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Abstract Convergence of a full discretisation method is studied for a class of non-
linear second-order in time evolution equations, where the nonlinear operator acting
on the first-order time derivative of the solution is supposed to be hemicontinuous,
monotone, coercive and to satisfy a certain growth condition, and the operator acting
on the solution is assumed to be linear, bounded, symmetric, and strongly positive.
The numerical approximation combines a Galerkin spatial discretisation with a novel
time discretisation obtained from a reformulation of the second-order evolution equa-
tion as a first-order system and an application of the two-step backward differentia-
tion formula with constant time stepsizes. Convergence towards the weak solution
is shown for suitably chosen piecewise polynomial in time prolongations of the re-
sulting fully discrete solutions, and an a priori error estimate ensures convergence of
second-order in time provided that the exact solution to the problem fulfills certain
regularity requirements. A numerical example for a model problem describing the
displacement of a vibrating membrane in a viscous medium illustrates the favourable
error behaviour of the proposed full discretisation method in situations where regular
solutions exist.
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1 Introduction

Nonlinear second-order evolution equations. In this work, we study the initial value
problem for a nonlinear evolution equation of second-order in time{

u′′+Au′+Bu = f in (0,T ) ,
u(0) = u0 , u′(0) = v0 .

(1.1)

Here, we assume the nonlinear operator A : VA → V ∗A acting on the first-order time
derivative of the solution to be hemicontinuous, monotone, coercive with exponent
p≥ 2 and to satisfy a suitable growth condition with exponent p−1, and we suppose
(VA,‖ · ‖VA) to form a real, reflexive, and separable Banach space, which is dense as
well as continuously embedded in a Hilbert space (H,(· |·)H ,‖·‖H). Furthermore, we
require the operator B : VB → V ∗B acting on the solution to be linear, bounded, sym-
metric, and strongly positive, which implies that (VB,‖ · ‖VB) forms a Hilbert space.
We assume VB to be separable and dense as well as continuously embedded in H. In
addition, we suppose the intersection V =VA∩VB to be separable and dense in each
of the spaces VA and VB, which yields the following scales of Banach spaces with
dense and continuous embeddings

VA∩VB =V ⊂VA ⊂ H = H∗ ⊂V ∗A ⊂V ∗ =V ∗A +V ∗B ,

VA∩VB =V ⊂VB ⊂ H = H∗ ⊂V ∗B ⊂V ∗ =V ∗A +V ∗B .

We assume the function defining the right-hand side of the evolution equation and the
initial values to satisfy the requirements f ∈ (Lp(0,T ;VA))

∗ and (u0,v0) ∈VB×H.

Scope of applications. Our assumptions on (1.1) comply with the functional analytic
framework employed for various nonlinear partial differential equations of second-
order in time, arising in different fields of application such as mechanics, quantum
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mechanics, molecular dynamics, and elastodynamics. A typical example describes
the displacement u : Ω × [0,T ]→ R of a vibrating membrane in a viscous medium

∂ttu+ |∂tu|p−2 ∂tu−∆u = f in Ω × (0,T ) ,
u = 0 on ∂Ω × (0,T ) ,
u(·,0) = u0 , ∂tu(·,0) = v0 in Ω ,

(1.2)

see for instance ANDREASSI, TORELLI [1] and LIONS [24].

Analytical results. Results on the existence, uniqueness, and regularity of weak so-
lutions to second-order evolution equations of the form (1.1) have been established
in the literature under different assumptions on the defining operators A and B. The
rather restrictive case that the spaces VA and VB coincide and form a Hilbert space
has been studied in GAJEWSKI, GRÖGER, ZACHARIAS [22, Kap. 7], ZEIDLER [31,
Ch. 33], and ROUBÍČEK [28, pp. 296ff., 342ff.]; in applications this leads to evolu-
tion equations (1.1) involving a linearly bounded operator A. Results including the
case VA 6= VB have been given in the seminal work of LIONS, STRAUSS [26], see
also BARBU [3, Ch. V]. A special class of problems as well as particular examples
are treated in FRIEDMAN, NEČAS [21] as well as ANDREASSI, TORELLI [1] and
LIONS [24].

Convergence of discretisations and a priori error estimates. Concerning a theoreti-
cal analysis of space and time discretisation methods for (1.1), relatively few results
are available in the literature. A convergence result provided in COLLI, FAVINI [9]
for a semi-discretisation in time applies to the considerably less involved case, where
the domains VA and VB coincide, the nonlinear operator A is maximal monotone, and
the linear operator B is bounded, symmetric, as well as strongly positive, up to an
additive shift. More recently, convergence of a time discretisation and hence also
existence of a weak solution to (1.1) has been proven in EMMRICH, THALHAM-
MER [19] under the requirement that VA is dense and continuously embedded in VB,
and in EMMRICH, THALHAMMER [20] the convergence analysis has been extended
to a full discretisation method, which allows to include problems where VA 6= VB as
well as second-order evolution equations involving non-monotone perturbations and
thereby generalises the existence result given in LIONS, STRAUSS [26]. These results
have been complemented and illustrated in EMMRICH, ŠIŠKA [16]. In the above men-
tioned contributions, convergence of approximate solutions towards a weak solution
is proven under hypotheses close to the existence theory of nonlinear second-order
evolution equations. A main motivation of the present work has been to identify the
essential features of time discretisations for (1.1) needed to establish stability and
convergence and thus to describe a class of appropriate numerical schemes. In sit-
uations, where the exact solution admits additional higher-order regularity, it is of
interest to construct and analyse numerical methods of higher-order that are often
superior to lower-order discretisations in regard to accuracy and efficiency. In the
generic case it is, however, not known which assumptions on the data of the prob-
lem guarantee additional regularity of the exact solution. It is, therefore, important to
prove convergence of the higher-order numerical scheme towards the weak solution
as well as to provide error estimates.
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Time discretisation methods. A major difficulty in the convergence analysis of time
discretisation methods for the considered class of problems lies in the treatment of the
nonlinear damping term. In the context of nonlinear first-order in time evolution equa-
tions it is well known that certain stability properties of the numerical approximation
are essential in order to be able to utilise the monotone and coercive structure of the
underlying operator and to establish a convergence result. As a small excerpt of con-
tributions for nonlinear first-order evolution equations governed by a monotone oper-
ator, we mention EMMRICH [14,15] providing a convergence analysis of the two-step
backward differentiation formula and EMMRICH, THALHAMMER [18] introducing a
stability criterium which enables to treat a subclass of stiffly accurate Runge–Kutta
methods, see also the references given therein. Contrary, the construction of numeri-
cal methods for second-order evolution equations, especially for problems where no
first-order damping term is present, primarily aims at the preservation of geomet-
ric structures such as symplecticity. Favourable time integration methods include the
Störmer–Verlet scheme or, more generally, partitioned Runge–Kutta methods as well
as the related Nyström methods; further examples are the Newmark and Cowell–
Numerov schemes. However, it does not seem possible to establish a convergence
result for these classes of time discretisations when applied to the second-order evolu-
tion equation (1.1) involving a monotone damping term. Within the analytical frame-
work introduced before we thus restrict ourselves to one-leg methods, since for this
type of time discretisations the monotonicity and coercivity of the underlying opera-
tor can be utilised to deduce suitable a priori estimates for the discrete solution and
to prove convergence in a weak sense. More precisely, emerging from the two-step
backward differentiation formula whose favourable stability and accuracy behaviour
for nonlinear first-order evolution equations governed by a monotone operator has
been confirmed for instance in EMMRICH [14,15], we construct a time discretisa-
tion method that is appropriate for nonlinear second-order evolution equations (1.1).
In particular, in situations where sufficiently regular solutions exist, this novel time
discretisation method retains the full convergence order.

Full discretisation method. We propose the following full discretisation method for
nonlinear second-order evolution equations of the form (1.1) based on the Galerkin
method for the space discretisation and the two-step backward differentiation formula
for the time discretisation. To the best knowledge of the authors, this numerical ap-
proximation has not yet been studied in the literature. Results for the Galerkin method
can easily be applied to conforming finite element methods. For notational simplicity,
as long as the discretisation parameters (M,N) ∈ N×N are fixed, we do not indicate
the dependence of the numerical approximations on (M,N).

In the sequel, we denote by (VM)M∈N a Galerkin scheme for the underlying sep-
arable Banach space V , and for any N ∈ N we denote by τ = T

N > 0 the associated
stepsize defining an equidistant time grid 0 = t0 < · · · < tn = nτ < · · · < tN = T .
For a given pair of integers (M,N) ∈ N×N, we choose a suitable approximation
( f n)N

n=1 ⊂ VM of the right-hand side of the evolution equation as well as certain ini-
tial approximations (u0,v0) ∈ VM ×VM . The fully discrete solution (un)N

n=1 ⊂ VM is
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determined such that the relation (n = 4,5, . . . ,N)(
D2D2un ∣∣ϕ)H +

〈
AD2un ∣∣ϕ〉V ∗A×VA

+
〈
Bun ∣∣ϕ〉V ∗B×VB

=
〈

f n ∣∣ϕ〉V ∗A×VA
(1.3a)

holds for all ϕ ∈ VM . Here, the divided difference operator D2 corresponds to the
two-step backward differentiation formula (n = 2,3, . . . ,N)

D2un = τ
−1 ( 3

2 un−2un−1 + 1
2 un−2) , (1.3b)

which further implies (n = 4,5, . . . ,N)

D2D2un = τ
−2 ( 9

4 un−6un−1 + 11
2 un−2−2un−3 + 1

4 un−4) . (1.3c)

The first iterates are determined through the relation u1 = u0+τv1 and an application
of the one-step backward differentiation formula, which coincides with the implicit
Euler method.

Objective. Our main objective is to prove weak convergence of suitably chosen
piecewise constant and piecewise linear in time prolongations of the fully discrete so-
lution (1.3) towards the weak solution to the nonlinear second-order evolution equa-
tion (1.1) whenever the discretisation parameters tend to infinity. We also provide a
result on strong convergence. Moreover, under additional regularity requirements on
the exact solution, we deduce an a priori error estimate that implies convergence of
second-order in time.

Extensions and future work. In order to avoid additional technicalities that would
overburden the present manuscript, we restrict ourselves to the consideration of a
time-independent operator A : VA → V ∗A that is coercive with exponent p ∈ [2,∞),
but we conjecture that it is possible to extend our convergence analysis to the case
of exponents in the range p ∈ (1,2) and operator families (A(t))t∈[0,T ] as well as
(B(t))t∈[0,T ]. Although the a priori estimates obtained for the fully discrete solution
would allow to study functions f ∈ (Lp(0,T ;VA))

∗+L1(0,T ;H∗), we do not exploit
this generalisation, see LIONS, STRAUSS [26]. Contrary, the incorporation of non-
monotone perturbations occuring in the description of lower order spatial derivatives
seems to be a demanding objective and shall be carried out in a future work, see also
EMMRICH, THALHAMMER [20, Section 3].

2 Analytical framework

In this section, we describe in detail the employed functional analytical framework
ensuring existence and uniqueness of a weak solution to the nonlinear second-order
evolution equation under consideration and recapitulate standard definitions and no-
tations. Furthermore, we introduce formally equivalent reformulations of the problem
which are utilised in the construction and convergence analysis of the proposed full
discretisation method. Henceforth, we denote by c > 0 a generic positive constant,
possibly with different values at different occurrences.
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2.1 Underlying spaces and operators

Underlying Gelfand triple. We recall that the underlying spaces (VA,‖ · ‖VA) and
(VB,‖ · ‖VB) are assumed to be real, reflexive, and separable Banach spaces, which
are dense and continuously embedded in a Hilbert space (H,(· |·)H ,‖ ·‖H). Through-
out this work, we identify H with its dual space. The intersection V = VA ∩VB is
assumed to be separable and dense in both spaces VA and VB. We endow the space V
and its dual V ∗, which can be identified with V ∗A +V ∗B , with the norms

‖v‖V = ‖v‖VA +‖v‖VB ,

‖ f‖V ∗ = inf
{

max
(
‖ fA‖V ∗A ,‖ fB‖V ∗B

)
: f = fA + fB, fA ∈V ∗A , fB ∈V ∗B

}
,

which implies that V is continuously embedded in VA as well as VB and thus in H. In
particular, the spaces V ⊂ H ⊂V ∗ form a Gelfand triple.

Underlying operators. In the sequel, we employ the following assumptions on the
operators A and B defining the second-order evolution equation in (1.1).

Assumption (A) The operator A : VA→V ∗A satisfies the following hypotheses.

(i) Hemicontinuity. For arbitrary v, ṽ,w ∈VA, the mapping

[0,1]−→ R : σ 7−→
〈
A(v+σ ṽ)

∣∣w〉V ∗A×VA

is continuous.
(ii) Monotonicity. For any v, ṽ ∈VA, the relation〈

Av−Aṽ
∣∣v− ṽ

〉
V ∗A×VA

≥ 0

holds.
(iii) Coercivity. There exist p ∈ [2,∞), µA > 0, and λA ≥ 0 such that for all v ∈VA

〈Av|v〉V ∗A×VA ≥ µA ‖v‖p
VA
−λA .

(iv) Growth condition. There exists c > 0 such that for all v ∈VA

‖Av‖V ∗A ≤ c
(

1+‖v‖p−1
VA

)
.

Assumption (B) The operator B : VB → V ∗B is linear, bounded, symmetric, and
strongly positive. In particular, there exist µB > 0 and cB > 0 such that for all u ∈VB

〈Bu|u〉V ∗B×VB ≥ µB ‖u‖2
VB
, ‖Bu‖V ∗B ≤ cB ‖u‖VB .

Equivalent norms. Occasionally, it is convenient to make use of the fact that the
above hypotheses on the linear operator B : VB → V ∗B imply that VB forms a Hilbert
space and that the mapping

VB −→ [0,∞) : u 7−→ ‖u‖B =
√
〈Bu|u〉V ∗B×VB (2.1)

defines a norm on VB, which is equivalent to the norm ‖ · ‖VB .
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2.2 Extensions of the underlying operators

Spaces of abstract functions. Let (W,‖ · ‖W ) be a real, reflexive, and separa-
ble Banach space. As usual, for exponents r ∈ [1,∞], we denote by Lr(0,T ;W )
the Bochner–Lebesgue space, equipped with the standard norm ‖ · ‖Lr(0,T ;W ), see
DIESTEL,UHL [11] and EDWARDS [12] for further details. We recall that the
space W q,r(0,T ;W ) (q ∈ N) comprises all abstract functions w ∈ Lr(0,T ;W ) whose
distributional time derivatives satisfy w′, . . . ,w(q) ∈ Lr(0,T ;W ), see also GAJEWSKI,
GRÖGER, ZACHARIAS [22] and ROUBÍČEK [28]. The space of abstract functions w :
[0,T ]→W that are continuous with respect to the weak topology in W is denoted by
Cw([0,T ];W ). We note that any element w ∈ Cw([0,T ];W ) is a demicontinuous func-
tion mapping [0,T ] into W . Moreover, we denote by C ([0,T ];W ) and A C ([0,T ];W )
the spaces of uniformly continuous and absolutely continuous abstract functions, re-
spectively. In particular, we utilise the embedding W 1,1(0,T ;W ) ⊂ A C ([0,T ];W )
and the continuous embedding W 1,1(0,T ;W ) ↪→ C ([0,T ];W ).

Duality pairings. For p ∈ [2,∞), we denote by p∗ = p
p−1 ∈ (1,2] the conjugated ex-

ponent. The duality pairing between the Bochner–Lebesgue space Lp(0,T ;V ) and its
dual (Lp(0,T ;V ))∗ = Lp∗(0,T ;V ∗) = Lp∗(0,T ;V ∗A )+Lp∗(0,T ;V ∗B ) is given by

〈 f |v〉Lp∗ (0,T ;V ∗)×Lp(0,T ;V ) =
∫ T

0

〈
f (t)
∣∣v(t)〉V ∗×V dt

=
∫ T

0

〈
fA(t)

∣∣v(t)〉V ∗A×VA
dt +

∫ T

0

〈
fB(t)

∣∣v(t)〉V ∗B×VB
dt ,

independent of the particular decomposition f = fA + fB ∈ Lp∗(0,T ;V ∗). Moreover,
due to the relation

(
L1(0,T ;H)

)∗
= L∞(0,T ;H), we obtain the duality pairing

〈 f |v〉L∞(0,T ;H)×L1(0,T ;H) =
∫ T

0

(
f (t)
∣∣v(t))H dt .

Extension of the underlying operators. The operators A : VA→ V ∗A and B : VB→ V ∗B
naturally extend to operators governing the nonlinear second-order evolution equa-
tion (1.1). These extensions are defined on the associated Bochner–Lebesgue spaces

A : Lp(0,T ;VA)−→ Lp∗(0,T ;V ∗A ) : v 7−→ [t 7→ (Av)(t) = Av(t)] ,

B : Lr(0,T ;VB)−→ Lr(0,T ;V ∗B ) : u 7−→ [t 7→ (Bu)(t) = Bu(t)] , r ∈ [1,∞] ,
(2.2)

and inherit the basic hypotheses given in Assumptions (A) and (B). For simplicity,
we do not distinguish in notation between the defining operators and their extensions.

(i) Well-definedness. In order to justify that the extended operator A is well-
defined, we first show that the function Av : [0,T ] → V ∗A associated with a
Bochner-measurable function v : [0,T ] → VA is Bochner-measurable. By as-
sumption the defining operator A : VA → V ∗A is monotone as well as hemi-
continuous and thus demicontinuous, see for instance GAJEWSKI, GRÖGER,
ZACHARIAS [22]. Due to the fact that there exists a sequence (vk)k∈N of
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simple functions vk : [0,T ]→ VA such that vk(t)→ v(t) in VA for almost ev-
ery t ∈ [0,T ], the associated sequence (Avk)k∈N of simple functions satisfies
(Avk)(t) ⇀ (Av)(t) in V ∗A for almost every t ∈ [0,T ], which implies that the
function Av : [0,T ]→ V ∗A is weakly measurable. According to (2.2) we here
set Avk : [0,T ]→ V ∗A : t 7→ (Avk)(t) = Avk(t) as well as Av : [0,T ]→ V ∗A : t 7→
(Av)(t) = Av(t) and utilise that for a reflexive Banach space VA the notions of
weak and weak* convergence coincide. As the dual space V ∗A is separable, by
Pettis’ theorem, Av : [0,T ]→ V ∗A is also Bochner-measurable, see for instance
DIESTEL,UHL [11]. It remains to prove that the function Av : [0,T ]→ V ∗A as-
sociated with a function v ∈ Lp(0,T ;VA) satisfies Av ∈ Lp∗(0,T ;V ∗A ). For any
v ∈ Lp(0,T ;VA), the required growth condition on the defining operator yields
the bound ∥∥(Av)(t)

∥∥p∗

V ∗A
≤ c

(
1+
∥∥v(t)

∥∥p−1
VA

)p∗

≤ c
(

1+
∥∥v(t)

∥∥p
VA

)
,

which implies that the mapping [0,T ] → R : t → ‖(Av)(t)‖V ∗A is Lebesgue-
integrable, more precisely, we obtain ‖Av‖V ∗A ∈ Lp∗(0,T ;R). Together with the
above considerations this yields Av ∈ Lp∗(0,T ;V ∗A ).

(ii) Hemicontinuity. For arbitrary v, ṽ,w ∈ Lp(0,T ;VA), the mapping

[0,1]−→ R : σ 7−→
〈
A(v+σ ṽ)

∣∣w〉Lp∗ (0,T ;V ∗A )×Lp(0,T ;VA)

is continuous. Namely, by the definition of the duality pairing, the required
hemicontinuity of the underlying operator A : VA→V ∗A , and Lebesgue’s theorem
on dominated convergence, the continuity of the mapping

σ 7→
〈
A(v+σ ṽ)

∣∣w〉Lp∗ (0,T ;V ∗A )×Lp(0,T ;VA)
=
∫ T

0

〈
A(v(t)+σ ṽ(t))

∣∣w(t)〉V ∗A×VA
dt

follows, where the applicability of Lebesgue’s theorem is ensured by the growth
condition on A : VA→V ∗A .

(iii) Monotonicity. For any v, ṽ ∈ Lp(0,T ;VA), the relation〈
Av−Aṽ

∣∣v− ṽ
〉

Lp∗ (0,T ;V ∗A )×Lp(0,T ;VA)
≥ 0

holds. Evidently, the monotonicity of A : VA→V ∗A implies the relation〈
Av−Aṽ

∣∣v− ṽ
〉

Lp∗ (0,T ;V ∗A )×Lp(0,T ;VA)

=
∫ T

0

〈
Av(t)−Aṽ(t)

∣∣v(t)− ṽ(t)
〉

V ∗A×VA
dt ≥ 0 .

(iv) Coercivity. For any v ∈ Lp(0,T ;VA), the relation

〈Av|v〉Lp∗ (0,T ;V ∗A )×Lp(0,T ;VA)
≥ µA ‖v‖p

Lp(0,T ;VA)
−λAT

holds. Indeed, the coercivity of A : VA→V ∗A yields the relation

〈Av|v〉Lp∗ (0,T ;V ∗A )×Lp(0,T ;VA)
=
∫ T

0

〈
Av(t)

∣∣v(t)〉V ∗A×VA
dt

≥
∫ T

0

(
µA
∥∥v(t)

∥∥p
VA
−λA

)
dt = µA ‖v‖p

Lp(0,T ;VA)
−λAT .
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(v) Growth condition. There exists c > 0 such that for all v ∈ Lp(0,T ;VA)

‖Av‖Lp∗ (0,T ;V ∗A )
≤ c

(
1+‖v‖p−1

Lp(0,T ;VA)

)
.

Namely, by the growth condition on A : VA→V ∗A , the estimate

‖Av‖p∗

Lp∗ (0,T ;V ∗A )
=
∫ T

0

∥∥Av(t)
∥∥p∗

V ∗A
dt ≤ c

∫ T

0

(
1+
∥∥v(t)

∥∥p−1
VA

)p∗

dt

≤ c
∫ T

0

(
1+
∥∥v(t)

∥∥p
VA

)
dt = c

(
T +‖v‖p

Lp(0,T ;VA)

)
and thus the stated bound with a constant depending in particular on the final
time is obtained. We further note that the growth condition ensures boundedness
of the operator A in the sense that bounded subsets are mapped into bounded
subsets.

Similar considerations show that the hypotheses on the linear and bounded operator
B : VB → V ∗B are inherited by its time-continuous extension (2.2). Well-definedness
is first justified for r = 1 and then generalised to arbitrary exponents r ∈ [1,∞]. Evi-
dently, for every r ∈ [1,∞], the operator B : Lr(0,T ;VB)→ Lr(0,T ;V ∗B ) is linear and
satisfies the bound

‖Bu‖Lr(0,T ;V ∗B )
≤ cB ‖u‖Lr(0,T ;VB) ,

provided that u ∈ Lr(0,T ;VB). In particular, for the exponent r = 2 the extended op-
erator is symmetric and strongly positive such that the relation

〈Bu|u〉L2(0,T ;V ∗B )×L2(0,T ;VB)
≥ µB ‖u‖2

L2(0,T ;VB)

holds for any u ∈ L2(0,T ;VB).

2.3 Existence and uniqueness result

Existence and uniqueness result. The following result deduced in LIONS,
STRAUSS [26] ensures existence and uniqueness of a solution to the initial value
problem (1.1), see also EMMRICH, THALHAMMER [20] for a generalisation obtained
via a full discretisation.

Theorem 2.1 ([26, Thm. 2.1]) Assume (u0,v0) ∈ VB ×H and f ∈ Lp∗(0,T ;V ∗A ).
Under the hypotheses of Assumptions (A) and (B) there exists a unique solu-
tion u ∈ L∞(0,T ;VB) to (1.1) such that u′ ∈ L∞(0,T ;H) ∩ Lp(0,T ;VA) and u′′ ∈
Lp∗(0,T ;V ∗A ) + L∞(0,T ;V ∗B ) ⊂ Lp∗(0,T ;V ∗). In addition, the said solution fulfills
u ∈ Cw([0,T ];VB) and u′ ∈ Cw([0,T ];H) and further u−u0 ∈A C ([0,T ];VA) as well
as u ∈A C ([0,T ];H) and u′ ∈A C ([0,T ];V ∗). The initial conditions are satisfied in
the sense that u(t)⇀ u0 in VB and u′(t)⇀ v0 in H as t→ 0.
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2.4 Reformulations as first-order system and integro-differential equation

Reformulations of second-order evolution equation. In view of the construction and
convergence analysis of the full discretisation method (1.3) for second-order evolu-
tion equations of the form (1.1), it is of importance to introduce the following for-
mally equivalent reformulations as first-order system and integro-differential equa-
tion. Setting v = u′ yields{

v′+Av+Bu = f in (0,T ) , v(0) = v0 ,

u′ = v in (0,T ) , u(0) = u0 .
(2.3)

By integrating the second evolution equation in (2.3) and inserting the resulting
relation into the first one, the first-order system may be rewritten as the integro-
differential equation

v′+Av+B(u0 +Kv) = f in (0,T ) , v(0) = v0 , (2.4a)

involving the nonlocal Volterra operator

(Kv)(t) =
∫ t

0
v(s) ds . (2.4b)

3 Full discretisation method

In this section, we detail the construction of the proposed full discretisation method
for nonlinear second-order evolution equations and specify the approximation of the
function defining the right-hand side of the equation as well as the starting pro-
cess. For this purpose, we first introduce a fully discrete approximation combining
a Galerkin method with the two-step backward differentiation formula for the for-
mally equivalent first-order system and in addition state the resulting full discreti-
sation method for the related integro-differential equation. Besides, we deduce an
auxiliary result on the approximation rate of the arising finite difference operators
which is needed in the proof of the a priori error estimate.

3.1 Divided differences

Divided difference operators. In the following, we denote by (W,‖ · ‖W ) a normed
linear space. For simplicity, we do not distinguish between a time-continuous func-
tion w : [0,T ]→W , the corresponding time discrete values w = (w(tn))N

n=0 ∈W N+1,
or a time grid function w = (wn)N

n=0 ∈W N+1, and with a minor abuse of notation we
write D1wn = (D1w)n etc. for short. For a time grid function w = (wn)N

n=0 ∈W N+1,
the divided difference operators related to the one- and two-step backward differen-
tiation formula, respectively, are defined through (n = 1,2, . . . ,N and n = 2,3, . . . ,N,
respectively)

D1wn = τ
−1 (wn−wn−1) ,

D2wn = τ
−1 ( 3

2 wn−2wn−1 + 1
2 wn−2) . (3.1a)
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Applying the operators twice leads to (n = 2,3, . . . ,N and n = 4,5, . . . ,N, respec-
tively)

D2wn−1 = D1D1wn = τ
−2 (wn−2wn−1 +wn−2) ,

D2D2wn = τ
−2 ( 9

4 wn−6wn−1 + 11
2 wn−2−2wn−3 + 1

4 wn−4) . (3.1b)

For later use, we note that the first divided differences and the central divided differ-
ences are related through the identity (n = 2,3, . . . ,N)

D2wn−1 = 2τ
−1 (D2wn−D1wn) , (3.2)

see also EMMRICH [13]. The following result, which we state without proof, implies
that the divided differences yield approximations to the first- and second-order time
derivatives, provided that the time discrete values are related to a sufficiently regular
function.

Lemma 3.1 Provided that the underlying function w : [0,T ]→W defining the time
discrete values w = (wn)N

n=0 = (w(tn))N
n=0 ∈ W N+1 satisfies w ∈ W 2,1(0,T ;W ) ⊂

C 1([0,T ];W ) and w ∈W 3,1(0,T ;W )⊂ C 2([0,T ];W ), respectively, the estimates

∥∥D1wn−w′(tn)
∥∥

W ≤
∫ tn

tn−1

∥∥w′′(s)
∥∥

W ds , n = 1,2, . . . ,N ,

∥∥D2wn−w′(tn)
∥∥

W ≤ τ

∫ tn

tn−2

∥∥w′′′(s)
∥∥

W ds , n = 2,3, . . . ,N ,

hold true, and hence

τ

N

∑
n=1

∥∥D1wn−w′(tn)
∥∥

W ≤ τ
∥∥w′′

∥∥
L1(0,T ;W )

,

τ

N

∑
n=2

∥∥D2wn−w′(tn)
∥∥

W ≤ 2τ
2∥∥w′′′

∥∥
L1(0,T ;W )

.

If in addition w ∈W 4,1(0,T ;W )⊂ C 3([0,T ];W ), then the bounds

∥∥D2wn−w′′(tn)
∥∥

W ≤ τ

∫ tn+1

tn−1

∥∥w(4)(s)
∥∥

W ds , n = 1,2, . . . ,N−1 ,

∥∥D2D2wn−w′′(tn)
∥∥

W ≤ cτ

∫ tn

tn−4

∥∥w(4)(s)
∥∥

W ds , n = 4,5, . . . ,N ,

are valid with some constant c > 0, and hence

τ

N−1

∑
n=1

∥∥D2wn−w′′(tn)
∥∥

W ≤ 2τ
2∥∥w(4)∥∥

L1(0,T ;W )
,

τ

N

∑
n=4

∥∥D2D2wn−w′′(tn)
∥∥

W ≤ 4cτ
2∥∥w(4)∥∥

L1(0,T ;W )
.
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3.2 Full discretisation method and reformulations

Approximation of right-hand side. In the proof of Theorem 5.1 we restrict our con-
siderations to approximations of the right-hand side of the evolution equation in (1.1)
that are obtained by restriction onto the time grid

f 1 = R1
1 f = τ

−1
∫

τ

0
f (s) ds ,

f n = Rn
2 f = τ

−1
(

3
2

∫ tn

tn−1

f (s) ds− 1
2

∫ tn−1

tn−2

f (s) ds
)
, n = 2,3, . . . ,N ;

(3.3)

this naturally corresponds to the chosen divided differences (3.1), since

R1
1w′ = D1w(t1) , Rn

2w′ = D2w(tn) , n = 2,3, . . . ,N ,

if w ∈W 1,1(0,T ;W ). However, in situations where f is even continuous such that
pointwise evaluation is possible, we may instead set f n = f (tn) for n = 1,2, . . . ,N.

Full discretisation method for first-order system. The proposed full discretisation
method (1.3) for nonlinear second-order evolution equations of the form (1.3) results
from a fully discrete approximation of the formally equivalent first-order system (2.3)
combining the Galerkin method for the space discretisation with the two-step back-
ward differentiation formula for the time discretisation. That is, the fully discrete
solution (un,vn)N

n=1 ⊂VM×VM is determined such that the relations (n = 2,3, . . . ,N){(
D2vn

∣∣ϕ)H +
〈
Avn
∣∣ϕ〉V ∗A×VA

+
〈
Bun

∣∣ϕ〉V ∗B×VB
=
〈

f n
∣∣ϕ〉V ∗A×VA

,(
D2un

∣∣ϕ)H =
(
vn
∣∣ϕ)H

(3.4a)

hold for all ϕ ∈ VM . The first iterate (u1,v1) is instead determined by means of the
one-step backward differentiation formula (implicit Euler method), which yields{(

D1v1
∣∣ϕ)H +

〈
Av1
∣∣ϕ〉V ∗A×VA

+
〈
Bu1

∣∣ϕ〉V ∗B×VB
=
〈

f 1
∣∣ϕ〉V ∗A×VA

,(
D1u1

∣∣ϕ)H =
(
v1
∣∣ϕ)H

(3.4b)

for all ϕ ∈VM . We recall the definition (3.1) of the divided difference operators.

Practical realisation of the full discretisation method. The practical realisation of the
fully discrete approximation (3.4) relies on the solution of nonlinear equations for
the numerical solution values vn for n = 1,2, . . . ,N. That is, starting from an initial
approximation (u0,v0)≈ (u0,v0), the relation u1 = u0 +τv1 (recall that v1 = D1u1 =
τ−1(u1− u0)) is inserted into the first equation in (3.4b) and the resulting nonlinear
equation (for all ϕ ∈VM)

τ
−1(v1− v0 ∣∣ϕ)H +

〈
Av1 ∣∣ϕ〉V ∗A×VA

+
〈
B
(
u0 + τv1) ∣∣ϕ〉V ∗B×VB

=
〈

f 1 ∣∣ϕ〉V ∗A×VA

(3.5a)
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is resolved for v1. The new iterate u1 is then determined through the relation

u1 = u0 + τv1 . (3.5b)

For the remaining steps, the relation vn = D2un = τ−1( 3
2 un−2un−1 + 1

2 un−2) is used
in order to express un = 4

3 un−1− 1
3 un−2+ 2

3 τvn. Resolving the nonlinear equation (for
all ϕ ∈VM)

τ
−1( 3

2 vn−2vn−1 + 1
2 vn−2 ∣∣ϕ)H +

〈
Avn ∣∣ϕ〉V ∗A×VA

+
〈
B
( 4

3 un−1− 1
3 un−2 + 2

3 τ vn) ∣∣ϕ〉V ∗B×VB
=
〈

f n ∣∣ϕ〉V ∗A×VA

(3.5c)

for vn determines the new iterate

un = 4
3 un−1− 1

3 un−2 + 2
3 τ vn (3.5d)

for every n = 2,3, . . . ,N.

Full discretisation method for second-order evolution equation. The full discreti-
sation scheme (3.4) is equivalent to (1.3) with the starting process (3.5a)-(3.5b)
and (3.5c)-(3.5d) for n = 2,3 and all ϕ ∈VM

τ−1
(
v1− v0

∣∣ϕ)H +
〈
Av1
∣∣ϕ〉V ∗A×VA

+
〈
B
(
u0 + τv1

) ∣∣ϕ〉V ∗B×VB
=
〈

f 1
∣∣ϕ〉V ∗A×VA

,

u1 = u0 + τv1 ,
τ−1
( 3

2 v2−2v1 + 1
2 v0
∣∣ϕ)H +

〈
Av2
∣∣ϕ〉V ∗A×VA

+
〈
B
( 4

3 u1− 1
3 u0 + 2

3 τ v2
) ∣∣ϕ〉V ∗B×VB

=
〈

f 2
∣∣ϕ〉V ∗A×VA

,

u2 = 4
3 u1− 1

3 u0 + 2
3 τ v2 ,

τ−1
( 3

2 v3−2v2 + 1
2 v1
∣∣ϕ)H +

〈
Av3
∣∣ϕ〉V ∗A×VA

+
〈
B
( 4

3 u2− 1
3 u1 + 2

3 τ v3
) ∣∣ϕ〉V ∗B×VB

=
〈

f 3
∣∣ϕ〉V ∗A×VA

,

u3 = 4
3 u2− 1

3 u1 + 2
3 τ v3 .

For the following considerations, we assume that un = u(tn) holds for n = 0,1, . . . ,N
with u being a sufficiently regular function. We point out that by construction

D2vn = D2D2un = τ
−2 ( 9

4 un−6un−1 + 11
2 un−2−2un−3 + 1

4 un−4)
= u′′(tn)+O(τ2) , n = 4,5, . . . ,N ,

see also Lemma 3.1, but that D1v1, D2v2, and D2v3 may not approximate u′′(t1),
u′′(t2), and u′′(t3), respectively. Indeed, a straightforward calculation shows that

D1v1 = τ
−1(v1− v0)= τ

−1(D1u1− v0)
= τ

−2(u1−u0− τ v0) ,
D2v2 = τ

−1( 3
2 v2−2v1 + 1

2 v0)= τ
−1( 3

2 D2u2−2D1u1 + 1
2 v0)

= τ
−2( 9

4 u2−5u1 + 11
4 u0 + 1

2 τ v0) ,
D2v3 = τ

−1( 3
2 v3−2v2 + 1

2 v1)= τ
−1( 3

2 D2u3−2D2u2 + 1
2 D1u1)

= τ
−2( 9

4 u3−6u2 + 21
4 u1− 3

2 u0) .
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As a consequence, D1v1 yields an approximation to u′′(t1) only if the initial value
satisfies v0 = u′(0)− 1

2 τ u′′(0) + o(τ), which is in contradiction with the relation
v0 = u′(0)− 2τ u′′(0)+ o(τ) required for D2v2 approximating u′′(t2). Furthermore,
D2v3 = 3

4 u′′(0)+O(τ) does not yield an approximation to u′′(t3). Despite the fact
that the starting procedure does not lead to consistent approximations of u′′, we show
convergence. The phenomenon that an inconsistent scheme (or a scheme of low-order
consistency) can still be convergent (or convergent of high order) is well-known from
the analysis of finite difference methods on irregular meshes, see for instance LEV-
ERMORE, MANTEUFFEL, WHITE [23] and the references given therein. Moreover, in
MANTEUFFEL, WHITE [27] a discretisation scheme that is convergent of order two
for second-order ordinary differential equations is constructed via a symmetric finite
difference method for the equivalent first-order system.

Reformulation of full discretisation method. In our convergence analysis, we also
utilise an equivalent reformulation of the full discretisation method (3.4) for the first-
order system (2.3) that is related to the integro-differential equation (2.4). We rewrite
the two-step relation (3.5d) for the new iterate as a one-step relation for two subse-
quent iterates (n = 2,3, . . . ,N)[

un

un−1

]
=

[ 4
3 −

1
3

1 0

][
un−1

un−2

]
+ 2

3 τ

[
vn

0

]
and resolve the resulting recurrence (n = 2,3, . . . ,N)[

un

un−1

]
=

[ 4
3 −

1
3

1 0

]n−1 [u1

u0

]
+ 2

3 τ

n

∑
j=2

[ 4
3 −

1
3

1 0

]n− j [v j

0

]
.

Recalling that the roots of the characteristic polynomial associated with the two-step
backward differentiation formula are given by 1, 1

3 , an eigenvalue decomposition of
the arising matrix implies (k ∈ N)[ 4

3 −
1
3

1 0

]k

= 1
2

[
1 1
1 3

][
1 0
0 3−k

][
3 −1
−1 1

]
,

and, consequently, we obtain (n = 2,3, . . . ,N)[
un

un−1

]
= 1

2

[
1 1
1 3

][
1 0
0 3−n+1

][
3 −1
−1 1

][
u1

u0

]
+ 1

3 τ

n

∑
j=2

[
1 1
1 3

][
1 0
0 3−n+ j

][
3 −1
−1 1

][
v j

0

]
= 1

2

[(
3−3−n+1

)
u1 +

(
3−n+1−1

)
u0(

3−3−n+2
)

u1 +
(
3−n+2−1

)
u0

]
+ τ

n

∑
j=2

[
1− 3−n−1+ j

1− 3−n+ j

]
v j .

Inserting u1 = u0 + τv1 leads to (n = 1,2, . . . ,N)

un = u0 + τ

n

∑
j=1

v j + 1
2

(
1−3−n+1)

τ v1− τ

n

∑
j=2

3−n−1+ j v j . (3.6)
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Altogether, replacing in (3.4) the quantity un by the above representation, we obtain
the following reformulation. The fully discrete solution (vn)N

n=1 ⊂ VM is determined
such that the relation (n = 2,3, . . . ,N)(

D2vn ∣∣ϕ)H +
〈
Avn ∣∣ϕ〉V ∗A×VA

+
〈
B
(
u0 +Kτ vn) ∣∣ϕ〉V ∗B×VB

=
〈

f n ∣∣ϕ〉V ∗A×VA
(3.7a)

holds for all ϕ ∈ VM , where the discrete sum operator Kτ is defined through (n =
1,2, . . . ,N)

Kτ vn = τ

n

∑
j=1

v j + K̃τ vn , K̃τ vn = 1
2

(
1−3−n+1)

τ v1− τ

n

∑
j=2

3−n−1+ j v j . (3.7b)

As before, we write Kτ vn = (Kτ v)n etc. for short. In particular, the first iterate is
determined such that the identity(

D1v1 ∣∣ϕ)H +
〈
Av1 ∣∣ϕ〉V ∗A×VA

+
〈
B
(
u0 +Kτ v1) ∣∣ϕ〉V ∗B×VB

=
〈

f 1 ∣∣ϕ〉V ∗A×VA
(3.7c)

is fulfilled for all ϕ ∈VM , where K̃τ v1 = 0 and thus Kτ v1 = τv1.

Remark. Arguments close to the proof of Lemma 3.1 show that the discrete sum
operator Kτ yields an approximation to the integral operator K defined in (2.4). In-
deed, provided that the underlying function w : [0,T ]→W defining the time discrete
values w = (wn)N

n=1 = (w(tn))N
n=1 ∈W N satisfies w ∈W 1,1(0,T ;W ), the expansion

(n = 1,2, . . . ,N)

τ

n

∑
j=1

w j−
∫ tn

0
w(t) dt =

n

∑
j=1

∫ t j

t j−1

(
w(t j)−w(t)

)
dt =

n

∑
j=1

∫ t j

t j−1

∫ t j

t
w′(s) dsdt

holds. Besides, the estimate (n = 1,2, . . . ,N)∥∥K̃τ w(tn)
∥∥

W ≤ τ max
{∥∥w(t j)

∥∥
W : j = 1,2, . . . ,n

}
≤ τ ‖w‖C ([0,T ];W )

is obtained by means of the partial sum of the geometric sequence in the estimate
(n = 1,2, . . . ,N)∥∥K̃τ wn∥∥

W ≤ τ

(
1
2

(
1−3−n+1)+ n

∑
j=2

3−n−1+ j
)

max
{∥∥w j∥∥

W : j = 1,2, . . . ,n
}

= τ
(
1−3−n+1)max

{∥∥w j∥∥
W : j = 1,2, . . . ,n

}
.

Altogether, this implies (n = 1,2, . . . ,N)∥∥Kτ w(tn)−Kw(tn)
∥∥

W ≤ τ

(∫ tn

0
‖w′(s)‖W ds+‖w‖C ([0,T ];W )

)
,

and hence, due to the continuous embedding W 1,1(0,T ;W ) ↪→ C ([0,T ];W ), the
bound (n = 1,2, . . . ,N)∥∥Kτ w(tn)−Kw(tn)

∥∥
W ≤ cτ ‖w‖W 1,1(0,T ;W )

follows; this estimate also shows that Kτ defines a convergent quadrature formula
for K.
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3.3 Auxiliaries

Auxiliary relations. As verified by brief calculations, the auxiliary relations

(a−b)a = 1
2

(
a2−b2 +(a−b)2) , (3.8a)( 3

2 a−2b+ 1
2 c
)

a = 1
4

(
a2−b2 +(2a−b)2− (2b− c)2 +(a−2b+ c)2) , (3.8b)( 3

2 a−2b+ 1
2 c
)
(a−2b+ c) = 1

2

(
(a−b)2− (b− c)2)+(a−2b+ c)2 (3.8c)

hold true for arbitrary a,b,c ∈ R; we note that these algebraic identities reflect the
stability of the time discretisation, see also EMMRICH [13–15].

4 Solvability of the discrete problem and a priori estimates

In this section, we prove existence and uniqueness of the fully discrete solution to
the considered nonlinear second-order evolution equation and deduce a basic result
providing a priori estimates for the fully discrete solution.

Galerkin method. We recall that (VM)M∈N denotes a Galerkin scheme for the separa-
ble Banach space V . For the subsequent considerations, we further suppose that the
family (ϕM)M∈N forms a Galerkin basis of V such that

V = clos‖·‖V
⋃

M∈N
VM , VM = span{ϕ1, . . . ,ϕM} ,

which ensures that VM ⊂VM+1. However, considering a generalised internal approxi-
mation and using a suitable restriction operator would permit to avoid this inclusion,
see TEMAM [30, p. 25ff.]. All the results then apply, in particular, to conforming
finite element methods. Due to the fact that the underlying space V is dense and con-
tinuously embedded in the domains of the defining operators, the family (VM)M∈N
also forms a Galerkin scheme for VA with limited completeness with respect to the
norm ‖ · ‖VA and as well for VB with limited completeness with respect to ‖ · ‖VB ,
respectively.

4.1 Existence and uniqueness

The following auxiliary result is utilised in order to establish existence and unique-
ness of fully discrete solutions.

Lemma 4.1 Let Φ : RM → RM be a continuous function and assume that there is
R > 0 such that Φ(v) · v ≥ 0 for all v ∈ RM with ‖v‖RM = R. Then there exists an
element v ∈ RM with ‖v‖RM ≤ R and Φ(v) = 0.

Proof The assertion follows by contradiction from Brouwer’s fixed point theorem,
see for instance GAJEWSKI, GRÖGER, ZACHARIAS [22, Lemma 2.1, p. 74]. ♦
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We are now ready to state a result ensuring the existence and uniqueness of a solu-
tion to the fully discrete scheme (3.7) related to the integro-differential equation (2.4).
This also proves the unique solvability of the equivalent formulations (1.3) and (3.4),
which correspond to the considered nonlinear second-order evolution equation (1.1)
and the associated first-order system (2.3), respectively.

Theorem 4.2 (Existence and uniqueness of a fully discrete solution) Suppose that
Assumptions (A) and (B) hold, and let (u0,v0) ∈VM×VM as well as ( f n)N

n=1 ⊂V ∗A be
given. Then there exists a unique solution (un,vn)N

n=1 ⊂ VM×VM to the full discreti-
sation scheme (3.7).

Proof We prove existence and uniqueness of a solution (vn)N
n=1 ⊂VM to the full dis-

cretisation scheme (3.7) for the integro-differential equation (2.4). To this purpose,
proceeding step-by-step, we construct the new iterate vn from given discrete solution
values v0, . . . ,vn−1 for n = 1,2, . . . ,N. The associated solution (un)N

n=1 ⊂ VM is then
uniquely determined by relation (3.6).

(i) Representation in Galerkin basis. For any element v ∈VM , the representation
with respect to the Galerkin basis

v =
M

∑
m=1

vm ϕm ∈VM , v = (vm)
M
m=1 ∈ RM ,

defines a bijection between VM and RM , and the mapping

‖ · ‖RM : RM −→ R : v 7−→ ‖v‖RM = ‖v‖VA

defines a norm on RM .
(ii) Reformulation of numerical scheme. We recall the full discretisation

scheme (3.7) and in particular the defining relation for the discrete sum operator,
which in the first time step simplifies to Kτ v1 = τ v1 and otherwise may be rewritten
as (n = 2,3, . . . ,N)

Kτ vn = K̂τ vn−1 + 2
3 τ vn ,

K̂τ vn−1 = 3
2

(
1−3−n)

τ v1 + τ

n−1

∑
j=2

(
1−3−n−1+ j)v j .

(4.1)

Setting ϕ = ϕm for m = 1,2, . . . ,M, the full discretisation method reduces to the finite
dimensional problem of determining the coefficients (vn)N

n=1 ⊂ RM associated with
representations in the Galerkin basis. In particular, in the first step this leads to the
nonlinear equation

Φ1
(
v1)= ((D1v1 ∣∣ϕm

)
H +

〈
Av1 ∣∣ϕm

〉
V ∗A×VA

+
〈
B
(
u0 + τv1) ∣∣ϕm

〉
V ∗B×VB

−
〈

f 1 ∣∣ϕm
〉

V ∗A×VA

)M

m=1
= 0 ,

and in the subsequent steps this yields (n = 2,3, . . . ,N)

Φn (vn) =
((

D2vn ∣∣ϕm
)

H +
〈
Avn ∣∣ϕm

〉
V ∗A×VA

+
〈
B
(
u0 + K̂τ vn−1 + 2

3 τ vn)∣∣ϕm
〉

V ∗B×VB

−
〈

f n ∣∣ϕm
〉

V ∗A×VA

)M

m=1
= 0 .
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(iii) Existence of fully discrete solution. In order to ensure the existence of a fully
discrete solution to (3.7) it remains to prove the existence of a zero of the function
Φn : RM→RM (n = 1,2, . . . ,N) by means of Lemma 4.1. As similar arguments apply
to Φ1, we focus on Φn for n = 2,3, . . . ,N.

(a) On the one hand, the nonlinear operator A : VA → V ∗A is hemicontinuous,
monotone, and thus demicontinuous, and on the other hand, the linear operator B :
VB → V ∗B is bounded and thus continuous. This ensures that Φn : RM → RM is a
continuous function.

(b) Our aim is to show that there exists a constant R > 0 such that the relation

Φn(vn) ·vn =
(
D2vn ∣∣vn)

H +
〈
Avn ∣∣vn〉

V ∗A×VA
+
〈
B
(
u0 + K̂τ vn−1 + 2

3 τ vn)∣∣vn〉
V ∗B×VB

−
〈

f n ∣∣vn〉
V ∗A×VA

≥ 0

holds true for all elements vn ∈ RM with ‖vn‖RM = R. We observe that(
D2vn ∣∣vn)

H = τ
−1( 3

2 vn−2vn−1 + 1
2 vn−2 ∣∣vn)

H

≥ 3
2 τ
−1∥∥vn∥∥2

H − τ
−1∥∥2vn−1− 1

2 vn−2∥∥
V ∗A

∥∥vn∥∥
VA
.

The coercivity condition on A stated in Assumption (A) yields〈
Avn ∣∣vn〉

V ∗A×VA
≥ µA

∥∥vn∥∥p
VA
−λA .

Furthermore, the boundedness and strong positivity of B as well as Young’s inequality
imply 〈

B
(
u0 + K̂τ vn−1 + 2

3 τ vn)∣∣vn〉
V ∗B×VB

= 2
3 τ
〈
Bvn ∣∣vn〉

V ∗B×VB
+
〈
B
(
u0 + K̂τ vn−1)∣∣vn〉

V ∗B×VB

≥ 2
3 µB τ

∥∥vn∥∥2
VB
− cB

∥∥u0 + K̂τ vn−1∥∥
VB

∥∥vn∥∥
VB

≥ 1
3 µB τ

∥∥vn∥∥2
VB
− cτ

−1∥∥u0 + K̂τ vn−1∥∥2
VB
,

see also Assumption (B). Altogether, we find

Φn (vn) ·vn ≥
(

µA
∥∥vn∥∥p−1

VA
− τ

−1∥∥2vn−1− 1
2 vn−2∥∥

V ∗A
−
∥∥ f n∥∥

V ∗A

)∥∥vn∥∥
VA

+ 3
2 τ
−1∥∥vn∥∥2

H + 1
3 µB τ

∥∥vn∥∥2
VB
− cτ

−1∥∥u0 + K̂τ vn−1∥∥2
VB
− λA .

Choosing ‖vn‖Rm = ‖vn‖VA = R sufficiently large, ensures Φn(vn) ·vn ≥ 0. Thus, by
Lemma 4.1, this proves the existence of a solution to the nonlinear equation Φn(vn) =
0 for each n = 2,3, . . . ,N.

(iv) Uniqueness of fully discrete solution. The uniqueness of the solution
to the full discretisation scheme (3.7) or, equivalently, to the nonlinear equations
Φn(vn) = 0 for n = 1,2, . . . ,N follows by contradiction; we again focus on the cases
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n = 2,3, . . . ,N. For integers n ∈ {2,3, . . . ,N} fixed, let (v j)n−1
j=0 and f n be given, and

assume that vn and ṽn are two different solutions satisfying

Φn (vn) =
(

τ
−1( 3

2 vn−2vn−1 + 1
2 vn−2 ∣∣ϕm

)
H +

〈
Avn ∣∣ϕm

〉
V ∗A×VA

+
〈
B
(
u0 + K̂τ vn−1 + 2

3 τ vn)∣∣ϕm
〉

V ∗B×VB
−
〈

f n ∣∣ϕm
〉

V ∗A×VA

)M

m=1
= 0 ,

Φn (ṽn) =
(

τ
−1( 3

2 ṽn−2vn−1 + 1
2 vn−2 ∣∣ϕm

)
H +

〈
Aṽn ∣∣ϕm

〉
V ∗A×VA

+
〈
B
(
u0 + K̂τ vn−1 + 2

3 τ ṽn)∣∣ϕm
〉

V ∗B×VB
−
〈

f n ∣∣ϕm
〉

V ∗A×VA

)M

m=1
= 0 .

Taking the difference, testing with vn− ṽn, and utilising the monotonicity of A as well
as the strong positivity of B leads to a contradiction whenever vn 6= ṽn, since then

0 =
(
Φn (vn)−Φn (ṽn)

)
· (vn− ṽn)

= 3
2 τ
−1∥∥vn− ṽn∥∥2

H +
〈
Avn−Aṽn ∣∣vn− ṽn〉

V ∗A×VA
+ 2

3 τ
〈
B (vn− ṽn)

∣∣vn− ṽn〉
V ∗B×VB

≥ 3
2 τ
−1∥∥vn− ṽn∥∥2

H + 2
3 µB τ

∥∥vn− ṽn∥∥2
VB

> 0 ,

see also Assumptions (A) and (B). Again, the first time step only requires minor
modifications of the above considerations. ♦

We shall remark that continuous dependence of the fully discrete solution on the
initial approximations and the approximation to the right-hand side can be shown by
standard techniques.

4.2 A priori estimates

The following a priori estimates for the fully discrete solution are a basic ingredient
in our convergence analysis. In what follows, we restrict our considerations to ap-
proximations ( f n)N

n=1 ⊂V ∗A obtained by restriction of f onto the time grid, see (3.3).
Provided that f ∈ Lp∗(0,T ;V ∗A ), a straightforward calculation then shows that

τ

N

∑
n=1

∥∥ f n∥∥p∗

V ∗A
≤ c
∥∥ f
∥∥p∗

Lp∗ (0,T ;V ∗A )
.

We note that the arising quantities C(u0,v0, f ) and C̃(u0,v0, f ) remain bounded with
respect to (u0,v0) ∈VB×H on bounded subsets of VB×H.

Theorem 4.3 (A priori estimates for the fully discrete solution) Suppose that As-
sumptions (A) and (B) are satisfied. Furthermore, let (u0,v0) ∈ VM ×VM be given,
and set

C(u0,v0, f ) =
∥∥u0∥∥2

VB
+
∥∥v0∥∥2

H +λAT +
∥∥ f
∥∥p∗

Lp∗ (0,T ;V ∗A )
.
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(i) The estimate (N0 = 1,2, . . . ,N)

∥∥uN0
∥∥2

VB
+
∥∥uN0 −uN0−1∥∥2

VB
+

N0

∑
n=2

∥∥τ
2 D2un−1∥∥2

VB

+
∥∥vN0

∥∥2
H +

∥∥vN0 − vN0−1∥∥2
H +

N0

∑
n=2

∥∥τ
2 D2vn−1∥∥2

H +µAτ

N0

∑
n=1

∥∥vn∥∥p
VA

≤ cC(u0,v0, f )

is valid.
(ii) Moreover, the bound

τ

N0

∑
n=2

∥∥D2vn∥∥p∗

V ∗ + τ
∥∥D1v1∥∥p∗

V ∗ ≤ c‖PM‖p∗
V←V C̃(u0,v0, f )

holds with C̃(u0,v0, f ) depending on C(u0,v0, f ). Here, PM : H → VM ⊂ H de-
notes the H-orthogonal projection onto VM and ‖PM‖V←V its norm as a linear
and bounded operator in V .

Proof In order to deduce the asserted a priori estimates, we employ the formula-
tion (3.4) related to the first-order system (2.3).

(i) (a) Initial step. In the first relation in (3.4b) for the initial time step, we set
ϕ = v1 = τ−1(u1−u0) ∈VM to obtain

τ
−1(v1− v0 ∣∣v1)

H +
〈
Av1 ∣∣v1〉

V ∗A×VA
+ τ
−1〈Bu1 ∣∣u1−u0〉

V ∗B×VB
=
〈

f 1 ∣∣v1〉
V ∗A×VA

,

and utilise (3.8a) together with the coercivity of A to obtain

1
2 τ
−1
(∥∥v1∥∥2

H −
∥∥v0∥∥2

H +
∥∥v1− v0∥∥2

H +
∥∥u1∥∥2

B−
∥∥u0∥∥2

B +
∥∥u1−u0∥∥2

B

)
+µA

∥∥v1∥∥p
VA
− λA

≤
〈

f 1 ∣∣v1〉
V ∗A×VA

,

see also Assumption (A) and recall (2.1). Applying Young’s inequality leads to〈
f 1 ∣∣v1〉

V ∗A×VA
≤
∥∥ f 1∥∥

V ∗A

∥∥v1∥∥
VA
≤ c
∥∥ f 1∥∥p∗

V ∗A
+ 1

2 µA
∥∥v1∥∥p

VA
.

By absorption, we thus find∥∥v1∥∥2
H +

∥∥v1− v0∥∥2
H +µAτ

∥∥v1∥∥p
VA

+
∥∥u1∥∥2

B +
∥∥u1−u0∥∥2

B

≤
∥∥v0∥∥2

H +
∥∥u0∥∥2

B +2λAτ + cτ
∥∥ f 1∥∥p∗

V ∗A
.

(4.2)

(b) Subsequent steps and first a priori bound. Similar arguments as before apply
to the subsequent time steps. Inserting ϕ = vn = τ−1( 3

2 un−2un−1+ 1
2 un−2)∈VM into
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the first relation in (3.4a) and employing (3.8b) as well as the coercivity condition
on A leads to the estimate (n = 2,3, . . . ,N)

1
4 τ
−1
(∥∥vn∥∥2

H +
∥∥2vn− vn−1∥∥2

H +
∥∥un∥∥2

B +
∥∥2un−un−1∥∥2

B

−
∥∥vn−1∥∥2

H −
∥∥2vn−1− vn−2∥∥2

H −
∥∥un−1∥∥2

B−
∥∥2un−1−un−2∥∥2

B

+
∥∥vn−2vn−1 + vn−2∥∥2

H +
∥∥un−2un−1 +un−2∥∥2

B

)
+µA

∥∥vn∥∥p
VA
− λA

≤
〈

f n ∣∣vn〉
V ∗A×VA

.

By means of Young’s inequality

〈
f n ∣∣vn〉

V ∗A×VA
≤ c
∥∥ f n∥∥p∗

V ∗A
+ 3

4 µA
∥∥vn∥∥p

VA

and absorption, we further obtain

∥∥vn∥∥2
H +

∥∥2vn− vn−1∥∥2
H +

∥∥un∥∥2
B +
∥∥2un−un−1∥∥2

B

−
∥∥vn−1∥∥2

H −
∥∥2vn−1− vn−2∥∥2

H −
∥∥un−1∥∥2

B−
∥∥2un−1−un−2∥∥2

B

+
∥∥vn−2vn−1 + vn−2∥∥2

H +
∥∥un−2un−1 +un−2∥∥2

B +µAτ
∥∥vn∥∥p

VA

≤ 4λAτ + cτ
∥∥ f n∥∥p∗

V ∗A
.

Summation over n = 2,3, . . . ,N0 together with a telescopic identity and the stated
bound (4.2) for the initial time step yields (N0 = 1,2, . . . ,N)

∥∥vN0
∥∥2

H +
∥∥2vN0 − vN0−1∥∥2

H +
N0

∑
n=2

∥∥vn−2vn−1 + vn−2∥∥2
H +µAτ

N0

∑
n=1

∥∥vn∥∥p
VA

+
∥∥uN0

∥∥2
B +
∥∥2uN0 −uN0−1∥∥2

B +
N0

∑
n=2

∥∥un−2un−1 +un−2∥∥2
B

≤
∥∥v1∥∥2

H +
∥∥2v1− v0∥∥2

H +µAτ
∥∥v1∥∥p

VA
+
∥∥u1∥∥2

B +
∥∥2u1−u0∥∥2

B +4λAT

+ cτ

N0

∑
n=2

∥∥ f n∥∥p∗

V ∗A

≤ c
(∥∥v0∥∥2

H +
∥∥u0∥∥2

B +λAT + τ

N0

∑
n=1

∥∥ f n∥∥p∗

V ∗A

)
and thus proves the first assertion.

(ii) (a) Initial step. In order to deduce a suitable estimate for the discrete first
time derivative D1v1 ∈ VM with respect to the dual norm, we employ the orthogonal
projection PM : H → VM ⊂ H. Noting that D1v1 ∈ VM ⊂ H, by the definition of the
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dual norm and the orthogonal projection, we find∥∥D1v1∥∥
V ∗ = sup

w∈V\{0}

1
‖w‖V

〈
D1v1 ∣∣w〉V ∗×V

= sup
w∈V\{0}

1
‖w‖V

(
D1v1 ∣∣PMw

)
H

= sup
w∈V\{0}

1
‖w‖V

〈
f 1−Av1−Bu1 ∣∣PMw

〉
V ∗×V

≤ sup
w∈V\{0}

‖PMw‖V
‖w‖V

∥∥ f 1−Av1−Bu1∥∥
V ∗

= ‖PM‖V←V
∥∥ f 1−Av1−Bu1∥∥

V ∗

≤ ‖PM‖V←V

(∥∥ f 1∥∥
V ∗ +

∥∥Av1∥∥
V ∗ +

∥∥Bu1∥∥
V ∗

)
≤ ‖PM‖V←V

(∥∥ f 1∥∥
V ∗A

+
∥∥Av1∥∥

V ∗A
+
∥∥Bu1∥∥

V ∗B

)
,

see also (3.4b) and recall the definition of ‖·‖V ∗ . Together with the growth conditions
on A and B this implies∥∥D1v1∥∥

V ∗ ≤ c‖PM‖V←V

(
1+
∥∥ f 1∥∥

V ∗A
+
∥∥v1∥∥p−1

VA
+
∥∥u1∥∥

VB

)
,

see Assumptions (A) and (B), and as a consequence, we obtain∥∥D1v1∥∥p∗

V ∗ ≤ c‖PM‖p∗
V←V

(
1+
∥∥ f 1∥∥p∗

V ∗A
+
∥∥v1∥∥p

VA
+
∥∥u1∥∥p∗

VB

)
.

(b) Subsequent steps and second a priori bound. In an analogous manner, the
bound (n = 2,3, . . . ,N)∥∥D2vn∥∥p∗

V ∗ ≤ c‖PM‖p∗
V←V

(
1+
∥∥ f n∥∥p∗

V ∗A
+
∥∥vn∥∥p

VA
+
∥∥un∥∥p∗

VB

)
for the discrete time derivative D2vn ∈ VM results. Summing up and applying the
bound for the initial time step yields

τ

N0

∑
n=2

∥∥D2vn∥∥p∗

V ∗ + τ
∥∥D1v1∥∥p∗

V ∗

≤ c‖PM‖p∗
V←V

(
T + τ

N0

∑
n=1

∥∥ f n∥∥p∗

V ∗A
+ τ

N0

∑
n=1

∥∥vn∥∥p
VA

+ τ

N0

∑
n=1

∥∥un∥∥p∗

VB

)
.

Altogether, invoking the first a priori bound proves the assertion. ♦

5 Convergence towards the weak solution

In this section, we establish a convergence result for piecewise constant and piecewise
linear in time prolongations of the fully discrete solution towards the weak solution
to the nonlinear second-order evolution equation.
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5.1 Piecewise polynomial prolongations

Piecewise polynomial prolongations. Our construction of piecewise constant and
piecewise linear in time prolongations is according to EMMRICH [13–15]. We recall
that (VM)M∈N denotes a Galerkin scheme for the underlying Banach space V and that
N ∈N defines a constant time stepsize τ = T

N > 0 with corresponding time grid points
(tn)N

n=0 given by tn = nτ for n = 0,1, . . . ,N. For (M,N)∈N×N and certain initial ap-
proximations (u0,v0) ∈VM×VM , we consider the solution (un,vn)N

n=1 ⊂VM×VM to
the full discretisation method (3.4) related to the first-order system (2.3). The piece-
wise constant in time interpolant u : [0,T ]→ VM as well as the piecewise linear in
time prolongation û : [0,T ]→VM associated with (un)N

n=0 are defined through

u(t) =

{
u1 if t ∈ [0, t1] ,
un if t ∈ (tn−1, tn] , n = 2,3, . . . ,N ,

û(t) =

{
3
2 u1− 1

2 u0− (t1− t)D1u1 if t ∈ [0, t1] ,
3
2 un− 1

2 un−1− (tn− t)D2un if t ∈ (tn−1, tn] , n = 2,3, . . . ,N .

(5.1a)

We note that û does not interpolate the discrete values (tn,un)N
n=0. However, by con-

struction, the piecewise linear prolongation is continuous on [0,T ] with

û(tn) =

{
1
2

(
u1 +u0

)
if n = 0 ,

3
2 un− 1

2 un−1 if n = 1,2, . . . ,N ,
(5.1b)

and weakly differentiable with

û′(t) =

{
D1u1 if t ∈ [0, t1] ,
D2un if t ∈ (tn−1, tn] , n = 2,3, . . . ,N .

(5.1c)

In an analogous manner, the piecewise constant and piecewise linear prolongations
v, v̂ : [0,T ]→VM associated with (vn)N

n=0 are defined through

v(t) =

{
v1 if t ∈ [0, t1] ,
vn if t ∈ (tn−1, tn] , n = 2,3, . . . ,N ,

v̂(t) =

{
3
2 v1− 1

2 v0− (t1− t)D1v1 if t ∈ [0, t1] ,
3
2 vn− 1

2 vn−1− (tn− t)D2vn if t ∈ (tn−1, tn] , n = 2,3, . . . ,N .

(5.1d)

We point out that the identity

û′ = v (5.1e)

holds, due to the relations v1 = D1u1 and vn = D2un for n = 2,3, . . . ,N.
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Auxiliary relation. In the proof of Theorem 5.1 we utilise the estimates∫ T

0

(
v̂′(t)

∣∣v(t))H dt ≥ 1
2

(∥∥v̂(T )
∥∥2

H −
∥∥v̂(0)

∥∥2
H

)
− 1

8

∥∥v1− v0∥∥2
H ,∫ T

0

〈(
Bu
)
(t)
∣∣v(t)〉V ∗B×VB

dt ≥ 1
2

(∥∥û(T )
∥∥2

B−
∥∥û(0)

∥∥2
B

)
− 1

8

∥∥u1−u0∥∥2
B ,

(5.2)

see also also EMMRICH [14].
(i) In order to deduce the first relation, we employ the reformulation∫ T

0

(
v̂′(t)

∣∣v(t))H dt =
∫ T

0

(
v̂′(t)

∣∣v̂(t))H dt +
∫ T

0

(
v̂′(t)

∣∣(v− v̂
)
(t)
)

H dt

of the left-hand side. Observing that, for a fixed time increment, the piecewise linear
prolongation is sufficiently regular to carry out integration by parts, we obtain∫ T

0

(
v̂′(t)

∣∣v̂(t))H dt = 1
2

(∥∥v̂(T )
∥∥2

H −
∥∥v̂(0)

∥∥2
H

)
.

Thus, it remains to inspect the remaining contribution which equals∫ T

0

(
v̂′(t)

∣∣(v− v̂
)
(t)
)

H dt =
N

∑
n=2

∫ tn

tn−1

(
D2vn ∣∣ 1

2

(
vn−1− vn)+(tn− t)D2vn)

H dt

+
∫

τ

0

(
D1v1 ∣∣ 1

2

(
v0− v1)+(t1− t)D1v1)

H dt

= 1
2 τ

2
N

∑
n=2

(
D2vn ∣∣D2vn−D1vn)

H

= 1
4

N

∑
n=2

( 3
2 vn−2vn−1 + 1

2 vn−2 ∣∣vn−2vn−1 + vn−2)
H

= 1
8

N

∑
n=2

(∥∥vn− vn−1∥∥2
H −

∥∥vn−1− vn−2∥∥2
H

)
+ 1

4

N

∑
n=2

∥∥τ
2D2vn−1∥∥2

H ,

due to the identities D2vn−D1vn = 1
2 τ D2vn−1 and (3.8c), see also (3.2). We thus

obtain ∫ T

0

(
v̂′(t)

∣∣(v− v̂
)
(t)
)

H dt ≥ 1
8

N

∑
n=2

(∥∥vn− vn−1∥∥2
H −

∥∥vn−1− vn−2∥∥2
H

)
= 1

8

(∥∥vN− vN−1∥∥2
H −

∥∥v1− v0∥∥2
H

)
≥− 1

8

∥∥v1− v0∥∥2
H .

(ii) Recalling the identity v = û′ and using that the operator B : VB → V ∗B is
assumed to be symmetric, similar arguments yield the second estimate.
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5.2 Statement of the main result

Limiting process. In the following, we consider situations where the positive integers
characterising the space and time discretisation tend to infinity. More precisely, we
consider a sequence (M`,N`)`∈N⊂N×N such that M`→∞ and N`→∞ as `→∞. For
this reason, we henceforth indicate the dependences of the piecewise polynomial pro-
longations defined in (5.1) on the discretisation parameters (M`,N`)∈N×N by writ-
ing u` = u(M`,N`) etc. for short. Furthermore, we denote by τ` =

T
N`

the corresponding
time stepsize and by

(
u0
` ,v

0
`

)
∈VM`

×VM`
the prescribed initial approximations. How-

ever, for ease of notation, we occasionally do not indicate the dependence of the asso-
ciated time grid (tn)

N`
n=0 and the fully discrete solution values (un,vn)

N`
n=1 ⊂VM`

×VM`

on (M`,N`).

Assumptions. We employ the following assumptions on the discretisation parame-
ters, the initial approximations, and the H-orthogonal projection.

Assumption (IC, P) The sequence (M`,N`)`∈N ⊂ N × N is chosen such that
M` ,N` → ∞ as `→ ∞. The corresponding sequence (u0

` ,v
0
`)`∈N of approximations

to the intial values (u0,v0) ∈VB×H satisfies
(
u0
` ,v

0
`

)
∈VM`

×VM`
for any ` ∈ N and(

u0
` ,v

0
`

)
→ (u0,v0) in VB×H .

There exists a constant c > 0 such that for every ` ∈ N the H-orthogonal projection
onto VM`

⊂V ⊂ H satisfies ∥∥PM`

∥∥
V←V ≤ c .

H-orthogonal projection. It seems to be an open question which assumptions on V
and H ensure the existence of a Galerkin scheme for V such that the above assumption
on the projection is fulfilled. Nevertheless, this property on the projection has been
studied by many authors in the context of the finite element method, see for instance
BOMAN [4] and CROUZEIX, THOMÉE [10] for V = Lp(Ω) or V =W 1,p(Ω), BANK,
YSERENTANT [2] and CARSTENSEN [6] for V = H1(Ω), STEINBACH [29] for V =
Hs(Ω) (s ∈ (0,1]), COCKBURN [8] for V = BV(Ω), in all cases with H = L2(Ω), as
well as EMMRICH, ŠIŠKA [17] for H = H−1(Ω), V = Lp(Ω) in the one-dimensional
case. We note that if the projection is stable as a linear and bounded operator in VA as
well as in VB then it is also stable in V .

Main result. Provided that the stated assumptions on the operators defining the
nonlinear second-order evolution equation (1.1) and on the full discretisation
method (1.3) are fulfilled, the following result ensures convergence of the piecewise
polynomial prolongations (5.1) towards the weak solution of the problem, charac-
terised in Theorem 2.1. Again, the proof of the statement relies on the equivalent
formulation (3.4) related to the first-order system (2.3).

Theorem 5.1 (Convergence towards the weak solution) Assume (u0,v0) ∈VB×H
as well as f ∈ Lp∗(0,T ;V ∗A ), and let (u`,v`)`∈N and (û`, v̂`)`∈N denote the sequences
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of piecewise constant and piecewise linear prolongations associated with the full dis-
cretisation method (3.4). Provided that Assumptions (A), (B), and (IC, P) are satisfied,
the sequences (u`)`∈N and (û`)`∈N converge weakly* in L∞(0,T ;VB) towards the ex-
act solution u to the nonlinear second-order evolution equation (1.3), characterised
by the regularity properties u ∈ Cw([0,T ];VB), u′ ∈ Cw([0,T ];H) ∩ Lp(0,T ;VA),
and u′′ ∈ Lp∗(0,T ;V ∗). Moreover, the sequences (v`)`∈N and (v̂`)`∈N converge
weakly* towards u′ in L∞(0,T ;H); the sequence (v`)`∈N converges also weakly to-
wards u′ in Lp(0,T ;VA). Finally, the sequence (v̂′`)`∈N converges weakly towards u′′

in Lp∗(0,T ;V ∗).

5.3 Auxiliary results

The proof of Theorem 5.1 relies on two auxiliary results, which we deduce next.
For the piecewise polynomial prolongations introduced in (5.1), we first prove the
existence of weakly convergent subsequences and verify fundamental properties of
the corresponding limits, see Lemma 5.2. To this purpose, we employ the results
that a bounded sequence in a reflexive Banach space possesses a weakly convergent
subsequence and that a bounded sequence in the dual of a separable normed space
possesses a weakly* convergent subsequence, see for instance BRÉZIS [5]. As en-
sured by Lemma 5.3, it is also possible to establish a strong convergence result for
the first iterates. In addition, in order to verify that the obtained limiting function is
indeed a solution to the nonlinear second-order evolution equation, we utilise an ap-
propriate analogue to the integration-by-parts formula, which is found in EMMRICH,
THALHAMMER [20] and similarly in LIONS, STRAUSS [26]. For the convenience of
the reader, we restate this result in Lemma 5.4.

Lemma 5.2 (Weak convergence of subsequences) Under the requirements of The-
orem 5.1 there exists a function u : [0,T ]→VB with the properties

u ∈A C ([0,T ];H)∩Cw([0,T ];VB) , u−u0 ∈A C ([0,T ];VA) ,

u′ ∈A C ([0,T ];V ∗)∩Cw([0,T ];H)∩Lp(0,T ;VA) , u′′ ∈ Lp∗(0,T ;V ∗) ,
u(0) = u0 , u′(0) = v0 ,

(5.3)

and a subsequence (`′) ⊂ (`) such that the corresponding sequences of piecewise
constant and piecewise linear prolongations, denoted by (u`′ ,v`′) and (û`′ , v̂`′) satisfy

u`′ , û`′
∗
⇀ u in L∞(0,T ;VB) , û′`′ = v`′

∗
⇀ u′ in L∞(0,T ;H)∩Lp(0,T ;VA) ,

v`′ , v̂`′
∗
⇀ u′ in L∞(0,T ;H) , v̂′`′ ⇀ u′′ in Lp∗(0,T ;V ∗) ,(

u`′(0),v`′(0)
)
,
(
û`′(0), v̂`′(0)

)
⇀
(
u(0),u′(0)

)
= (u0,v0) in VB×H ,(

û`′(T ), v̂`′(T )
)
⇀
(
u(T ),u′(T )

)
in VB×H ,

as `′→ ∞. Furthermore, there exists an element a ∈ Lp∗(0,T ;V ∗A ) such that

Av`′ ⇀ a in Lp∗(0,T ;V ∗A ) , Bu`′
∗
⇀ Bu in L∞(0,T ;V ∗B ) ,

where Bu ∈ Cw([0,T ];V ∗B ).
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Proof We first prove the existence of convergent subsequences of the sequences of
prolongations (5.1) and then verify the stated regularity properties of the resulting
limiting function.

(i) Existence of convergent subsequences. Evidently, the piecewise constant and
piecewise linear prolongations to the fully discrete solutions satisfy (` ∈ N)

∥∥u`
∥∥

L∞(0,T ;VB)
= max

n=1,2,...,N`

∥∥un∥∥
VB
,
∥∥û`
∥∥

L∞(0,T ;VB)
≤ 2 max

n=0,1,...,N`

∥∥un∥∥
VB
,∥∥v`

∥∥
L∞(0,T ;H)

= max
n=1,2,...,N`

∥∥vn∥∥
H ,

∥∥v̂`
∥∥

L∞(0,T ;H)
≤ 2 max

n=0,1,...,N`

∥∥vn∥∥
H ,

∥∥v`
∥∥p

Lp(0,T ;VA)
=

N`

∑
n=1

∫ tn

tn−1

∥∥v`(t)
∥∥p

VA
dt = τ`

N`

∑
n=1

∥∥vn∥∥p
VA
,

∥∥v̂′`
∥∥p∗

Lp∗ (0,T ;V ∗) = τ`

N`

∑
n=2

∥∥D2vn∥∥p∗

V ∗ + τ`

∥∥D1v1∥∥p∗

V ∗ .

Regarding Theorem 4.3, we note that the sequences (C(u0
` ,v

0
` , f ))`∈N and

(C̃(u0,v0, f ))`∈N are bounded, since the sequence (u0
` ,v

0
`)`∈N is bounded in VB×H.

The a priori estimates provided by Theorem 4.3 together with Assumption (IC, P)
on the initial approximations and the H-orthogonal projection thus ensure bounded-
ness of the sequences (u`)`∈N and (û`)`∈N in L∞(0,T ;VB), of (v`)`∈N and (v̂`)`∈N in
L∞(0,T ;H), of (v`)`∈N in Lp(0,T ;VA), and of (v̂′`)`∈N in Lp∗(0,T ;V ∗). We recall that
v` = û′` holds. As a consequence, a common subsequence (`′)⊂ (`) of positive inte-
gers and elements u, û∈ L∞(0,T ;VB), v∈ L∞(0,T ;H)∩Lp(0,T ;VA), v̂∈ L∞(0,T ;H),
and w ∈ Lp∗(0,T ;V ∗) exist such that the corresponding sequences of piecewise con-
stant and piecewise linear prolongations fulfill

u`′
∗
⇀ u in L∞(0,T ;VB) , û`′

∗
⇀ û in L∞(0,T ;VB) ,

v`′
∗
⇀ v in L∞(0,T ;H)∩Lp(0,T ;VA) , v̂`′

∗
⇀ v̂ in L∞(0,T ;H) ,

v̂′`′ ⇀ w in Lp∗(0,T ;V ∗) .

(ii) Coincidences of limiting functions. In the sequel, we show that certain lim-
iting functions coincide. We observe that v = û′ as well as w = v̂′ holds, due to the
identity û′` = v` for ` ∈ N and the definition of the weak time derivative. Employ-
ing the relations D1un = D2un− 1

2 τ` D2un−1 and v1 = D1u1 as well as vn = D2un, a
straightforward calculation yields (` ∈ N)

(
u`− û`

)
(t) =

{( 1
2 t1− t

)
D1u1 if t ∈ [0, t1] ,

(tn− t)D2un− 1
2 τ` D1un if t ∈ (tn−1, tn] , n = 2,3, . . . ,N ,

=

{( 1
2 t1− t

)
v1 if t ∈ [0, t1] ,

(tn− 1
2 τ`− t)vn + 1

4 τ2
` D2un−1 if t ∈ (tn−1, tn] , n = 2,3, . . . ,N ,
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see also (3.2) and (3.4). The a priori estimates given in Theorem 4.3 together with the
continuous embedding VB ↪→ H ensure that

∥∥u`− û`
∥∥2

L2(0,T ;H)
=
∫ T

0

∥∥(u`− û`
)
(t)
∥∥2

H dt =
N`

∑
n=1

∫ tn

tn−1

∥∥(u`− û`
)
(t)
∥∥2

H dt

=
N`

∑
n=2

∫ tn

tn−1

∥∥(tn− 1
2 τ`− t

)
vn + 1

4 τ
2
` D2un−1∥∥2

H dt

+
∫ t1

0

( 1
2 t1− t

)2∥∥v1∥∥2
H dt

≤ cτ`

(
τ

2
`

N`

∑
n=1

∥∥vn∥∥2
H +

N`

∑
n=2

∥∥τ
2
` D2un−1∥∥2

B

)
converges towards zero as τ`→ 0, which proves that the weak limits of (u`′) and (û`′)
coincide, i.e. u = û. An analogous calculation implies (` ∈ N)

(
v`− v̂`

)
(t) =

{( 1
2 t1− t

)
D1v1 if t ∈ [0, t1] ,

(tn− 1
2 τ`− t)D2vn + 1

4 τ2
` D2vn−1 if t ∈ (tn−1, tn] , n = 2,3, . . . ,N .

As p ∈ [2,∞) and p∗ ∈ (1,2] holds by assumption, Hölder’s inequality and the con-
tinuous embedding H ↪→V ∗ yield (` ∈ N)

∥∥v`− v̂`
∥∥p∗

Lp∗ (0,T ;V ∗) =
∫ T

0

∥∥(v`− v̂`
)
(t)
∥∥p∗

V ∗ dt =
N`

∑
n=1

∫ tn

tn−1

∥∥(v`− v̂`
)
(t)
∥∥p∗

V ∗ dt

≤ cτ
p∗
`

(
τ`

N`

∑
n=2

∥∥D2vn∥∥p∗

V ∗ + τ`

∥∥D1v1∥∥p∗

V ∗

)
+ cτ`

N`

∑
n=2

∥∥τ
2
` D2vn−1∥∥p∗

V ∗

≤ cτ
p∗
`

(
τ`

N`

∑
n=2

∥∥D2vn∥∥p∗

V ∗ + τ`

∥∥D1v1∥∥p∗

V ∗

)
+ cτ

1
2 p∗

`

(
N`

∑
n=2

∥∥τ
2
` D2vn−1∥∥2

H

) 1
2 p∗

.

A further application of Theorem 4.3 and the assumption on the orthogonal projection
imply v`− v̂`→ 0 in Lp∗(0,T ;V ∗) as τ`→ 0, which shows that the weak limits of (v`′)
and (v̂`′) coincide such that v = v̂. Altogether, this implies

u = û , u′ = û′ = v = v̂ , u′′ = û′′ = v′ = v̂′ = w .

(iii) Regularity of limiting function. So far, we know that the limiting function
u := u = û fulfills

u in L∞(0,T ;VB) , u′ in L∞(0,T ;H)∩Lp(0,T ;VA) , u′′ in Lp∗(0,T ;V ∗) .

Recalling once more the continuous embeddings VB ↪→ H as well as V ∗ ↪→ H
and applying the embeddings W 1,1(0,T ;H) ⊂ A C ([0,T ];H) and W 1,1(0,T ;V ∗) ⊂
A C ([0,T ];V ∗) as well as LIONS, MAGENES [25, Ch. 3, Lemme 8.1], we conclude
that

u ∈A C ([0,T ];H)∩Cw([0,T ];VB) , u′ ∈A C ([0,T ];V ∗)∩Cw([0,T ];H) ,
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which further implies

u−u0 =
∫ (·)

0
u′(s) ds ∈ L∞(0,T ;VA)

with (u−u0)
′ ∈ Lp(0,T ;VA) and thus u−u0 ∈A C ([0,T ];VA).

(iv) Initial values. We first show that u(0) coincides with the prescribed initial
value u0. For this purpose, we rewrite the difference u0−u(0) as (` ∈ N)

u0−u(0) = u0−u0
` +u0

` − û`(0)+ û`(0)−u(0) .

By Assumption (IC, P), the contribution u0− u0
` converges strongly towards zero in

VB ↪→H as `→∞, and, with the help of the first a priori estimate in Theorem 4.3, we
obtain ∥∥u0

` − û`(0)
∥∥

H = 1
2 τ`

∥∥v1∥∥
H → 0 .

To justify that û`(0)− u(0) converges weakly towards zero in H, we consider the
continuous embedding W 1,1(0,T ;H) ↪→ C ([0,T ];H), which implies that the trace
operator

Γ0 : W 1,1(0,T ;H)−→ H : g 7−→ Γ0g = g(0)

is linear as well as bounded and thus weakly-weakly-continuous. Due to the fact
that the sequence (û`′) converges weakly* towards u in L∞(0,T ;VB) and that (û′`′)
converges weakly* towards u′ in L∞(0,T ;H), we find that (û`′) converges weakly
towards u in W 1,1(0,T ;H), and as a consequence we find û`′(0) ⇀ u(0) in H. Al-
together, these considerations yield u(0) = u0. A further application of Theorem 4.3
ensures that there exists an element ξ ∈VB and a subsequence of (`′), again denoted
by (`′), such that

û`′(0) = 1
2

(
u1
`′ +u0

`′
)
⇀ ξ in VB .

This limit ξ , however, has to coincide with u(0) = u0.
Similar arguments are used to verify u′(0) = v0. Namely, rewriting the difference

v0−u′(0) as (` ∈ N)

v0−u′(0) = v0− v0
` + v0

` − v̂`(0)+ v̂`(0)−u′(0) ,

Assumption (IC, P) ensures that v0 − v0
` converges strongly towards zero in H as

`→ ∞, and an application of Theorem 4.3 yields

∥∥v0
` − v̂`(0)

∥∥
V ∗ =

1
2 τ`

∥∥D1v1∥∥
V ∗ =

1
2 τ

1
p
`

(
τ`

∥∥D1v1∥∥p∗

V ∗

) 1
p∗ → 0 .

In the present situation, we utilise the continuous embedding W 1,1(0,T ;V ∗) ↪→
C ([0,T ];V ∗), which shows that the associated trace operator Γ0 : W 1,1(0,T ;V ∗)→
V ∗ : g 7→Γ0g= g(0) is linear as well as bounded and thus weakly-weakly-continuous.
As (v̂`′) converges weakly* towards u′ in L∞(0,T ;H) and (v̂′`′) converges weakly to-
wards u′′ in Lp∗(0,T ;V ∗), we conclude that (v̂`′) converges weakly towards u′ in
W 1,1(0,T ;V ∗) such that v̂`′(0) ⇀ u′(0) in V ∗, which implies u′(0) = v0. Moreover,
for a subsequence of (`′), again denoted by (`′), this yields

v̂`′(0) = 1
2

(
v1
`′ + v0

`′
)
⇀ u′(0) = v0 in H .
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As by assumption u0
` → u0 in VB and v0

` → v0 in H, it immediately follows u`′(0) =
u1
`′ = 2û`′(0)−u0

`′ ⇀ u0 in VB and v`′(0) = v1
`′ = 2v̂`′(0)− v0

`′ ⇀ v0 in H.
(v) Final values. Passing again to a subsequence

(
û`′ , v̂`′

)
if necessary, the a

priori estimates given in Theorem 4.3 ensure the existence of an element (ξ ,ζ ) ∈
VB×H such that (

û`(T ), v̂`(T )
)
⇀ (ξ ,ζ ) in VB×H .

Employing the trace operators W 1,1(0,T ;H)→ H : g 7→ g(T ) and W 1,1(0,T ;V ∗)→
V ∗ : g 7→ g(T ), which evaluate a function at the final time, we find that(

û`′(T ), v̂`′(T )
)
⇀ (ξ ,ζ ) =

(
u(T ),u′(T )

)
in H×V ∗ .

(vi) Application of A and B. With the help of the growth condition on the non-
linear operator A : VA→V ∗A and Theorem 4.3, we observe that the sequence (Av`)`∈N
remains bounded in Lp∗(0,T ;V ∗A ), since (` ∈ N)

∥∥Av`
∥∥p∗

Lp∗ (0,T ;V ∗A )
=
∫ T

0

∥∥Av`(t)
∥∥p∗

V ∗A
dt = τ`

N`

∑
n=1

∥∥Avn∥∥p∗

V ∗A
≤ cτ`

N`

∑
n=1

(
1+‖v‖p−1

VA

)p∗

≤ cT + cτ`

N`

∑
n=1
‖v‖p

VA
,

see also Assumption (A). This implies that there exists an element a ∈ Lp∗(0,T ;V ∗A )
and a subsequence of (`′), again denoted by (`′), such that Av`′ ⇀ a in Lp∗(0,T ;V ∗A ).

It remains to verify weak* convergence of (Bu`′) towards Bu in L∞(0,T ;V ∗B ). For
this purpose, we utilise the symmetry of B, which leads to the identity (` ∈ N)

∫ T

0

〈
(Bu`)(t)

∣∣w(t)〉V ∗B×VB
dt =

∫ T

0

〈
(Bw)(t)

∣∣u`(t)〉V ∗B×VB
dt ,

valid for any w ∈ L1(0,T ;VB) such that Bw ∈ L1(0,T ;V ∗B ). Utilising that for a certain
subsequence, again denoted by (`′), (u`′) converges weakly* to u in L∞(0,T ;VB) and
identifying the dual of L1(0,T ;V ∗B ) with L∞(0,T ;V ∗∗B ) = L∞(0,T ;VB), this implies

〈
Bu`′

∣∣w〉L∞(0,T ;V ∗B )×L1(0,T ;VB)
=
∫ T

0

〈
(Bu`′)(t)

∣∣w(t)〉V ∗B×VB
dt

=
∫ T

0

〈
(Bw)(t)

∣∣u`′(t)〉V ∗B×VB
dt =

〈
u`′
∣∣Bw

〉
L∞(0,T ;VB)×L1(0,T ;V ∗B )

and further shows that〈
Bu`′ −Bu

∣∣w〉L∞(0,T ;V ∗B )×L1(0,T ;VB)
=
〈
u`′ −u

∣∣Bw
〉

L∞(0,T ;VB)×L1(0,T ;V ∗B )

converges to zero as `′ → ∞ such that Bu`′
∗
⇀ Bu in L∞(0,T ;V ∗B ). Altogether, this

concludes the proof. ♦
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Remark. Under the additional assumption

sup
`∈N

τ`

∥∥v0
`

∥∥p
VA

< ∞ ,

it can easily be shown that also the subsequence (v̂`′) converges weakly towards u′

in Lp(0,T ;VA). As VA is dense in H 3 v0, this assumption can always be fulfilled.

Strong convergence of first iterates. In the present situation, contrary to the con-
vergence analysis given in EMMRICH, THALHAMMER [20] for a full discretisation
method based on the one-step backward differentiation formula, we also need to
prove strong convergence of the first iterates towards the initial approximations. This
is related to EMMRICH [14], where the two-step backward differentiation formula
has been studied for the time discretisation of non-Newtonian fluid flows. For clar-
ity, we meanwhile indicate the dependence of the fully discrete solution values on
(M`,N`)⊂ N×N for some ` ∈ N, that is, we write (un

` ,v
n
`)

N`
n=0 ⊂VM`

×VM`
for short.

Lemma 5.3 (Strong convergence of first iterates) In the situation of Lemma 5.2,
there exists a subsequence of (`′), again denoted by (`′), such that(

u1
`′ −u0

`′ ,v
1
`′ − v0

`′
)
→ 0 in VB×H

as `′→ ∞. In particular, this implies(
û`′(0), v̂`′(0)

)
→
(
u(0),u′(0)

)
= (u0,v0) in VB×H

as `′→ ∞.

Proof The assertion is proven in two steps, showing first weak convergence and then
strong convergence.

(i) Weak convergence. By Assumption (IC, P) the sequence of initial approx-
imations (u0

` ,v
0
`)`∈N converges in VB × H and thus is bounded in VB × H. To-

gether with the first a priori estimate in Theorem 4.3 this ensures that the sequence
(u1

` − u0
` ,v

1
` − v0

`)`∈N remains bounded in VB×H, which further implies that there
exists an element (ξ ,ζ ) ∈VB×H and a subsequence, denoted by (u1

`′−u0
`′ ,v

1
`′−v0

`′),
such that

(u1
`′ −u0

`′ ,v
1
`′ − v0

`′)⇀ (ξ ,ζ ) in VB×H .

On the other hand, Theorem 4.3 implies that the quantities∥∥u1
` −u0

`

∥∥
H = τ`

∥∥v1
`

∥∥
H ,

∥∥v1
` − v0

`

∥∥
V ∗ = τ`

∥∥D1v1
`

∥∥
V ∗ = τ

1
p
`

(
τ`

∥∥D1v1
`

∥∥p∗

V ∗

) 1
p∗

converge to zero as τ`→ 0, which yields (ξ ,ζ ) = (0,0).
(ii) Strong convergence. In order to show that even strong convergence takes

place in VB×H, we employ Assumptions (A) and (B).
(a) Let w ∈VA. By the definition of the initial approximation f 1

` and an applica-
tion of Hölder’s inequality, we obtain (` ∈ N)

τ`

〈
f 1
`

∣∣v1
`

〉
V ∗A×VA

≤ τ`

∥∥ f 1
`

∥∥
V ∗A

∥∥v1
`

∥∥
VA

= τ

1
p∗
`

∥∥ f 1
`

∥∥
V ∗A

(
τ`

∥∥v1
`

∥∥p
VA

) 1
p

≤ τ

1
p∗−1
`

∫
τ`

0

∥∥ f (s)
∥∥

V ∗A
ds
(

τ`

∥∥v1
`

∥∥p
VA

) 1
p ≤

∥∥ f
∥∥

Lp∗ (0,τ`;V ∗A )

(
τ`

∥∥v1
`

∥∥p
VA

) 1
p
,
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see also (3.3). By the required monotonicity of A and the growth condition on A, the
estimate (` ∈ N)

− τ`

〈
Av1

`

∣∣v1
`

〉
V ∗A×VA

≤ τ`

〈
Av1

` −Aw
∣∣v1

` −w
〉

V ∗A×VA
− τ`

〈
Av1

`

∣∣v1
`

〉
V ∗A×VA

=−τ`

〈
Aw
∣∣v1

` −w
〉

V ∗A×VA
− τ`

〈
Av1

`

∣∣w〉V ∗A×VA

≤ τ`

∥∥Aw
∥∥

V ∗A

∥∥v1
` −w

∥∥
VA

+ τ`

∥∥Av1
`

∥∥
V ∗A
‖w‖VA

≤ τ

1
p∗
`

∥∥Aw
∥∥

V ∗A

(
τ`

∥∥v1
` −w

∥∥p
VA

) 1
p
+ cτ`

(
1+‖v1

`‖
p−1
VA

)
‖w‖VA

= τ

1
p∗
`

∥∥Aw
∥∥

V ∗A

(
τ`

∥∥v1
` −w

∥∥p
VA

) 1
p
+ cτ` ‖w‖VA + cτ

1
p
`

(
τ`

∥∥v1
`

∥∥p
VA

) 1
p∗

follows. We further note that the positivity of B implies (` ∈ N)

−
〈
Bu1

`

∣∣u1
` −u0

`

〉
V ∗B×VB

=−
〈
B
(
u1
` −u0

`

)∣∣u1
` −u0

`

〉
V ∗B×VB

−
〈
Bu0

`

∣∣u1
` −u0

`

〉
V ∗B×VB

≤−
〈
Bu0

`

∣∣u1
` −u0

`

〉
V ∗B×VB

.

(b) On the one hand, employing the defining relations for the initial iterates as
well as the bounds deduced before, we find that (` ∈ N)

∥∥v1
` − v0

`

∥∥2
H =

(
v1
` − v0

`

∣∣v1
`

)
H −

(
v1
` − v0

`

∣∣v0
`

)
H

= τ`

〈
f 1
`

∣∣v1
`

〉
V ∗A×VA

− τ`

〈
Av1

`

∣∣v1
`

〉
V ∗A×VA

−
〈
Bu1

`

∣∣u1
` −u0

`

〉
V ∗B×VB

−
(
v1
` − v0

`

∣∣v0
`

)
H

≤
∥∥ f
∥∥

Lp∗ (0,τ`;V ∗A )

(
τ`

∥∥v1
`

∥∥p
VA

) 1
p
+ τ

1
p∗
`

∥∥Aw
∥∥

V ∗A

(
τ`

∥∥v1
` −w

∥∥p
VA

) 1
p
+ cτ` ‖w‖VA

+ cτ

1
p
`

(
τ`

∥∥v1
`

∥∥p
VA

) 1
p∗ −

〈
Bu0

`

∣∣u1
` −u0

`

〉
V ∗B×VB

−
(
v1
` − v0

`

∣∣v0
`

)
H ,

see also (3.4b) and the fundamental bounds for the first iterates (v1
`)`∈N pro-

vided by Theorem 4.3. We note that by assumption f ∈ Lp∗(0,T ;V ∗A ) such that
‖ f‖Lp∗ (0,τ`;V ∗A )

→ 0 as τ`→ 0. The above considerations ensure weak convergence of

a subsequence (u1
`′−u0

`′) towards zero in VB, and by assumption the sequence (u0
`)`∈N

converges strongly towards u0 in VB such that in particular 〈Bu0
`′ |u

1
`′ −u0

`′〉V ∗B×VB → 0
as `′→ ∞. Furthermore, (v1

`′ − v0
`′) converges weakly towards zero in H, and by as-

sumption the sequence (v0
`)`∈N converges strongly towards v0 in H. Altogether, this

proves ‖v1
`′ − v0

`′‖H → 0 as `′→ ∞.
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On the other hand, utilising in addition the equivalence of the norms ‖ · ‖VB and
‖ · ‖B defined in (2.1), we obtain (` ∈ N)

c−1∥∥u1
` −u0

`

∥∥2
VB
≤
∥∥u1

` −u0
`

∥∥2
B =

〈
B
(
u1
` −u0

`

) ∣∣u1
` −u0

`

〉
V ∗B×VB

=
〈
Bu1

`

∣∣u1
` −u0

`

〉
V ∗B×VB

−
〈
Bu0

`

∣∣u1
` −u0

`

〉
V ∗B×VB

= τ`

〈
Bu1

`

∣∣v1
`

〉
V ∗B×VB

−
〈
Bu0

`

∣∣u1
` −u0

`

〉
V ∗B×VB

= τ`

〈
f 1
`

∣∣v1
`

〉
V ∗A×VA

−
(
v1
` − v0

`

∣∣v1
`

)
H − τ`

〈
Av1

`

∣∣v1
`

〉
V ∗A×VA

−
〈
Bu0

`

∣∣u1
` −u0

`

〉
V ∗B×VB

≤
∥∥ f
∥∥

Lp∗ (0,τ`;V ∗A )

(
τ`

∥∥v1
`

∥∥p
VA

) 1
p
+ τ

1
p∗
`

∥∥Aw
∥∥

V ∗A

(
τ`

∥∥v1
` −w

∥∥p
VA

) 1
p
+ cτ` ‖w‖VA

+ cτ

1
p
`

(
τ`

∥∥v1
`

∥∥p
VA

) 1
p∗ −

〈
Bu0

`

∣∣u1
` −u0

`

〉
V ∗B×VB

−
(
v1
` − v0

`

∣∣v1
`

)
H

for some c > 0. Combining the above arguments with the established strong conver-
gence of a subsequence (v1

`′ − v0
`′) towards zero in H thus implies ‖u1

`′ −u0
`′‖VB → 0 .

(c) Moreover, making use of the fact that the identities (` ∈ N)

û`(0) = 1
2

(
u1
` +u0

`

)
= u0

` +
1
2

(
u1
` −u0

`

)
, v̂`(0) = v0

` +
1
2

(
v1
` − v0

`

)
hold, strong convergence of the subsequence (û`′(0), v̂`′(0)) towards (u(0),u′(0)) =
(u0,v0) in VB×H is an immediate consequence of the former considerations. ♦

Integration-by-parts formula. A particular integration-by-parts formula is deduced
in EMMRICH, THALHAMMER [20], see also LIONS, STRAUSS [26]. For the conve-
nience of the reader, we restate the result, adapted to the present situation.

Lemma 5.4 ([20, Lemma 6]) Provided that u0 ∈VB and w ∈ Lp(0,T ;VA) satisfies

Kw =
∫ (·)

0
w(s) ds ∈ L2(0,T ;VB) , w′+B(u0 +Kw) ∈ Lp∗(0,T ;V ∗A ) ,

the identity∫
β

α

〈(
w′+B(u0 +Kw

)
(t)
∣∣w(t)〉V ∗A×VA

dt

= 1
2

(∥∥w(β )
∥∥2

H −
∥∥w(α)

∥∥2
H +

∥∥u0 +(Kw)(β )
∥∥2

B−
∥∥u0 +(Kw)(α)

∥∥2
B

)
holds for almost all α,β ∈ [0,T ] with α < β . If in addition w ∈ Cw([0,T ];H) and
Kw ∈ Cw([0,T ];VB) is fulfilled, the relation∫

β

0

〈(
w′+B(u0 +Kw

)
(t)
∣∣w(t)〉V ∗A×VA

dt

≤ 1
2

(∥∥w(β )
∥∥2

H −
∥∥w(0)

∥∥2
H +

∥∥u0 +(Kw)(β )
∥∥2

B−
∥∥u0
∥∥2

B

)
is valid for almost all β ∈ [0,T ].



34 E. Emmrich, D. Šiška, M. Thalhammer

5.4 Proof of the main result

We are now ready to prove the main result.

Proof (of Theorem 5.1) For a suitable subsequence (`′) ⊂ (`), Lemma 5.2 and 5.3
ensure the existence of a limiting function with the properties specified in (5.3). It
remains to verify that this limiting function is a solution to the nonlinear second-
order evolution equation (1.1) or equivalently to the first-order system (2.3).

(i) Reformulation of numerical scheme. Our starting point is the full discretisa-
tion scheme (3.4) related to the first-order system. By means of the piecewise con-
stant and piecewise linear prolongations (u`,v`)`∈N and (û`, v̂`)`∈N, making use of
the identity û′` = v`, the numerical scheme may be rewritten as (` ∈ N)(

v̂′`(t)
∣∣ϕ)H +

〈(
Av`
)
(t)
∣∣ϕ〉V ∗A×VA

+
〈(

Bu`
)
(t)
∣∣ϕ〉V ∗B×VB

=
〈

f `(t)
∣∣ϕ〉V ∗A×VA

(5.4)

for almost all t ∈ [0,T ] and all ϕ ∈ VM`
. Here, the piecewise constant prolongation

( f `)`∈N is defined analogously to (5.1). Testing with ψ ∈C ∞
c ((0,T );R) and applying

integration by parts leads to the relation (` ∈ N)

−
∫ T

0

(
v̂`(t)

∣∣ϕ)H ψ
′(t) dt +

∫ T

0

〈(
Av`
)
(t)
∣∣ϕ〉V ∗A×VA

ψ(t) dt

+
∫ T

0

〈(
Bu`
)
(t)
∣∣ϕ〉V ∗B×VB

ψ(t) dt =
∫ T

0

〈
f `(t)

∣∣ϕ〉V ∗A×VA
ψ(t) dt .

This relation holds for all ϕ ∈VM`
and thus also for all ϕ ∈Vk with k ≤M`.

(ii) Relation for limiting function. We note that, by standard arguments, the se-
quence of piecewise constant prolongations ( f `)`∈N converges strongly towards f
in Lp∗(0,T ;V ∗A ), see also (3.3). Fixing k and passing to the limit along the subse-
quence as specified in Lemma 5.2 and 5.3 thus yields

−
∫ T

0

(
u′(t)

∣∣ϕ)H ψ
′(t) dt +

∫ T

0

(〈
a(t)

∣∣ϕ〉V ∗A×VA
+
〈
(Bu)(t)

∣∣ϕ〉V ∗B×VB

)
ψ(t) dt

=
∫ T

0

〈
f (t)
∣∣ϕ〉V ∗A×VA

ψ(t) dt ,

which now holds for all ϕ ∈
⋃

k∈NVk. Because of the limited completeness of the
Galerkin scheme, this relation indeed holds for all ϕ ∈ V . Due to the fact that
by assumption f ∈ Lp∗(0,T ;V ∗A ) and by Lemma 5.2 the limiting functions satisfy
a ∈ Lp∗(0,T ;V ∗A ), Bu ∈ L∞(0,T ;V ∗B ), u′ ∈ Lp(0,T ;VA), and u′′ ∈ Lp∗(0,T ;V ∗), this
shows, by definition of the weak time derivative, that f − a−Bu ∈ Lp∗(0,T ;V ∗A )+
L∞(0,T ;V ∗B )⊂ Lp∗(0,T ;V ∗) coincides with u′′ ∈ Lp∗(0,T ;V ∗), that is u′′= f−a−Bu
in Lp∗(0,T ;V ∗). Moreover, using that u′′+Bu = f −a ∈ Lp∗(0,T ;V ∗A ), we obtain

u′′+a+Bu = f in Lp∗(0,T ;V ∗A ) . (5.5)



A full discretisation for nonlinear second-order evolution equations 35

(iii) Identification of a. In order to identify the element a ∈ Lp∗(0,T ;V ∗A ), we set
ϕ = v` = û′` in (5.4), integrate, and utilise the monotonicity of A to obtain (` ∈ N)

∫ T

0

(〈
f `(t)

∣∣v`(t)〉V ∗A×VA
−
(
v̂′`(t)

∣∣v`(t))H −
〈(

Bu`
)
(t)
∣∣v`(t)〉V ∗B×VB

)
dt

=
∫ T

0

〈(
Av`
)
(t)
∣∣v`(t)〉V ∗A×VA

dt

≥
∫ T

0

(〈(
Av`
)
(t)
∣∣v`(t)〉V ∗A×VA

−
〈(

Av`−Aw
)
(t)
∣∣(v`−w

)
(t)
〉

V ∗A×VA

)
dt

=
∫ T

0

(〈(
Av`
)
(t)
∣∣w(t)〉V ∗A×VA

+
〈(

Aw
)
(t)
∣∣(v`−w

)
(t)
〉

V ∗A×VA

)
dt

for any w ∈ Lp(0,T ;VA). Together with the relations (5.2), this implies (` ∈ N)

∫ T

0

〈
f `(t)

∣∣v`(t)〉V ∗A×VA
dt + 1

8

(∥∥u1
` −u0

`

∥∥2
B +
∥∥v1

` − v0
`

∥∥2
H

)
− 1

2

(∥∥û`(T )
∥∥2

B−
∥∥û`(0)

∥∥2
B +
∥∥v̂`(T )

∥∥2
H −

∥∥v̂`(0)
∥∥2

H

)
≥
∫ T

0

〈(
Av`
)
(t)
∣∣v`(t)〉V ∗A×VA

dt

≥
∫ T

0

(〈(
Av`
)
(t)
∣∣w(t)〉V ∗A×VA

+
〈(

Aw
)
(t)
∣∣(v`−w

)
(t)
〉

V ∗A×VA

)
dt .

Next, we employ Lemma 5.2 as well as 5.3 combined with the above considera-
tions. In particular, we utilise that a common subsequence exists such that (v`′)
converges weakly towards u′ in Lp(0,T ;VA) and that ( f `′) converges strongly to-
wards f = u′′+ a+Bu in Lp∗(0,T ;V ∗A ). In addition, we make use of the fact that
strong convergence of (u1

`′ − u0
`′ ,v

1
`′ − v0

`′) towards zero in VB ×H, weak conver-
gence of (û`′(T ), v̂`′(T )) towards (u(T ),u′(T )) in VB×H, and strong convergence
of (û`′(0), v̂`′(0)) towards (u(0),u′(0)) = (u0,v0) in VB×H are ensured. Recall also
that (Av`′) converges weakly to a in Lp∗(0,T ;V ∗A ). Passing to the subsequence (`′)
and using the weak sequential lower semicontinuity of the norm, we thus obtain

∫ T

0

(〈
a(t)

∣∣w(t)〉V ∗A×VA
+
〈(

Aw
)
(t)
∣∣(u′−w

)
(t)
〉

V ∗A×VA

)
dt

≤ limsup
`′∈N

∫ T

0

〈(
Av`
)
(t)
∣∣v`(t)〉V ∗A×VA

dt

≤
∫ T

0

〈(
u′′+a+Bu

)
(t)
∣∣u′(t)〉V ∗A×VA

dt

− 1
2

(∥∥u(T )
∥∥2

B−
∥∥u(0)

∥∥2
B +
∥∥u′(T )

∥∥2
H −

∥∥u′(0)
∥∥2

H

)
.
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As a consequence, we obtain∫ T

0

〈(
a−Aw

)
(t)
∣∣(w−u′

)
(t)
〉

V ∗A×VA
dt

≤
∫ T

0

〈(
u′′+Bu

)
(t)
∣∣u′(t)〉V ∗A×VA

dt

− 1
2

(∥∥u(T )
∥∥2

B−
∥∥u(0)

∥∥2
B +
∥∥u′(T )

∥∥2
H −

∥∥u′(0)
∥∥2

H

)
for all w ∈ Lp(0,T ;VA). If the second assertion of Lemma 5.4 holds for β = T , then
the right-hand side of the foregoing estimate is less or equal zero. Otherwise, there is a
sequence (βk)k∈N converging towards T such that the second assertion of Lemma 5.4
holds for any βk. One may then revisit the previous steps with final time βk instead
of T ; as described in LIONS, STRAUSS [26, p. 80 f.], a diagonal sequence argument
then leads to the desired result. We note that the requirements of Lemma 5.4 are
indeed fulfilled, since

u′ ∈ Cw([0,T ];H) , u−u0 = Ku′ =
∫ (·)

0
u′(s) ds ∈ Cw([0,T ];VB) ,

u′′+Bu = u′′+B
(
u0 +Ku′

)
∈ Lp∗(0,T ;V ∗A ) .

Setting w = u′±σ w̃ for w̃ ∈ Lp(0,T ;VA) and σ ∈ (0,1] leads to

±
∫ T

0

〈(
a−A(u′±σ w̃)

)
(t)
∣∣w̃(t)〉V ∗A×VA

dt ≤ 0 .

Employing the hemicontinuity of A : Lp(0,T ;VA)→ Lp∗(0,T ;V ∗A ) implies

Au′ = a in Lp∗(0,T ;V ∗A ) .

(iv) Final conclusion. Revisiting (5.5), we finally conclude that the limiting func-
tion u satisfies the nonlinear second-order evolution equation

u′′+Au′+Bu = f in Lp∗(0,T ;V ∗A )

and thus is a solution in the sense of Theorem 2.1. As the weak solution to the initial
value problem (1.1) is unique, the whole sequence of the numerical approximations
converges, which can be shown by contradiction. ♦

5.5 Strong convergence

In this section, we establish a result on strong convergence under the additional as-
sumption that the nonlinear operator A : VA→V ∗A is uniformly monotone in the sense
that there exists µ̃A > 0 such that for all v, ṽ ∈VA〈

Av−Aṽ
∣∣v− ṽ

〉
V ∗A×VA

≥ µ̃A
∥∥v− ṽ

∥∥p
VA
. (5.6)

We note that strong convergence may also be obtained under the weaker assumption
of d-monotonicity if VA is uniformly convex, see EMMRICH, ŠIŠKA [16].
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Theorem 5.5 Under the assumptions of Theorem 5.1 and the additional monotonic-
ity property, the sequence (v`)`∈N converges strongly towards u′ in Lp(0,T ;VA) and
the sequence (û`− û`(0))`∈N converges strongly towards u−u0 in C ([0,T ];VA).

Proof The monotonicity assumption (5.6) implies

0≤ µ̃A
∥∥v`−u′

∥∥p
Lp(0,T ;VA)

≤
〈
Av`−Au′

∣∣v`−u′
〉

Lp∗ (0,T ;V ∗A )×Lp(0,T ;VA)

=−
〈
Av`
∣∣u′〉Lp∗ (0,T ;V ∗A )×Lp(0,T ;VA)

−
〈
Au′
∣∣v`−u′

〉
Lp∗ (0,T ;V ∗A )×Lp(0,T ;VA)

+
〈
Av`
∣∣v`〉Lp∗ (0,T ;V ∗A )×Lp(0,T ;VA)

.

From Theorem 5.1, we already know that the sequence (v`)`∈N converges weakly to-
wards u′ in Lp(0,T ;VA). Moreover, in the course of the proof, we also have shown that
the sequence (Av`)`∈N converges weakly towards Au′ in Lp∗(0,T ;V ∗A ). This shows
that the first two terms on the right-hand side of the foregoing estimate converge
towards

−
〈
Au′
∣∣u′〉Lp∗ (0,T ;V ∗A )×Lp(0,T ;VA)

.

For the last term, we utilise the numerical scheme (5.4) and the estimates (5.2) to find〈
Av`
∣∣v`〉Lp∗ (0,T ;V ∗A )×Lp(0,T ;VA)

=
〈

f `
∣∣v`〉Lp∗ (0,T ;V ∗A )×Lp(0,T ;VA)

−
(
v̂′`
∣∣v`)L2(0,T ;H)

−
〈
Bu`
∣∣v`〉L2(0,T ;V ∗B )×L2(0,T ;VB)

≤
〈

f `
∣∣v`〉Lp∗ (0,T ;V ∗A )×Lp(0,T ;VA)

− 1
2

(∥∥v̂`(T )
∥∥2

H −
∥∥v̂`(0)

∥∥2
H

)
+ 1

8

∥∥v1
` − v0

`

∥∥2
H

− 1
2

(∥∥û`(T )
∥∥2

B−
∥∥û`(0)

∥∥2
B

)
+ 1

8

∥∥u1
` −u0

`

∥∥2
B .

The first term on the right-hand side converges towards〈
f
∣∣u′〉Lp∗ (0,T ;V ∗A )×Lp(0,T ;VA)

=
〈
Au′
∣∣u′〉Lp∗ (0,T ;V ∗A )×Lp(0,T ;VA)

+
〈
u′′+Bu

∣∣u′〉Lp∗ (0,T ;V ∗A )×Lp(0,T ;VA)
,

since ( f `)`∈N converges strongly towards f = u′′+Au′+Bu in Lp∗(0,T ;V ∗A ). For the
remaining terms, we apply Lemma 5.2 and 5.3, and the weak lower semicontinuity
of the norm to obtain the estimate

limsup
`∈N

〈
Av`−Av

∣∣v`− v
〉

Lp∗ (0,T ;V ∗A )×Lp(0,T ;VA)

≤
〈
u′′+Bu

∣∣u′〉Lp∗ (0,T ;V ∗A )×Lp(0,T ;VA)
− 1

2

(∥∥u′(T )
∥∥2

H −
∥∥u′(0)

∥∥2
H

)
− 1

2

(∥∥u(T )
∥∥2

B−
∥∥u(0)

∥∥2
B

)
.

An application of Lemma 5.4 shows that the right-hand side of the foregoing estimate
is less or equal zero; if necessary, combined with a diagonal sequence argument as
described in the proof of Theorem 5.1, see also LIONS, STRAUSS [26, p. 80 f.]. This
proves the first assertion.
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The second assertion on the strong convergence of (û`− û`(0))`∈N immediately
follows from the relation

(
û`(t)− û`(0)

)
−
(
u(t)−u(0)

)
=
∫ t

0

(
û′`(s)−u′(s)

)
ds

together with û′` = v`. ♦

6 Estimate of the time discretisation error

In this section, presuming a sufficiently regular solution to the considered nonlin-
ear evolution equation, we establish an a priori error estimate of second-order in
time. In what follows, we focus on the time discretisation error and neglect the
spatial discretisation. Moreover, we restrict ourselves to the case f ∈ C ([0,T ];V ∗A ).
Instead of the fully discrete scheme (3.4), we study the semi-discrete problem of
finding (un,vn)N

n=1 ⊂ VB ×V such that, for given (u0,v0) ∈ VB ×H, the relations
(n = 2,3, . . . ,N){(

D1v1
∣∣ϕ)H +

〈
Av1
∣∣ϕ〉V ∗A×VA

+
〈
Bu1

∣∣ϕ〉V ∗B×VB
=
〈

f (t1)
∣∣ϕ〉V ∗A×VA

,(
D1u1

∣∣ϕ)H =
(
v1
∣∣ϕ)H ,{(

D2vn
∣∣ϕ)H +

〈
Avn
∣∣ϕ〉V ∗A×VA

+
〈
Bun

∣∣ϕ〉V ∗B×VB
=
〈

f (tn)
∣∣ϕ〉V ∗A×VA

,(
D2un

∣∣ϕ)H =
(
vn
∣∣ϕ)H

(6.1)

hold for all ϕ ∈V . These relations are equivalent to finding (vn)N
n=1 ⊂V such that

τ
−1v1 +Av1 + τBv1 = τ

−1v0−Bu0 + f (t1) ,
3
2 τ
−1vn +Avn + 2

3 τBvn = τ
−1(2vn−1− 1

2 vn−2)−B
(
u0 + K̂τ vn−1)+ f (tn) ,

(6.2)

where K̂τ vn−1 is given by (4.1) and (un)N
n=1 ⊂VB is determined by

u1 = u0 + τ v1 , un = 4
3 un−1− 1

3 un−2 + 2
3 τ vn .

Existence and uniqueness of (vn)N
n=1 ⊂ V follows step-by-step from the famous

Browder–Minty theorem, see for instance GAJEWSKI, GRÖGER, ZACHARIAS [22],
since the operators

τ
−1I +A+ τB : V →V ∗ , 3

2 τ
−1I +A+ 2

3 τ B : V →V ∗ (6.3)

are hemicontinuous, strictly monotone, and coercive. In particular, the coercivity of
the operators as mappings of V into V ∗ follows from the p-coercivity of A : VA→V ∗A
and the strong positivity of B : VB→V ∗B , see Assumptions (A) and (B). We note that
(un)N

n=1 is only in VB, since u0 is only in VB.
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Theorem 6.1 (Error estimate) Suppose that Assumptions (A) and (B) hold. Further-
more, let (u0,v0)∈VB×H be given approximations to the initial values. Provided that
the exact solution satisfies

u ∈W 4,1(0,T ;H)∩W 3,1(0,T ;VB) ↪→ C 3([0,T ];H)∩C 2([0,T ];VB) ,

u′ ∈ C ([0,T ];V ) ,

the error estimate (N0 = 1,2, . . . ,N)∥∥uN0 −u(tN0)
∥∥

VB
+
∥∥vN0 −u′(tN0)

∥∥
H

≤ c
(∥∥u0−u0

∥∥
VB

+
∥∥v0− v0

∥∥
H + τ

2
(∥∥u′′

∥∥
W 1,1(0,T ;VB)

+
∥∥u′′′

∥∥
W 1,1(0,T ;H)

))
is valid for the time discrete solution to (3.4).

Proof We aim at a suitable estimate for the time discretisation errors (n = 0,1, . . . ,N)

dn = un−u(tn) , en = vn− v(tn) ,

associated with the time discretisation scheme (6.1) for the first-order system (2.3).
(i) Consistency errors. Inserting the exact solution values into the numerical

scheme defines the associated consistency errors (n = 2,3, . . . ,N){
ε1 = v′(τ)− τ−1 (v(τ)− v(0)) ,
δ 1 = u′(τ)− τ−1 (u(τ)−u(0)) ,{
εn = v′(tn)− τ−1

( 3
2 v(tn)−2v(tn−1)+

1
2 v(tn−2)

)
,

δ n = u′(tn)− τ−1
( 3

2 u(tn)−2u(tn−1)+
1
2 u(tn−2)

)
.

With these abbreviations, the numerical scheme (6.1) implies(
D1e1 ∣∣ϕ)H +

〈
Av1−Av(t1)

∣∣ϕ〉V ∗A×VA
+
〈
Bd1 ∣∣ϕ〉V ∗B×VB

=
(
ε

1 ∣∣ϕ)H ,(
D2en ∣∣ϕ)H +

〈
Avn−Av(tn)

∣∣ϕ〉V ∗A×VA
+
〈
Bdn ∣∣ϕ〉V ∗B×VB

=
(
ε

n ∣∣ϕ)H ,
(6.4)

With the help of Taylor series expansions, we obtain (n = 2,3, . . . ,N)

ε
1 = τ

−1
∫

τ

0
su′′′(s) ds ,

ε
n =− 1

4 τ
−1
(

3
∫ tn

tn−1

(s− tn−1 +
τ

3 )(s− tn)u(4)(s) ds−
∫ tn−1

tn−2

(s− tn−2)
2 u(4)(s) ds

)
,

δ
1 = τ

−1
∫

τ

0
su′′(s) ds ,

δ
n =− 1

4 τ
−1
(

3
∫ tn

tn−1

(s− tn−1 +
τ

3 )(s− tn)u′′′(s) ds−
∫ tn−1

tn−2

(s− tn−2)
2 u′′′(s) ds

)
.

We may also use the representation (n = 2,3, . . . ,N)

ε
n =−τ

−1
(∫ tn

tn−1

(s− tn−1)
2 u(4)(s) ds− 1

4

∫ tn

tn−2

(s− tn−2)
2 u(4)(s) ds

)
,
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and analogously for δ n. A straightforward estimation shows that

τ
∥∥ε

1∥∥
H ≤ cτ

2∥∥u′′′
∥∥

C ([0,T ];H)
, τ

N0

∑
n=2

∥∥ε
n∥∥

H ≤ cτ
2∥∥u(4)

∥∥
L1(0,T ;H)

,

τ
∥∥δ

1∥∥
VB
≤ cτ

2∥∥u′′
∥∥

C ([0,T ];VB)
, τ

N0

∑
n=2

∥∥δ
n∥∥

VB
≤ cτ

2∥∥u′′′
∥∥

L1(0,T ;VB)
.

(6.5)

(iii) A priori error estimate. Testing the first equation in (6.4) with ϕ = e1 =
D1d1−δ 1 and the subsequent equations with ϕ = en = D2dn−δ n, leads to the iden-
tities (n = 2,3, . . . ,N)(

D1e1 ∣∣e1)
H +

〈
Av1−Av(t1)

∣∣v1− v(t1)
〉

V ∗A×VA
+
〈
Bd1 ∣∣D1d1〉

V ∗B×VB

=
(
ε

1 ∣∣e1)
H +

〈
Bd1 ∣∣δ 1〉

V ∗B×VB
,(

D2en ∣∣en)
H +

〈
Avn−Av(tn)

∣∣vn− v(tn)
〉

V ∗A×VA
+
〈
Bdn ∣∣D2dn〉

V ∗B×VB

=
(
ε

n ∣∣en)
H +

〈
Bdn ∣∣δ n〉

V ∗B×VB
;

here, we employ the assumption u′ ∈ C ([0,T ];V ) to ensure en ∈V for n = 1,2, . . .N.
We next employ (3.8) and the monotonicity of A to obtain∥∥e1∥∥2

H +
∥∥d1∥∥2

B ≤
∥∥e0∥∥2

H +
∥∥d0∥∥2

B +2τ
∥∥ε

1∥∥
H

∥∥e1∥∥
H +2τ

∥∥δ
1∥∥

B

∥∥d1∥∥
B

≤
∥∥e0∥∥2

H +
∥∥d0∥∥2

B +4τ
(∥∥ε

1∥∥
H +

∥∥δ
1∥∥

B

) (∥∥e1∥∥2
H +

∥∥d1∥∥2
B

) 1
2
,

and (n = 2,3, . . . ,N)∥∥en∥∥2
H +

∥∥2en− en−1∥∥2
H +

∥∥dn∥∥2
B +
∥∥2dn−dn−1∥∥2

B

≤
∥∥en−1∥∥2

H +
∥∥2en−1− en−2∥∥2

H +
∥∥dn−1∥∥2

B +
∥∥2dn−1−dn−2∥∥2

B

+4τ
∥∥ε

n∥∥
H

∥∥en∥∥
H +4τ

∥∥δ
n∥∥

B

∥∥dn∥∥
B

≤
∥∥en−1∥∥2

H +
∥∥2en−1− en−2∥∥2

H +
∥∥dn−1∥∥2

B +
∥∥2dn−1−dn−2∥∥2

B

+8τ
(∥∥ε

n∥∥
H +

∥∥δ
n∥∥

B

)
×
(∥∥en∥∥2

H +
∥∥2en− en−1∥∥2

H +
∥∥dn∥∥2

B +
∥∥2dn−dn−1∥∥2

B

) 1
2
.

Resolving the above quadratic inequalities yields(∥∥e1∥∥2
H +

∥∥d1∥∥2
B

) 1
2 ≤

(∥∥e0∥∥2
H +

∥∥d0∥∥2
B

) 1
2
+4τ

(∥∥ε
1∥∥

H +
∥∥δ

1∥∥
B

)
and (∥∥en∥∥2

H +
∥∥2en− en−1∥∥2

H +
∥∥dn∥∥2

B +
∥∥2dn−dn−1∥∥2

B

) 1
2

≤
(∥∥en−1∥∥2

H +
∥∥2en−1− en−2∥∥2

H +
∥∥dn−1∥∥2

B +
∥∥2dn−1−dn−2∥∥2

B

) 1
2

+8τ
(∥∥ε

n∥∥
H +

∥∥δ
n∥∥

B

)
.
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Fig. 1 Time discretisation errors for model problem with prescribed exact solution

Summation together with a telescopic identity finally implies

∥∥eN0
∥∥

H +
∥∥dN0

∥∥
B ≤ c

(∥∥e0∥∥
H +

∥∥d0∥∥
B + τ

N0

∑
n=1

(∥∥ε
n∥∥

H +
∥∥δ

n∥∥
B

))
.

Combining this estimate with (6.5) and the continuous embeddings W 1,1(0,T ;H) ↪→
C ([0,T ];H) as well as W 1,1(0,T ;VB) ↪→ C ([0,T ];VB) thus proves the assertion. ♦

Remark. If the operator A : VA → V ∗A is uniformly monotone in the sense of (5.6),
one may also deduce estimates for (en)

N
n=1 in the discrete Lp(0,T ;VA)-norm under

somewhat different regularity assumptions, see EMMRICH [15].

7 Model problem and numerical illustration

In this section, we study a model problem describing a vibrating membrane in a
viscous medium and illustrate convergence as well as the favourable error behaviour
of the proposed full discretisation method in a situation where a regular solution
exists.
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Fig. 2 Random u0 (left) and the numerical solution at time T = 2, projected onto a coarse mesh
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Fig. 3 Time discretisation errors for model problem with random initial datum

Model problem. We consider the initial-boundary value problem (1.2) for a function
u : Ω × [0,T ]→ R describing the displacement of a vibrating membrane in a vis-
cous medium, where we assume p ≥ 2 and denote by Ω ⊂ Rd a bounded domain
with Lipschitz boundary ∂Ω . This model problem may be cast into the form of an
abstract second-order evolution equation (1.1) that complies with the functional ana-
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N Error in v in Lp(0,T ;Lp(Ω)) Error in v in L∞(0,T ;L2(Ω)) Error in u in L∞(0,T ;H1
0 (Ω))

8 1.92e−03 3.71e−01 1.30e−01
16 1.00e−03 2.00e−01 6.19e−02
24 6.76e−04 1.36e−01 4.29e−02
32 5.09e−04 1.03e−01 3.28e−02
40 4.08e−04 8.32e−02 2.66e−02
48 3.40e−04 6.95e−02 2.23e−02

Table 1 Time discretisation errors for BDF1 based method for model problem with prescribed exact so-
lution

N Error in v in Lp(0,T ;Lp(Ω)) Error in v in L∞(0,T ;L2(Ω)) Error in u in L∞(0,T ;H1
0 (Ω))

8 4.72e−04 8.69e−02 6.46e−02
16 1.22e−04 2.25e−02 1.79e−02
24 5.28e−05 9.91e−03 8.43e−03
32 2.87e−05 5.44e−03 4.88e−03
40 1.75e−05 3.37e−03 3.17e−03
48 1.16e−05 2.25e−03 2.22e−03

Table 2 Time discretisation errors for BDF2 based method for model problem with prescribed exact so-
lution

N Error in v in Lp(0,T ;Lp(Ω)) Error in v in L∞(0,T ;L2(Ω)) Error in u in L∞(0,T ;H1
0 (Ω))

4 5.55e−03 1.86e+00 2.35e+00
8 4.86e−03 1.65e+00 1.88e+00
16 4.08e−03 1.42e+00 1.54e+00
24 3.56e−03 1.27e+00 1.34e+00
40 2.89e−03 1.06e+00 1.11e+00

Table 3 Time discretisation errors for BDF1 based method for model problem with random initial datum

N Error in v in Lp(0,T ;Lp(Ω)) Error in v in L∞(0,T ;L2(Ω)) Error in u in L∞(0,T ;H1
0 (Ω))

4 5.14e−03 1.78e+00 2.09e+00
8 4.07e−03 1.51e+00 1.52e+00
16 2.67e−03 1.11e+00 1.08e+00
24 1.89e−03 7.77e−01 7.82e−01
40 1.37e−03 3.86e−01 4.43e−01

Table 4 Time discretisation errors for BDF2 based method for model problem with random initial datum

lytic framework introduced in Section 2. Namely, defining the operators A : VA→V ∗A
and B : VB→V ∗B related to the weak formulation of (1.2) by

〈
Av
∣∣w〉V ∗A×VA

=
∫

Ω

∣∣v(x)∣∣p−2 v(x)w(x) dx , v,w ∈VA = Lp(Ω) ,〈
Bu
∣∣w〉V ∗B×VB

=
∫

Ω

∇u(x) ·∇w(x) dx , u,w ∈VB = H1
0 (Ω) ,

the basic hypotheses given in Assumptions (A) and (B) and the uniform monotonicity
condition (5.6) are satisfied. The pivot space is H = L2(Ω). For (u0,v0) ∈ H1

0 (Ω)×
L2(Ω) and f ∈ Lp∗(0,T ;Lp∗(Ω)) = Lp∗(Ω × (0,T )), existence and uniqueness of a
weak solution is thus ensured by Theorem 2.1.
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Numerical solution. For the numerical solution of the initial-boundary value prob-
lem (1.2), we apply the novel full discretisation method (1.3). For the purpose of
comparison, we also consider a full discretisation method based on the implicit Eu-
ler scheme applied to both equations in the first-order system (3.4). For the sake
of simplicity, we henceforth restrict ourselves to a squared domain Ω ⊂ R2 and
use Courant linear finite elements on a uniform triangular mesh. This mesh is con-
structed by an equidistant partition of each side into 2M intervals and cutting the
resulting squares along a diagonal. This leads to a partition into 22M+1 triangles and
M = (2M − 1)2 interior nodes. The corresponding finite element space then forms
VM = span{ϕ1, . . . ,ϕM} with a global basis (ϕm)

M
m=1. We note that here dimVM = M

and VM ⊂VM+1. We also remark that the assumption on the H-orthogonal projection
onto VM (Assumption (IC,P)) is satisfied, see CROUZEIX, THOMÉE [10].

Let (i, j = 1,2, . . . ,M, n = 1, . . . ,N)

Gi j =
∫

Ω

ϕiϕ j dx , Si j =
∫

Ω

∇ϕi ·∇ϕ j dx , f n
i =

∫
Ω

f n
ϕi dx .

Moreover, for w = [w1, . . . ,wM]T ∈ RM corresponding to w = ∑
M
m=1 wmϕm ∈VM , we

define
A(w)i j =

∫
Ω

|w|p−2
ϕiϕ j dx , i, j = 1,2, . . . ,M .

The numerical scheme then reads as (n = 2,3, . . . ,N){
G
(
v1−v0

)
+ τ A(v1)v1 + τ S

(
u0 + τ v1

)
= τ f1 ,

u1 = u0 + τ v1 ,{
G
( 3

2 vn−2vn−1 + 1
2 vn−2

)
+ τA(vn)vn + τ S

( 4
3 un−1− 1

3 un−2 + 2
3 τ vn

)
= τ fn ,

un = 4
3 un−1− 1

3 un−2 + 2
3 τ vn .

In each time step, for the numerical computation of vn, we apply Newton’s method
with initial guess vn−1, where the exact Jacobians G+τ J(·)+τ2S and 3

2 G+τ J(·)+
2
3 τ2S, respectively, with (i, j = 1,2, . . . ,M)

J(w)i j = (p−1)
∫

Ω

|w|p−2
ϕiϕ j dx

are used.

Numerical results. In what follows, we choose p = 10, Ω = (0,L)×(0,L)⊂R2 with
L = 20, and T = 8. In a first numerical experiment, we prescribe as exact solution
the solution to the corresponding homogeneous linear wave equation and choose the
right-hand side f of (1.2) appropriately to compensate for the nonlinear damping,

u(x, t) = cos(
√

2πL−1t) sin(πL−1x1) sin(πL−1x2) , x = (x1,x2) ∈Ω , t ∈ [0,T ] ,

f = |∂tu|p−2
∂tu .

We focus on the time discretisation error and therefore choose a very fine mesh for
the spatial discretisation. The results obtained for the time discretisation based on
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the implicit Euler method (BDF1) and the two-step backward differentiation formula
(BDF2) are shown in Figure 1 (together with reference lines for first and second
order) as well as Table 1 and 2. These results in particular confirm the second-order
error estimate provided by Theorem 6.1. We also present results for the velocity error
measured in Lp(0,T ;Lp(Ω)).

In a second numerical experiment, we choose T = 2, f = 0, v0 = 0, and let u0 ∈
H2(Ω)∩H1

0 (Ω) be the unique solution to the homogeneous Dirichlet problem for the
Poisson equation with random right-hand side g ∈ L2(Ω), see Figure 2. A numerical
reference solution is computed on a fine time grid with N = 1024. The results can
be seen in Figure 3 as well as Table 3 and 4. In this situation, strong convergence is
ensured by Theorem 5.5; second-order error estimates as provided by Theorem 6.1
cannot be expected because of the possible lack of regularity.
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