T) such that Supp(m0) ⊂ G.
We define the Fuchs pre-certificate as

ηF = argmin
η=Φ∗p,p∈L2

||p|| subject to η|Suppm0
= sign(m0|Suppm0

). (34)

This pre-certificate, introduced in [20], is a certificate for m0 if and only if
||ηF||∞,G 6 1, in which case it is equal to the discrete minimal norm pre-certificate
ηG0 .

If ΦSuppm0
has full rank, then ηF can be computed by solving a linear system:

ηF = Φ∗Φ+,∗
I sign(m|I) where I = Suppm0 and Φ+,∗

I = ΦI(Φ
∗
IΦI)

−1.

Corollary 3 (Exact support recovery, discrete case,[20]). Let m0 ∈M(T) such
that Supp(m0) ⊂ G, and that ΦSuppm0

has full rank. If |ηF(t)| < 1 for all
t ∈ G \ Suppm0, then m0 is identifiable for G and there exists α > 0, λ0 > 0,
such that for (λ,w) ∈ Dα,λ0 the solution m̃λ,w of PGλ (y + w) is unique and
satisfies Supp±(m̃) = Supp±(m0). Moreover

m̃λ,w|I = m0|I + Φ+
I w − λ(ΦIΦ

∗
I)
−1 sign(m0|I), (35)

where I = Suppm0.

The condition |ηF(t)| < 1 for all t ∈ G \ Suppm0 is often called the irrepre-
sentability condition in the statistics literature, see [34]. This condition can be
shown to be almost a necessary and sufficient condition to ensure exact recovery
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of the support of m0. For instance, if |ηF(t)| > 1 for some t ∈ G \ Suppm0, one
can show that for all λ > 0 Supp(m̃λ) 6= Suppm0 where m̃λ is any solution of
PGλ (y0), see [33]. In our framework, we see that this irrepresentability condition
means that the precertificate ηF is indeed a certificate (so that it is equal to the
minimal norm certificate), and that its saturation set is equal to the support of
m0.

For deconvolution problems, an important issue is that Corollary 3 is useless
when studying the stability of the original infinite dimensional problem (Pλ(y0)).
Indeed, the pre-certificate (34) is not constrained to have vanishing derivatives,
so that it generally takes some values strictly greater than 1 for a generic discrete
input measure m0. When the stepsize of the grid is small enough, such values are
sampled and ||ηF||∞,G necessarily becomes strictly larger than one. As detailed in
Section 4, when shifting from the discrete grid setting to the continuous setting,
the natural pre-certificate to consider is the vanishing derivative pre-certificate
ηV defined in (27), and not the pre-certificate ηF.

5.4 Structure of the Extended Support for Thin Grids

In the previous section, we have introduced the notion of extended signed
support of a measure m0 relatively to a grid G, and we have proved that this
set, Ext±G m0, contains the signed supports of all the reconstructed measures
for small noise. In this section, we focus on the structure of the extended
support. We show that, if the support of m0 belongs to the grid for a sufficiently
small stepsize and if the Non Degenerate Source Condition holds, the extended
signed support consists in the signed support of m0 and possibly one immediate
neighbor with the same sign for each spike. Therefore, when the grid stepsize is
small enough, the support of the measure is generally not stable for the discrete
problem, but the support of the reconstructed measure is a close approximation
of the original one.

From now on, for the sake of simplicity, we consider dyadic grids Gn ={
j

2n ; 0 6 j 6 2n − 1
}

. The constraint sets in DGnλ (y0) and (Dλ(y0)) are de-
noted respectively by

Cn =

{
p ∈ L2(T) ;

∣∣∣∣(Φ∗p)( j

2n

)∣∣∣∣ 6 1, 0 6 j 6 2n
}
, (36)

and C =
{
p ∈ L2(T) ; ‖Φ∗p‖∞ 6 1

}
=
⋂
n∈N

Cn. (37)

The structure of Ext±G (m0) for large n is intimately related to the conver-

gence of pGn0 to p0. First, let us notice the following result, whose proof is given
in Appendix C.

Proposition 9 (Convergence for fixed λ). Let m0 ∈ M(T). Then, for any
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λ > 0,

lim
n→+∞

pGnλ = pλ for the L2(T)(strong) topology, (38)

and lim
n→+∞

ηGnλ = ηλ for the topology of the uniform convergence. (39)

Moreover, if there exists a solution to the continuous dual problem (D0(y0)),

lim
λ→0+

lim
n→+∞

pGnλ = p0, and lim
λ→0+

lim
n→+∞

ηGnλ = η0. (40)

Proposition 9 simply states that the projection onto convex sets Cn which
converge (in the sense of set convergence) to C converges to the projection onto
C. However, the case λ = 0 is not as straightforward, and for instance one
cannot easily swap the limits in (40). In fact, given any decreasing sequence
of polyhedra Cn, it is not true in general that the minimal norm solution of
supp∈Cn〈y0, p〉 should converge to the minimal norm solution of supp∈C〈y0, p〉
where C =

⋂
n∈N Cn. As a consequence it is not clear to us whether this

convergence always holds for polyhedra of the form

Cn =
{
p ∈ L2 ; ||Φ∗p||∞,Gn 6 1

}
.

However, when the spikes locations belong to the grid for n large enough,
the convergence of the minimal norm certificates holds. In the case of dyadic
grids, this is equivalent to m0 ∈ M(T) being a discrete dyadic measure, i.e.
such that for some n0 ∈ N:

m =

N∑
i=1

aiδxi , with xi =
ji

2n0
and 0 6 ji 6 2n0 − 1. (41)

The proofs given below make use of a remark given in [8]: if a solution of the
continuous problem (P0(y0)) has support in the grid G, then it is also a solution
of the discrete problem (PG0 (y0)).

Proposition 10 (Convergence for dyadic measures). Let m0 ∈ M(T) be a
discrete dyadic measure (see (41)), and assume that the (possibly degenerate)
source condition holds. Then

lim
n→+∞

pGn0 = p0 for the L2 (strong) topology, (42)

and lim
n→+∞

η
Gn(i)
0 = η

(i)
0 for 0 6 i 6 2, in the sense of the uniform convergence,

(43)

where η0 = Φ∗p0 (resp. ηGn0 = Φ∗pGn0 ) denotes the corresponding minimal norm
certificate.
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Proof. First, following [8], we observe that, since (Φ∗p0)(xi) = sign(ai) and
||Φ∗p0||∞ 6 1 (a fortiori |Φ∗p0

(
j

2n

)
| 6 1 for 1 6 j 6 2n− 1), Φ∗p0 is also a dual

certificate for (PGn0 ) provided n > n0. As a consequence ||pGn0 ||2 6 ||p0||2.
The sequence (pGn0 )n∈N being bounded in L2(T), we may extract a subse-

quence (still denoted by pGn0 ) which weakly converges to some p̃ ∈ L2(T), and

||p̃||2 6 lim inf
n→+∞

||pGn0 ||2 6 lim sup
n→+∞

||pGn0 ||2 6 ||p0||2. (44)

Moreover, by optimality of pGn0 for the discrete problem, for each p ∈ C ⊂ Cn,
〈y0, p

Gn
0 〉 > 〈y0, p〉 so that in the limit 〈y0, p̃〉 > 〈y0, p〉. Observing that p̃ ∈

C =
⋂
n∈N Cn (since each Cn is weakly closed) we conclude that p̃ = p0. Since

the limit does not depend on the extracted subsequence, we conclude that the
whole sequence (pGn0 )n∈N converges to p0, and equality in (44) implies that the
convergence is strong.

The consequence regarding ηGn0 is straightforward.

We may now describe the structure of the extended support for dyadic mea-
sures which satisfy the Non Degenerate Source Condition.

Proposition 11 (Extended support). Let m0 =
∑N
i=1 aiδxi be a discrete dyadic

measure which satisfies the Non Degenerate Source Condition. Then, for n large
enough, there exists εn ∈ {+1,−1}N such that:

Supp±(m0) ⊂ Ext±Gn(m0) ⊂ Supp±(m0) ∪
(

Supp±(m0) +
εn

2n

)
, (45)

where Supp±(m0) + εn

2n =
{

(xi +
εni
2n , η

Gn
0 (xi)) ; 1 6 i 6 N

}
.

Corollary 4. Under the hypotheses of Proposition 11, for n large enough, there

exist two constants α(n) > 0 and λ0(n) > 0 such that, for ||w||2λ < α(n) and

0 < λ < λ0(n), any solution m̃Gnλ of (PGnλ ) has support in {xi, 1 6 i 6 N} ∪
{xi +

εni
2n , 1 6 i 6 N}, with signs ηGn0 (xi), 1 6 i 6 N .

Proof of Proposition 11. We describe the points where the value of ηGn0 may be
±1. By the Non-Degenerate Source Condition, there exists ε > 0 small enough
such that the intervals (x0,i − ε, x0,i + ε), 1 6 i 6 N , do not intersect, and that

for all t ∈
⋃N
i=1(xi − ε, xi + ε), |η0(t)| > C > 0 and |η′′0 (t)| > C > 0. Moreover,

supKε |η0| < 1 with Kε = T \
⋃N
i=1(xi − ε, xi + ε).

Therefore, by Proposition 10, for n large enough:

• |ηGn0 (t)| > C
2 > 0 for t ∈ (xi,0 − ε, xi,0 + ε),

• |(ηGn0 )′′(t)| > C
2 > 0 for t ∈ (xi − ε, xi + ε),

• supKε |η
Gn
0 | < 1,
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and in each interval (xi,0 − ε, xi + ε), ηGn0 has the same sign as η0 and it is
strictly concave (resp. strictly convex) if η0(xi) = 1 (resp. −1).

Assume for instance that η0(xi) = 1. The extremality conditions between
p0 and m0 for (P0(y)) also imply that m0 is a solution of (PGn0 (y0)). Then, the
extremality conditions between pGn0 and m0 imply that ηGn0 (xi) = 1 as well. By
the strict concavity of ηGn0 there is at most one other point t? ∈ (xi − ε, xi + ε)
such that ηGn0 (t?) = 1, and since ηGn0 (xi ± 1

2n ) 6 1, |t? − xi| 6 1
2n . Such a point

t? contributes to the extended support of m if and only if it belongs to the grid
(i.e. t? = xi ± 1

2n ).
The argument for η0(xi) = −1 is similar. This concludes the proof.

Corollary 4 highlights the difference between the continuous and the dis-
cretized problems. In the first case, any small noise would induce a slight
perturbation of the spikes locations and amplitudes, but their number would
stay the same. In the second case, the spikes cannot “move”, so that new spikes
may appear, but only at one of the immediate neighbors of the original ones.

For non-dyadic measures, we may show using Proposition 9 that for small,
fixed λ > 0, and n large enough, there is at most one pair of spikes (located at
consecutive points of the grid) in the neighborhood of each original spike. From
our numerical experiments described below (in the case of the ideal low-pass
filter), we conjecture that, in the case where there are indeed two spikes, they
surround the location of the original spike.

5.5 Application to the Ideal Low-pass Filter

To conclude this section, we compare the different (pre-)certificates involved
in the above discussion, whether on the discrete grid or in the continuous do-
main. Then we illustrate the convergence of the sets (Cn)n∈N towards C.

Certificates. Figure 5 illustrates the results of Section 5.4. The numerical
values are fc = 6, n = 7, and the distance between the two opposite spikes is 0.6

fc
.

The continuous minimal norm certificate η0 is shown: it satisfies |η0(t)| 6 1 for
all t ∈ T and η0(xi) = signm0({xi}) for 1 6 i 6 N . The discrete minimal norm
certificate ηGn0 satisfies |ηGn0 (t)| 6 1 for all t in the grid, and η(u) = signm0({xi})
for all u ∈ ExtGn in the neighborhood of xi. For a dyadic measure, such points
are xi and possibly one of its immediate neighbors. For non dyadic measures,
we conjecture that such points are the two immediate neighbors of xi.

The Fuchs precertificate ηF is also shown. Some points t of the grid do not
satisfy |ηF(t)| 6 1, hence the Fuchs pre-certificate is not a certificate and the
support is not stable. This was already clear from the fact that Supp(m0) (
ExtGn(m0).

Figure 6 focuses on the reconstructed amplitudes ãi using Pλ(y0) as λ→ 0.
Each curve represents a path λ 7→ ãi. Note that for the problem on a finite
grid, such paths are piecewise affine. In the dyadic case (left part of the figure),
the amplitude at xi (continuous line) and at the next point of the grid (dashed
line) are shown. As λ → 0, the spike at the neighbor vanishes and the result
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Figure 5: Comparison of certificates for a dyadic (left) and a non-dyadic mea-
sure (right). The second row is a zoom of the first one near the left spike. The
(continuous) minimum norm certificate η0 (in continuous red line) is everywhere
bounded by 1. The (discrete) minimum norm certificate ηGn0 (in dashed blue
line) is bounded by 1 at the grid points. The Fuchs pre-certificate ηF (dash-dot
green line) is above 1 at some points of the grid: the Fuchs criterion is not
satisfied.
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tends to the original identifiable measure. In the non dyadic case (right part
of the figure), the amplitude at the two immediate neighbors of xi are shown
(continuous and dashed lines). Here Suppm0 6⊂ G so that m0 is not identifiable
for the discrete problem. For each spike, the amplitudes of the two neighbors
converge to some non zero value. The limit measure as λ→ 0 is the solution of
P0(y0G).

λ

(a) Dyadic measure

λ

(b) Non dyadic measure

Figure 6: Display of the solution path (as a function of λ) for the measure
displayed on Figure 5. Left: Amplitudes of the coefficients at xi (continuous
line) and at the next point of the grid (dashed line) as λ varies. Right: idem
for the two immediate neighbors of xi. Some other spikes (grey continuous line)
appear and vanish before the last segments, as λ→ 0.

Set convergence. Now, we interpret the convergence of the discrete prob-
lems through the convergence of the corresponding constraint set for the dual
problem. Writing Φ∗p(x) =

∫
p(t)ϕ(x− t)dt = 〈p, ϕx〉L2 with ϕx : t 7→ ϕ(x− t),

we observe that:

Cn =

{
p ∈ Im Φ ;

∣∣∣∣Φ∗p( j

2n

)∣∣∣∣ 6 1, 0 6 j 6 2n − 1

}
(46)

=
{
p ∈ Im Φ ; |〈p, ϕ j

2n
〉L2 | 6 1, 0 6 j 6 2n − 1

}
. (47)

As a consequence Cn is the polar set of the convex hull of
{
±ϕ j

2n
; 0 6 j 6 2n − 1

}
.

In the case of the Dirichlet kernel, the vector space Im Φ is the space of
trigonometric polynomials with degree less than or equal to fc. An orthonormal
basis of Im Φ is given by: (c0, c1, . . . cfc , s1, . . . sfc) where c0 ≡ 1, ck : t 7→√

2 cos(2πkt) and sk : t 7→
√

2 sin(2πkt) for 1 6 k 6 fc.
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Moreover,

ϕ(x− t) =
1

2fc + 1

(
1 +

fc∑
k=1

2 cos(2πk(x− t))

)

=
1

2fc + 1

(
1 + 2

fc∑
k=1

(cos(2πkx) cos(2πkt) + sin(2πkx) sin(2πkt))

)

so that we may write:

ϕx =
1

2fc + 1

(
c0 +

√
2

fc∑
k=1

(cos(2πkx)ck + sin(2πkx)sk)

)
.

(a) C3 (b) C4 (c) C7

Figure 7: Top: The convex set Cn for fc = 1, and n = 3, 4 or 7 (from left
to right). Bottom: same convex sets, the red spheres indicate the (rescaled)
vectors ϕ j

2n
.

For fc = 1, we obtain ϕx = 1
3

(
c0 +

√
2 (cos(2πx)c1 + sin(2πx)s1)

)
, and the

vectors ϕx lie on a circle. The convex hull of
{
±ϕ j

2n
; 0 6 j 6 2n − 1

}
is thus

a cylinder, and its polar set Cn is displayed in Figure 7 for n = 3, 4, and 7.
Problem (DGnλ (y0 +w)) corresponds to the projection of y0+w

λ onto the poly-
tope Cn. Each face of Cn corresponds to a possible signed support of the
solutions m̃λ,w. The large, flat faces of Cn yield stability to the support of m̃λ,w

for small noise w, as described by Theorem 3. As n→ +∞ these faces converge
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into a piecewise smooth manifold and the support of m̃λ,w is allowed to vary
smoothly in T, according to Theorem 2.

Conclusion

In this paper, we have given a precise statement about the support recov-
ery property of sparse spikes deconvolution with total variation regularization.
This support recovery is governed by the non-degeneracy of a minimal norm
certificate. This hypothesis can be checked by computing a vanishing derivative
pre-certificate, which can be computed in closed form. We have shown that
under this non-degeneracy hypothesis, one recovers the same number of spikes
and that these spikes converge to the original ones when λ and ||w||/λ are small
enough. While previous stability results [7, 19, 1] hold for an arbitrary noise
level and make use of any non-degenerate certificate, they are formulated in
terms of local averages of the recovered measure and do not describe precisely
the support. In contrast, our result which requires a specific certificate to be
non-degenerate and a regime where λ and ||w||/λ are small enough provides ex-
act support stability. These settings and results are thus not comparable, and
provide complementary informations about the performance of total variation
regularization.

Developing a similar framework for the discrete `1 setting, we have also
improved upon existing results about stability of the support by introducing the
notion of extended support of a measure. Our study highlights the difference
between the continuous and the discrete case: when the size of the grid is
small enough, the stable recovery of the support is generally not possible in the
discrete framework. Yet, in the non degenerate case, the reconstructed support
at small noise is a slight modification of the original one: each original spike
yields at most one pair of consecutive spikes which surround it.

Finally, let us note that the proposed method extends to non-stationary
filtering operators and to arbitrary dimensions.

Acknowledgements

The authors would like to thank Jalal Fadili, Charles Dossal and Samuel
Vaiter for fruitful discussions. This work has been supported by the European
Research Council (ERC project SIGMA-Vision).

A Auxiliary results

For the convenience of the reader, we give here the proofs of several auxiliary
results which are needed in the discussion.

Proposition 12 (Subdifferential of the total variation). Let us endow M(T)
with the weak-* topology and C(T) with the weak topology. Then, for any m ∈
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M(T), we have:

∂||m||TV =

{
η ∈ C(T) ; ||η||∞ 6 1 and

∫
η dm = ||m||TV

}
.

Proof. Let A = {η ∈ C(T) ; ∀m ∈M(T), 〈η, m〉 6 ||m||TV}. It is clear that
B∞(0, 1) ⊂ A, where B∞(0, 1) is the L∞(T) closed unit ball. Conversely, we
observe that A ⊂ B∞(0, 1) by considering the Dirac masses (±δt)t∈T.

Let us write J(m) := ||m||TV. The function J : M(T) → R ∪ {+∞} is
convex, proper, lower semi-continuous (for the weak-* topology), positively ho-
mogeneous and:

J∗(η) = sup
m∈M(T)

sup
t>0

(〈η, tm〉 − J(tm))

= sup
t>0

t

(
sup

m∈M(T)

〈η, m〉 − J(m)

)

=

{
0 if η ∈ A,
+∞ otherwise.

By Proposition I.5.1 in [17], for any η ∈ C(T):

η ∈ ∂J(m)⇐⇒ 〈η, m〉 = J(m) + J∗(η),

which is equivalent to ||η||∞ 6 1 and
∫
ηdm = ||m||TV.

Proposition 13. There exists a solution to (P0(y0)) and the strong duality
holds between (P0(y0)) and (D0(y0)), i.e.

min
Φ(m)=y0

||m||TV = sup
||Φ∗p||∞61

〈y0, p〉. (48)

Moreover, if a solution p? to (D0(y0)) exists,

Φ∗p? ∈ ∂||m?||TV (49)

where m? is any solution to (P0(y0)). Conversely, if (49) holds, then m? and
p? are solutions of respectively (P0(y0)) and (D0(y0)).

Proof. We apply [17, Theorem II.4.1] to (D0(y0)) (and not to (P0(y0)) as would
be natural) rewritten as

inf
||Φ∗p||∞61

〈−y0, p〉,

The infimum is finite since for any admissible p, 〈−y0, p〉 = 〈m0, Φp〉 > −||m0||TV.
Let V = L2(T), Y = C(T) (endowed with the strong topology), Y ∗ = M(T),
F (u) = 〈−y0, u〉 for u ∈ V , G(ψ) = ι||·||∞61(ψ) for ψ ∈ Y and Λ = Φ∗. It is clear
that F and G are proper convex lower semi-continuous functions. Eventually,
F is finite at 0, G is finite and continuous at 0 = Λ0. Hence the result.
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B Proof of Proposition 6

Assume that for some (u, v) ∈ RN × RN , Γx(u, v) = 0. Then

∀ t ∈ T, 0 =

N∑
j=1

(ujϕ(t− xj) + vjϕ
′(t− xj))

=

fc∑
k=−fc

 N∑
j=1

(uj + 2ikπvj)e
−2ikπxj

 e2ikπt

We deduce that

∀ k ∈ {−fc, . . . fc},
N∑
j=1

(uj + kṽj)r
k
j = 0 where

{
rj = e−2iπxj ,
ṽj = 2iπvj .

It is therefore sufficient to prove that the columns of the following matrix are
linearly independent

r−fc1 . . . r−fcN (−fc)r−fc1 . . . (−fc)r−fcN
...

...
...

...
rk1 . . . rkN krk1 . . . krkN
...

...
...

...

rfc1 . . . rfcN (fc)r
fc
1 . . . (fc)r

fc
N

 .

If N < fc, we complete the family {r1, . . . rN} in a family {r0, r1, . . . rfc} ⊂ S1

such that the ri’s are pairwise distinct. We obtain a square matrix M by
inserting the corresponding columns

M =



r−fc1 . . . r−fcfc
r−fc0 (−fc)r−fc1 . . . (−fc)r−fcfc

...
...

...
...

...
rk1 . . . rkfc rk0 krk1 . . . krkfc
...

...
...

...
...

rfc1 . . . rfcfc rfc0 (fc)r
fc
1 . . . (fc)r

fc
fc


.

We claim that M is invertible. Indeed, if there exists α ∈ C(2fc+1) such that
MTα = 0, then the rational function F (z) =

∑fc
k=−fc αkz

k satisfies:

F (rj) = 0 and F ′(rj) = 0 for 1 6 j 6 fc,

F (r0) = 0.

Hence, F has at least 2fc + 1 roots in S1, counting the multiplicities. This
imposes that F = 0, thus α = 0, and M is invertible. The result is proved.
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C Proof of Proposition 9

Let us denote by PCn(x) the projection of x ∈ L2(T) onto Cn. We have:

∥∥∥PCn(
y0

λ
)− PCn(0)

∥∥∥
2
6
∥∥∥y0

λ
− 0
∥∥∥

2
,

so that the sequence pGnλ = PCn(y0λ ) is bounded in L2(T), and we may extract

a subsequence p
G′n
λ which weakly converges to some p?λ ∈ L2(T). Since Cn′ is

(weakly) closed for all n′, p?λ ∈
⋂
n′ Cn′ = C.

Moreover, by the characterization of the projection onto convex sets:

∀z ∈ C ⊂ C ′n,
〈y0

λ
− pG

′
n

λ , z
〉
−
〈y0

λ
, p
G′n
λ

〉
+ ||pG

′
n

λ ||
2
2 6 0.

Passing to the limit n′ → +∞,
〈y0

λ
− p?λ, z

〉
−
〈y0

λ
, p?λ

〉
+ lim inf

n′
||pG

′
n

λ ||
2
2 6 0,〈y0

λ
− p?λ, z

〉
−
〈y0

λ
, p?λ

〉
+ ||p?λ||22 6 0,〈y0

λ
− p?λ, z − p?λ

〉
6 0.

Thus p?λ is the orthogonal projection of y0λ on C: p?λ = PC
(
y0
λ

)
= pλ. Since this

is true for any subsequence, the whole sequence pGnλ weakly converges to pλ.
Moreover, by lower semincontinuity and the inclusion C ⊂ Cn we have:∥∥∥y0

λ
− pλ

∥∥∥
2
6 lim inf

n→+∞

∥∥∥y0

λ
− pGnλ

∥∥∥
2
6 lim sup

n→+∞

∥∥∥y0

λ
− pGnλ

∥∥∥
2
6
∥∥∥y0

λ
− pλ

∥∥∥
2
,

so that y0
λ − p

Gn
λ converges strongly to y0

λ − pλ, hence the strong convergence of

pGnλ to pλ.
The rest of the statement follows from Proposition 1.
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Dunod, 1999.

[6] M. Burger and S. Osher. Convergence rates of convex variational regular-
ization. Inverse Problems, 20(5):1411–1421, 2004.

[7] E. J. Candès and C. Fernandez-Granda. Super-resolution from noisy data.
Journal of Fourier Analysis and Applications, 19(6):1229–1254, 2013.

[8] E. J. Candès and C. Fernandez-Granda. Towards a mathematical theory
of super-resolution. Communications on Pure and Applied Mathematics,
67(6):906?–956, 2014.

[9] S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by
basis pursuit. SIAM journal on scientific computing, 20(1):33–61, 1999.

[10] J. F. Claerbout and F. Muir. Robust modeling with erratic data. Geo-
physics, 38(5):826–844, 1973.

[11] L. Condat and A. Hirabayashi. Cadzow denoising upgraded: A new projec-
tion method for the recovery of dirac pulses from noisy linear measurements.
Preprint hal-00759253, 2013.

[12] Y. de Castro and F. Gamboa. Exact reconstruction using beurling min-
imal extrapolation. Journal of Mathematical Analysis and Applications,
395(1):336–354, 2012.

[13] L. Demanet, D. Needell, and N. Nguyen. Super-resolution via superset
selection and pruning. CoRR, abs/1302.6288, 2013.

[14] D. L. Donoho. Superresolution via sparsity constraints. SIAM J. Math.
Anal., 23(5):1309–1331, September 1992.

[15] C. Dossal and S. Mallat. Sparse spike deconvolution with minimum scale.
In Proceedings of SPARS, pages 123–126, November 2005.

[16] M. F. Duarte and R. G. Baraniuk. Spectral compressive sensing. Applied
and Computational Harmonic Analysis, 35(1):111–129, 2013.

[17] I. Ekeland and R. Témam. Convex Analysis and Variational Problems.
Number vol. 1 in Classics in Applied Mathematics. Society for Industrial
and Applied Mathematics, 1976.

[18] A. Fannjiang and W. Liao. Coherence pattern-guided compressive sensing
with unresolved grids. SIAM J. Img. Sci., 5(1):179–202, February 2012.

41



[19] C. Fernandez-Granda. Support detection in super-resolution. Proc. Pro-
ceedings of the 10th International Conference on Sampling Theory and Ap-
plications, pages 145–148, 2013.

[20] J.J. Fuchs. On sparse representations in arbitrary redundant bases. IEEE
Transactions on Information Theory, 50(6):1341–1344, 2004.

[21] M. Grasmair, O. Scherzer, and M. Haltmeier. Necessary and sufficient
conditions for linear convergence of `1-regularization. Communications on
Pure and Applied Mathematics, 64(2):161–182, 2011.

[22] B. Hofmann, B. Kaltenbacher, C. Poschl, and O. Scherzer. A convergence
rates result for tikhonov regularization in Banach spaces with non-smooth
operators. Inverse Problems, 23(3):987, 2007.

[23] S. Levy and P. Fullagar. Reconstruction of a sparse spike train from a
portion of its spectrum and application to high-resolution deconvolution.
Geophysics, 46(9):1235–1243, 1981.

[24] J. Lindberg. Mathematical concepts of optical superresolution. Journal of
Optics, 14(8):083001, 2012.

[25] D. A. Lorenz and D. Trede. Greedy Deconvolution of Point-like Objects.
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