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ABSTRACT. The algebraic structure of the attractors in a dynamical system deter-

mine much of its global dynamics. The collection of all attractors has a natural lat-

tice structure, and this structure can be detected through attracting neighborhoods,

which can in principle be computed. Indeed, there has been much recent work

on developing and implementing general computational algorithms for global dy-

namics, which are capable of computing attracting neighborhoods efficiently. Here

we address the question of whether all of the algebraic structure of attractors can

be captured by these methods.

1. Introduction

The issue of computability in the context of nonlinear dynamics has recently

received considerable attention; see for example [5, 4] and references therein. An

important implication of this work is that the topological structure of invariant sets

need not be computable. Perhaps this is not surprising, given that the work over
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the last century has clearly demonstrated the incredible diversity and complexity

of invariant sets. One interpretation of these results for practical applications is

that analyzing dynamics by computing invariant sets may lead to a level of com-

putations that is too fine to be useful and perhaps ultimately unattainable.

With this in mind we consider the question of the computation of coarse dy-

namical structures for the following rather general setting. A dynamical system on

a topological space X is a continuous map ϕ : T+ ×X → X that satisfies

(i) ϕ(0, x) = x for all x ∈ X , and

(ii) ϕ(t, ϕ(s, x)) = ϕ(t+ s, x) for all s, t ∈ T
+ and for all x ∈ X ,

where T denotes the time domain, which is either Z or R and T
+ := {t ∈ T | t ≥ 0}.

As is discussed in detail in Section 3.3, for the results presented in this paper there

is no loss of generality in assuming the dynamics is generated by the continuous

function f : X → X where f(·) := ϕ(1, ·). The most significant assumption we

make is that X is a compact metric space. We emphasize that we do not assume

that f is injective nor surjective.

Recall that a set U ⊂ X is an attracting neighborhood for f if

ω(U, f) :=
⋂

n∈Z+

cl

(

∞
⋃

k=n

fk(U)

)

⊂ int (U).

A set A ⊂ X is an attractor if there exists an attracting neighborhood U such that

A = ω(U, f). The sets of all attracting neighborhoods and all attractors are denoted

by ANbhd(X, f) and Att(X, f), respectively. We remark that in general a given

system can have at most a countably infinite number of attractors.

Attractors are central to the study of nonlinear dynamics for at least two rea-

sons. First, they are the invariant sets that arise from the asymptotic dynamics of

regions of phase space, thus they capture the “observable” dynamics. Second, they

are intimately related to the structure of the global dynamics. More precisely, recall

that Conley’s fundamental decomposition theorem [16] states that the dynamics is

gradient like outside of the chain recurrent set. Furthermore, the chain recurrent

set can be characterized using the set of attractors and their dual repellers. With

this in mind in [9] we discuss a combinatorial approach for identifying attracting

neighborhoods and demonstrate that, even though there may be infinitely many

attractors, it is possible to obtain arbitrarily good approximations in phase space

of these attractors. This in turn provides a constructive method for obtaining arbi-

trarily good approximations of the chain recurrent set.

From the perspective of understanding the dynamics of nonlinear models one

encounters the issue of minimal scales. Every model has a scale below which the

model is no longer valid. Any given numerical simulation has a minimal scale,

and there is a maximal resolution for experimental measurements. Especially in

the latter case, the maximal relevant resolution is often dependent on the location

in phase space. This issue of scale motivates recent work [1, 6, 2, 8] that focuses

on rigorously computing global dynamical structures with an a priori choice of

maximal resolution of measurement.
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Given a fixed scale there can be at most a finite subset of attractors that are

observable. This suggests that understanding finite resolution dynamics requires

a deeper understanding of the structure of the set of all attractors. In [10] we

prove that Att(X, f) and ANbhd(X, f) are bounded, distributive lattices. The lat-

tice operations for ANbhd(X, f) are straightforward, ∨ = ∪ and ∧ = ∩. The op-

erations for Att(X, f) are more subtle; ∨ = ∪, but the ∧ operation is given by

A1 ∧ A2 = ω(A1 ∩ A2, f). A consequence of the lattice structure is that a finite set

of attractors generates a finite sublattice A ⊂ Att(X, f) of attractors.

By definition ω(·, f) : ANbhd(X,ϕ) → Att(X, f) is surjection. In [10] we show

that this is, in fact, a lattice epimorphism. However, this fact does not provide any

information, in and of itself, as to the structural relationship between a given finite

lattice of attractors A, the dynamic information of interest, and the set of attract-

ing neighborhoods ω(·, f)−1(A) ⊂ ANbhd(X, f), which consist of the potentially

observable or computational objects. This is resolved by the following theorem

which proves that the lattice structure of invariant dynamics of interest, namely

attractors, is contained within the lattice structure of the observable or computable

dynamics, namely attracting neighborhoods.

THEOREM 1.1. [10, Theorem 1.2] Let ı denote the inclusion map. For every finite

sublattice A ⊂ Att(X, f), there exists a lattice monomorphism k such that the following

diagram

ANbhd(X, f)

A Att(X, f)

����
✤
✤
✤
✤
✤
✤
✤
✤

ω(·,f)

// //ı
??

??

k

commutes.

The homomorphism k is called a lift of ı through ω(·, f). The proof of Theo-

rem 1.1 is nontrivial, especially since we are not assuming that f is injective nor

surjective. Thus [10] contains a detailed discussion and development of the defi-

nitions and properties of many of the standard dynamical concepts such as attrac-

tors, repellers, invariant sets, etc. as well as corresponding neighborhoods of these

objects. We do not repeat them in this paper, but recall them as necessary.

As suggested at the beginning of this introduction, the focus of this paper is on

computation. The computational methods we are interested in analyzing are based

on a finite discretization, indexed by X , of the phase space X and the computation

of an outer approximation of a map f : X → X by a combinatorial multivalued

map F : X −→→X (see Section 3.1). Observe that a combinatorial multivalued map

is equivalent to a finite directed graph. The latter interpretation is useful from the

perspective of algorithms, but treating F as a map provides intuition as to how to

define important dynamical analogues in the discrete setting. This is discussed in

detail in Section 2, but we also point out the work in [12, 11] on closed relations.
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Given our focus on attractors there are three structures arising from

combinatorial dynamics that are of particular interest: forward invariant

sets, Invset+(X ,F) := {S ⊂ X | F(S) ⊂ (S)}; attracting sets, ASet(X ,F) :=

{U ⊂ X | ω(U ,F) ⊂ U}; and attractors, Att(X ,F) := {A ⊂ X | F(A) = A}. In Sec-

tion 2 we assign appropriate lattice structures to these sets. Note that these lattices

are explicitly computable, since they are defined in terms of elementary operations

on a finite directed graph.

To easily pass between the combinatorial and continuous dynamics, we insist

that the discretization of phase space be done with regular closed sets. Given a

compact metric space X , the family of all regular closed sets R(X) forms a Boolean

algebra. As this gives rise to technical issues, it is important to note that the lattice

operations for R(X) differ from those of Set(X), in particular ∨ = ∪ and ∧ =

cl (int (·) ∩ int (·)). The atoms of any finite sublattice of R(X) form a grid, which

provides an appropriate discretization of the phase space X . As indicated above

the grid is indexed by X . We pass from subsets of X to subsets of X , by means of

an evaluation map |·| : X → R(X).

Observe that, as a consequence of the discretization procedure, our computa-

tions can only represent elements of R(X), which is a strict subset of Set(X). We

denote the family of attracting neighborhoods of f that are regular closed sets of

X by ANbhdR(X, f). Even though ANbhdR(X, f) ⊂ ANbhd(X, f), this inclusion

is not a lattice homomorphism since, the lattice operations are different. Further-

more, for a fixed multivalued map F , an outer approximation for f , the evaluation

map |·|maps ASet(X ,F) to a strict subset of ANbhdR(X, f). The lattice homomor-

phisms that relate the above mentioned lattices produce the following commuta-

tive diagram (see Remark 4.24 for the analogue for ϕ)

(1)

Invset+(X ,F) ASet(X ,F) ANbhdR(X, f) Att(X, f)

Att(X ,F)
'' ''❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖

ω(·,F)

// //ı // //
|·|

����

ω(·,F)

// //
ω(·,f)

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣
ω(|·|,f)

where ı is the inclusion map.

Returning to the question of computability, the analoguous result to Theo-

rem 1.1 in the context of a multivalued outer approximation F of f is the existence

of a lifting for either of the following commutative diagrams

(2)

ASet(X ,F)

A Att(X, f)

����
✤
✤
✤
✤
✤
✤
✤
✤

ω(·,f)

// //ı
??

??

or

Invset+(X ,F)

A Att(X, f)

����
✤
✤
✤
✤
✤
✤
✤
✤

ω(·,f)

// //ı
??

??

for a given finite sublattice of attractors A. Observe that by (1) a lift for the second

diagram implies a lift for the first.
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If Att(X, f) is an infinite lattice, then any given approximation F : X −→→X cap-

tures only a finite sublattice A ⊂ Att(X, f). With this in mind we consider se-

quences of multivalued maps Fn : Xn
−→→Xn that provide arbitrarily close approx-

imations of f . There are essentially two types of sequences that we consider, one

that involves a coherent refinement of the grids associated with Xn and the other

where it is only assumed that the diameter of the grid can be made arbitrarily

small. The first is most relevant if one considers a numerical scheme based on a

systematic refinement of phase space. The second is relevant if one wants to com-

pare approximations performed using different types of discretizations of phase

space. With a coherent refinement scheme we are able to prove the existence of a

lifting, Theorem 4.19, based on the second diagram of (2). The more general result,

Theorem 4.21, is based on the first diagram.

We conclude this introduction with a brief outline of the paper. Section 2 intro-

duces the dynamics of combinatorial multivalued maps and the appropriate lattice

structures. This includes the lattices of backward invariant sets Invset−(X ,F), re-

pelling sets RSet(X ,F), and repellers Rep(X ,F). The duality between these lat-

tices, associated with backward dynamics, and those associated with forward dy-

namics is presented in the commutative diagram (5).

In Section 3 we focus on combinatorial multivalued maps as an approximation

scheme for continuous nonlinear dynamics. We begin in Section 3.1 by recasting

the concept of grid [15] into the more general setting of regular closed subsets, cf.

[18]. Section 3.2 contains results, summarized for the most part by Theorems 3.15

and 3.17, that relate the lattice structures of combinatorial systems with those of

continuous systems. Section 3.3 deals with the issue of the approximation of dy-

namical systems where the time variable T = R. As mentioned earlier in the intro-

duction, one approach is to set f(·) = ϕ(τ, ·), where if T = R then it is permissible

to choose any fixed τ > 0. For this approach the concept of outer approximation is

sufficient. The weakness of this approach is that from the perspective of obtaining

optimal approximations it may be desirable to choose different values of τ on dif-

ferent regions of phase space. An alternative approach developed in [3] involves

combinatorializing the flow via a triangulation of space and the multivalued map-

ping is defined by considering the behavior of the associated vector field on the

vertices of the triangulation. This method fits into our framework but requires

the notion of a weak outer approximation as is demonstrated via the commutative

diagram (11).

Section 4 brings together the ideas of Sections 2 and 3 to demonstrate the gen-

eral computability of the lattices of interest. We begin in Section 4.1 with a discus-

sion concerning the convergence of outer approximations from a more classical nu-

merical analysis perspective, i.e. tracking of individual orbits. Section 4.2 discusses

the identification individual attractors or repellers using a outer approximations.

Section 4.3 returns to the issue of convergent sequences of outer approximations

but from a lattice theoretic perspective. We also discuss Birkhoff’s representation

theorem for finite distributive lattices and discuss its application in the context of
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lifts. Finally in Section 4.4 we prove the desired lifting theorems, Theorem 4.19

and 4.21. The reader will immediately note that the details of the proofs are car-

ried out in the context of repeller structures, Theorems 4.20 and 4.22, and then

duality is used to obtain Theorem 4.19 and 4.21, respectively. The reason for this

is related to the lattice structures of Att(X, f) and Rep(X, f). In particular, ∧ = ∩

for Rep(X, f), but not for Att(X, f). This lack of symmetry arises from the fact

that we do not assume that f is either injective or surjective, and thus attractors

and repellers have fundamentally different properties. The duality between be-

tween attractor/attracting neighborhoods and repellers/repelling neighborhoods

is expressed in following diagram, cf. (9)

(3)

ANbhd(X, f) RNbhd(X, f)

Att(X, f) Rep(X, f)

oo //
c

����

ω
����

α

oo //
∗

where Rep(X, f) and RNbhd(X, f) are the lattices of repellers and repelling neigh-

borhoods, respectively.

REMARK 1.2. We include a variety of different lattices in this paper. In each

case the ∨ operation is simply the union of sets, but there are five different ∧ op-

erations. For the benefit of the reader we include the following tables, the first

for topological structures and the second for combinatorial structures, as a simple

summary.

Lattice U ∧ V

Att(X, f) ω(U ∩ V )

Rep(X, f) U ∩ V

ANbhd(X, f) U ∩ V

RNbhd(X, f) U ∩ V

ANbhdR(X, f) cl (int (U) ∩ int (V ))

RNbhdR(X, f) cl (int (U) ∩ int (V ))

Invset
±(X, f) U ∩ V

Lattice U ∧ V

Att(X ,F) ω(U ∩ V)

Rep(X ,F) α(U ∩ V)

ASet(X ,F) U ∩ V

RSet(X ,F) U ∩ V

Invset+(X ,F) U ∩ V

Invset−(X ,F) U ∩ V

2. Combinatorial systems

In this section we discuss the dynamics of combinatorial multivalued maps.

We begin with basic properties, especially those related to the asymptotic dynam-

ics. We then discuss attractors, repellers and the combinatorial equivalences of

their neighborhoods. Finally we discuss the concept of attractor-repeller pairs in

this combinatorial setting.

2.1. Combinatorial multivalued maps. LetX be a finite set of vertices. To em-

phasize the fact that we are interested in dynamics we denote mappings F : X →

Set(X ) by F : X −→→X and refer to them as combinatorial multivalued mappings on X .
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The inverse image of a element ξ ∈ X is defined by

(4) F−1(ξ) := {η ∈ X | ξ ∈ F(η)},

which generates a combinatorial multivalued mapping denoted by F−1 : X −→→X .

DEFINITION 2.1. A multivalued mapping is left-total if F(ξ) 6= ∅ for all ξ ∈ X

and right-total if F−1(ξ) 6= ∅ for all ξ ∈ X . A multivalued mapping is total if it is

both left- and right-total.

The ω-limit set and α-limit set capture the asymptotic dynamics of a set U ⊂ X

under F : X −→→X and are defined by

ω(U) =
⋂

k≥0

⋃

n≥k

Fn(U) and α(U) =
⋂

k≤0

⋃

n≤k

Fn(U),

respectively. Observe that omega and alpha limit sets of nonempty sets may be

empty, but they satisfy the following properties.

PROPOSITION 2.2. Let F : X −→→X be a multivalued mapping and let U ⊂ X . Then,

(i) there exists a k∗ ≥ 0 such that ω(U) =
⋃

n≥k F
n(U) for all k ≥ k∗;

(ii) F(ω(U)) = ω(U) and ω(F(U)) = ω(U), and thus ω(U) ∈ Invset+(X );

(iii) F left-total and U 6= ∅ implies that ω(U) is invariant and ω(U) 6= ∅;

(iv) if there exists k∗ > 0 such that Fn(U) ⊂ U for k ≥ k∗, then ω(U) ⊂ U ;

(v) V ⊂ U implies ω(V) ⊂ ω(U), and in particular ω(V ∩ U) ⊂ ω(V) ∩ω(U);

(vi) ω(V ∪ U) = ω(V) ∪ ω(U), and in particular ω(U) =
⋃

ξ∈U ω(ξ);

(vii) ω(ω(U)) = ω(U).

The same properties hold for α-limit sets via time-reversal, i.e. replace F by F−1.

PROOF. All properties can essentially be derived from Property (i), which we

prove now. Forward images are nested sets. Since X is finite, it follows that there

exists k∗ such that
⋃

n≥k

Fn(U) =
⋃

n≥k∗

Fn(U)

for all k ≥ k∗. �

2.2. Attractors and repellers. Alpha and omega limit sets capture the asymp-

totic dynamics of individual sets. Our goal for the remainder of this section is to

understand the structure of the asymptotic dynamics of all sets. We begin with

the concept of forward and backward invariance. A set S ⊂ X is forward invari-

ant if F(S) ⊂ S and it is backward invariant if F−1(S) ⊂ S. The sets of forward

and backward invariant sets in X are denoted by Invset+(X ,F) and Invset−(X ,F)

respectively.

PROPOSITION 2.3. The sets Invset−(X ,F) and Invset+(X ,F) are finite distributive

lattices with respect to intersection and union. The mapping U 7→ Uc is an involute lattice

anti-isomorphism between Invset−(X ,F) and Invset+(X ,F).
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PROOF. We leave the proof that Invset−(X ,F) and Invset+(X ,F) are finite dis-

tributive lattices with respect to intersection and union to the reader.

To show that set complement maps Invset+(X ,F) to Invset−(X ,F) consider

U ∈ Invset+(X ,F) and ξ ∈ Uc. Suppose η ∈ F−1(ξ) ∩ U . Then

ξ ∈ F
(

η
)

⊂ F(U) ⊂ U ,

which contradicts the fact that ξ ∈ Uc. We conclude that F−1(Uc) ⊂ Uc, and

therefore Uc ∈ Invset−(X ,F). The same arguments hold when U ∈ Invset−(X ,F)

is backward invariant. The fact that the map U 7→ Uc is a lattice anti-isomorphism

follows from De Morgan’s laws. �

To characterize the asymptotic dynamics of forward and backward invariant

sets we make use of the following structures.

DEFINITION 2.4. Let F : X −→→X be a combinatorial multivalued mapping. A

set A ⊂ X is an attractor for F if F(A) = A. A set R ⊂ X is a repeller for F if

F−1(R) = R. The sets of all attractors and repellers in X are denoted by Att(X ,F)

and Rep(X ,F) respectively.

For A,A′ ∈ Att(X ,F) define

A∨A′ = A ∪A′ and A ∧A′ = ω(A ∩A′).

Similarly, forR,R′ ∈ Rep(X ,F) define

R∨R′ = R∪R′ and R∧R′ = α(R∩R′).

PROPOSITION 2.5. The sets
(

Att(X ,F),∧,∨
)

and
(

Rep(X ,F),∧,∨
)

are finite, dis-

tributive lattices.

PROOF. LetA,A′ ∈ Att(X ,F) be attractors. ThenF(A∪A′) = F(A)∪F(A′) =

A∪A′, and thus A∪A′ ∈ Att(X ,F). Similarly, A∧A′ = ω(A∩A′), and therefore

F(A ∧A′) = A ∧A′ by Proposition 2.2(ii), which proves A ∧A′ ∈ Att(X ,F). This

proves that Att(X ,F) is a lattice. The same holds for Rep(X ,F). It remains to show

that both sublattices are distributive.

Let A,A′A′′ ∈ Att(X ,F). Then

(A ∧A′) ∨ (A ∧A′′) = ω(A ∩A′) ∪ ω(A∩A′′)

= ω
(

(A ∩A′) ∪ (A ∩A′′)
)

= ω
(

A∩ (A′ ∪A′′)
)

= ω(A) ∧ ω(A′ ∪ A′′)

= A ∧ (A′ ∨ A′′),

which proves distributivity. The arguments for Rep(X ,F) are symmetric. �

REMARK 2.6. Because the lattice operations are distinct, Att(X ,F) and

Rep(X ,F) cannot be viewed as sublattices of Invset+(X ,F) and Invset−(X ,F), re-

spectively.

By Proposition 2.2(ii) every omega limit set is an attractor, and similarly, every

alpha limit set is a repeller. The following result adds structure to this observation.
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PROPOSITION 2.7. The functions

ω : Invset+(X ,F)→ Att(X ,F) and α : Invset−(X ,F)→ Rep(X ,F),

are lattice epimomorphisms.

PROOF. We give the proof for ω : Invset+(X ,F) → Att(X ,F). From Proposi-

tion 2.2(vi) it follows that ω(U ∪ U ′) = ω(U) ∪ ω(U ′). For the meet operation we

argue as follows. Since U and U ′ are forward invariant, we have A = ω(U) ⊂ U

and A′ = ω(U ′) ⊂ U ′. Then

A ∧A′ = ω(A ∩A′) ⊂ ω(U ∩ U ′) = ω

(

ω(U ∩ U ′)
)

⊂ ω

(

ω(U) ∩ω(U ′)
)

= A ∧A′,

which proves that ω(U ∩ U ′) = A ∧ A′ = ω(U) ∧ ω(U ′), and therefore ω is a

lattice homomorphism. The map is surjective, since Att(X ,F) ⊂ Invset+(X ,F)

and ω|Att(X ,F) = id. Moreover, ω(∅) = ∅ = 0 in Att(X ,F), and ω(X ,F) = 1 in

Att(X ,F). �

While the previous proposition demonstrates that all attractors and repellers

can be obtained as the omega and alpha limit sets of a forward and backward in-

variant sets, there are larger collections of sets that lead to attractors and repellers.

An attracting set U has the property that ω(U) ⊂ U , and the attracting sets are de-

noted by ASet(X ,F). Similarly, a repelling set is defined by α(U) ⊂ U , and the

repelling sets are denoted by RSet(X ,F). Observe that forward and backward

invariant sets are attracting and repelling sets, respectively, but not vice-versa.

PROPOSITION 2.8. The sets ASet(X ,F) and RSet(X ,F) are finite sublattices of

Set(X ,F) and therefore finite distributive lattices.

PROOF. The proof for ASet(X ,F) follows from the following containments

ω(U ∪ U ′) = ω(U) ∪ ω(U ′) ⊂ U ∪ U ′,

ω(U ∩ U ′) ⊂ ω(U) ∩ ω(U ′) ⊂ U ∩ U ′.

The proof for RSet(X ,F) is similar. �

The same proof as that of Proposition 2.7 leads to the following result.

PROPOSITION 2.9. The mappings ω : ASet(X ,F) → Att(X ,F) and α :

RSet(X ,F)→ Rep(X ,F) are lattice epimorphisms.

Proposition 2.3 establishes U 7→ Uc as a lattice anti-isomorphism between

Invset+(X ,F) and Invset−(X ,F). The result is true for attracting and repelling

sets. To prove this we make use of the following result.

PROPOSITION 2.10. A set U is an attracting set if and only if there exists k > 0 such

thatFn(U) ⊂ U for all n ≥ k. Similarly, a set U is a repelling set if and only if there exists

k ≥ 0 such that F−n(U) ⊂ U for all n ≥ k.
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PROOF. If U ∈ ASet(X ,F), then ω(U) ⊂ U . By Proposition 2.2(i), there exists

k > 0 such that ω(U) = Γ+
k (U) =

⋃

n≥k F
n(U) ⊂ U , which implies that Fn(U) ⊂ U

for all n ≥ k.

Conversely, if there exists k > 0 such that Fn(U) ⊂ U for all n ≥ k, then

Proposition 2.2(iv) implies that ω(U) ⊂ U , which proves that U ∈ ASet(X ,F). �

PROPOSITION 2.11. The mapping U 7→ Uc is a lattice anti-isomorphism between

ASet(X ,F) and RSet(X ,F).

PROOF. Let U ∈ ASet(X ,F). Then by Proposition 2.10, there exists k > 0 such

that Fn(U) ⊂ U for all n ≥ k. As in the proof of Proposition 2.3, assume ξ ∈ Uc.

Suppose that there exists k > 0 such that F−n(ξ) ∩ U 6= ∅ for all n ≥ k. Let

η ∈ F−n(ξ) ∩ U for n ≥ k. Then we have

ξ ∈ Fn
(

η
)

⊂ Fn(U) ⊂ U ,

which contradicts the fact that ξ ∈ Uc. We conclude that there exists k > 0 such

that F−n(Uc) ⊂ Uc for all n ≥ k, and therefore Uc ∈ RSet(X ,F). �

2.3. Attractor-repeller pairs. For a multivalued mapping F : X −→→X one can

introduce the notions of dual repeller and dual attractor.

DEFINITION 2.12. Let F : X −→→X be a multivalued mapping. The dual repeller

A∗ to an attractor A is defined by A∗ = α(Ac). Similarly the dual attractor to

a repeller R is R∗ = ω(Rc). The pairs (A,A∗) and (R∗,R) are called attractor-

repellers pairs in X .

It follows from Proposition 2.3 and Proposition 2.2(vii) that if A ∈ Att(X ,F),

then Ac ∈ Invset
−(X ,F) and thus A∗ = α(Ac) ∈ Rep(X ,F). Similarly, if R ∈

Rep(X ,F), then R∗ = ω(Rc) ∈ Att(X ,F).

PROPOSITION 2.13. Let (A,A∗) be a attractor-repeller pair. Then,

A = ω(A∗c) and A∗ = α(Ac).

The operatorA 7→ A∗ is a lattice anti-isomorphism from Att(X ,F) to Rep(X ,F).

PROOF. The setA∗∗ = ω

(

(A∗)c
)

is forward-backward invariant, and hence for

every ξ ∈ A∗∗ we have α(ξ) ⊂ A∗∗ and ω(ξ) ⊂ A∗∗. Moreover,A = (Ac)c ⊂ (A∗)c,

and thus A = ω(A) ⊂ ω

(

(A∗)c
)

= A∗∗. Let ξ ∈ A∗∗ \ A = A∗∗ ∩ Ac. Since Ac is

backward invariant, α(ξ) ⊂ Ac, and thus α(ξ) ∈ A∗∗ \ A.

Also α(ξ) ⊂ α(Ac) = A∗, which implies that α(ξ) ∈ A∗∗ ∩ A∗. The forward

invariance of (A∗)c implies that A∗∗ ∩A∗ = ∅. We conclude that that α(ξ) = ∅ for

all ξ ∈ A∗∗\A. By definitionA∗∗ is an attractor, and thereforeF−1(ξ)∩A∗∗ 6= ∅ for

all ξ ∈ A∗∗, and consequently α(ξ) 6= ∅ for all ξ ∈ A∗∗, a contradiction. This shows

that A∗∗ = A. Similar arguments also apply to repellers. The mapping A 7→ A∗ is

an involution, and the lattices Att(X ,F) to Rep(X ,F) are isomorphic.
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To show that A 7→ A∗ is a lattice anti-isomorphism we argue as follows. Let

A∗ = α(Ac) and A′∗ = α(A′c), then by Proposition 2.7 and De Morgans’ laws

(A ∨A′)∗ = α

(

(A ∨A′)c
)

= α

(

(A ∪A′)c
)

= α

(

Ac ∩A′c
)

= α(Ac) ∧α(A′c)

= A∗ ∧ A′∗.

The same holds for A∗ and A′∗, i.e. (A∗ ∨ A′∗)∗ = A∗∗ ∧ A′∗∗ = A ∧ A′. Observe

that

(A ∧A′)∗ = (A∗ ∨ A′∗)∗∗ = A∗ ∨ A′∗,

which proves the proposition. �

Much of the discussion of this section up to this point can be summarized in

the following commutative diagram of lattice homomorphisms.

(5)

Invset+(X ,F) Invset−(X ,F)

ASet(X ,F) RSet(X ,F)

Att(X ,F) Rep(X ,F).

$$

$$❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏

ı

�� ��
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼

ω

oo //
c

����✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞✞

α

zz

zztt
tt
tt
tt
tt
tt
tt

ı

oo //
c

����

ω

����

α

oo //
∗

3. From continuous dynamics to multivalued mappings

In this section we recall how the dynamics of multivalued mappings can be

linked to dynamical systems as described in [9]. Since multivalued mappings are

discrete in both time and space, we need to address the issues of both time and

space discretization.

3.1. Grids and outer approximations. To represent continuous dynamics in

terms of the combinatorial structures described in Section 2 requires discretizing

phase space. We wish this discretization to be as generally applicable and as topo-

logically nice as possible. With this in mind we choose the basic elements of our

discretization to be regular closed sets, i.e. sets A ⊂ X such that A = cl (int (A)).

PROPOSITION 3.1. [18, Proposition 2.3] Let X be a topological space. The family

R(X) of regular closed subsets of X is a Boolean algebra with the following operations:

(i) A ≤ B if and only if A ⊂ B;

(ii) A ∨B := A ∪B;

(iii) A ∧B := cl (int (A ∩B));

(iv) A# := cl (Ac);

where 0 = ∅ and 1 = X .
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REMARK 3.2. Proposition 2.3 in [18] proves that R(X) is a complete Boolean

algebra, i.e.
∨

α Aα := cl (
⋃

α int (Aα)) and
∧

α Aα := cl (int (
⋂

α Aα)) are well-

defined.

LEMMA 3.3. Let A,A′ ∈ R(X), then A ∧ A′ = ∅ if and only if A ∩ int (A′) = ∅.

PROOF. By definition

A ∧ A′ = cl (int (A ∩ A′)).

Using the property int (A ∩ A′) = int (A) ∩ int (A′),

A ∧ A′ = cl (int (A) ∩ int (A′)).

Also, if U ⊂ X is open and B,B′ ⊂ X with cl (B) = cl (B′), then cl (B ∩ U) =

cl (B′ ∩ U). Taking U = int (A′), B = int (A), and B′ = A implies

A ∧ A′ = cl (A ∩ int (A′)).

Therefore

A ∧A′ = ∅ iff cl (A ∩ int (A′)) = ∅ iff A ∩ int (A′) = ∅,

which proves the equivalence. �

Sets A,A′ ⊂ X for which A∧A′ = ∅ will be referred to as regularly disjoint sets.

LEMMA 3.4. Let A,B,C ∈ R(X) be mutually regularly disjoint sets. Then

A = cl
(

(A ∪B) \ (B ∪ C)
)

.

PROOF. We start with the observation that if A,A′ ∈ R(X) are mutually regu-

larly disjoint, then cl (A\A′) = A. Indeed, by Lemma 3.3, A∧A′ = ∅, is equivalent

to A ∩ int (A′) = int (A) ∩ A′ = ∅. This implies int (A) ⊂ A \A′ ⊂ A and therefore

A = cl (int (A)) ⊂ cl (A \A′) ⊂ cl (A) = A, which proves the statement.

Note that (A ∪B) \ (B ∪C) = (A ∪B) \B \ C = A \B \ C = A \ (B ∪ C). By

assumption A ∧ (B ∪ C) = ∅. By the previous statement we then have

A = cl (A ∧ (B ∪ C)) = cl
(

(A ∪B) \ (B ∪ C)
)

,

which proves the lemma. �

For the purpose of computation we are only interested in finite collections of

regular closed sets.

PROPOSITION 3.5. Let R0 ⊂ R(X) be a finite subalgebra of the Boolean algebra

R(X) of regular closed subsets of X and let J(R0) denote the set of atoms of R0. Then

(i) X =
⋃

{A | A ∈ J(R0)}.

(ii) If A,A′ ⊂ X are atoms of R0, then A ∩ int (A′) = ∅.

Conversely, every finite set J = {A | A ⊂ X} of mutually regularly disjoint subsets which

satisfies (i) generates a subalgebra of R(X) for which J is the set of atoms.

PROOF. The proof of (i) follows from the fact that 1 = X and Proposi-

tion 3.1(ii). Property (ii) follows from Lemma 3.3. The converse statement follows

from Stone’s Representation Theorem, cf. [7]. �
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Proposition 3.5 implies that if X is a compact metric space, then any finite

subalgebra of R(X) defines a grid on X (see [9], [15]), and conversely a grid defines

a finite subalgebra of R(X). We denote the space of a grids on X by Grid(X),

which is a lattice dual to the lattice of finite subalgebras subFR(X). Since we make

use of grids to pass from the computations to dynamics, we recall and establish

several fundamental properties. First, by [9, Theorem 2.2] given a compact metric

space there exists a grid with elements of arbitrarily small diameter. Second, as is

discussed in detail in this section, grids provide a natural correspondence between

the combinatorial systems of Section 2 and the continuous systems of interest.

To begin to set up the relationship between combinatorial and continuous sys-

tems, consider a grid on X indexed by a finite set X . In particular, given ξ ∈ X

the corresponding grid element is denoted by |ξ| ∈ R(X). The evaluation mapping

|·| : Set(X )→ R(X) is defined by

|U| :=
⋃

ξ∈U

|ξ| .

The range of Set(X ) under | · | is the subalgebra whose atoms are the grid elements,

and this subalgebra will be denoted by RX (X). Proposition 3.5 immediately im-

plies the following.

COROLLARY 3.6. Given a grid on a compact metric space X indexed by X , then the

evaluation mapping |·| : Set(X )→ R(X) is a Boolean isomorphism onto RX (X).

PROOF. By construction the evaluation map is a lattice homomorphism. Since

|∅| = ∅ and |X | = X , Lemma 4.17 in [7] shows that the evaluation map is Boolean.

�

Before explicitly describing the discretization of a general dynamical system

ϕ : T+ × X → X , we consider the simple setting of approximating the dynamics

generated by a continuous map f : X → X .

DEFINITION 3.7. Let f : X → X be a continuous map. Let X be the indexing

set for a grid on X . A multivalued mapping F : X −→→X is an outer approximation of

f if

(6) f(|ξ|) ⊂ int |F(ξ)| for all ξ ∈ X .

A multivalued mapping F : X −→→X is a weak outer approximation for f if

(7) f(|ξ|) ⊂ int

∣

∣

∣

∣

∣

∣

⋃

n≥0

Fn(ξ)

∣

∣

∣

∣

∣

∣

for all ξ ∈ X .

REMARK 3.8. By definition outer approximations F are necessarily left-total,

and therefore combinatorial omega limit sets and attractors are invariant sets for

outer approximations F .
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3.2. Attractors, repellers, and their neighborhoods. Recall that a set U ⊂ X is

an attracting neighborhood for a continuous function f : X → X if ω(U, f) ⊂ int (U).

A trapping region U is an attracting neighborhood with the additional property that

f(cl (U)) ⊂ int (U). A set A ⊂ X is an attractor if there exists a trapping region U

such that A = Inv (U, f) in which case A = ω(U, f) ⊂ int (U).

A set U ⊂ X is a repelling neighborhood for a continuous function f : X → X

if α(U, f) ⊂ int (U). A repelling region U is an repelling neighborhood with the

additional property that f−1(cl (U)) ⊂ int (U). A set R ⊂ X is an repeller if there

exists a repelling region U such that R = Inv +(U, f) in which case R = α(U, f) ⊂

int (U) cf. [10].

The sets of all attracting neighborhoods and repelling neighborhoods are de-

noted by ANbhd(X, f) and RNbhd(X, f) respectively. As is shown in [10] these sets

are lattices under the operations union and intersection. The following proposi-

tions indicate that attracting and repelling neighborhoods can be identified using

weak outer approximations.

PROPOSITION 3.9. Let F : X −→→X be an weak outer approximation for f . If U ⊂

Invset+(X ,F), then |U| is a trapping region for f , and therefore |U| ∈ ANbhd(X, f).

PROOF. Since F is a weak outer approximation, for ξ ∈ U we have

f(|ξ|) ⊂ int

∣

∣

∣

∣

∣

∣

⋃

n≥0

Fn(ξ)

∣

∣

∣

∣

∣

∣

⊂ int |U|

because Fn(U) ⊂ U for all n ≥ 0. Therefore f(|U|) ⊂ int |U|, which implies that |U|

is a trapping region for f . �

PROPOSITION 3.10. Let F : X −→→X be an weak outer approximation for f . If U ∈

Invset−(X ,F), then |U| ∈ RNbhd(X, f).

PROOF. Let U ∈ Invset−(X ,F). By Proposition 2.3, Uc ∈ Invset+(X ,F), and

thus by Proposition 3.9, |Uc| ∈ ANbhd(X, f). By [10, Corollary 3.24] |Uc|c ∈

RNbhd(X, f) and thus by [10, Corollary 3.26] cl (|Uc|c) ∈ RNbhd(X, f). Finally,

by Corollary 3.6, |U| ∈ RNbhd(X, f). �

REMARK 3.11. Another approach is to achieve the latter directly. In that case a

negative time variation on (7) is needed. The duality approach used here does not

require additional assumptions and is therefore preferable. However, the duality

approach implies that |U| is a repelling neighborhood, and it is not clear whether

|U| is a repelling region.

As the following proposition indicates, outer approximations, as opposed to

weak outer approximations, allow one to obtain the same results using a larger

variety of sets. The proof makes use of the following observation. If F is an outer

approximation for f , then

(8) fn(|ξ|) ⊂ int |Fn(ξ)| ∀ξ ∈ X , ∀n ≥ 0.
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This property can be derived as follows. Observe that

f2(|ξ|) = f(f(|ξ|)) ⊂ f(int |F(ξ)|) ⊂ f(|F(ξ)|),

and by definition

f(|F(ξ)|) =
⋃

ξ′∈F(ξ)

f(|ξ′|) ⊂
⋃

ξ′∈F(ξ)

int |F(ξ′)| ⊂ int
∣

∣F2(ξ)
∣

∣ .

Equation (8) follows by proceeding inductively.

PROPOSITION 3.12. Let F : X −→→X be an outer approximation for f . If U ∈

ASet(X ,F), then |U| ∈ ANbhd(X, f). If U ∈ RSet(X ,F), then |U| ∈ RNbhd(X, f).

PROOF. By Proposition 2.10 if U ∈ ASet(X ,F), then there exists an n ≥ 1 such

that Fk(U) ⊂ U for all k ≥ n. By (8) fk(ξ) ⊂ int |Fk(ξ)| for all k ≥ n and all ξ ∈ U .

Therefore,

fk(|U|) =
⋃

ξ∈U

fk(|ξ|) ⊂
⋃

ξ∈U

int
(∣

∣Fk(ξ)
∣

∣

)

⊂ int





⋃

ξ∈U

∣

∣Fk(ξ)
∣

∣



 = int
∣

∣Fk(U)
∣

∣ ⊂ int |U| ∀k ≥ n,

and hence |U| ∈ ANbhd(X, f).

To prove the second part, let U ∈ RSet(X ,F). By Proposition 2.11 Uc ∈

ASet(X ,F) and thus |Uc| ∈ ANbhd(X, f). By Corollary 3.6

|U|# = |Uc| ,

and thus by [10, Corollary 3.26] |U| ∈ RNbhd(X, f). �

Let ANbhdR(X, f) and RNbhdR(X, f) denote the sets of regular closed attract-

ing and repelling neighborhoods, respectively.

PROPOSITION 3.13. Given a continuous function f : X → X on a compact metric

space, ANbhdR(X, f) and RNbhdR(X, f) are sublattices of R(X).

PROOF. Since the elements of ANbhdR(X, f) are regular closed sets, then

ANbhdR(X, f) ⊂ R(X). Thus it only needs to be shown that ANbhdR(X, f) is

a bounded lattice. Let U,U ′ ∈ ANbhdR(X, f). Observe that ∅, X ∈ ANbhdR(X, f).

By [10, Lemma 3.2], int (U) ∩ int (U ′) ∈ ANbhdR(X, f), and therefore

U ∧ U ′ = cl
(

int (U) ∩ int (U ′)
)

∈ ANbhd(X, f),

which proves that ANbhdR(X, f) is closed under the operations ∨ and ∧ of R(X).

The same argument applies to RNbhdR(X, f). �

REMARK 3.14. As indicated in [10] ANbhd(X, f) is a sublattice of Set(X) and

by Proposition 3.13 ANbhdR(X, f) is a sublattice of R(X). Since the operations

in these two lattices are different ANbhd(X, f) and ANbhdR(X, f) are not inter-

changeable. The same comment applies to RNbhd(X, f) and RNbhdR(X, f).
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THEOREM 3.15. Let X be an indexing set for a grid on X and let F : X −→→X be a

weak outer approximation of f . Then,

(9)

Invset+(X ,F) Invset−(X ,F)

ANbhdR(X, f) RNbhdR(X, f)

Att(X, f) Rep(X, f)

oo //
c

��

��

|·|

��

��

|·|

oo //
#

����

ω
����

α

oo //
∗

is a commuting diagram of distributive lattices. The same statement holds if we replace

Invset+(X ,F) and Invset−(X ,F) by ASet(X ,F) and RSet(X ,F) respectively.

The proof of this result makes use of the following lemma.

LEMMA 3.16. Let U ∈ ANbhd(X, f), then ω(U) = ω(cl (U)) = ω(int (U)) ⊂

int (U).

PROOF. If U is attracting, then int (U) is attracting. This implies ω(int (U)) =

Inv (int (U)), see [10, Corollary 3.6]. Moreover, ω(int (U)) ⊂ ω(U) = Inv (U, f) ⊂

int (U), which implies that ω(int (U)) = ω(U). �

PROOF OF THEOREM 3.15. The proof of the upper square follows from Propo-

sitions 3.12 and 3.13 and the relation |U|# = |Uc|.

The first step in the proof of the lower square is to show that

ω : ANbhdR(X, f) → Att(X, f), and α : RNbhdR(X, f) → Rep(X, f) are lattice ho-

momorphisms. For ∨ = ∪ the homomorphism property is obvious. As for ∧,

applying Lemma 3.16 and [10, Proposition 4.1] results in

ω(U ∧ U ′) = ω
(

cl (int (U ∩ U ′))
)

= ω(int (U ∩ U ′)) = ω(U ∩ U ′) = A ∧A′.

The same argument applies to repelling neighborhoods. The surjectivity of α and

ω follows from [9, Proposition 5.5] �

Strengthening the assumptions on the outer approximation F allows one to

extend Theorem 3.15.
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THEOREM 3.17. Let X be an indexing set for a grid on X and let F : X −→→X be an

outer approximation of f . Then

(10)

Invset+(X ,F) Invset−(X ,F)

Att(X ,F) ASet(X ,F) RSet(X ,F) Rep(X ,F)

ANbhdR(X, f) RNbhdR(X, f)

Att(X, f) Rep(X, f)

oo //
c

��

��

ı

wwww♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦

ω

��

��

ı

'' ''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖

α

��
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄

ω(|·|)

��

��

|·|

oooo ω oo //
c

��

��

|·|

// //α

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

α(|·|)

����

ω

oo //
#

����

α

oo //
∗

is a commutative diagram of distributive lattices where ı denotes inclusion.

The proof of Theorem 3.17 follows directly from Theorem 3.15, the following

two lemmas, and the use of duality between attractors and repellers to obtain the

same lemmas for repellers.

LEMMA 3.18. Let F : X −→→X be an outer approximation for a continuous mapping

f : X → X , and let U ∈ ASet(X ,F). Then ω(|U|) = ω(|ω(U)|).

PROOF. From Proposition 2.2(iv) we have that ω(U) = Fk(U), for some k large

enough. Set S = ω(|U|, f). Then f(S) = S, and

S = fk(S) ⊂ fk(|U|) ⊂ |Fk(U)| = |ω(U)|,

which proves the lemma. �

LEMMA 3.19. The mapping ω(| · |) : Att(X ,F) → Att(X, f) is a lattice homomor-

phism.

PROOF. The property for ∨ = ∪ is obvious. Therefore, we restrict the proof to

∧. Let A,A′ ∈ Att(X ,F). We have that

ω(|A ∧ A′|) ⊂ ω(|A ∩ A′|) = ω(|A| ∧ |A′|) = ω(|A|) ∧ ω(|A′|) = A ∧ A′,

where A = ω(|A|) and A′ = ω(|A|′). Conversely, since A ⊂ int (|A|) and A′ ⊂

int (|A′|), we have

A ∩ A′ ⊂ int (|A|) ∩ int (|A′|) = int (|A| ∩ |A′|) ⊂ cl
(

int (|A| ∩ |A′|)
)

= |A ∩ A′|,

and therefore A∧A′ ⊂ ω(|A∩A′|) = ω(|ω(A∩A′)|) = ω(|A∧A′|) by Lemma 3.18.

Combining the inclusions proves the lemma. �

REMARK 3.20. Note that the evaluation map | · | : Invset
+(X ,F) →

ANbhdR(X, f) can be restricted to Att(X ,F), since every attractor is forward in-

variant. However, Att(X ,F) is not a sublattice of Invset+(X ,F), since the lattice
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operations are different; Invset+(X ,F) is a lattice under union and intersection,

but the ∧ operation for Att(X ,F) is A ∧A′ = ω(A ∩A′). In particular

|A ∧ A′| = |ω(A ∩A′)| ⊂ |A ∩ A′| = |A| ∧ |A′|

but |A∧A′| need not be equal to |A| ∧ |A′| in general. Therefore we cannot replace

Invset+(X ,F) by Att(X ,F) in Diagram (9). The relationship between Att(X ,F)

and Invset+(X ,F) is shown in Diagram (10).

3.3. Approximating dynamical systems. In this section we address the ques-

tion of how to approximate a general dynamical system ϕ : T+ × X → X . If the

time parameter T = Z, then the dynamical system is generated by the continuous

map

f(·) := ϕ(1, ·) : X → X.

In this case the dynamical system is represented by a (weak) outer approximation

(Definition 3.7) and the results of Section 3.2 apply. Thus, for the remainder of this

section we assume that T = R, for which the question of choosing an appropriate

representation is more subtle. For the definition of alpha and omega limit sets, and

attractors and repellers we refer to [10].

Recall that a set U ⊂ X is an attracting neighborhood for ϕ : R+ × X → X if

ω(U,ϕ) ⊂ int (U). A trapping region is a forward invariant attracting neighborhood.

A set A ⊂ X is an attractor if there exists an attracting neighborhood U such that

A = Inv (U,ϕ) in which case A = ω(U,ϕ). Repelling regions/neighborhoods and

repellers can be define analogously, cf. [10]. The notion for attracting and repelling

neighborhoods is ANbhd(X,ϕ) and RNbhd(X,ϕ), cf. [10].

REMARK 3.21. Attractors and repellers are examples of isolated invariant sets.

In general, an invariant set S ⊂ X is an isolated invariant set if there exist a neigh-

borhood U ⊂ X such that S = Inv (U,ϕ) ⊂ int (U). The latter is called an isolating

neighborhood. The notion of isolated invariant set is also of importance beyond at-

tractors and repellers.

The following lemma provides a relationship between trapping regions for

time-τ maps and attracting neighborhoods for ϕ.

LEMMA 3.22. If U is a trapping region for the time-τ map f(·) = ϕ(τ, ·), then U is

an attracting neighborhood for ϕ.

PROOF. Let U be a trapping region for f and let A = ω(U, f) denote the asso-

ciated attractor. Set U τ = ϕ([0, τ ], U). The first step of the proof is to show that U τ

is forward invariant under ϕ. Observe that

ϕ([nτ, (n+ 1)τ ], U) = ϕ(nτ, ϕ([0, τ ], U))

= ϕ([0, τ ], ϕ(nτ, U))

= ϕ([0, τ ], fn(U)) ⊂ ϕ([0, τ ], U) = U τ ,

where the inclusion follows from the forward invariance of U under f . Thus

ϕ([0,∞), U τ ) = ϕ([1,∞), ϕ([0, τ ], U)) ⊂ U τ .
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Since U τ is forward invariant and U τ = ϕ([0, τ ], U),

ω(U,ϕ) = ω(U τ , ϕ) ⊂ U τ .

Observe that

cl





⋃

k≥n

fk(U)



 ⊂ cl (ϕ([n,∞), U)).

Thus

A =
⋂

n≥0

cl
(

⋃

k≥n

fk(U)
)

⊂
⋂

n≥0

cl (ϕ([n,∞), U)) = ω(U,ϕ).

Since A is the maximal isolated invariant set for the time τ -map f in U , it

follows from [14, Theorem 1] that A is the maximal isolated invariant set for ϕ in

U . In particular,

ω(U,ϕ) = A ⊂ int (U)

and hence U is an attracting neighborhood. �

PROPOSITION 3.23. Let F : X −→→X be an weak outer approximation for a time-τ

mapping f = ϕ(τ, ·). Then,

(i) if U ⊂ X is a forward invariant set for F , then U = |U| is an attracting neigh-

borhood for ϕ, and

(ii) if U ⊂ X is a backward invariant set for F , then U = |U| is a repelling neigh-

borhood for ϕ.

PROOF. Since |U| is a trapping region for f by Proposition 3.9, Lemma 3.22

imply that ω(|U|, ϕ) ⊂ int |U|, which proves that U = |U| is an attracting neighbor-

hood for ϕ.

If U ∈ Invset−(X ,F), then Uc ∈ Invset+(X ,F), and thus |Uc| ∈ ANbhd(X,ϕ).

By [10, Corollary 3.26] we have that cl (|Uc|c) ∈ RNbhd(X,ϕ). Therefore,

|Uc|# = cl |Uc|c = |Ucc| = |U| ∈ RNbhd(X,ϕ),

which proves the second statement. �

For attracting and repelling sets we can prove a similar statement, if we con-

sider strong outer approximations instead of weak outer approximations.

PROPOSITION 3.24. Let F : X −→→X be a outer approximation for a time-τ mapping

f = ϕ(τ, ·). Then,

(i) if U ⊂ U is an attracting set for F , then U = |U| is an attracting neighborhood

for ϕ, and

(ii) if U ⊂ U is a repelling set for F , then U = |U| is a repelling neighborhood for ϕ.

PROOF. If U ∈ ASet(X ,F), then from the proof of Proposition 3.12 it follows

that ϕ(kτ, cl |U|) ⊂ int |U|. From the proof of Lemma 3.22 we then derive that |U| is

an attracting neighborhood for ϕ.

Proving that the same holds for U ∈ RSet(X ,F) follows in the same way as in

the proof of Proposition 3.23. �
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From the above results we conclude that

Att(X,ϕ) = Att(X, f) and Rep(X,ϕ) = Rep(X, f).

The fact that Rep(X,ϕ) = Rep(X, f) as sets also implies that they are the

same as lattices, since the binary operations are ∩ and ∪. This implies that

id : Rep(X,ϕ) → Rep(X, f) is a lattice isomorphism. For attractors, we have the

same result.

COROLLARY 3.25. The identity id : Att(X,ϕ)→ Att(X, f) is a lattice isomorphism.

PROOF. Since as posets
(

Att(X,ϕ),⊂
)

=
(

Att(X, f),⊂
)

, it follows that A ∧ A′

in Att(X,ϕ) is the same as A ∧ A′ in Att(X, f). �

Since the evaluation mapping U 7→ |U| yields regular closed sets and is a

Boolean homomorphism, we can summarize the above propositions in the follow-

ing commuting diagram.

(11)

Invset+(X ,F) Invset−(X ,F)

Att(X ,F) ASet(X ,F) RSet(X ,F) Rep(X ,F)

ANbhdR(X,ϕ) RNbhdR(X,ϕ)

Att(X,ϕ) Rep(X,ϕ)

oo //
c

��

��

ı

wwww♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦

ω

��

��

ı

'' ''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖

α

��
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄

ω(|·|)

��

��

|·|

oooo ω oo //
c

��

��

|·|

// //α

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

α(|·|)

����

ω

oo //
#

����

α

oo //
∗

4. Convergence and realization of algebraic structures via multivalued maps

Convergent sequences of outer approximations can be constructed as indi-

cated in [9]. For our purposes, we will use a modified notion of a convergent

sequence of outer approximations and establish that arbitrary finite attractor lat-

tices can be realized along such a sequence. We start with recalling some facts

about outer approximations from [9].

4.1. Convergent sequences of outer approximations. Given a continuous

map f : X → X and a grid indexed by X , [9, Proposition 2.5] implies that there

is a natural choice of outer approximation which is minimal, namely

Fo(ξ) := {η ∈ X | f(|ξ|) ∩ |η| 6= ∅}.

We refer to this as the minimal multivalued mapping for f with respect to X .
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A multivalued mapping F encloses a multivalued mapping F ′ if F ′(ξ) ⊂ F(ξ)

for all ξ ∈ X . Observe that this defines a partial order on multivalued mappings,

which we denote by F ′ ≤ F .

LEMMA 4.1. ([9, Corollary 2.6]) A multivalued mapping F : X −→→X is a outer ap-

proximation for f : X → X if and only if F encloses the minimal multivalued mapping

Fo.

Outer approximations are naturally generated by numerical approximations

of f . For U ⊂ X let covX (U) := {η ∈ X | U ∩ |η| 6= ∅}. In this notation Fo(ξ) =

covX (f(|ξ|)). More generally, let ̺ : X → [0,∞) then by Lemma 4.1

F̺(ξ) :=
{

η ∈ X | Bρ(ξ)

(

f(|ξ|)
)

∩ |η| 6= ∅
}

= covX (Bρ(ξ)(f(|ξ|)))

is an outer enclosure. In the case ̺(|ξ|) = ρ is constant for all ξ ∈ X , we call Fρ the

ρ-minimal multivalued mapping for f . Observe that with this multivalued map the

’errors’ in the image of f are always smaller than ρ plus the grid size expressed by

(12) diam(X ) = max{diam(|ξ|) | ∀ ξ ∈ X}.

To define convergent sequences of outer approximations we make use of mul-

tivalued mappings F that satisfy the squeezing condition

(13) Fo ≤ F ≤ Fρ.

Outer approximations can always be enclosed by some ρ-multivalued mapping.

Indeed, by choosing ρ = diam (X), we have that Fρ encloses every outer approxi-

mation F .

DEFINITION 4.2. Let Fn : Xn
−→→Xn be a sequence of outer approximations for

f : X → X . Then Fn converges if diam (Xn)→ 0 and if there exist ρn-minimal maps

Fρn
with ρn → 0 such that

Fo,n ≤ Fn ≤ Fρn
on Xn.

The following proposition extends the convergence result for minimal multi-

valued mappings of [9, Proposition 5.4] to ρ-minimal multivalued mappings.

PROPOSITION 4.3. Let ǫ > 0 and k > 0. There exists δ > 0, such that for every grid

indexed by X , with diam (X ) < δ, and every ρ-minimal mapping with ρ < δ we have

(14) |Fk
ρ (ξ)| ⊂ Bǫ(f

k(|ξ|)) and |F−k
ρ (ξ)| ⊂ Bǫ(f

−k(|ξ|))

for all ξ ∈ X .

PROOF. First consider forward dynamics. Since X is a compact metric space,

f : X → X is uniformly continuous so that for every e > 0 there exists a d > 0 such

that

(15) f(Bd(U)) ⊂ Be(f(U))

for every U ⊂ X . Let δ0 = ǫ. From Equation (15) choose δi > 0 for i = 1, · · · , k − 1

inductively so that given δi−1

(16) f
(

Bδi(f
k−i(|ξ|))

)

⊂ Bδi−1/3(f
k−i+1(|ξ|))
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for all ξ ∈ X . Define δ = min0≤i≤k−1{δi/3}.

Let X be the indexing set for a grid on X with diam (X ) < δ, and consider Fρ

on X with ρ < δ. For the evaluation |Fρ(ξ)| we have

(17) |Fρ(ξ)| ⊂ Bδ+ρ(f(|ξ|)) ⊂ B2δ(f(|ξ|)) ⊂ Bδk−1
(f(|ξ|)).

We now proceed inductively. Recall thatF2
ρ (ξ) =

⋃

η∈Fρ(ξ)
Fρ(η), and for η ∈ Fρ(ξ)

Equation (17) implies η ⊂ Bδk−1
(f(|ξ|)). Combining this with (16) we obtain

f(|η|) ⊂ f
(

Bδk−1
(f(|ξ|))

)

⊂ Bδk−2/3(f
2(|ξ|)),

and by (17) applied to η we have

|Fρ(η)| ⊂ B2δ(f(|η|)).

Therefore,

|F2
ρ (ξ)| =

⋃

η∈Fρ(ξ)

|Fρ(η)| ⊂ Bδk−2/3+2δ(f
2(|ξ|)) ⊂ Bδk−2

(f2(|ξ|)).

In the general case i ≥ 2, for η ∈ F i−1
ρ (ξ) we have η ⊂ Bδk−i+1

(f i−1(|ξ|)) and

f(η) ⊂ Bδk−i/3(f
i(|ξ|)). This yields

|F i
ρ(ξ)| =

⋃

η∈Fi−1
ρ (ξ)

|Fρ(η)| ⊂ Bδk−i/3+2δ(f
i(|ξ|)) ⊂ Bδk−i

(f i(|ξ|)).

After k steps, we obtain |Fk
ρ (ξ)| ⊂ Bδ0(f

k(|ξ|)) = Bǫ(f
k(|ξ|)), which completes the

proof for forward dynamics.

In the case of backward dynamics, we use the fact that for every e > 0 there

exists a d > 0 such that

(18) f−1(Bd(U)) ⊂ Be(f
−1(U))

for every U ⊂ X , by continuity of f and compactness of X . Moreover, we will use

the following characterization of F−1
ρ

F−1
ρ (ξ) = {η ∈ X | Bρ(f(η)) ∩ |ξ| 6= ∅} = {η ∈ X | Bρ(|ξ|) ∩ |η| 6= ∅}

= {η ∈ X | |η| ∩ f−1(Bρ(|ξ|)) 6= ∅} = covX (f−1(Bρ(|ξ|))).

Now we proceed similarly to the previous case. Let δ0 = ǫ. From Equation (18)

choose δi > 0 for i = 1, · · · , k inductively so that given δi−1

(19) f−1
(

Bδi(f
−k+i(|ξ|))

)

⊂ Bδi−1/3(f
−k+i−1(|ξ|))

for all ξ ∈ X . Define δ = min0≤i≤k{δi/3}. Then, since ρ < δ < δi,

|F−1
ρ (ξ)| =

∣

∣{η ∈ X | |η| ∩ f−1(Bρ(|ξ|)) 6= ∅}
∣

∣

⊂
∣

∣{η ∈ X | |η| ∩ f−1(Bδk−i+2
(|ξ|)) 6= ∅}

∣

∣

⊂ Bδk−i+1/3+δ(f
−1(|ξ|))(20)

for all i = 2, . . . , k and ξ ∈ X .
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We now proceed inductively. Recall that F−2
ρ (ξ) =

⋃

η∈F−1
ρ (ξ) F

−1
ρ (η), and for

η ∈ F−1
ρ (ξ) Equation (20) implies η ⊂ Bδk−1/3+δ(f

−1(|ξ|)). Combining this with

(19) we obtain

f−1(Bρ(|η|)) ⊂ f−1
(

Bδk−1/3+2δ(f
−1(|ξ|))

)

⊂ f−1
(

Bδk−1
(f−1(|ξ|))

)

⊂ Bδk−2/3(f
−2(|ξ|)).

Therefore,

|F−2
ρ (ξ)| =

⋃

η∈F−1
ρ (ξ)

|F−1
ρ (η)| ⊂ Bδk−2/3+δ(f

−2(|ξ|)).

In the general case i ≥ 2, for η ∈ F−i+1
ρ (ξ) we have η ⊂ Bδk−i+1/3+δ(f

−i+1(|ξ|))

and f−1(Bρ(|η|)) ⊂ Bδk−i/3(f
−i(|ξ|)). This yields

|F−i
ρ (ξ)| =

⋃

η∈F−i+1
ρ (ξ)

|F−1
ρ (η)| ⊂ Bδk−i/3+δ(f

−i(|ξ|)).

After k steps, we obtain |F−k
ρ (ξ)| ⊂ Bδ0/3+δ(f

−k(|ξ|)) ⊂ Bδ0(f
−k(|ξ|)) =

Bǫ(f
−k(|ξ|)), which completes the proof for backward dynamics. �

PROPOSITION 4.4. Let Fn : Xn
−→→Xn be a convergent sequence of outer approxima-

tions for f : X → X . For every ǫ > 0 and every k > 0, there exists N > 0 such that

|Fk
n(ξ)| ⊂ Bǫ(f

k(|ξ|)) and |F−k
n (ξ)| ⊂ Bǫ(f

−k(|ξ|))

for all n ≥ N and for all ξ ∈ Xn.

PROOF. We start with the observation that Fk
n ≤ F

k
ρn

. Indeed, suppose true

for k − 1, then

Fk
n(ξ) =

⋃

η∈Fk−1
n (ξ)

Fn(η) ⊂
⋃

η∈Fk−1
n (ξ)

Fρn
(η) ⊂

⋃

η∈Fk−1
ρn (ξ)

Fρn
(η) = Fk

ρn
(ξ).

To complete the proof we choose δ > 0 such that the conclusion of Proposition 4.3

holds. Choose N > 0 such that ρn < δ for all n ≥ N1, and choose N2 > 0 such

that diam (Xn) ≤ δ for all n ≥ N2. Choosing N = max{N1, N2} completes the

proof. �

4.2. Realization of attractors and repellers. Theorem 3.17 guarantees that for-

ward invariant sets and attractors for an outer approximation F of f yield attract-

ing neighborhoods for f . The converse statement is that every attractor of a dy-

namical system can be realized by an outer approximation provided the diameter

of the grid is sufficiently small. Our goal is the stronger result that the lattice struc-

ture of attractors can be realized. We start by generalizing [9, Proposition 5.5] from

the context of minimal multivalued maps to the setting of convergent sequences of

outer approximations.

PROPOSITION 4.5. Let Fn : Xn
−→→Xn be a convergent sequence of outer approxima-

tions for f , and let U ∈ ANbhd(X, f) or U ∈ RNbhd(X, f). Then there exists N > 0

such that for all n ≥ N the set U = covXn
(U) is an attracting or repelling set for Fn,

respectively.
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PROOF. We consider the case U ∈ ANbhd(X, f), the other case is analogous.

Let A = ω(U) and let 0 < d < 1
2dist (U,A

∗). Since U is an attracting neighborhood

by [10, Proposition 3.21], there exists K > 0 such that fk(Bd(U)) ⊂ int (U) for

all k ≥ K . This implies that for K ≤ k ≤ 2K there exists an ǫ > 0 such that

Bǫ

(

fk(Bd(U))
)

⊂ int (U). By Proposition 4.4 we can choose N such that |Fk
n(|ξ|)| ⊂

Bǫ(f
k(|ξ|)) for all K ≤ k ≤ 2K, ξ ∈ Xn, and n ≥ N . We also choose N such that

U = covXn
(U) ⊂ Bd(U). This yields

|Fk
n(U)| ⊂

⋃

ξ∈U

Bǫ(f
k(|ξ|)) ⊂ int (U) ⊂ |U|,

which implies that Fk
n(U) ⊂ U for all K ≤ k ≤ 2K . Thus Fk

n(U) ⊂ U for all k ≥ K ,

since, for example, F2K+k
n = (FK

n )K+k for all 0 < k ≤ K . Using Proposition 2.10,

this proves that U is an attracting set when n is sufficiently large, i.e. diam(Xn) is

sufficiently small. �

This leads to the following corollary, which in the case of the minimal multi-

valued map is also a consequence of [9, Proposition 5.5].

COROLLARY 4.6. Let Fn : Xn
−→→Xn be convergent sequence of outer approximations

for f , and let A ∈ Att(X, f) be an attractor for f . For every 0 < d < 1
2dist (A,A

∗) there

exists an N > 0 such that for every n ≥ N there is an attractorAn ∈ Att(Xn,Fn) and a

repellerRn ∈ Rep(Xn,Fn) with

A = ω(|An|) ⊂ |An| ⊂ Bd(A) and A∗ = α(|Rn|) ⊂ |Rn| ⊂ Bd(A
∗).

PROOF. Fix 0 < d < 1
2dist (A,A

∗). By Proposition 4.5, there exists N > 0 such

that Un = covXn
(Bd/2(A)) is an attracting set for Fn and Vn = covXn

(Bd/2(A
∗))

is a repelling set for Fn for all n ≥ N , since Bd/2(A) and Bd(A) are attracting

neighborhoods, and Bd/2(A
∗) and Bd(A

∗) are repelling neighborhoods. Choosing

N large enough so that diam (Xn) < d/2 as well implies that |Un| ⊂ Bd(A) and

|Vn| ⊂ Bd(A
∗). Moreover, if An = ω(Un) and Rn = α(Vn), then An ⊂ Un and

Rn ⊂ Vn implies |An| ⊂ Bd(A) and |Rn| ⊂ Bd(A
∗). By Proposition 3.18, ω(|An|) =

ω(|ω(Un)|) = ω(|Un|). Moreover A = ω(Bd/2(A)) ⊂ ω(|Un|) ⊂ ω(Bd(|Un|) = A so

that A = ω(|An|). By Proposition 3.12, |An| is an attracting neighborhood so that

ω(|An|) ⊂ |An|, which completes the proof for the attractor. The same argument

holds for the repeller. �

4.3. Posets, Lattices and Grids. In the previous subsection we established that

any attractor or repeller in a system can be realized via a multivalued map if the

diameter of the grid is sufficiently small. Furthermore, these discrete attractors and

repellers correspond to arbitrarily narrow attracting and repelling neighborhoods,

respectively. To prove that the lattice structures can be realized via multivalued

maps requires more subtle constructions based on the lattice and poset structures

of grids and multivalued maps.

We begin by providing a systematic means of generating convergent se-

quences of outer approximations. For the sake of simplicity we will abuse notation
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throughout this subsection and often refer to the grid {|ξ| | ξ ∈ X} by its indexing

set X .

DEFINITION 4.7. A grid X ′ on X is a refinement of X , denoted by X ′ ≤ X , if for

every ξ′ ∈ X ′ there exists exactly one ξ ∈ X such that |ξ′| ⊂ |ξ|.

Refinement defines a partial order on the space of grids Grid(X), which can be

used to compare multivalued maps.

DEFINITION 4.8. Let X ′ ≤ X be grids on X and let F : X −→→X and F : X ′−→→X ′

be multivalued mappings. A partial order on multivalued mappings and grids is

given by

F ′ ≤ F if |F ′(U ′)| ⊆ |F(U)| for all |U ′| = |U|

where U ′ ∈ Set(X ′) and U ∈ Set(X ).

DEFINITION 4.9. The common refinement of X and X ′ is the grid

{|ξ| ∧ |ξ′| | ξ ∈ X and ξ′ ∈ X ′ with |ξ| ∧ |ξ′| 6= ∅}.

The set of all pairs ξ and ξ′ for which |ξ| ∧ |ξ′| 6= ∅ is an indexing set for this grid.

We denote this indexing set by X ∧ X ′ and an individual index by ξ ∧ ξ′.

Note that whenever the index ξ ∧ ξ′ is used, it is implied that |ξ| ∧ |ξ′| 6= ∅.

The common refinement of multivalued mappings F : X −→→X and F : X ′−→→X ′ is

given by

(21) (F ∧ F ′)(ξ ∧ ξ′) := {η ∧ η′ | η ∈ F(ξ), η′ ∈ F ′(ξ)}.

Observe that F ∧ F ′ : X ∧ X ′−→→X ∧ X ′.

DEFINITION 4.10. A cofiltration of grids is a sequence {Xn}n∈N0
⊂ Grid(X) of

refinements so that

X0 ≥ X1 ≥ · · · ≥ Xn ≥ · · ·

Furthermore, given a cofiltration of grids {Xn}n∈N0
, a sequence of multivalued

mappings Fn : Xn
−→→Xn, which satisfies

F0 ≥ F1 ≥ · · · ≥ Fn ≥ · · ·

is called a cofiltration of multivalued mappings. The function diam : Grid(X) → R
+

is order-preserving so that diam(X ′) ≤ diam (X ) for any pair X ′ ≤ X . If

diam(Xn) → 0 as n → ∞, then a cofiltration {Xn}n∈N0
of grids is said to be con-

tracting.

Given any sequence of grids {Xn} for which diam (Xn) → 0, we can construct

a contracting cofiltration as follows

X0 ≥ X0 ∧ X1 ≥ X0 ∧ X1 ∧ X2 ≥ · · · ≥
n
∧

i=0

Xi ≥ · · · .

If Fn : Xn
−→→Xn is a sequence of multivalued mappings with diam(Xn)→ 0, then

(22)
n
∧

i=1

Fi :

n
∧

i=1

Xi
−→→

n
∧

i=1

Xi
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is a cofiltration of multivalued mappings.

From an algorithmic point of view, given a grid Xn, one designs an algorithm

to construct Fn : Xn
−→→Xn. The monotonicity of images of Fn required for a cofil-

tration does not automatically follow from the fact that Xn is a cofiltration of grids,

and the construction in equation (22) is often inefficient in practical applications.

From a theoretical point of view, an important example of a convergent cofiltra-

tion of multivalued mappings is given by the ρ-minimal multivalued mappings

on a contracting cofiltration of grids. Theorems 4.20 and 4.21 contrast what is at-

tainable through a convergent cofiltration versus simply a convergent sequence of

multivalued mappings, see Remark 4.23.

Some properties of dynamics are preserved through cofiltrations. We only

present the following which we make use of in the proof of Theorem 4.20.

PROPOSITION 4.11. Let {Xn}n∈N0
be a cofiltration of grids and let Fn : Xn

−→→Xn

be a cofiltration of multivalued mappings. Consider a collection of subsets Wn ⊂ Xn

such that |Wn| = |Wm| ⊂ X . If m > n and Wn ∈ Invset−(Xn,Fn), then Wm ∈

Invset−(Xm,Fm).

PROOF. We need to show that F−1
m (Wm) ⊂ Wm. SinceWn ∈ Invset

−(Xn,Fn),

it is sufficient to show that
∣

∣F−1
m (Wm)

∣

∣ ⊂
∣

∣F−1
n (Wn)

∣

∣ so that
∣

∣F−1
m (Wm)

∣

∣ ⊂
∣

∣F−1
n (Wn)

∣

∣ ⊂ |Wn| = |Wm| .

Let βn ∈ Wn and βm ∈ Wm satisfy |βm| ⊂ |βn|. Consider η ∈ F−1
m (βm). By

definition of cofiltration, there exists ξ ∈ Xn such that |η| ⊂ |ξ|.

Now βm ∈ Fm(η) which implies that

|βm| ⊂ |Fm(η)| ⊂
⋃

|ζ|⊂|ξ|

|Fm(ζ)| =

∣

∣

∣

∣

∣

∣

Fm





⋃

|ζ|⊂|ξ|

ζ





∣

∣

∣

∣

∣

∣

⊂ |Fn(ξ)|

where the last inclusion follows from the definition of cofiltration. Since Fn(ξ) is

a union of elements of Xn, and |βm| ⊂ |βn|, we must have |βn| ⊂ |Fn(ξ)|, which

implies βn ∈ Fn(ξ) and equivalently ξ ∈ F−1
n (βn). Hence ξ ∈ F−1

n (Wn) and

|η| ⊂ |ξ| ⊂
∣

∣F−1
n (Wn)

∣

∣. Thus, if η ∈ F−1
m (Wm), then |η| ⊂

∣

∣F−1
n (Wn)

∣

∣, and therefore
∣

∣F−1
m (Wm)

∣

∣ ⊂
∣

∣F−1
n (Wn)

∣

∣. �

The realization of the lattice structures of attractors and repellers is presented

in the language of lifts which are defined as follows.

DEFINITION 4.12. Let L, K, and H be bounded distributive lattices. Let g : L ֌

K be a lattice monomorphism and h : H ։ K be a lattice epimorphism. A lattice

homomorphism ℓ : L→ H is a lift of g through h if g = h ◦ ℓ.

Observe that a lift is necessarily a lattice monomorphism.

As is made clear in the next section our goal is to construct a lift. To do this

we make use of concepts from the theory of distributive lattices. Recall that an

element c ∈ L is join-irreducible if

(a) c 6= 0 and
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(b) c = a ∨ b implies c = a or c = b for all a, b ∈ L.

The set of join-irreducible elements in L is denoted by J(L). Note that J(L) is a

poset as a subset of L. Observe that c is join-irreducible if and only if there exists

a unique element a ∈ L satisfying a < c and there does not exist b ∈ L such that

a < b < c. The element a ∈ L is called the immediate predecessor of c and denoted by

(23) a =←−c .

Given a finite poset P with partial order≤, then the down-set of p ∈ P is given

by ↓ p = {q ∈ P | q ≤ p}. These sets generate a finite distributive lattice O(P)

in Set(P) called the lattice of down-sets. The elements ↓ p are the join-irreducible

elements in O(P). Birkhoff’s representation theorem for finite distributive lattices

L states that L ∼= O(J(L)) cf. [7].

REMARK 4.13. Birkhoff’s representation theorem allows us to recast the defi-

nition of ℓ being a lift of g through h via the following commutative diagram

(24)

H

O(P) K

����

h

??

??

ℓ

// //
g

for any poset P isomorphic to J(L). For the sake of simplicity we will abuse no-

tation and use ℓ : L → H and ℓ : O(P) → H to denote two distinct, but equivalent

homomorphisms.

We are interested in the case in which H is a Boolean algebra, or H is embedded

in a Boolean algebra, and thus we want to extend the lift ℓ : L → H to a Boolean

homomorphism. To do this we make use of the Booleanization functor. The nat-

ural extension L →֒ Set(J(L)) is called the Booleanization of L and is denoted by

B(L) = Set(J(L)). Booleanization is a covariant functor and the induced homomor-

phism B(ℓ) : B(L) → H is Boolean and B(ℓ)|L = ℓ, cf. [17, Definition 9.5.5] and [13,

Corollary 20.11].

The combination of Birkhoff’s representation theorem and the Booleanization

functor allows one to give the following representation of ℓ:

(25) ℓ(α) =
∨

p∈α

cp

where cp := ℓ(γ) \ ℓ(β) ∈ H and is independent of the choice of β, γ ∈ O(J(L)) for

which γ \ β = p, cf. Theorem 2.1 and Proposition 2.3 in [10]. Observe that the cp
are atoms of H, i.e. if p 6= p′, then cp ∧ cp′ = 0.

With these abstract constructions in mind, we now turn to the objects of in-

terest. As is detailed in the next section, we are interested in lifts of the form

ℓ : R → Invset−(X ,F) where R ⊂ Rep(X, f) is a finite sublattice of repellers and

such that α(|ℓ(R)|) = R for all R ∈ R. Since Invset
−(X ,F) embeds (as a lattice) into

the Boolean algebra Set(X ), we can adopt the perspective that ℓ : R → Set(X ) is

a lattice monomorphism. If we represent R by a lattice isomorphism O(P) ∼= R,
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where P ∼= J(R), then application of the Booleanization functor to ℓ : O(P) →

Invset−(X ,F) yields the Boolean monomorphism B(ℓ) : Set(P) → Set(X ). This

allows us to represent ℓ by

(26) ℓ(α) =
⋃

p∈α

Vp

where

(27) Vp := ℓ(γ) \ ℓ(β) ⊂ X

for any choice of β, γ ∈ O(P) such that {p} = γ \ β. Since {Vp | p ∈ P} are atoms,

Vp ∩ Vp′ = ∅ if p 6= p′.

PROPOSITION 4.14. Let O(P) be a finite distributive lattice, and let ℓ : O(P) →

Set(X ) be a lattice monomorphism. Then P is an indexing set for a grid on X whose

elements are |Vp| under the evaluation map |·| : Set(X )→ R(X) and Vp := ℓ(γ)\ℓ(β) ⊂

X for any choice of β, γ ∈ O(P) such that {p} = γ \ β.

PROOF. By Corollary 3.6 the evaluation map | · | : Set(X ) → R(X) is Boolean,

and thus the composition |B(ℓ)| : Set(P) → R(X) is Boolean. In particular

|B(ℓ)(P)| is a finite subalgebra of R(X). Hence the atoms of |B(ℓ)(P)|, which are

{|Vp| | p ∈ P}, form a grid of X . �

PROPOSITION 4.15. Let O(P) be a finite distributive lattice and let ℓ : O(P) →

Set(X ) be a lattice monomorphism. Then

|Vp| ∩ int |ℓ(α)| = ∅ for all p 6∈ α ∈ O(P).

PROOF. By (26) and (27) we have that Vp ∩ l(α) = ∅. Because {Vp | p ∈ P} is a

grid for X we obtain

|Vp| ∧ |ℓ(α)| = ∅, ∀p 6∈ α ∈ O(P)

which is equivalent to |Vp| ∩ int |ℓ(α)| = ∅ by Lemma 3.3. �

Because {Vp | p ∈ P} are atoms, |Vp| ∧ |Vp′ | = 0 under the lattice operation

of R(X). Since in this lattice ∧ 6= ∩, we cannot conclude that |Vp| ∩ |Vp′ | = ∅.

More generally, since |B(ℓ)| : O(P) → R(X) is a lattice homomorphism |ℓ(γ)| ∧

|ℓ(α)| = |ℓ(γ ∩ α)|, but this does not imply that |ℓ(γ)| ∩ |ℓ(α)| = |ℓ(γ ∩ α)| since

|·| : Invset−(X ,F) → RNbhd(X, f) is not a lattice homomorphism. It is a homo-

morphism if we replace RNbhd(X, f) by RNbhdR(X, f). In order to obtain results

that hold in RNbhd(X, f), we introduce the following concept.

DEFINITION 4.16. Let O(P) be a finite distributive lattice. A lattice monomor-

phism ℓ : O(P)→ Set(X ) is well-separated if

(28) |Vp| ∩ |Vp′ | = ∅ for all p ‖ p′, p, p′ ∈ P

where the p ‖ p′ indicates that p and p′ are incomparable, i.e. p 6≤ p′ and p′ 6≤ p.



LATTICE STRUCTURES FOR ATTRACTORS II 29

PROPOSITION 4.17. If O(P) is a finite distributive lattice and ℓ : O(P)→ Set(X ) is

well-separated, then

(29) |ℓ(γ)| ∩ |ℓ(α)| = |ℓ(γ)| ∧ |ℓ(α)| .

PROOF. Observe that

|ℓ(γ)| ∩ |ℓ(α)| =

∣

∣

∣

∣

∣

⋃

p∈γ

Vp

∣

∣

∣

∣

∣

∩

∣

∣

∣

∣

∣

⋃

q∈α

Vq

∣

∣

∣

∣

∣

=
⋃

p∈γ
q∈α

(|Vp| ∩ |Vq|) .

By (28), if |Vp| ∩ |Vq| 6= ∅, then either p ≤ q or q ≤ p. Since γ and α are down sets,

this implies that p ∈ γ ∩ α or q ∈ γ ∩α respectively, and hence |Vp| ∩ |Vq| ⊂ |Vr| for

some r ∈ γ ∩ α. Therefore

|ℓ(γ)| ∩ |ℓ(α)| =
⋃

p∈γ
q∈α

|Vp| ∩ |Vq| =
⋃

r∈γ∩α

|Vr| =

∣

∣

∣

∣

∣

⋃

r∈γ∩α

Vr

∣

∣

∣

∣

∣

= |ℓ(γ ∩ α)| = |ℓ(γ) ∩ ℓ(α)| = |ℓ(γ)| ∧ |ℓ(α)|

where the last two equalities follow from the fact that ℓ is a lattice homomorphism

and Corollary 3.6, respectively. �

Let λ ∈ O(P) which is a subposet of P. Note that 0 ∈ O(λ). However, if λ 6= P,

then P /∈ O(λ), and hence O(λ) is not a sublattice of O(P). Therefore we define λ⊤

to be the poset λ ∪ {⊤}where the additional top element ⊤ has relations p ≤ ⊤ for

all p ∈ λ. Observe that as a set ⊤ = P. Then

O(λ⊤) ≈ {α ∈ O(P) | α ⊂ λ or α = P}

making O(λ⊤) a sublattice of O(P). Booleanization implies B(O(λ⊤)) ⊂ B(O(P)) =

Set(P).

DEFINITION 4.18. Let λ ∈ O(P). A lattice homomorphism ℓ : O(λ⊤) → H is a

partial lift of g on O(λ⊤) in Diagram (24) if

h(ℓ(β)) = g(β) for all β ≤ λ.

Note that by the above definition ℓ(1) = 1, since ℓ is a lattice homomorphism.

4.4. Realization of attractor and repeller lattices. In this section, using ideas

from [10], we prove that the lattice structures can be realized via multivalued maps.

THEOREM 4.19. Let f : X → X be a continuous mapping on a compact metric space

X . Let Fn : Xn
−→→Xn be a convergent cofiltration of outer approximations for f defined on

a contracting cofiltration of grids on X . If A ⊂ Att(X, f) is a finite sublattice, then there

exists an nA such that for all n ≥ nA there exists a lift ℓn : A → Invset+(Xn,Fn) of the

inclusion map ι : A ֌ Att(X, f) through ω(|·|) : Invset+(Xn,Fn) → Att(X, f), i.e. the
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following diagram commutes

Invset+(Xn,Fn)

A Att(X, f).
��
✤
✤
✤
✤
✤
✤
✤
✤
✤

ω(|·|)

// //ı
??

??

ℓn

Furthermore, ℓn can be chosen such that |ℓn(A)| is a sublattice of ANbhd(X, f).

We do not know of a direct proof of Theorem 4.19. The difficulty arises from

the fact that∧ = ∩ for the lattice Invset+(Xn,Fn), but ∧ 6= ∩ for the lattice Att(X, f).

Recall, however, that ∧ = ∩ for the lattice Rep(X, f). With this in mind we prove

the following analogous theorem for repellers. By the proof of [10, Theorem 1.2]

and in particular [10, commutative diagram (24)], the Theorem 4.20 for repellers

implies Theorem 4.19 for attractors by a duality argument.

THEOREM 4.20. Let f : X → X be a continuous mapping on a compact metric space

X . Let Fn : Xn
−→→Xn be a convergent cofiltration of outer approximations for f defined on

a contracting cofiltration of grids on X . If R ⊂ Rep(X, f) is a finite sublattice, then there

exists an nR such that for all n ≥ nR there exists a lift ℓn : R → Invset−(Xn,Fn) of the

inclusion map ι : R ֌ Rep(X, f) through α(|·|) : Invset−(Xn,Fn) ։ Rep(X, f), i.e. the

following diagram commutes

(30)

Invset
−(Xn,Fn)

R Rep(X, f).
��
✤
✤
✤
✤
✤
✤
✤
✤
✤

α(|·|)

// //ı
??

??

ℓn

Furthermore, ℓn can be chosen such that |ℓn(R)| is a sublattice of RNbhd(X, f).

PROOF. Observe that by Remark 4.13 to prove (30) it is sufficient to prove the

existence of Un such that the following diagram commutes

(31)

Invset−(Xn,Fn) Set(Xn)

O(P) Rn Rep(X, f)

����

α(|·|)

�

�

//

::

::

Un

// //
Rn

�

�

//

where Rn := α
(∣

∣Invset−(Xn,Fn)
∣

∣

)

. Viewing Un as a map into Set(Xn), by Proposi-

tion 4.14 we obtain a grid {|Vn,p| | p ∈ P} for X .

Observe that if α, α′ ∈ O(P) satisfy α ∩ α′ = ∅, then Rn(α) ∩Rn(α
′) = ∅, and

hence there exists d∅ > 0 such that

(32) Bd∅
(Rn(α)) ∩Bd∅

(Rn(α
′)) = ∅.
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Since O(P) is finite, we can choose d∅ > 0 such that (32) is satisfied for all α, α′ ∈

O(P) satisfying α ∩ α′ = ∅. By Corollary 4.6 there exists nd∅
> 0 such that for

each α ∈ O(P) there is an associated discrete repeller Rn(α) ∈ Invset−(Xn,Fn)

satisfying

Rn(α) ⊂ |Rn(α)| ≤ Bd∅
(Rn(α))

for all n ≥ nd∅
.

Having established the necessary notation we provide a proof by induction

making use of partial lifts. To establish the initial induction step choose n ≥ nd∅

and let q ∈ P be minimal. Observe that {q} ∈ O(P). Define

Un({q}) := Rn({q}).

Observe that Un : O({q}
⊤
) → Invset−(Xn,Fn) defines a partial lift of Rn through

α(|·|) that satisfies the following three conditions:

C1: Vn,p ∩ Vn,p′ = ∅ for all p 6= p′;

C2: |Vn,p| ∩Rn(α) = ∅ if p 6∈ α;

C3: |Vn,p| ∩ |Vn,p′ | = ∅ for all p ‖ p′,

where p, p′ ∈ {q} , α ∈ O(P), and Vn,p is defined by (27).

Assume that for some λ ∈ O(P) and some nλ ≥ nd∅
there exists a partial lift

Unλ
: O(λ⊤)→ Invset−(Xnλ

,Fn) of Rn through α(|·|) which satisfies Conditions C1

- C3 for p, p′ ∈ λ and α ∈ O(P). Furthermore, given Unλ
(27) defines {Vnλ,p | p ∈ P}.

We now show that for n sufficiently large a new partial lift can be constructed on a

down set in O(P) with one additional element.

Let q ∈ P \ λ be minimal. Define µ =↓q. By condition C2,

(i) if p ∈ λ \ µ then |Vnλ,p| ∩Rnλ
(µ) = ∅.

Since Rnλ
is a lattice homomorphism, and Unλ

is a partial lift,

(ii) if µ ∩ α ⊂ λ, i.e. if q 6∈ α ∈ O(P), then

Rnλ
(µ) ∩Rnλ

(α) = Rnλ
(µ ∩ α) ⊂ Rnλ

(λ) ⊂ int |Unλ
(λ)|.

Property (i) implies that there exists a dλ > 0 such that |Vnλ,p|∩Bdλ
(Rnλ

(µ)) =

∅ for all p ∈ λ\µ. Property (ii) is equivalent to
(

Rnλ
(µ)\int |Unλ

(λ)|
)

∩Rnλ
(α) = ∅,

which implies that if q 6∈ α, then cl
(

Rnλ
(µ) \ |Unλ

(λ)|
)

∩ Rnλ
(α) = ∅. We can

therefore choose dλ small enough such that

(i)’ if p ∈ λ \ µ, then |Vnλ,p| ∩Bdλ
(Rnλ

(µ)) = ∅, and

(ii)’ if q 6∈ α ∈ O(P), then cl
(

Bdλ
(Rnλ

(µ)) \ |Unλ
(λ)|

)

∩Rnλ
(α) = ∅.

Observe that throughout this discussion we have been working with n = nλ and

thus the fixed evaluation map |·| = |·|nλ
: Xnλ

→ R(X). Now we must change

n, and thus the evaluation map also changes. Whenever the choice of evaluation

map is clear, we continue to denote it by |·|.

By Corollary 4.6 we can choose ndλ
≥ nλ such that for any n ≥ ndλ

the repeller

Rn(µ) guaranteed by this corollary satisfies Rn(µ) ⊂ |Rn(µ)|n ⊂ Bdλ
(Rn(µ)) .

Observe that this in turn implies that for all n ≥ ndλ

(i)” if p ∈ λ \ µ, then |Vnλ,p|nλ
∩ |Rn(µ)|n = ∅, and
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(ii)” if q 6∈ α ∈ O(P), then cl
(

|Rn(µ)|n \ |Unλ
(λ)|nλ

)

∩Rn(α) = ∅.

Recall that for n ≥ nλ, Xn is a refinement of Xnλ
. Thus for each n there exists

unique sets Vn
nλ,p

,Un
nλ

(α) ⊂ Xn such that

(33)
∣

∣Vn
nλ,p

∣

∣

n
= |Vnλ,p|nλ

and
∣

∣Un
nλ

(α)
∣

∣

n
= |Unλ

(α)|nλ
.

By assumption Unλ
(λ) ∈ Invset−(Xnλ

,Fnλ
). By Proposition 4.11 Un

nλ
(λ) ∈

Invset−(Xn,Fn).

Let nµ∪λ ≥ ndλ
. Then U

nµ∪λ
nλ

: O(λ⊤)→ Invset−(Xnµ∪λ
,Fnµ∪λ

) is a partial lift of

Rnµ∪λ
through α(|·|) : Invset−(Xnµ∪λ

,Fnµ∪λ
) → Rnµ∪λ

. To complete the induction

step we must show that this partial lift can be extended to O((λ ∪ µ)⊤).

Claim: This partial lift can be extended to O((λ ∪ µ)⊤) via the following definition.

Given α ∈ λ ∪ µ define Unµ∪λ
: O((λ ∪ µ)⊤)→ Invset−(Xnµ∪λ

,Fnµ∪λ
) by

(34) Unµ∪λ
(α) =

⋃

p∈α

Vnµ∪λ,p

where

(35) Vnµ∪λ,q := Rnµ∪λ
(µ) \ U

nµ∪λ
nλ

(λ) and Vnµ∪λ,p := V
nµ∪λ
nλ,p for p ∈ λ.

Our induction hypothesis and the proof of the claim makes use of condi-

tions C1 - C3, thus we begin by verifying that they are satisfied. By the induc-

tion hypothesis to prove C1 for all p, p′ ⊂ λ ∪ µ it is sufficient to show that

Vnµ∪λ,q ∩ Vnµ∪λ,p = ∅ for p ∈ λ. This follows from the fact that

Vnµ∪λ,p = V
nµ∪λ
nλ,p ⊂ U

nµ∪λ
nλ

(λ)

for all p ∈ λ. To prove Condition C2 observe that by definition
∣

∣Vnµ∪λ,q

∣

∣ =
∣

∣Rnµ∪λ
(µ) \ U

nµ∪λ
nλ

(λ)
∣

∣ = cl
(∣

∣Rnµ∪λ
(µ)
∣

∣ \ |Unµ∪λ
(λ)|

)

where the latter equality follows from Lemma 3.4, and then apply (ii)”. Turning to

Condition C3, by definition Vnµ∪λ,q ⊂ Rnµ∪λ
(µ) and thus by (i)”, (33), and (35) we

have that
∣

∣Vnµ∪λ,p

∣

∣ ∩ |Vnλ,q| = ∅ for all p ∈ λ \ µ. Let p ∈ λ ∪ µ. Note that p ≤ q if

and only if p ∈ µ, and thus p 6≤ q if and only if p ∈ (λ ∪ µ) \ µ. Moreover, q ≤ p if

and only if p = q, and thus q 6≤ p if and only if p 6= q. We conclude that p ‖ q if and

only if p ∈ λ \ µ, which proves C3 for all p, p′ ∈ λ ∪ µ satisfying p ‖ p′.

To prove the claim we need to verify four statements:

(1) Unµ∪λ
is an extension of Unλ

,

(2) Unµ∪λ
maps into Invset−(Xnµ∪λ

,Fnµ∪λ
),

(3) Unµ∪λ
is a lattice homomorphism, and

(4) Unµ∪λ
is a partial lift of Rnµ∪λ

.

To prove the first statement observe that each α ⊂ λ ∪ µ can be expressed as

α = β ∪ ν for β ⊂ λ and ν = ∅ or ν = µ. If ν = ∅, then Unµ∪λ
(α) = Unλ

(β),

and if ν = µ, then Unµ∪λ
(α) = Unλ

(β) ∪ Unµ∪λ
(µ). The second statement follows

from the fact that ∨ = ∪ as the lattice operation in Invset−(Xnµ∪λ
,Fnµ∪λ

). The third
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statement follows from (34) and C1. See [10, Theorem 4.8 Proof of (a)] for details.

To demonstrate the fourth statement, note that

Unµ∪λ
(µ) = Vnµ∪λ,q ∪





⋃

p∈λ∩µ

Vnµ∪λ,p





=



Rnµ∪λ
(µ) \





⋃

p∈λ

Vnµ∪λ,p







 ∪





⋃

p∈λ∩µ

Vnµ∪λ,p





=



Rnµ∪λ
(µ) \





⋃

p∈λ∩µ

Vnµ∪λ,p







 ∪





⋃

p∈λ∩µ

Vnµ∪λ,p





= Rnµ∪λ
(µ) ∪





⋃

p∈λ∩µ

Vnµ∪λ,p





= Rnµ∪λ
(µ) ∪ Unµ∪λ

(λ ∩ µ).

Therefore,

α(
∣

∣Unµ∪λ
(µ)
∣

∣) = α(
∣

∣Rnµ∪λ
(µ)
∣

∣) ∪ α(
∣

∣Unµ∪λ
(λ ∩ µ)

∣

∣)

= Rnµ∪λ
(µ) ∪Rnµ∪λ

(λ ∩ µ) = Rnµ∪λ
(µ),

and thus Unµ∪λ
is a partial lift of Rnµ∪λ

.

We have now proved the claim and completed the induction step. Since the

lattice of repellers R is finite, a finite application of the induction argument gives

rise to the commutative diagram (31) and hence diagram (30).

The commutative diagram (10) guarantees that |ℓn(·)| : R → RNbhdR(X, f) or

equivalently that |ℓn| can be viewed as a lift of the embedding R → Rep(X, f)

through α : RNbhdR(X, f) → Rep(X, f). The careful reader will note that Condi-

tion C3 has not yet been used. C3 implies that Un is a well-separated lift. The

definition of well-separated guarantees that |ℓn| (R) is a sublattice in RNbhd(X, f),

which is essential for the final claim of the theorem. Observe that this im-

plies that |ℓn| can be viewed as a lift of the embedding R → Rep(X, f) through

α : RNbhd(X, f)→ Rep(X, f). �

Theorem 4.19 indicates that given a convergent cofiltration of multivalued

maps obtained by refinement that the lattice structure of attractors can be realized

as a lift to Invset+(X ,F). The following theorem shows that a similar result holds

if one works with an arbitrary convergent sequence of multivalued maps. Note

that since Invset+(X ,F) ⊂ ASet(X ,F), the conclusion of this theorem is weaker

than that of Theorem 4.19.

THEOREM 4.21. Let f : X → X be a continuous mapping on a compact metric

space X . Let Fn : Xn
−→→Xn be a convergent sequence of outer approximations. Then for

every finite sublattice A ⊂ Att(X, f) there exists an nA such that for all n ≥ nA there

exists a lift ℓn : A → ASet(Xn,Fn) of the inclusion map ι : A ֌ Att(X, f) through
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ω(|·|) : ASet(Xn,Fn)→ Att(X, f), i.e. the following diagram commutes

ASet(Xn,Fn)

A Att(X, f).
��
✤
✤
✤
✤
✤
✤
✤
✤
✤

ω(|·|)

// //ı
??

??

ℓn

Furthermore, ℓn can be chosen such that |ℓn(A)| is a sublattice of ANbhd(X, f). Similar

statements hold for finite sublattices R ⊂ RSet(X, f).

The proof for Theorem 4.21 is similar in spirit to that of Theorem 4.20. How-

ever, because we are not assuming a cofiltration of grids we cannot make use of

Proposition 4.11. We make use of the following abstract result to circumvent this

difficulty.

THEOREM 4.22. Let f : X → X be a continuous mapping on a compact metric

space X . Let P be a poset with I elements. Let R : O(P) → R ⊂ Rep(X, f) be a lattice

isomorphism, and let π : P → {1, 2, . . . , I} be a bijective, order-preserving map. Let

pi := π−1(i) and µi :=↓ pi ∈ O(P) for i = {1, . . . , I}. Then there exist {ǫi}
I
i=1 with

ǫi > 0, such that if {Ni}
I
i=1 is a collection of compact sets satisfying

(36) Bǫi/2(R(µi)) ⊂ Ni ⊂ Bǫi(R(µi)),

then each Ni is a repelling neighborhood. Furthermore, U : O(P) → RNbhd(X, f), de-

termined by U(µ1) = N1 and U(µi+1) = Ni+1 ∪ U(←−−µi+1), is a lift of R through

α : RNbhd(X, f)→ Rep(X, f).

PROOF. We use an inductive argument to prove the existence of {ǫi}Ii=1. Si-

multaneously we prove that at each stage of the induction argument the re-

striction of U to O(µ⊤
i ), which we denote by Ui, is a partial lift of R through

α : RNbhd(X, f) → Rep(X, f). More precisely, once ǫi is determined we choose

a compact set Ni ⊂ X satisfying (36) at which point Ui is well defined.

Given Ui define

Vi,p := Ui(β) \ Ui(γ) for β \ γ = {p}

This definition is independent of the particular choice of β and γ. See (25) and the

associated discussion. Observe that

Ui(α) =
⋃

p∈α

Vi,p.

Choose ǫ1 > 0 such that Bǫ1(R(µ1)) ∩ R(µ1)
∗ = ∅. Choose N1 satisfying (36).

By [10, Proposition 3.25] N1 is a repelling neighborhood of R(µ1). This defines U1

on O(µ⊤
1 ) = O({p1}

⊤
). We leave it to the reader to check that the following three

conditions (cf. the proof of Theorem 4.20) are trivially satisfied:

C1: Vk,p ∩ Vk,p′ = ∅ for all p 6= p′;

C2: cl (Vk,p) ∩R(α) = ∅ if p 6∈ α;

C3: cl (Vk,p) ∩ cl (Vk,p′ ) = ∅ for all p ‖ p′,
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where k = 1, p, p′ ∈ {p1} , and α ∈ O(P). Since

α(N1, f) = α(U1({p1}), f) = R({p1}),

U1 is a partial lift of R through α(·, f).

To carry out the induction argument, assume that {ǫi}ki=1 and {Ni}
k
i=1 have

been chosen such that (36) is satisfied and that the resulting lattice homomorphism

Uk defined on O(λ⊤
k ), where λk := {p1, · · · pk}, is a partial lift of R through α(·, f)

satisfying conditions C1 - C3 for p, p′ ∈ λk and α ∈ O(P).

Choose ǫ0k+1 such that Bǫ0
k+1

(R(µk+1)) ∩ R(µk+1)
∗ = ∅. By [10, Proposition

3.25] if R(µk+1) ⊂ int (D) ⊂ Bǫ0
k+1

(R(µk+1)), then D is a repelling neighborhood

for R(µk+1).

We claim that there exists ǫk+1 ∈ (0, ǫ0k+1) such that if R(µk+1) ⊂ int (D) ⊂

Bǫk+1
(R(µk+1)), then D satisfies the following two conditions:

(i) if p ∈ λk \ µk+1, then cl (Vk,p) ∩D = ∅, and

(ii) if pk+1 6∈ α ∈ O(P), then cl (D \ Uk(λk)) ∩R(α) = ∅.

To establish (i) we use the induction hypothesis C2, which implies that cl (Vk,p) ∩

R(µk+1) = ∅ for all p ∈ λk \ µk+1. Since cl (Vk,p) and R(µk+1) are compact, we can

choose ǫ1k+1 ∈ (0, ǫ0k+1) such that cl (Vk,p) ∩ D = ∅ for all neighborhoods D such

that R(µk+1) ⊂ int (D) ⊂ Bǫ1
k+1

(R(µk+1)).

To establish (ii) note that the inclusion

(37) D ∩R(α) ⊂ intUk(λk)

is equivalent to

(38) (D \ intUk(λk)) ∩R(α) = ∅.

Observe that (38) implies (ii) and thus it is sufficient to verify (37) under the as-

sumption that pk+1 6∈ α. Since, R(µk+1) ∩ R(α) = R(µk+1 ∩ α) ⊂ R(λk) ⊂

intUk(λk), we can choose ǫk+1 ∈ (0, ǫ1k+1) such that R(µk+1) ⊂ int (D) ⊂

Bǫk+1
(R(µk+1)) satisfies (37).

For the above choice of ǫk+1 choose Nk+1 satisfying (36). This defines Uk+1.

The proof that Uk+1 is a partial lift is identical in form to that of the proof of Theo-

rem 4.20 and thus left to the reader.

The induction argument terminates after I steps. �

PROOF OF THEOREM 4.21. We first prove the result in the context of repellers,

i.e. we prove the existence of a lift ℓn : R → RSet(Xn,Fn) of the inclusion map

ι : R ֌ Rep(X, f) through α(|·|) : RSet(Xn,Fn)→ Rep(X, f).

Let {ǫi}
I
i=1, be the set of radii produced by applying Theorem 4.22 with

P = J(R). Choose n sufficiently large so that diam (Xn) < mini{ǫi/2}. For

i = 1, . . . , I define Ni = covXn
(Bǫi/2(R(µi))). By Proposition 4.5, if n is chosen

sufficiently large, then each Ni ∈ RSet(Xn,Fn). Similarly to Theorem 4.22, the

map ℓn : O(P)→ RSet(Xn,Fn) given by

ℓn(µ1) = N1 and ℓn(µi+1) = Ni+1 ∪ ℓn(
←−−µi+1)
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is a lift. By Theorem 4.22 |ℓn| : O(P)→ RNbhd(X, f) is a lift.

The statement for attractors follows from duality, i.e. by the proof of [10, The-

orem 1.2] and in particular [10, commutative diagram (24)]. �

REMARK 4.23. To put Theorems 4.20 and 4.21 into perspective, we recall that

the monotonicity of images of Fn required for a cofiltration of mappings may in

some applications be computationally expensive to attain, even though most prac-

tical algorithms construct Fn on a cofiltration of grids Xn through successive re-

finement. Theorem 4.20 implies that if one does indeed compute a cofiltration of

mappings, then the structure of attractors of f can be realized in forward invariant

sets of F . Without a cofiltration, Theorem 4.21 still implies the weaker result that

the structure of attractors of f can be realized in attracting sets of F .

REMARK 4.24. By Proposition 3.23 and 3.24 we can restate the Diagram (10)

by Diagram (11) for ϕ. For attractors this reads:

Invset+(X ,F) ASet(X ,F) ANbhdR(X,ϕ) Att(X,ϕ)

Att(X ,F)
'' ''❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖

ω

// //ı // //
|·|

����

ω

// //ω

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣
ω(|·|)

By Corollary 3.25 we have that Att(X, f) = Att(X,ϕ) as lattices, and therefore ℓ

also provides a lift for ϕ in Theorem 4.19 and Theorem 4.20. In the case of Theo-

rem 4.19, when we construct lifts under refinements, then the lift ℓ yields opposite

arrows for all arrows in Diagram (1). In the case of Theorem 4.20 we only provide

opposite arrows to ASet(X ,F), which implies that lifts to Invset+(X ,F) may not

exist. The same reasoning holds for repellers and their lifts.
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