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Abstract. We use algebraic geometry to study matrix rigidity, and more generally, the com-
plexity of computing a matrix-vector product, continuing a study initiated in [13, 11]. In
particular, we (i) exhibit many non-obvious equations testing for (border) rigidity, (ii) compute
degrees of varieties associated to rigidity, (iii) describe algebraic varieties associated to families
of matrices that are expected to have super-linear rigidity, and (iv) prove results about the
ideals and degrees of cones that are of interest in their own right.

Communicated by Stephen Cook

1. Introduction

Given an n× n matrix A, how many additions are needed to perform the map

(1.0.1) x 7→ Ax,

where x is a column vector? L. Valiant initiated a study of this question in [27]. He used the
model of computation of linear circuits (see §1.2) and observed that for a generic linear map
one requires a linear circuit of size n2. He posed the following problem:

Problem 1.0.2. Find an explicit sequence of matrices An needing linear circuits of size super-
linear in n to compute (1.0.1).

“Explicit” has a precise meaning, see [11]. Valiant defined a notion of rigidity that is a
measurement of the size of the best circuit of a very restricted type (see §1.2) needed to com-
pute (1.0.1). He proved that strong lower bounds for rigidity implies super-linear lower bounds
for any linear circuit computing (1.0.1), see Theorem 1.5.1 below. This article continues the use
of algebraic geometry, initiated in [11] and the unpublished notes [13], to study these issues.

1.1. Why algebraic geometry? Given a polynomial P on the space of n × n matrices that
vanishes on all matrices of low rigidity (complexity), and a matrix A such that P (A) 6= 0, one
obtains a lower bound on the rigidity (complexity) of A.

For a simple example, let σ̂r,n ⊂Matn denote the variety of n×n matrices of rank at most r.
(If n is understood, we write σ̂r = σ̂r,n.) Then, σ̂r,n is the zero set of all minors of size r + 1. If
one minor of size r + 1 does not vanish on A, we know the rank of A is at least r + 1.

Define the r-rigidity of an n× n matrix M to be the smallest s such that M = A+B where
A ∈ σ̂r,n and B has exactly s nonzero entries. Write Rigr(M) = s.

Define the set of matrices of r-rigidity at most s:

(1.1.1) R̂[n, r, s]0 := {M ∈Matn×n | Rigr(M) ≤ s}.
Thus if we can find a polynomial P vanishing on R̂[n, r, s]0 and a matrix M such that

P (M) 6= 0, we know Rigr(M) > s. One says M is maximally r-rigid if Rigr(M) = (n − r)2,
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and that M is maximally rigid if it is maximally r-rigid for all r. (See §2.1 for justification of
this terminology.)

Our study has two aspects: finding explicit polynomials vanishing on R̂[n, r, s]0, and proving
qualitative information about such polynomials. The utility of explicit polynomials has already
been explained. For a simple example of a qualitative property, consider the degree of a polyno-
mial. As observed in [11], for a given d, one can describe matrices that cannot be in the zero set
of any polynomial of degree at most d with integer coefficients. They then give an upper bound

2n2n2
for the degrees of the polynomials generating the ideal of the polynomials vanishing on

R̂[n, r, s]0, and describe a family of matrices that do not satisfy polynomials of degree 2n2n2

(but this family is not explicit in Valiant’s sense).
Following ideas in [13, 11], we not only study polynomials related to rigidity, but also to

different classes of matrices of interest, such as Vandermonde matrices. As discussed in [11], one
could first try to prove a general Vandermonde matrix is maximally rigid, and then afterwards
try to find an explicit sequence of maximally rigid Vandermonde matrices (a problem in n
variables instead of n2 variables).

Our results are described in §1.6. We first recall basic definitions regarding linear circuits
in §1.2, give brief descriptions of the relevant varieties in §1.3, establish notation in §1.4, and
describe previous work in §1.5. We have attempted to make this paper readable for both
computer scientists and geometers. To this end, we put off the use of algebraic geometry
until §5, although we use results from it in earlier sections, and introduce a minimal amount of
geometric language in §2.1. We suggest geometers read §5 immediately after §2.1. In §2.2, we
present our qualitative results about equations. We give examples of explicit equations in §3.
We give descriptions of several varieties of matrices in §4. In §5, after reviewing standard facts
on joins in §5.1, we present generalities about the ideals of joins in §5.2, discuss degrees of cones
in §5.3 and then apply them to our situation in §5.4.

1.2. Linear circuits.

Definition 1.2.1. A linear circuit is a directed acyclic graph LC in which each directed edge
is labeled by a nonzero element of C. If u is a vertex with incoming edges labeled by λ1, . . . , λk
from vertices u1, . . . , uk, then LCu is the expression λ1LCu1 + · · ·+ λkLCuk .

If LC has n input vertices and m output vertices, it determines a matrix ALC ∈ Matn,m(C)
by setting

Aji :=
∑
p path

from i to j

∏
e edge
of p

λe,

and LC is said to compute ALC .
The size of LC is the number of edges in LC. The depth of LC is the length of a longest path

from an input node to an output node.

Note that size is essentially counting the number of additions needed to compute x 7→ Ax, so
in this model, multiplication by scalars is “free.”

For example, the näıve algorithm for computing a map A : C2 → C3 gives rise to the complete
bipartite graph as in Figure 1. More generally, the näıve algorithm produces a linear circuit of
size O(nm).

If an entry in A is zero, we may delete the corresponding edge as in Figure 2.
Stacking two graphs Γ1 and Γ2 on top of each other and identifying the input vertices of Γ2

with the output vertices of Γ1, the matrix of the resulting graph is just the matrix product of
the matrices of Γ1 and Γ2. So, if rank(A) = 1, we may write A as a product A = A1A2 where
A1 : C2 → C1 and A2 : C1 → C3 and concatenate the two complete graphs as in Figure 3.
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Figure 1. näıve linear circuit for A ∈Mat2×3

Figure 2. linear circuit for A ∈Mat2×3 with a21 = 0

Figure 3. linear circuit for rank one A ∈Mat2×3

Given two directed acyclic graphs, Γ1 and Γ2, whose vertex sets are disjoint, with an ordered
list of n input nodes and an ordered list of m output nodes each, we define the sum Γ1 + Γ2 to
be the directed graph resulting from (1) identifying the input nodes of Γ1 with the input nodes
of Γ2, (2) doing the same for the output nodes, and (3) summing up their adjacency matrices,
see Figure 4 for an example.

+ =

Figure 4. The sum of two graphs.

In what follows, for simplicity of discussion, we restrict to the case n = m.
With these descriptions in mind, we see rigidity is a measure of the complexity of a restricted

depth two circuit computing (1.0.1). Namely the circuit is the sum of two graphs, one of depth
one which has s edges and the other is depth two with r vertices at the middle level. The
motivation for the restriction to such circuits is Theorem 1.5.1.

1.3. The varieties we study. Define R̂[n, r, s] := R̂[n, r, s]0, the variety of matrices of r-border
rigidity at most s, where the overline denotes the common zero set of all polynomials vanishing
on R̂[n, r, s]0, called the Zariski closure. This equals the closure of R̂[n, r, s]0 in the classical

topology obtained by taking limits, see [20, Thm 2.33]. If M ∈ R̂[n, r, s] we write Rig
r
(M) ≤ s,

and say M has r-border rigidity at most s. By definition, Rig
r
(M) ≤ Rigr(M). As pointed out
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in [11], strict inequality can occur. For example, when s = 1, one obtains points in the tangent
cone as in Proposition 5.1.1(4).

It is generally expected that there are super-linear lower bounds for the size of a linear circuit
computing the linear map xn 7→ Anxn for the following sequences of matrices An = (yij),

1 ≤ i, j ≤ n, where yij is the entry of A in row i and column j:

Discrete Fourier Transform (DFT) matrix: let ω be a primitive n-th root of unity. Define the

size n DFT matrix by yij = ω(i−1)(j−1).

Cauchy matrix: Let xi, zj be variables 1 ≤ i, j ≤ n, and define yij = 1
xi+zj

. (Here and in the

next example, one means super linear lower bounds for a sufficiently general assignment of the
variables.)

Vandermonde matrix: Let xi, 1 ≤ i ≤ n, be variables, define yij := (xj)
i−1.

Sylvester matrix: Syl1 =

(
1 1
1 −1

)
, Sylk =

(
Sk−1 Sk−1

Sk−1 −Sk−1

)
.

We describe algebraic varieties associated to classes of matrices generalizing these examples,
describe their ideals and make basic observations about their rigidity.

To each directed acyclic graph Γ with n inputs and outputs, or sums of such, we may associate
a variety ΣΓ ⊂Matn consisting of the closure of all matrices A such that (1.0.1) is computable
by Γ. For example, to the graph in Figure 5 we associate the variety ΣΓ := σ̂2,4 since any 4× 4
matrix of rank at most 2 can be written a product of a 4× 2 matrix and a 2× 4 matrix.

Figure 5. linear circuit for rank two A ∈Mat4

Note that the number of edges of Γ gives an upper bound of the dimension of ΣΓ, but the actual
dimension is often less, for example dim σ̂2,4 = 12 but Γ has 16 edges. This is because there are
four parameters of choices for expressing a rank two matrix as a sum of two rank one matrices.

1.4. Notation and conventions. Since this article is for geometers and computer scientists,
here and throughout, we include a substantial amount of material that is not usually mentioned.

We work exclusively over the complex numbers C.
For simplicity of exposition, we generally restrict to square matrices, although most results

carry over to rectangular matrices as well.
Throughout, V denotes a complex vector space, PV is the associated projective space of lines

through the origin in V , SdV ∗ denotes the space of homogenous polynomials of degree d on V ,
and Sym(V ∗) = ⊕dSdV ∗ denotes the symmetric algebra, i.e., the ring of polynomials on V ,
i.e, after a choice of basis, the ring of polynomials in dimV variables. We work with projective
space because the objects of interest are invariant under rescaling and to take advantage of
results in projective algebraic geometry, e.g., Proposition 5.3.1. For a subset Z ⊂ PV , Ẑ :=
π−1(Z) ∪ {0} ⊂ V is called the affine cone over Z.

Let Z ⊂ PV be a projective variety, the zero set of a collection of homogeneous polynomials
on V projected to PV . The ideal of Z, denoted I(Z), is the ideal in Sym(V ∗) of all polynomials
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vanishing on Ẑ. Let Id(Z) ⊂ SdV ∗ denote the degree d component of the ideal of Z. The codi-
mension of Z is the smallest non-negative integer c such that every linear Pc ⊂ PV intersects Z
and its dimension is dimPV − c. The degree of Z is the number of points of intersection with a
general linear space of dimension c. Here and throughout, a general point or general linear space
is a point (or linear space) that does not satisfy certain (specific to the problem) polynomials,
so the set of general points is of full measure, and one may simply view a general point or linear
space as one that has been randomly chosen. A codimension 1 variety is called a hypersurface
and is defined by a single equation. The degree of a hypersurface is the degree of its defining
equation.

For a linear subspace U ⊂ V , its annihilator in the dual space is denoted U⊥ ⊂ V ∗, and we
abuse notation and write (PU)⊥ ⊂ V ∗ for the annihilator of U as well. The group of invertible
endomorphisms of V is denoted GL(V ). If G ⊂ GL(V ) is a subgroup and Z ⊂ PV is a subvariety
such that g·z ∈ Z for all z ∈ Z and all g ∈ G, we say Z is a G-variety. The group of permutations
on d elements is denoted Sd.

We write log to mean log2.
Let f, g : R → R be functions. Write f = Ω(g) (resp. f = O(g)) if and only if there exists

C > 0 and x0 such that |f(x)| ≥ C|g(x)| (resp. |f(x)| ≤ C|g(x)|) for all x ≥ x0. Write f = ω(g)
(resp. f = o(g)) if and only if for all C > 0 there exists x0 such that |f(x)| ≥ C|g(x)| (resp.
|f(x)| ≤ C|g(x)|) for all x ≥ x0. These definitions are used for any ordered range and domain,
in particular Z. In particular, for a function f(n), f = ω(1) means f goes to infinity as n→∞.

For I, J ⊂ [n] := {1, 2, . . . , n} of size r + 1, let M I
J be the determinant of the size r + 1

submatrix defined by (I, J). Set ∆I
J := M Ic

Jc , where Ic and Jc denote the complementary index
set to I and J , respectively. We often use xij to denote coordinates on the space of n×n matrices.

Write {xij} := {xij : i, j ∈ [n]}.

1.5. Previous Work. The starting point is the following theorem of L. Valiant:

Theorem 1.5.1. [27, Thm. 6.1, Prop. 6.2] Suppose that a sequence An ∈ Matn admits a
sequence of linear circuits of size Σ = Σ(n) and depth d = d(n) where each gate has fan-in two.
Then for any t > 1,

RigΣlog(t)
log(d)

(An) ≤ 2O(d/t)n.

In particular, if there exist ε, δ > 0 such that Rigεn(An) = Ω(n1+δ), then any sequence of linear
circuits of logarithmic (in n) depth computing {An} must have size Ω(nlog(logn)).

Proposition 1.5.2. ([6] for finite fields and [24] for the general case) Let r ≥ (logn)2, and let

A ∈Matn×n be such that all minors of size r of A are nonzero. Then, for all s < n2

4(r+1) log(nr ),

A 6∈ R̂[n, r, s]0.

Note that if one sets r = εn, for n sufficiently large, the above result says A 6∈
R̂[n, εn, 1

ε2
log(1

ε )]
0 which is far from what would be needed to apply Theorem 1.5.1, as s does

not grow with n.
The matrices DFTp with p prime, general Cauchy matrix, general Vandermonde matrix,

general Sylvester matrix are such that all minors of all sizes are nonzero (see [18, §2.2] and the
references therein). Thus Proposition 1.5.2 implies:

Corollary 1.5.3. [6, 24, 10] The matrices of the following types: DFTp with p prime, Cauchy,

Vandermonde, and Sylvester, are such that for all s < n2

4(r+1) log(nr ), A 6∈ R̂[n, r, s]0.

The following theorem is proved via a theorem in graph theory from [22]:
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Theorem 1.5.4. (attributed to Strassen in [27], also see [18, §2.2]) For all ε > 0, there exist
n × n matrices A with integer entries, all of whose minors of all sizes are nonzero such that
A ∈ R̂[n, εn, n1+o(1)]0.

In [11], they approach the rigidity problem from the perspective of algebraic geometry. In
particular, they use the effective Nullstellensatz to obtain bounds on the degrees of the hyper-
surfaces of maximally border rigid matrices. They show the following.

Theorem 1.5.5. [11, Thm. 4.4] Let pk,j > 2n2n2
be distinct primes for 1 ≤ k, j ≤ n. Let An

have entries akj = e2πi/pk,j . Then An is maximally r-border rigid for all 1 ≤ r ≤ n− 2.

See Remark 1.6.6 for a small improvement of this result.
In [11], they do not restrict their field to be C.
Additional references for matrix rigidity are [3, 16, 17, 4, 5, 23, 15, 19].

1.6. Our results. Previous to our work, to our knowledge, there were no explicit equations for
irreducible components of R̂[n, r, s] known other than the minors of size r + 1. The irreducible

components of R̂[n, r, s] are determined (non-uniquely) by cardinality s subsets S ⊂ {xij} corre-

sponding to the entries one is allowed to change. Recall that xij are coordinates on the space of

n× n matrices. We find equations for the cases r = 1, (Proposition 3.2.5), r = n− 2 (Theorem
3.4.1), and the cases s = 1, 2, 3 (see §3.1). We also obtain qualitative information about the
equations. Here are some sample results:

Proposition 1.6.1. Each irreducible component of R̂[n, r, s], described by some set
S ⊂ {xij , 1 ≤ 1, j ≤ n}, has ideal generated by polynomials with the following property; if P
is a generator of degree d, then no entries of S appear in P and P is a sum of terms of the
form ∆Q where ∆ is a minor of size r + 1 and deg(Q) = d − r − 1. In particular, there are no
equations of degree less than r + 1 in the ideal.

Conversely any polynomial P of degree d such that no entries of S appear in P and P is a
sum of terms ∆Q where ∆ is a minor of size r + 1 is in the ideal of the component of R̂[n, r, s]
determined by S.

See §2.2 for more precise statements. These results are consequences of more general results
about cones in §5.1.

We remind the reader that ∆I
J is the determinant of the submatrix obtained by deleting the

rows of I and the columns of J .

Theorem 1.6.2. There are two types of components of the hypersurface R̂[n, n− 2, 3]:

(1) Those corresponding to a configuration S where the three entries are all in distinct rows

and columns, where if S = {xi1j1 , x
i2
j2
, xi3j3} the hypersurface is of degree 2n − 3 with

equation

∆i3
j2

∆i1,i2
j1,j3
−∆i2

j3
∆i1,i3
j1,j2

= 0.

(2) Those corresponding to a configuration where there are two elements of S in the same
row and one in a different column from those two, or such that one element shares a row
with one and a column with the other. In these cases, the equation is the unique size
(n− 1) minor that has no elements of S.

If all three elements of S lie on a row or column, then one does not obtain a hypersurface.

We give numerous examples of equations in other special cases in §3. Our main tool for
finding these equations are the results presented in §2.2, which follow from more general results
regarding joins of projective varieties that we prove in §5.2.
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If one holds not just s fixed, but moreover fixes the specific entries of the matrix that one is
allowed to change, and allows the matrix to grow (i.e., the subset S is required to be contained
in some n0× n0 submatrix of A ∈Matn), there is a propagation result (Proposition 2.2.5), that
enables one to deduce the equations in the n× n case from the n0 × n0 case.

When one takes a cone (in the sense of Definition 2.1.1 below, not to be confused with the
affine cone over a variety) over a variety with respect to a general linear space, there is a
dramatic increase in the degree of the generators of the ideal because the equations of the cone
are obtained using elimination theory. For example, a general cone over a codimension two
complete intersection, whose ideal is generated in degrees d1, d2 will have defining equation in
degree d1d2. However, we are taking cones over very singular points of varieties that initially
are not complete intersections, so the increase in degree is significantly less. We conjecture:

Conjecture 1.6.3. Fix 0 < ε < 1 and 0 < δ < 1. Set r = εn and s = n1+δ. Then the
minimal degree of a polynomial in the ideal of each irreducible component of R̂[n, r, s] grows
like a polynomial in n.

Although it would not immediately solve Valiant’s problem, an affirmative answer to Conjec-
ture 1.6.3 would drastically simplify the study.

While it is difficult to get direct information about the degrees of defining equations of the
irreducible components of R̂[n, r, s], as näıvely one needs to use elimination theory, one can use
general results from algebraic geometry to get information about the degrees of the varieties.

Let dn,r,s denote the maximum degree of an irreducible component of R̂[n, r, s]. It will be
useful to set k = n − r. Then (see e.g., [2, p95] for the first equality and e.g. [8, p. 50,78] for
the fourth and fifth)

dn,r,0 =
n−r−1∏
i=0

(n+ i)!i!

(r + i)!(n− r + i)!
(1.6.4)

=
B(r)B(2n− r)B(n− r)2

B(n)2B(2n− 2r)

=
B(n− k)B(n+ k)B(k)2

B(n)2B(2k)

= dimSkkCn

=
dim[kk]

k2!

B(n− k)B(n+ k)

B(n)2
(1.6.5)

Here B(k) := G(k + 1), where G(m) =
∏m−2
i=1 i! is the Barnes G-function, SkkCn denotes the

irreducible GLn-representation of type (k, k, . . . , k), and [kk] denotes the irreducible Sk2-module
corresponding to the partition (k, . . . , k).

Remark 1.6.6. The shifted Barnes G-function B has the following asymptotic expansion

B(z) =

(
z

e
3
2

) z2

2

O(2.51z)

(see e.g. en.wikipedia.org/wiki/Barnes_G-function). Since the degree of a variety cannot

increase when taking a cone over it, one can replace the 2n2n2
upper bound in Theorem 1.5.5

with roughly nεn
2

because, setting r = εn, for some constant C,

B(εn)B((2− ε)n)B((1− ε)n)2

B(n)2B(2(1− ε)n)
≤ nn2[ ε

2

2
+

(2−ε)2
2

+(1−ε)2−1−2(1−ε)2]Cn
2+n = nεn

2
Cn

2+n

en.wikipedia.org/wiki/Barnes_G-function


8 F. GESMUNDO, J.D. HAUENSTEIN, C. IKENMEYER, J.M. LANDSBERG

Remark 1.6.7. A geometric interpretation of the equality between deg dn,r,0 and the dimension
of an irreducible GLn-module is discussed in [26].

We prove several results about the degrees dn,r,s. For example:

Theorem 1.6.8. Let s ≤ n, Then,

(1.6.9) dn,r,s ≤ dn,r,0 −
s∑
j=1

dn−1,r−1,s−j

In an earlier version of this paper, we conjectured that equality held in (1.6.9). After we
submitted the paper for publication, our conjecture was answered affirmatively in [1]:

Theorem 1.6.10. [1] Let s ≤ n, Then,

(1.6.11) dn,r,s = dn,r,0 −
s∑
j=1

dn−1,r−1,s−j

In the previous version of this paper, the following theorem was stated with the hypothesis
that equality holds in (1.6.9) for all (r′, n′, s′) ≤ (r, n, s) and s ≤ n. Theorem 1.6.10 renders it
to the present unconditional form:

Theorem 1.6.12. Each irreducible component of R̂[n, n− k, s] has degree at most

(1.6.13)
s∑

m=0

(
s

m

)
(−1)mdr−m,n−m,0

with equality holding if no two elements of S lie in the same row or column, e.g., if the elements
of S appear on the diagonal.

Moreover, if we set r = n− k and s = k2− u and consider the degree D(n, k, u) as a function
of n, k, u, then, fixing k, u and considering Dk,u(n) = D(n, k, u) as a function of n, it is of the
form

Dk,u(n) = (k2)!
B(k)2

B(2k)
p(n)

where p(n) = nu

u! −
k2−u

2(u−1)!n
u−1 +O(nu−2) is a polynomial of degree u.

For example, when u = 1, D(n, k, 1) = (k2)!B(k)2

B(2k)(n− 1
2(k2 − 1)).

Remark 1.6.14. Note that Dk,u(n) = dim[kk]p(n). It would be nice to have a geometric or
representation-theoretic explanation of this equality.

Remark 1.6.15. In our earlier version of this paper, we realized that the use of intersection theory
(see, e.g. [7]), could render Theorem 1.6.8 unconditional, so we contacted P. Aluffi, an expert
in the subject. Not only was he able to render the theorem unconditional, but he determined
the degrees in additional cases. We are delighted that such beautiful geometry can be of use
to computer science, and look forward to further progress on these questions. We expect a
substantial reduction in degree when r = εn and s = (n− r)2 − 1.

We define varieties modeled on different classes of families of matrices as mentioned above.
We show that a general Cauchy matrix, or a general Vandermonde matrix is maximally 1-
rigid and maximally (n − 2)-rigid (Propositions 4.2.3 and 4.3.2). One way to understand the
DFT algorithm is to factor the discrete Fourier transform matrix as a product (set n = 2k)
DFT2k = S1 · · ·Sk where each Sk has only 2n nonzero entries. Then, these sparse matrices can
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all be multiplied via a linear circuit of size 2nlogn (and depth logn). We define the variety of
factorizable or butterfly matrices FMn to be the closure of the set of matrices admitting such
a description as a product of sparse matrices, all of which admit a linear circuit of size 2nlogn,
and show (Proposition 4.6.1):

Proposition 1.6.16. A general butterfly matrix admits a linear circuit of size 2nlogn, but does
not admit a linear circuit of size n(logn+ 1)− 1.

1.7. Future work. Proposition 1.6.1 gives qualitative information about the ideals and we give
numerous examples of equations for the relevant varieties. It would be useful to continue the
study of the equations both qualitatively and by computing further explicit examples, with the
hope of eventually getting equations in the Valiant range. In a different direction, an analysis of
the degrees of the hypersurface cases in the range r = εn could lead to a substantial reduction
of the known degree bounds.

Independent of complexity theory, several interesting questions relating the differential geom-
etry and scheme structure of tangent cones are posed in §5.

Acknowledgements. We thank the anonymous referees for very careful reading and numerous
useful suggestions.

2. Geometric formulation

2.1. Border rigidity.

Definition 2.1.1. For varieties X,Y ⊂ PV , let

J0(X,Y ) :=
⋃

x∈X,y∈Y,x6=y
〈x, y〉

and define the join of X and Y as J(X,Y ) := J0(X,Y ) with closure using either the Zariski or
the classical topology. Here, 〈x, y〉 is the (projective) linear span of the points x, y. If Y = L is
a linear space J(X,L) is called the cone over X with vertex L. (Algebraic geometers refer to L
as the vertex even when it is not just a point P0.)

Let σr = σr,n = σr(Seg(Pn−1 × Pn−1)) ⊂ P(Cn⊗Cn) denote the variety of up to scale n × n
matrices of rank at most r, called the r-th secant variety of the Segre variety. For those not
familiar with this variety, the Segre variety itself, Seg(Pn−1 × Pn−1), is the projectivization of
the rank one matrices, one may think of the first Pn−1 as parametrizing column vectors and
the second as parametrizing row vectors and the corresponding (up to scale) rank one matrix
as their product. The rank at most r-matrices are those appearing in some secant Pr−1 to the
Segre variety.

Let Cn⊗Cn be furnished with linear coordinates xij , 1 ≤ i, j ≤ n. Let S ⊂ {xij} be a subset

of cardinality s and let LS := span S. We may rephrase (1.1.1) as

R̂[n, r, s]0 =
⋃

S⊂{xij},|S|=s

Ĵ0(σr, L
S)

The dimension of σr is r(2n−r)−1 and dim Ĵ(σr, L
S) ≤ min{r(2n−r)+s, n2} (see Proposition

5.1.1(3)). We say the dimension is the expected dimension if equality holds.

The variety R̂[n, r, s], as long as s > 0 and it is not the ambient space, is reducible, with

at most
(
n2

s

)
components, all of the same dimension r(2n − r) + s. (This had been observed

in [11, Thm. 3.8] and [13].) To see the equidimensionality, notice that if |Sj | = j and Sj ⊆
Sj+1, then the sequence of joins Jj = J(σr, L

Sj ) eventually fills the ambient space. Moreover,
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dim Jj+1 ≤ dim Jj + 1, so the only possibilities are Jj+1 = Jj or dim Jj+1 = dim Jj + 1. In
particular, this shows that for any j there exists a suitable choice of Sj such that Jj has the
expected dimension. Now, suppose that J(σr, L

S) does not have the expected dimension, so its

dimension is r(2n − r) + s′ for some s′ < s. Let S′ ⊆ S be such that |S′| = s′ and J(σr, L
S′)

has the expected dimension. Then J(σr, L
S′) = J(σr, L

S). Now let R be such that |R| = s,
S′ ⊆ R and J(σr, L

R) has the expected dimension. Then J(σr, L
R) is an irreducible component

of R̂[n, r, s] that contains J(σr, L
S), showing that the irreducible components of R̂[n, r, s] have

dimension equal to the expected dimension of J(σr, L
S). Therefore (again by [11, Thm. 3.8]

and [13]),

(2.1.2) dim R̂[n, r, s] = min{r(2n− r) + s, n2},
and R̂[n, r, s] is a hypersurface if and only if

(2.1.3) s = (n− r)2 − 1.

We say a matrix M is maximally r-border rigid if M 6∈ R̂[n, r, (n − r)2 − 1], and that M is

maximally border rigid if M 6∈ R̂[n, r, (n − r)2 − 1] for all r = 1, . . . , n − 2. Throughout we
assume r ≤ n− 2 to avoid trivialities.

The set of maximally rigid matrices is of full measure (in any reasonable measure e.g. abso-
lutely continuous with respect to Lebesgue measure) on the space of n×n matrices. In particular,
a “random” matrix will be maximally rigid.

2.2. On the ideal of J(σr, L
S). Write Sc = {xij}\S for the complement of S. The following is

a consequence of Proposition 5.2.1:

Proposition 2.2.1. Fix L = LS . Generators for the ideal of J(σr, L) may be obtained from
polynomials of the form P =

∑
I,J q

J
IM

I
J , where the qJI are arbitrary homogeneous polynomials

all of the same degree and:

(1) M I
J is the (determinant of the) size r + 1 minor defined by the index sets I, J (i.e.,

I, J ⊂ [n], |I| = |J | = r + 1), and
(2) only the variables of Sc appear in P .

Conversely, any polynomial of the form P =
∑

I,J q
J
IM

I
J , where the M I

J are minors of size

r + 1 and only the variables of Sc appear in P , is in I(J(σr, L)).

Let E,F = Cn. The irreducible polynomial representations of GL(E) are indexed by parti-
tions π with at most dimE parts. Let `(π) denote the number of parts of π, and let SπE denote
the irreducible GL(E)-module corresponding to π. We have the GL(E)×GL(F )-decomposition

Sd(E⊗F ) =
⊕

|π|=d, `(π)≤n

SπE⊗SπF.

Let TE ⊂ GL(E) denote the torus (the invertible diagonal matrices). A vector e ∈ E is said to
be a weight vector if [t · e] = [e] for all t ∈ TE .

Proposition 2.2.2. Write Matn = E⊗F . For all S ⊂ {xij}, J(σr, L
S) is a TE × TF -variety.

Thus a set of generators of I(J(σr, L)) may be taken from GL(E) × GL(F )-weight vectors
and these weight vectors must be sums of vectors in modules SπE⊗SπF where `(π) ≥ r + 1.

The length requirement follows from Proposition 2.2.1(1).
Proposition 1.6.1(1) is Proposition 2.2.2 expressed in coordinates. For many examples, the

generators have nonzero projections onto all the modules SπE⊗SπF with `(π) ≥ r + 1.
Recall the notation ∆I

J = M Ic

Jc , where Ic denotes the complementary index set to I. This will
allow us to work independently of the size of our matrices.
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Let S ⊂ {xij}1≤i,j≤n and let P ∈ Id(σr)∩ Sd(LS)⊥, so P ∈ Id(J(σr, L
S)), and require further

that P be a TE × TF weight vector. Write

(2.2.3) P =
∑
v

∆
Iv1
Jv1
· · ·∆

Ivf
Jvf

where |I1
α| = |J1

α| =: δα, so d = fn −
∑

α δα. Since we allow δα = 1, any polynomial that

is a weight vector may be written in this way. Write xij = ei⊗f j . The TE-weight of P is

(1λ1 , . . . , nλn) where ej appears λj times in the union of the (Ivα)c’s, and the TF -weight of P is

(1µ1 , . . . , nµn) where f j appears µj times in the union of the (Jvα)c’s.
Define

(2.2.4) Pq ∈ Sd+qfMat∗n+q

by (2.2.3) only considered as a polynomial on Matn+q, and note that P = P0.

Proposition 2.2.5. For P ∈ Id(σr,n) ∩ Sd(LS)⊥ as in (2.2.3),

Pq ∈ Id+fq(σr,n+q) ∩ Sd+fq(LS)⊥

where S is the same for Matn and Matn+q. In particular, Pq ∈ Id+fq(J(σr+q,n+q, L
S)).

Proof. It is clear Pq ∈ Id+fq(σr,n+q), so it remains to show it is in Sd+fq(LS)⊥. By induction, it
will be sufficient to prove the case q = 1. Say in some term, say v = 1, in the summation of P
in (2.2.3) a monomial in S appears as a factor, some xs1t1 · · ·x

sg
tgQ. Then, by Laplace expansions,

we may write Q = ∆̃
I1
1

J1
1
· · · ∆̃

I1
f

J1
f
, for some minors (smaller than or equal to the originals). Since

this term is erased we must have, after re-ordering terms, for v = 2, . . . , h (for some h),

xs1t1 · · ·x
sg
tg (∆̃

I1
1

J1
1
· · · ∆̃

I1
f

J1
f

+ · · ·+ ∆̃
Ih1
Jh1
· · · ∆̃

Ihf
Jhf

) = 0

that is,

(2.2.6) ∆̃
I1
1

J1
1
· · · ∆̃

I1
f

J1
f

+ · · ·+ ∆̃
I1
h

J1
h
· · · ∆̃

Ihf
Jhf

= 0.

Now consider the same monomial’s appearance in P1 (only the monomials of S appearing in

the summands of P could possibly appear in P1). In the v = 1 term it will appear with Q̃

where Q̃ is a sum of terms, the first of which is (xn+1
n+1)f ∆̃

I1
1 ,n+1

J1
1 ,n+1

· · · ∆̃
I1
f ,n+1

J1
f ,n+1

and each appearance

will have such a term, so these add to zero because ∆
I1
1 ,n+1

J1
1 ,n+1

in Matn+1, is the same minor as

∆
I1
1

J1
1

in Matn. Next is a term say (xn+1
n+1)f−1x1

n+1∆̃
1,I1

1

J1
1 ,n+1

· · · ∆̃
I1
f ,n+1

J1
f ,n+1

, but then there must be

corresponding terms (xn+1
n+1)f−1x1

n+1∆̃
1,Iµ1
Jµ1 ,n+1

· · · ∆̃
Iµf ,n+1

Jµf ,n+1
for each 2 ≤ µ ≤ h. But these must

also sum to zero because it is an identity among minors of the same form as the original. One
continues in this fashion to show all terms in S in the expression of P1 indeed cancel. �

Corollary 2.2.7. Fix k = n−r and S with |S| = k2−1, and allow n to grow. Then the degrees
of the hypersurfaces J(σn−k,n, L

S) grow at most linearly with respect to n.

Proof. If we are in the hypersurface case and P ∈ Id(J(σr,n, L
S)), then even in the worst possible

case where all factors ∆
Ivs
Jvs

in the expression (2.2.3) but the first have degree one, the ideal of

the hypersurface J(σr+u,n+u, L
S) is nonempty in degree (d− r)u. �
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Definition 2.2.8. Let P be a generator of I(J(σr,n, L
S)) with a presentation of the form (2.2.3).

We say P is well presented if Pq constructed as in (2.2.4) is a generator of I(J(σr+q,n+q, L
S))

for all q.

Conjecture 2.2.9. For all r, n, S, there exists a set of generators P 1, . . . , Pµ of I(J(σr,n, L
S))

that can be well presented.

Remark 2.2.10. Well presented expressions are far from unique because of the various Laplace
expansions.

Remark 2.2.11. I(J(σr+q,n+q, L
S)) may require additional generators beyond the P 1

q , . . . , P
µ
q .

3. Examples of equations for J(σr, L
S)

3.1. First examples. The simplest equations for J(σr, L
S) occur when S omits a submatrix

of size r + 1, and one simply takes the corresponding size r + 1 minor. The proofs of the
following propositions are immediate consequences of Proposition 2.2.1, as when one expands
each expression, the elements of S cancel.

Consider the example n = 3, r = 1, S = {x1
1, x

2
2, x

3
3}, and r = 1. Then

(3.1.1) x2
1x

3
2x

1
3 − x1

2x
2
3x

3
1 = M23

12x
1
3 −M12

23x
3
1 ∈ I3(J(σ1, L

S)).

This example generalizes in the following two ways. First, Proposition 2.2.5 implies:

Proposition 3.1.2. If there are two size r + 1 submatrices of Matn, say respectively indexed
by (I, J) and (K,L), that each contain some xi0j0 ∈ S but no other point of S, then setting

I ′ = I\i0, J ′ = J\j0, K ′ = K\i0, L′ = L\j0, the degree 2r + 1 equations

(3.1.3) M I
JM

K′
L′ −MK

L M
I′
J ′

are in the ideal of J(σr, L
S).

By Proposition 2.2.5, (3.1.1) also generalizes to:

Proposition 3.1.4. Suppose that there exists two size r + 2 submatrices of S, indexed by
(I, J), (K,L), such that

(1) there are only three elements of S appearing in them, say xi1j1 , x
i2
j2
, xi3j3 with both i1, i2, i3

and j1, j2, j3 distinct, and
(2) each element appears in exactly two of the minors.

Then the degree 2r + 1 equations

(3.1.5) M
I\i1
J\j1M

K\i2,i3
L\i2,i3 −M

I\i2
J\j2M

K\i1,i3
L\i1,i3

are in the ideal of J(σr, L
S).

For example, when S = {x1
1, x

2
2, x

3
3}, equation (3.1.5) may be written

(3.1.6) ∆3
2∆12

13 −∆2
3∆13

12.

Now consider the case n = 4, r = 1 and S = {x1
3, x

1
4, x

2
1, x

2
4, x

3
1, x

3
2, x

4
2, x

4
3}. Proposition 3.1.4

cannot be applied. Instead we have the equation

x1
1x

2
2x

3
3x

4
4 − x1

2x
2
3x

3
4x

4
1 = M12

12x
3
3x

4
4 +M23

13x
1
2x

4
4 +M34

14x
2
3x

1
2.

This case generalizes to

Proposition 3.1.7. If there are three size r + 1 submatrices of Matn×n, indexed by
(I, J), (K,L), (P,Q), such that
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(1) the first two contain one element of S each, say the elements are xi1j1 for (I, J) and xi2j1
for (K,L),

(2) these two elements lie in the same column (or row), and

(3) the third submatrix contains xi1j1 , x
i2
j1

and no other element of S,

then the degree 3r + 1 equations

(3.1.8) M I
JM

K′
L′ M

P ′
Q′ +MK

L M
I′
J ′M

P ′
Q′′ +MP

QM
I′
J ′M

K′
L′ ,

where I ′ = I\i0, J ′ = J\j0, K ′ = K\i0, L′ = L\j0, P ′ = P\i1, Q′ = Q\j1, and P ′′ = P\i2, are
in the ideal of J(σr, L

S).

Lemma 3.1.9. Let S′ ( S with S′ = {x1
1, . . . , x

n−r
1 } and S = S′ ∪ {xn−r+1

1 , . . . , xn1}. Then

J(σr, L
S) = J(σr, L

S′).

Proof. Clearly J(σr, L
S) ⊇ J(σr, L

S′). To prove the other inclusion, let A = (aij) ∈ Ĵ(σr, L
S) be

general. Let Ã be the r× r submatrix of A given by the last r rows and the last r columns. By
generality assumptions, Ã is non-singular. Therefore, there exist cn−r+1, . . . , cn ∈ C such that an−r+1

1
...
an1

 =

n∑
j=n−r+1

cj

 an−r+1
j

...
anj

 .

Let B = (bij) be an n × n matrix such that bij = aij if j ≥ 2 and bi1 =
∑n

n−r+1 cjb
i
j . Then

B ∈ σ̂r and A ∈ Ĵ([B], LS
′
) ⊂ Ĵ(σr, L

S′). �

It will be useful to represent various S pictorially. We will use black diamonds � for entries
in S and white diamonds ♦ for entries omitted by S. For example, S = {x1

1, x
2
2, . . . , x

5
5} is

represented by 
�
�
�
�
�


while S = {xij}ij r {x1

1, x
2
2, . . . , x

5
5} is represented by

♦
♦
♦
♦
♦

 .

3.2. Case r = 1.

Lemma 3.2.1. Let S be a configuration omitting x1
1, . . . , x

k
k, x

1
2, . . . , x

k−1
k and xk1 for some k ≥ 2.

Then Ik(J(σ1, L
S)) contains the binomial

x1
1 · · ·xkk − x1

2 · · ·xk1
Moreover, if the complement Sc = {x1

1, . . . , x
k
k, x

1
2, . . . , x

k−1
k , xk1}, then J(σ1, L

S) is a hypersur-
face.
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Proof. Let f = x1
1 · · ·xkk − x1

2 · · ·xk1. It suffices to show that f ∈ I(σ1), namely that it can be
generated by 2× 2 minors. If k = 2, then f is the 2× 2 minor M12

12 . Suppose k ≥ 3.
Define f2 = x1

1x
2
2 − x1

2x
2
1 = M12

12 . For any j = 3, . . . , k define

fj = xjjfj−1 − x1
2 · · ·x

j−2
j−1M

j−1,j
1,j .

Thus fj = x1
1 · · ·x

j
j − x1

2 · · ·x
j
1 ∈ I(σ1) for all j = 3, . . . , k and fk = f .

The last assertion follows because for any S′ ) S, iterated applications of Lemma 3.1.9 implies
J(σ1, L

S′) = Matn×n. �

Lemma 3.2.2. Let S be a configuration omitting at least two entries in each row and in each
column. Then there exists k ≥ 2 such that, up to a permutation of rows and columns, Sc ⊇
{x1

1, . . . , x
k
k, x

1
2, . . . , x

k
1}.

Proof. After a permutation, we may assume x1
1 ∈ Sc, and, since S omits at least another entry

in the first column, x2
1 ∈ Sc. Since S omits at least 2 entries in the second row, assume x2

2 ∈ Sc.
S omits at least another entry in the second column: if that entry is x1

2, then k = 2 and S omits
a 2 × 2 minor; otherwise we may assume x3

2 ∈ Sc. Again S omits another entry on the third
row: if that entry is x3

1 (resp. x3
2), then k = 3 (resp. k = 2) and S omits a set of the desired

form. After at most 2n steps, this procedure terminates, giving a k × k submatrix K with one
of the following configurations, one the tranpose of the other:

♦ ♦
. . .

. . .

. . . ♦
♦ ♦

 ,

♦ ♦

♦
. . .
. . .

. . .

♦ ♦

 .
K and its transpose are equivalent under permutations of rows and columns because KT = PKP
where P is the k × k permutation matrix having 1 on the anti-diagonal and 0 elsewhere. �

Lemma 3.2.3. Let S be a configuration of n2 − 2n entries. Then there exist k ∈ [n] and a
k × k submatrix K such that, up to a permutation of rows and columns, at least 2k entries of
the complement Sc of S lie in K in the following configuration

(3.2.4)



♦ ♦
...

...

... ♦
♦ ♦


.

Moreover, if J(σ1, L
S) is a hypersurface then these are the only omitted entries in K and the

ideal of J(σ1, L
S) is generated by

(
x1

1 · · ·xkk − x1
2 · · ·xk1

)
.

Proof. To prove the first assertion, we proceed by induction on n. The case n = 2 provides s = 0
and k = 2 trivially satisfies the statement.

If S omits at least (and therefore exactly) 2 entries in each row and in each column, then we
conclude by Lemma 3.2.2.

Suppose that S contains an entire row (or an entire column). Then Sc is concentrated in a
(n − 1) × n submatrix. In this case we may consider an (n − 1) × (n − 1) submatrix obtained
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by removing a column that contains at most 2 entries of Sc. Thus, up to reduction to a smaller
matrix, we may always assume that S omits at least one entry in every row (or at least one
entry in every column).

After a permutation, we may assume that the first row omits x1
1. If the first column omits at

most one more entry, then S omits at least 2(n − 1) entries in the the submatrix obtained by
removing the first row and the first column. We conclude by induction that there exists a k and
a k × k submatrix with the desired configuration in the submatrix.

If the first column omits at least 2 entries other than x1
1, then there is another column omitting

only 1 entry. Consider the submatrix obtained by removing this column and the first row: S
omits exactly 2(n− 1) entries in this submatrix, and again we conclude by induction.

To prove the last assertion, if other omitted entries lie in K, then they provide another
equation for J(σ1, L

S). �

Theorem 3.2.5. The number of irreducible components of R[n, 1, n2 − 2n] coincides with the
number of cycles of the complete bipartite graph Kn,n. Moreover, every ideal of an irreducible
component is generated by a binomial of the form

xi1j1 · · ·x
ik
jk
− xi1jτ(1)

· · ·xikjτ(k)
,

for some k, where τ ∈ Sk is a cycle and I, J ⊂ [n] have size k.

Proof. R[n, 1, n2− 2n] is equidimensional and its irreducible components are J(σ1, L
S) where S

is a configuration of entries providing a join of expected dimension.
By Lemma 3.2.3 there exists a k such that, up to a permutation of rows and columns, S omits

the entries x1
1, . . . , x

k
k, x

1
2, . . . , x

k
1 and the equation of J(σ1, L

S) is x1
1 · · ·xkk − x1

2 · · ·xk1 = 0. In
particular, entries in Sc that do not lie in the submatrix K are free to vary. Let F be the set
of entries whose complement is {x1

1, . . . , x
k
k, x

1
2, . . . , x

k
1}; we obtain J(σ1, L

S) = J(σ1, L
F ). This

shows that the irreducible components are determined by the choice of a k × k submatrix and
by the choice, in this submatrix, of a configuration of 2k entries such that, after a permutation
of rows and columns, it has the form of (3.2.4).

Every configuration of this type, viewed as the adjacency matrix of a (n, n)-bipartite graph,
determines a cycle in the complete bipartite graph Kn,n. This shows that the number of irre-
ducible components of R[n, 1, n2 − 2n] is the number of such cycles �

Remark 3.2.6. More precisely, the number of irreducible hypersurfaces of degree k in R[n, 1, n2−
2n] coincides with the number of cycles in Kn,n of length 2k. In particular, for every k with

2 ≤ k ≤ n, R[n, 1, n2 − 2n] has exactly
(
n
k

)2 k!(k−1)!
2 irreducible components of degree k. The

total number of irreducible components is
n∑
k=2

(
n

k

)2k!(k − 1)!

2
.

Example 3.2.7. Examples of generators of ideals of J(σ1, L
S):

(1) If s = 1, the ideal is generated by the 2 × 2 minors not including the element of S and

the degree is deg(σ1)− 1 = (2n−2)!
[(n−1)!]2

− 1.

(2) If s = 2, the ideal is generated by the 2 × 2 minors not including the elements of S. If

the elements of S lie in the same column or row, the degree is deg(σ1)−n = (2n−2)!
[(n−1)!]2

−n
and otherwise it is deg(σ1)− 2 = (2n−2)!

[(n−1)!]2
− 2.

(3) If s = 3 and there are no entries of S in the same row or column, the ideal is generated
in degrees two and three by the 2 × 2 minors not including the elements of S and the
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difference of the two terms in the 3× 3 minor containing all three elements of S and the

degree is (2n−2)!
[(n−1)!]2

− 3.

(4) If s = 3 and there are two entries of S in the same row or column, the ideal is generated
in degree two by the 2 × 2 minors not including the elements of S. of the three entries
all in the same.

(5) If s ≤ n and there are no elements of S in the same row or column, then deg(J(σ1, L
S) =

(2n−2)!
[(n−1)!]2

− s. (See Theorem 5.4.7.)

Proof. Parts (1),(3),(5), as well as part (2) when the entries do not lie in the same column of
row, are consequence of Theorem 5.4.7. Moreover the generators of the ideal can be obtained
from Proposition 5.2.1. For part (2), we prove that deg(J(σ1, L

S)) = deg σ1 − n when the
two entries of S lie in the same row or in the same column. Assume S = {x1

1, x
1
2}, so that

J(σ1, L
S) = J(J(σ1, [a

1⊗ b1]), [a1⊗ b2]) for some basis vectors a1 and b1, b2. From (1), equations
for J(σ1, [a

1 ⊗ b1]) are 2 × 2 minors not involving the variable x1
1, and deg J(σ1, [a

1 ⊗ b1]) =
deg σ1 − 1.

The ideal of the tangent cone TC[a1⊗b2]J(σ1, [a
1 ⊗ b1]) is generated by the variables xjk for

j, k ≥ 2 (obtained as the lowest degree term in the coefficient (x1
2 − 1)0 in the expansion (x1

2 −
1)0(xjk−x

1
kx

j
2)+(x1

2−1)xjk of x1
2x
j
k−x

1
kx

j
2) and by the minors xi1x

j
2−xi2x

j
1, with i, j ≥ 1. Therefore

TC[a1⊗b2]J(σ1, [a
1 ⊗ b1]) has the same degree as the variety of matrices of size (n − 1) × 2 and

rank at most 1, that is n− 1. From Proposition 5.3.1, we conclude. �

3.3. Case r = 2. The following propositions are straight-forward to verify with the help of a
computer with explicit computations available at www.nd.edu/~jhauenst/rigidity.

Proposition 3.3.1. Let n = 5, r = 2 and let S = {x1
1, x

2
2, . . . , x

5
5}. Then J(σ2,5, L

S) has 27
generators of degree 5 of the form (3.1.3), e.g., M123

456M
45
12 −M345

123M
12
45 , and 5 generators of degree

6 with 6 summands in their expression, each of the form M••••••M
•
•M

•
•M

•
• :

−M345
123M

1
4M

1
5M

2
1 +M235

134M
1
2M

1
5M

4
1 −M234

135M
1
2M

1
4M

5
1

+M134
235M

1
4M

2
1M

5
1 −M123

345M
1
2M

4
1M

5
1 −M135

234M
1
5M

2
1M

4
1 .

Proposition 3.3.2. Let n = 6, r = 2, s = 15 and let S be given by
0 0 0 0 � �
� 0 0 � 0 0
0 � � 0 0 0
0 � � 0 � 0
� 0 0 � 0 �
0 0 0 � � �

 .

Then J(σ2,6, L
S) is a hypersurface of degree 9 whose equation is:

−M235
235M

12
36M

16
12M

34
14 +M235

235M
12
26M

16
13M

34
14 +M126

236M
13
13M

25
25M

34
14 −M126

236M
13
12M

25
35M

34
14(3.3.3)

+M126
235M

13
16M

25
23M

34
14 −M126

235M
13
14M

25
23M

34
16 +M134

146M
12
23M

25
23M

36
15 −M134

146M
13
15M

25
23M

26
23

−M136
136M

12
23M

25
25M

34
14 +M136

126M
12
23M

25
35M

34
14 .

The weight of equation (3.3.3) is (12, 22, 32, 4, 5, 6)× (12, 22, 32, 4, 5, 6). (This weight is hinted
at because the first, second and third columns and rows each have two elements of S in them
and the fourth, fifth and sixth rows and columns each have three.)

www.nd.edu/~jhauenst/rigidity
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Proposition 3.3.4. Let n = 6, r = 2, s = 15, and let S be given by
0 0 0 0 � �
0 � 0 0 � 0
0 0 � � 0 0
� 0 0 � � 0
� 0 � 0 0 �
0 � 0 � 0 �

 .

Then, J(σ2,6, L
S) is a hypersurface of degree 16.

We do not have a concise expression for the equation of J(σ2,6, L
S). Expressed näıvely,

it is the sum of 96 monomials, each with coefficient ±1 plus two monomials with coefficient
±2, for a total of 100 monomials counted with multiplicity. The monomials are of weight
(14, 23, 33, 42, 52, 62) × (14, 23, 33, 42, 52, 62). (This weight is hinted at because the first, second
and third columns and rows each have two elements of S in them, but the first is different
because in the second and third a column element equals a row element, and the fourth, fifth
and sixth rows and columns each have three.)

3.4. Case r = n− 2. Proposition 3.1.4 implies:

Theorem 3.4.1. In the hypersurface case r = n− 2, s = 3, there are two types of varieties up
to isomorphism:

(1) If no two elements of S are in the same row or column, then the hypersurface is of degree

2n− 3 and can be represented by an equation of the form (3.1.6). There are 6
(
n
3

)2
such

components, and they are of of maximal degree.
(2) If two elements are in the same row and one in a different column from those two, or

such that one element shares a row with one and a column with the other, then the
equation is the unique size (n− 1) minor that has no elements of S in it. There are n2

such components.

If all three elements of S lie on a row or column, then J(σn−2, L
S) is not a hypersurface.

Corollary 3.4.2. Let M be an n× n matrix. Then M is maximally (n− 2)-border rigid if and
only if no size n− 1 minor is zero and for all (i1, i2, i3) taken from distinct elements of [n], and

all (j1, j2, j3) taken from distinct elements of [n], the equation ∆i1
j1

∆i2i3
j2j3
− ∆i2

j2
∆i1i3
j1j3

does not
vanish on M .

4. Varieties of matrices

4.1. General remarks. Recall the construction of matrices from directed acyclic graphs in §1.
To each graph Γ that is the disjoint union of directed acyclic graphs with n input gates and n
output gates we associate the set Σ0

Γ ⊂ Matn of all matrices admitting a linear circuit (see §1)

with underlying graph Γ. We let ΣΓ := Σ0
Γ ⊂Matn, the variety of linear circuits associated to Γ.

For example R[n, r, s]0 = ∪Σ0
Γ where the union is over all Γ = Γ1+Γ2 (addition as in Figure 4)

where Γ1 is of depth two with r vertices at the second level and is a complete bipartite graph
at each level, and Γ2 is of depth one, with s edges.

Proposition 4.1.1. Let Σ ⊂ Matn be a variety of dimension δ. Then a general element of Σ
cannot be computed by a circuit of size δ − 1.

Proof. Let Γ be a fixed graph representing a family of linear circuits with γ edges. Then Γ can
be used for at most a γ-dimensional family of matrices. Any variety of matrices of dimension
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greater than γ cannot be represented by Γ, and since there are a finite number of graphs of size
at most γ, the dimension of their union is still γ. �

4.2. Cauchy matrices. Let 1 ≤ i, j,≤ n. Consider the rational map

Caun : Cn × Cn 99KMatn(4.2.1)

((xi), (zj)) 7→ (yij) :=
1

xi + zj

The variety of Cauchy matrices Cauchyn ⊂ Matn is defined to be the closure of the image
of (4.2.1). It is Sn × Sn invariant and has dimension 2n − 1. To see the dimension, note
that Cauchyn is the Hadamard inverse or Cremona transform of a linear subspace of Matn of
dimension 2n− 1 (that is contained in σ2). The Cremona map is

CremN : CN 99K CN

(w1, . . . , wN ) 7→
(

1

w1
, . . . ,

1

wN

)
which is generically one to one. The fiber of Cremn2 ◦Caun over (xi + zj) is ((xi +λ), (zj −λ)),
with λ ∈ C.

One can obtain equations for Cauchyn by transporting the linear equations of its Cremona
transform, which are the (n − 1)2 linear equations, e.g., for i, j = 2, . . . , n, y1

1 + yij − yi1 − y1
j .

(More generally, it satisfies the equation yi1j1 + yi1j2 − y
i2
j1
− yi1j2 for all i1, j1, i2, j2.) Thus, taking

reciprocals and clearing denominators, the Cauchy variety has cubic equations

yi1j2y
i2
j1
yi1j2 + yi1j1y

i2
j1
yi1j2 − y

i1
j1
yi1j2y

i1
j2
− yi1j1y

i1
j2
yi2j1 .

Alternatively, Cauchyn can be parametrized by the first row and column: let 2 ≤ ρ, σ ≤ n,
and denote the entries of A by aij . Then the space is parametrized by a1

1, a
ρ
1, a

1
σ, by setting

aρσ = [ 1
aρ1

+ 1
a1
σ
− 1

a1
1
]−1.

Any square submatrix of a Cauchy matrix is a Cauchy matrix, and the determinant of a
Cauchy matrix is given by

(4.2.2)

∏
i<j(x

i − xj)
∏
i<j(z

i − zj)∏
i,j(x

i + zj)

In particular, if xi,−zj are all distinct, then all minors of the Cauchy matrix are nonzero.

Proposition 4.2.3. A general Cauchy matrix is both maximally r = 1 rigid and maximally
r = n− 2 rigid.

Proof. For the r = 1 case, let σ be a k-cycle in Sk and say there were an equation

yi1j1 · · · y
ik
jk
− yi1jσ(1)

· · · yikjσ(k)

Cauchyn satisfied. By the Sn ×Sn invariance we may assume the equation is

y1
1 · · · ykk − y1

σ(1) · · · y
k
σ(k)

which may be rewritten as
1

y1
1 · · · ykk

=
1

y1
σ(1) · · · y

k
σ(k)

The first term contains the monomial x1 · · ·xk−1zk, but the second does not.
For the r = n− 2 case, we may assume the equation is ∆1

2∆23
13−∆2

1∆13
23, because for a general

Cauchy matrix all size n− 2 minors are nonzero and we have the Sn ×Sn invariance.
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Write our equation as
∆1

2

∆2
1

=
∆13

23

∆23
13

. Then using (4.2.2) and canceling all repeated terms we get

(x2 − x3)(z1 − z3)(x1 + z3)(x3 + z2)

(x1 − x3)(z2 − z3)(x2 + z3)(x3 + z1)
= 1

which fails to hold for a general Cauchy matrix. �

4.3. The Vandermonde variety. In [11, p26], they ask if a general Vandermonde matrix has
maximal rigidity.

Consider the map

Vann : Cn+1 → Matn(4.3.1)

(y0, y1, . . . , yn) 7→


(y0)n−1 · · · (y0)n−1

(y0)n−2y1 · · · (y0)n−2yn
(y0)n−3y2

1 · · · (y0)n−3(yn)2

...
(y1)n−1 · · · (yn)n−1

 = (xij)

Define the Vandermonde variety Vandn to be the closure of the image of this map. Note that this
variety contains n rational normal curves (set all yj except y0, yi0 to zero), and is Sn-invariant
(permutation of columns). The (un-normalized) Vandermonde matrices are the Zariski open
subset where y0 6= 0 (set y0 = 1 to obtain the usual Vandermonde matrices). Give Matn×n
coordinates xij . The variety Vandn is contained in the linear space {x1

1−x1
2 = 0, . . . , x1

1−x1
n = 0}

and it is the zero set of these linear equations and the generators of the ideals of the rational
normal curves Van[y0, 0, . . . , 0, yj , 0, . . . , 0]. Explicitly, fix j, the generators for the rational
normal curves are the 2× 2 minors of(

x1
j x2

j · · · xn−1
j

x2
j x3

j · · · xnj

)
see, e.g., [9, p. 14], and thus the equations for the variety are, fixing j and i < k, the quadratic

polynomials xijx
k
j − x

i+1
j xk−1

j .
To see the assertion about the zero set, first consider the larger parametrized variety where

instead of y0 appearing in each column, in the j-th column, replace y0 by a variable y0j . The
resulting variety is the join of n rational normal curves, each contained in a Pn−1 ⊂ PMatn,
where the Pn−1’s are just the various columns. In general, given varieties Xj ⊂ PVj , j = 1, . . . , q,
the join J(X1, . . . , Xq) ⊂ P(V1⊕· · ·⊕Vq) has ideal generated by I(X1,PV1), . . . , I(Xq,PVq), see,
e.g. [9, 18.17, Calculation III ]. The second set of equations exactly describes this join. Now
intersect this variety with the linear space where all entries on the first row are set equal. We
obtain the Vandermonde variety.

Proposition 4.3.2. Vandn 6⊂ R[n, 1, n2 − 2n] and Vandn 6⊂ R[n, n− 2, 3], i.e., Vandermonde
matrices are generically maximally 1-border rigid and (n− 2)-border rigid.

Proof. Say we had V andn in some component of R[n, 1, n2 − 2n]. Using the Sn-invariance, we

may assume the equation it satisfies is xi11 · · ·x
ik
k − x

i1
σ(1) · · ·x

ik
σ(k) for some k, where σ ∈ Sk is a

k-cycle. Assume ik = max{i`}. Then the first monomial is divisible by (yk)
ik−1 but the second

is not.
For the n− 2-rigidity, since no minors are zero, by Corollary 3.4.2 and the Sn-invariance, it

suffices to consider equations of the form ∆j
2∆ik

13−∆k
3∆ij

12, where S = {xi1, x
j
2, x

k
3}. First consider

the case that 2 /∈ {i, j, k}. The y2-linear coefficient of ∆j
2∆ik

13−∆k
3∆ij

12 is ∆j
2∆ik2

132−∆k2
32∆ij

12. This
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expression is nonzero, because as a polynomial in y1 it has linear coefficient ∆j2
21∆ik2

132, which is
a product of minors and hence nonzero. Now for the other case let i = 2, j 6= 2, k 6= 2. But the

y2-linear coefficient of ∆j
2∆2k

13 −∆k
3∆2j

12 is −∆k2
32∆2j

12, which is also nonzero. �

4.4. The DFT matrix. The following “folklore result” was communicated to us (indepen-
dently) by A. Kumar and A. Wigderson:

Proposition 4.4.1. Let A be a matrix with an eigenvalue of multiplicity k >
√
n. Then

A ∈ R̂[n, n− k, n]0.

Proof. Let λ be the eigenvalue with multiplicity k, then A − λId has rank n − k. To have the
condition be nontrivial, we need r(2n− r) + s = (n− k)(2n− (n− k)) +n < n2, i.e., n < k2. �

Equations for the variety of matrices with eigenvalues of high multiplicity can be obtained
via resultants applied to the coefficients of the characteristic polynomial of a matrix.

Corollary 4.4.2. Let n = 2k, then DFTn ∈ R̂[n, 3n
4 , n]0.

Proof. The eigenvalues of DFTn are ±1,±
√
−1 with multiplicity roughly n

4 each. �

Proposition 4.4.3. Any matrix with Z2 symmetry (either symmetric or symmetric about the
anti-diagonal) is not maximally 1-border rigid.

Proof. Say the matrix is symmetric. Then x1
2x

2
3 · · ·xn−1

n xn1−x2
1x

3
2 · · ·xnn−1x

1
n is in the ideal of the

hypersurface J(σ1, L
S) where S is the span of all the entries not appearing in the expression. �

4.5. The DFT curve. We define two varieties that contain the DFT matrix, the first corre-
sponds to a curve in projective space.

Define the DFT curve CDFTn ∈Matn to be the image of the map

C2 →Matn(4.5.1)

(x,w) 7→


xn−1 xn−1 xn−1 · · · xn−1

xn−1 xn−2w xn−3w2 · · · wn−1

...
xn−1 wn−1 x1wn−2 · · · xn−2w


This curve is a subvariety of Vandn where y0 = y1 = x and yj = wj−1. From this one obtains

its equations.

Proposition 4.5.2. For general w, and even for w a fifth root of unity, the matrix

M(w) :=


1 1 1 1 1
1 w w2 w3 w4

1 w2 w4 w w3

1 w3 w w4 w2

1 w4 w3 w2 w


satisfies M(w) 6∈ R̂[5, 3, 2], M(w) ∈ R[5, 3, 3]0, M(w) 6∈ R̂[5, 1, 12], and M(w) ∈ R̂[5, 1, 13]0.

This is proved by explicit calculation at www.nd.edu/~jhauenst/rigidity. For a more
general DFT matrix we have:

Proposition 4.5.3. Let p be prime, then the DFT curve CDFTp satisfies, or all A ∈ CDFTp
Rig1(A) ≤ (p− 1)2 + 1− (p− 1).

In other words, CDFTp ⊂ R̂[p, 1, p2 − 3p+ 3]0.

www.nd.edu/~jhauenst/rigidity
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Proof. Change the (1, 1)-entry to w−1 and all entries in the lower right (p−1)×(p−1) submatrix
not already equal to w to w. The resulting matrix is

w−1 1 1 · · · 1
1 w w · · · w

...
1 w w · · · w


�

4.6. The variety of factorizable matrices/the butterfly variety. The DFT algorithm may
be thought of as factorizing the size n = 2k DFT matrix into a product of k matrices S1, . . . , Sk
with each Si having 2n nonzero entries.

If Sj , 1 ≤ j ≤ d are matrices with sj nonzero entries in Sj , with sj = fjn for some natural
numbers fj , then S1S2 has at most f1f2n nonzero entries. Consider the set of matrices A such
that we may write A = S1 · · ·Sd with sj = fjn and f1 · · · fd = n. Then A may be computed
by a linear circuit of depth d and size (f1 + · · · + fd)n. In the DFT case we have fj = 2 and
d = log(n).

This space of matrices is the union of a large number of components, each component is the
image of a map:

Bfly : L̂s1 × · · · × L̂sd →Matn×n

where L̂sj ⊂ Matn×n is the span of some S ⊂ {xij} of cardinality sj . In the most efficient

configurations (those where the map has the smallest dimensional fibers), each entry yij in a

matrix in the image will be of the form yij = (x1)ij1(x2)j1j2 · · · (xd)
jd−1

j where the ju’s are fixed

indices (no sum).
If we are not optimally efficient, then the equations for the corresponding variety become

more complicated, and the dimension will drop.
From now on, for simplicity assume n = 2k, d = k and sj = 2n for 1 ≤ j ≤ k. Let FM0

n

denote the set of factorizable or butterfly matrices, the set of matrices A such that A = S1 · · ·Sk
with Sj as above, and let FMn := FM0

n denote its Zariski closure. The term “butterfly” comes
from the name commonly used for the corresponding circuit, e.g., see [14, §3.7]. By construction
every A ∈ FM0

n admits a linear circuit of size 2nlogn, see, e.g., Figure 6: the graph has 48 edges
compared with 64 for a generic 8 × 8 matrix, and in general one has 2k+1k = 2nlog n edges
compared with 22k = n2 for a generic matrix.

Figure 6. linear circuit for element of FM0
8 , support is the “butterfly graph”

Proposition 4.6.1. A general factorizable matrix does not admit a linear circuit of size
n(logn+ 1)− 1.
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Proof. We will show that a general component of FMn has dimension n(logn+1), so Proposition
4.1.1 applies.

First it is clear that dimFMn is at most n(logn + 1), because dim(L̂1 ⊕ · · · ⊕ L̂k) = 2nk
and if D1, . . . , Dk−1 are diagonal matrices (with nonzero entries on the diagonal), then
Bfly(S1D1, D1

−1S2D2, , . . . , Dk−1
−1Sk) = Bfly(S1, S2, , . . . , Sk), so the fiber has dimension at

least n(k − 1). Consider the differential of Bfly at a general point:

d(Bfly)|(S1,...,Sk) : L̂1 ⊕ · · · ⊕ L̂k →Matn×n

(Z1, . . . , Zk) 7→ Z1S2 · · ·Sk + S1Z2S3 · · ·Sk + · · ·+ S1 · · ·Sk−1Zk

The rank of this linear map is the dimension of the image of FMn as its image is the tangent
space to a general point of FMn. We may use Z1 to alter 2n entries of the image matrix
y = S1 · · ·Sk. Then, a priori we could use Z2 to alter 2n entries, but n of them overlap with
the entries altered by Z1, so Z2 may only alter n new entries. Now think of the product of the
first two matrices as fixed, then Z3 multiplied by this product again can alter n new entries, and
similarly for all Zj . Adding up, we get 2n+ (k − 1)n = n(logn+ 1). �

5. Geometry

5.1. Standard facts on joins. We review standard facts as well as observations in [11, 13].
Recall the notation J(X,Y ) from Definition 2.1.1. The following are standard facts:

Proposition 5.1.1.

(1) If X,Y are irreducible, then J(X,Y ) is irreducible.
(2) Let X,Y ⊂ PV be varieties, then I(J(X,Y )) ⊂ I(X) ∩ I(Y ).

(3) (Terracini’s Lemma) The dimension of J(X,Y ) is dimX + dimY + 1− dim T̂xX ∩ T̂yY ,
where x ∈ X, y ∈ Y are general points. In particular,
(a) the dimension is dimX+dimY+1 if there exist x ∈ X, y ∈ Y such that T̂xX∩T̂yY =

0. (dimX + dimY + 1 is called the expected dimension.)
(b) If Y = L is a linear space, J(X,L) will have the expected dimension if and only if

there exists x ∈ X such that T̂xX ∩ L̂ = 0.
(4) If z ∈ J(X, p) and z 6∈ 〈x, p〉 for some x ∈ X, then z lies on a line that is a limit of secant

lines 〈xt, p〉, for some curve xt with x0 = p.

Proof. For assertions (1), (3), (4) respectively see e.g., [9, p157], [12, p122], and [12, p118].
Assertion (2) holds because X,Y ⊂ J(X,Y ). �

To gain intuition regarding Terracini’s lemma, a point on J(X,Y ) is obtained by selecting a
point x ∈ X (dimX parameters), a point y ∈ Y (dimY parameters) and a point on the line
joining x and y (one parameter). Usually these parameters are independent, and Terracini’s
lemma says that if the infinitesimal parameters are independent, the actual parameters are as
well.

In the special case (3b), since Y is a linear space, it is equal to its tangent space.
To understand (4), consider Figure 5.1 where a point on a limit of secant lines lies on a tangent

line.

5.2. Ideals of cones. Define the primitive part of the ideal of a variety Z ⊂ PV as
Iprim,d(Z) := Id(Z)/(Id−1(Z) ◦ V ∗). Here, if A ⊆ SdV and B ⊆ SδV , A ◦ B := {pq | p ∈
A, q ∈ B}. Note that Iprim,d(Z) is only nonzero in the degrees that minimal generators of the
ideal of Z appear and that (lifted) bases of Iprim,d(Z) for each such d furnish a set of generators
of the ideal of Z.
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Figure 7. Secant lines limiting to a tangent line

Proposition 5.2.1. Let X ⊂ PV be a variety and let L ⊂ PV be a linear space.

(1) Then

Id(X) ∩ SdL⊥ ⊆ Id(J(X,L)) ⊆ Id(X) ∩ (L⊥ ◦ Sd−1V ∗).

(2) A set of generators of I(J(X,L)) may be taken from I(X) ∩ Sym(L⊥).
(3) In particular, if Ik(X) is empty, then Ik(J(X,L)) is empty and

Ik+1(X) ∩ Sk+1L⊥ = Ik+1,prim(J(X,L)) = Ik+1(J(X,L)).

Proposition 5.2.1 says that we only need to look for polynomials in the variables of L⊥ when
looking for equations of J(X,L).

Proof. For the first assertion, P ∈ Id(J(X,L)) if and only if Pk,d−k(x, `) = 0 for all [x] ∈ X,

[`] ∈ L and 0 ≤ k ≤ d where Pk,d−k ∈ SkV ∗⊗Sd−kV ∗ is a polarization of P (in coordinates,

Pk,d−k is the coefficient of tk in the expansion of P (tx+ y) in t, where x, y are independent sets

of variables and t is a single variable, see [12, §7.5] for more details). Now P ∈ SdL⊥ implies
all the terms vanish identically except for the k = d term. But P ∈ Id(X) implies that term
vanishes as well. The second inclusion of the first assertion is Proposition 5.1.1(2).

For the second assertion, we can build L up by points as J(X, 〈L′, L′′〉) = J(J(X,L′), L′′), so
assume dimL = 0. Let P ∈ Id(J(X,L)). Choose a (one-dimensional) complement W ∗ to L⊥

in V ∗. Write P =
∑d

j=1 qju
d−j where qj ∈ SjL⊥ and u ∈W ∗. Then

Pj,d−j(x
j , `d−j) =

j∑
i=0

i∑
t=0

(qi)t,i−t(x
t, `i−t)(ud−i)j−t,d−j+t−i(x

j−t, `d−j+t−i)(5.2.2)

=

j∑
i=0

qi(x)(ud−i)j−i,d−j(x
j−i, `d−j)(5.2.3)

Consider the case j = 1, then (5.2.3) reduces to q1(x)ud−1(`) = 0 which implies q1 ∈ I1(X)∩L⊥.
Now consider the case j = 2, since q1(x) = 0, it reduces to q2(x)ud−2(`), so we conclude
q2(x) ∈ I2(X) ∩ S2L⊥. Continuing, we see each qj ∈ Ij(X) ∩ SjL⊥ ⊂ I(J(X,L)) and the
result follows. �

5.3. Degrees of cones. For a projective variety Z ⊂ PV and z ∈ Z, let T̂CzZ ⊂ V denote
the affine tangent cone to Z at z and TCzZ = PT̂CzZ ⊂ PV the (embedded) tangent cone.

Set-theoretically T̂CzZ is the union of all points on all lines of the form limt→0〈z, z(t)〉 where

z(t) ⊂ Ẑ is a curve with [z(0)] = z. If Z is irreducible, then dimTCzZ = dimZ.
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(a) (b)

Figure 8. (a) is graph of 2x5 − x3 + x2y + xy2 − y3 = 0 and (b) is the graph
with the tangent cone at the origin.

To gain some intuition regarding tangent cones, we compute the tangent cone to 2x5−w2x3 +
w2x2y + w2xy2 − w2y3 = 0 at [(w, x, y)] = [(1, 0, 0)].

Figure 8 depicts this curve in the affine space w = 1. The line {x+y = 0} has multiplicity one
in the tangent cone, and the line {x− y = 0} has multiplicity two because two of the branches
of the curve that go through the origin are tangent to it. We will need to keep track of these
multiplicities in order to compute the degree of the tangent cone as a subscheme of the Zariski
tangent space. That is, we need to keep track of its ideal, not just its zero set. To this end, let
m denote the maximal ideal in OZ,z of germs of regular functions on Z at z vanishing at z, so
the Zariski tangent space is TzZ = (m/m2)∗. Then the (abstract) tangent cone is the subscheme
of TzZ whose coordinate ring is the graded ring ⊕∞j=0m

j/mj+1.
To compute the ideal of the tangent cone in practice, one takes a set of generators for the

ideal of Z and local coordinates (w, yα) such that z = [(1, 0)], and writes, for each generator
P ∈ I(Z), P = (w− 1)jQ(y) +O((w − 1)j+1). The generators for the ideal of the tangent cone
are the lowest degree homogeneous components of the corresponding Q(y). See either of [9, Ch.
20] or [20, Ch. 5] for details. The multiplicity of Z at z is defined to be multzZ = deg(TCzZ).

In our example, (y1, y2) = (x, y) and we take coordinates with origin at [(1, 0, 0)] so let
w̃ = w − 1 to have the expansion P = −w̃2(x + y)(x − y)2 − 2w̃(x + y)(x − y)2 − (x + y)(x −
y)2 + 2x5 = w̃0[−(x + y)(x − y)2 + 2x5] + O(w̃) and the ideal of the tangent cone is generated
by (x+ y)(x− y)2. So in Figure 8, the multiplicity at the origin is three. We will slightly abuse
notation writing TCzZ for both the abstract and embedded tangent cone. While TCxZ may
have many components with multiplicities, it is equi-dimensional, see [21, p162].

Proposition 5.3.1. Let X ⊂ PV be a variety and let x ∈ X. Assume that J(X,x) 6= X. Let
px : PV \x→ P(V/x̂) denote the projection map and let π := px|X\x. Then

deg(J(X,x)) =
1

deg π
[deg(X)− deg(TCxX)].

To gain intuition for Proposition 5.3.1, assume π has degree one, which it will in our situation
and let PW ⊂ PV be a general linear space of complementary dimension to J(X,x), so it
intersects J(X,x) in deg(J(X,x)) points, each of multiplicity one. Now consider the linear
space spanned by PW and x. It intersects X in deg(J(X,x)) + 1 points ignoring multiplicity
but it may intersect x with multiplicity greater than one. The degree of X is the number of
points of intersection counted with multiplicity, so the degree of J(X,x) is the degree of X minus
the multiplicity of the intersection at x. If x ∈ X is a smooth point, the multiplicity will be one,
in general the multiplicity will equal the degree of the tangent cone, which can be visualized by
considering a horizontal line through the curve in Fig. 8(a), and moving the line upwards just
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a little. The three physical points of intersection become five on the moved line. Here is the
formal proof:

Proof. By [20, Thm. 5.11],

deg(π(X\x)) =
1

deg π
[deg(X)− deg(TCxX)].

Now let H ⊂ PV be a hyperplane not containing x that intersects J(X,x) transversely. Then

π(X\x) ⊂ P(V/x̂) is isomorphic to J(X,x)∩H ⊂ H. In particular their degrees are the same. �

Note that the only way to have deg(π) > 1 is for every secant line through x to be at least a
trisecant line.

Proposition 5.3.2. Let X ⊂ PV be a variety, let L ⊂ PV be a linear space, and let x ∈ X.
Then we have the inclusion of schemes

(5.3.3) J(TCxX, L̃) ⊆ TCxJ(X,L)

where L̃ ⊂ TxPV is the image of L in the projectivized Zariski tangent space, and both are
sub-schemes of TxPV .

Proof. Write x = [v]. For any variety Y ⊂ PV , generators for TCxY can be obtained from gen-
erators Q1, . . . , Qs of I(Y ), see e.g., [9, Chap. 20]. The generators are Q1(vf1 , ·), . . . , Qs(vfs , ·)
where fj is the largest nonnegative integer (which is at most degQj − 1 since x ∈ Y ) such that

Qj(v
fj , ·) 6= 0. Here, if deg(Qj) = dj , then strictly speaking Qj(v

fj , ·) ∈ Sdj−fjT ∗xY , but we may
consider TxY ⊂ TxPV and may ignore the additional linear equations that arise as they don’t
effect the proof.

Generators of J(X,L) can be obtained from elements of I(X) ∩ Sym(L⊥). Let
P1, . . . , Pg ∈ I(X) ∩ Sym(L⊥) be such a set of generators. Then, choosing the fj as above,

P1(vf1 , ·), . . . , Pg(vfg , ·) generate I(TCx(J(X,L))).

Note that P1(vf1 , ·), . . . , Pg(vfg , ·) ∈ I(TCxX) ∩ Sym(L⊥), so they are in I(J(TCxX, L̃)).

Thus I(TCx(J(X,L))) ⊆ I(J(TCxX, L̃)). �

Remark 5.3.4. The inclusion (5.3.3) may be strict. For example J(TC[a1⊗b1]σr, [a1 ⊗ b2])) 6=
TC[a1⊗b1]J(σr, [a1⊗b2]), where ai⊗bj is the matrix having 1 at the entry (i, j) and 0 elsewhere. To

see this, first note that [a1⊗b2] ⊂ TC[a1⊗b1]σr, so as a set J(TC[a1⊗b1]σr, [a1⊗b2])) = TC[a1⊗b1]σr,

in particular it is of dimension one less than J(σr, [a1 ⊗ b2]) which has the same dimension as
its tangent cone at any point.

Proposition 5.3.2 implies:

Corollary 5.3.5. Let X ⊂ PV be a variety, let L ⊂ PV be a linear space, and let x ∈ X.
Assume TCxJ(X,L) is reduced, irreducible, and dim J(TCxX, L̃) = dimTCxJ(X,L). Then we
have the equality of schemes

J(TCxX, L̃) = TCxJ(X,L).

5.4. Degrees of the varieties J(σr, L
S).

Lemma 5.4.1. Let S be such that no entries of S lie in a same column or row, and let x ∈ S.

Assume s < (n− r)2, and let S′ = S\x. Let π : J(σr, L
S′) 99K Pn2−2 denote the projection from

[a⊗ b], where a⊗ b is the matrix having 1 at the entry x and 0 elsewhere. Then deg(π) = 1.

Proof. We need to show a general line through [a⊗ b] that intersects J(σr, L
S′), intersects it in

a unique point. Without loss of generality, take S to be the first s diagonal entries and x = x1
1.

It will be sufficient to show that there exist A ∈ σ̂r and M ∈ L̂S
′

such that are no elements
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B ∈ σ̂r, F ∈ L̂S
′

such that u(A + M) + va1 ⊗ b1 = B + F for some u, v 6= 0 other than when
[B] = [A]. Assume A has no entries in the first row or column, so, moving F to the other side
of the equation, in order that the corresponding B has rank at most r, there must be a matrix
D with entries in S′, such that A+D with the first row and column removed has rank at most
r − 1.

If r ≤ dn2 e − 1, take A to be the matrix
∑r

j=1 abn2 c+1+j ⊗ bj+1. Then the determinant of a

size r submatrix in the lower left quadrant of A is always 1.

If dn2 e−1 < r ≤ n−2, take A =
∑dn

2
e−1

j=1 abn
2
c+1+j⊗bj+1+

∑r−dn
2
e−1

i=1 ai+1⊗bb
n
2
c+1+i. Then the

size r minor consisting of columns {2, 3, . . . , r+1} and rows {bn2 c+2, bn2 c+3, . . . , n, 2, 3, . . . , r−
dn2 e+ 2} is such that its determinant is also always ±1, independent of choice of D. �

Let A = Cn with basis a1, . . . , an, and let A′ = 〈a2, . . . , an〉, and similarly for B = Cn. Let
x = [x1

1]. It is a standard fact (see, e.g. [9, p 257]), that

TCxσr(Seg(PA× PB)) = J(PT̂xσ1(Seg(PA× PB)), σr−1(Seg(PA′ × PB′))),
so by Proposition 5.3.2

TCx(J(σr(Seg(PA× PB)), LS
′
)) ⊇ J(PT̂xσ1(Seg(PA× PB)),J(σr−1(Seg(PA′ × PB′), LS

′
)).

Since PT̂xσ1(Seg(PA × PB)) is a linear space and J(σr−1(Seg(PA′ × PB′), LS′) lies in a linear
space disjoint from it,

deg J(PT̂xσ1(Seg(PA× PB)),J(σr−1(Seg(PA′ × PB′), LS
′
)) = deg J(σr−1(Seg(PA′ × PB′), LS

′
)

because if L is a linear space and Y any variety and L ∩ Y = ∅, then deg J(Y,L) = deg Y .
Thus if

(5.4.2) dim(TCx(J(σr(Seg(PA× PB)), LS
′
))) = dim J(TCxσr(Seg(PA× PB)), LS

′
),

we obtain

(5.4.3) deg TCx(J(σr(Seg(PA× PB)), LS
′
)) ≥ deg J(σr−1(Seg(PA′ × PB′), LS

′
).

Recall the notation d(n, r, s) := deg J(σr, L
S) where S with |S| = s is such that no two

elements lie in the same row or column. In particular d(n, r, 0) = deg(σr(Seg(Pn−1 × Pn−1)).

Proposition 5.4.4. Let S be such that no two elements of S lie in the same row or column.
Then

(5.4.5) dn,r,s ≤ dn,r,0 −
s∑
j=1

dn−1,r−1,s−j

Proof. In this situation the equality (5.4.2) holds, and Lemma 5.4.1 says the degree of π in
Proposition 5.3.1 equals one, so apply it and equation (5.4.3) iteratively to obtain the inequalities
dn,r,t ≤ dn,r,t−1 − dn−1,r−1,t−1. �

As mentioned in the introduction, P. Aluffi [1] proved that equality holds in (5.4.5). This has
the following consequence, which was stated as a conjecture in an earlier version of this paper:

Proposition 5.4.6. Let S be such that no two elements of S lie in the same row or column and
let x ∈ S. Then

TCxJ(σr, L
S) = J(TCxσr, L

S′).

In particular TCxJ(σr, L
S) is reduced and irreducible.
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Theorem 5.4.7. Each irreducible component of R̂[n, n− k, s] has degree at most

(5.4.8)
s∑

m=0

(
s

m

)
(−1)mdr−m,n−m,0

with equality holding if no two elements of S lie in the same row or column, e.g., if the elements
of S appear on the diagonal.

Moreover, if we set r = n− k and s = k2− u and consider the degree D(n, k, u) as a function
of n, k, u, then, fixing k, u and considering Dk,u(n) = D(n, k, u) as a function of n, it is of the
form

Dk,u(n) = (k2)!
B(k)2

B(2k)
p(n)

where p(n) = nu

u! −
k2−u

2(u−1)!n
u−1 +O(nu−2) is a polynomial of degree u.

For example:

D(n, k, 1) =
(k2)!B(k)2

B(2k)
(n− 1

2
(k2 − 1)),

D(n, k, 2) =
(k2)!B(k)2

B(2k)
(
1

2
n2 − 1

2
(k2 − 2)n+

1

6
(
3

4
k4 − 11

4
k2 + 2)).

Proof. Apply induction on all terms of (5.4.5). We get

dn,r,s = dn,r,s−1 − dn−1,r−1,s−1

= (dn,r,s−2 − dn−1,r−1,s−2)− (dn−1,r−1,s−2 − dn−2,r−2,s−2)

= dn,r,s−3 − 3dn−1,r−1,s−3 + 3dn−2,r−2,s−3 + dn−3,r−3,s−3

...

=
∑̀
m=0

(−1)m
(
`

m

)
dn−m,r−m,s−`,

for any ` ≤ s, in particular, for ` = s.
To see the second assertion, note that

s∑
m=0

(
s

m

)
(−1)mq(m) = 0

where q(m) is any polynomial of degree less than s and
s∑

m=0

(
s

m

)
(−1)mms = s!(−1)s

s∑
m=0

(
s

m

)
(−1)mms+1 = s!

(
s− 1

2

)
(−1)s.

(See, e.g. [25, §1.4], where the relevant function is called S(n, k).)
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Consider
s∑

m=0

(
s

m

)
(−1)mdr−m,n−m,0

=
s∑

m=0

(
s

m

)
(−1)m

B(k)2B(n−m+ k)B(n−m− k)

B(2k)B(n−m)2

=
B(k)2

B(2k)

s∑
m=0

(
s

m

)
(−1)m

B(n−m+ k)B(n−m− k)

B(n−m)2

=
B(k)2

B(2k)

s∑
m=0

(
s

m

)
(−1)m(n−m)k

∏k−1
t−1 (n−m+ k − t)t(n−m− k + t)t

Write (n−m)k
∏k−1
t=1 (n−m+k− t)t(n−m−k+ t)t =

∑
j ck,n,jm

j , then all values of j less than

s = k2 − u contribute zero to the sum, the j = s case gives ck,n,k2−u(k2 − u)!(−1)k
2−u. Now

consider the highest power of n in ck,n,k2−u.
∑

j ck,n,jm
j is a product of k+2

(
k
2

)
= k2 linear forms,

if we use k2−u+t of them for the m, there will be u−t to which n can contribute, so the only term

with nu can come from the case t = 0, in which case the coefficient of numk2−u is (−1)k
2−u(k2

u

)
.

Putting it all together, we obtain the coefficient. The next highest power, nu−1 a priori could

appear in two terms: ck,n,k2−u, but there the coefficient is
(
k2

u

)
[
∑k−1

t=1 (k−t)+
∑k−1

t=1 (−k+t)] = 0,
and ck,n,k2−u+1, where the total contribution is(

k2

u− 1

)(
k2 − u+ 1

2

)
(k2 − u)! =

k2!

(u− 1)!

k2 − u
2

.

�
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