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Abstract

We consider the method of alternating projections for finding a point in
the intersection of two closed sets, possibly nonconvex. Assuming only the
standard transversality condition (or a weaker version thereof), we prove local
linear convergence. When the two sets are semi-algebraic and bounded, but
not necessarily transversal, we nonetheless prove subsequence convergence.
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1 Tranversality

The classical idea of transversality at an intersection point of two smooth manifolds
in a Euclidean space E means that the two tangent spaces at the intersection point
sum to E: equivalently, their two orthogonal complements (the normal spaces)
intersect trivially. Transversality assumptions are ubiquitous throughout analysis,
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guaranteeing in particular some stability for intersections under small perturbations.
For two convex sets, for example, this stability requires that the intersection point
lies on no separating hyperplane, a property also easy to express using normal
vectors.

For more general sets, that may be neither convex nor smooth, the correct gener-
alization of transversality involves normals rather than tangents. Finite-dimensional
variational analysis allows a unified treatment through a single, fundamental geo-
metric construction: the normal cone. (The monographs [8, 10, 30, 35] are good
references.) In the space E, we denote the inner product 〈·, ·〉 and the norm | · |.
The set of points in a set X ⊂ E at minimum distance from a point y ∈ E is the
projection PX(y), and that minimum distance is d(y,X). For any point x ∈ X ,
vectors in the cone

N
p
X(x) =

{
λu : λ ∈ R+, u ∈ E, x ∈ PX(x + u)

}

are called proximal normals to X at x. Limits of proximal normals to X at points
xn ∈ X approaching x are called normals, and comprise the normal cone NX(x).
When X is a smooth manifold, NX(x) is the classical normal space; when X is
closed and convex, on the other hand, NX(x) consists of those linear functionals
maximized over X by x.

By analogy with the classical case of manifolds, we say that two closed sets
X, Y ⊂ E intersect transversally at a point z ∈ X ∩ Y when

(1.1) NX(z) ∩ −NY (z) = {0}.

Central to many developments of variational analysis, this property is the pre-
eminent theme, in particular, in [30, 31]. The terminology, highlighting a fresh
understanding of the classical analogy, is more recent: an early example is [10, p. 99].

In our entirely finite-dimensional setting, this definition of transversality is equiv-
alent to several metric regularity properties [35], with profound consequences for sta-
bility, sensitivity, and robustness (and for algorithms [27]). Metric regularity of set-
valued mappings is not our focus, but standard “coderivative” computations [23,28]
prove the equivalence of property (1.1) with each of the following properties.

• The mapping Φ: E2 →→ E defined by Φ(x, y) = x − y for x ∈ X and y ∈ Y

(and empty otherwise) is metrically regular at (z, z) for 0.

• The mapping Ψ: E →→ E2 defined by Ψ(w) = (X −w)× (Y −w) is metrically
regular at z for (0, 0).

• There exists a constant τ > 0 such that

(1.2) d(w,X ′ ∩ Y ′) ≤ τ
(
d(w,X ′) + d(w, Y ′)

)
for all w ∈ E near z

and all small translations X ′, Y ′ of X, Y .
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Transversality implies in particular the existence of a constant τ > 0 such that (1.2)
holds with X ′ = X and Y ′ = Y . We call this weaker property subtransversality,
because it corresponds to metric subregularity [35] for the mappings Φ and Ψ. For
an extended discussion of metric regularity and transversality, see [23].

Transversality is not just geometrically fundamental; it is also broad in applica-
bility. As we discuss below, the property is strikingly unrestrictive in the class of
sets to which it potentially applies, and, in concrete settings, it holds generically.

First, note that the transversality condition (1.1) implies little about the local
structure of either of the two sets X and Y individually. In particular, it may
hold without either set, considered alone, being “regular” in the standard single-set
senses in the literature: for example, local convexity or smoothness, prox- or Clarke
regularity [8, 10, 30, 35], or super-regularity [28]1. The epigraph

{(x, τ) ∈ E × R : τ ≥ f(x)}

of any locally Lipschitz function f intersects itself transversally at the point (0, f(0)),
so in particular transversality is potentially applicable to any “epi-Lipschitz” set. In
Section 3, we extend the reach of transversality further, to sets with empty interior.

Secondly, consider the broad but concrete class of semi-algebraic sets in the space
Rn. Such sets are finite unions of basic sets, each of which is a finite intersection
of polynomial level sets {x : p(x) ≤ 0} and their complements [6, 12]. Given any
two closed semi-algebraic sets X, Y ⊂ Rn, as we later prove, for almost all vectors
e ∈ E, transversality holds at every point in the intersection of the sets X and Y −e.

To summarize, transversality is a concise, fundamental, and widely-studied geo-
metric property, elegantly unifying classical notions, applicable to broad classes of
sets, and commonly holding in concrete settings. Among its many powerful con-
sequences, our aim here is to describe the first proof that transversality alone also
guarantees local linear convergence for the method of alternating projections.

2 Alternating projections

The method of alternating projections for finding a point in the intersection of two
nonempty closed sets X, Y ⊂ E iterates the following pair of steps: given a current
point xn ∈ X ,

choose yn ∈ PY (xn)

choose xn+1 ∈ PX(yn).

1 [32, Remark 10] states that “intrinsic transversality [the property, weaker than transversality,
that we actually use to guarantee linear convergence] amalgamates transversality and regularity
aspects”. However, that statement concerns “regularity” aspects that involve both sets, like the
idea of “linear regularity” in [3]
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This conceptually simple and widely used method for solving feasibility problems has
been discovered and rediscovered by a number of authors, notably von Neumann [36].
We are particularly interested in linear convergence of the sequence of iterates, by
which we mean that the sequence of distance from the iterates to the limit point is
bounded above by a geometric sequence.

Convergence of the method for two intersecting closed convex sets is always
guaranteed [9]. Linear convergence holds whenever the relative interiors of X and Y

intersect [16], and more generally assuming just the global version of subtransver-
sality [3].

Even for nonconvex sets, the method is popular: the first linear convergence
guarantees in this setting appeared in [28, 29], with extensions in [4, 5, 17] and an-
other discussion in [1]. In particular, the main contribution in [28] was a proof that
transversality at the point z suffices to guarantee linear convergence, starting suffi-
ciently close to z, providing at least one of the sets X and Y is “super-regular” at
z. Super-regularity is a nontrivial assumption, requiring the set to be not too non-
convex, and in particular implying Clarke regularity: it opens the door to a simple
geometric proof. Super-regularity is, however, superfluous. Using a very different
proof technique — the main topic of this paper — the authors derived the following
striking theorem. We first discuss its provenance.

Theorem 2.1 If two closed sets in a Euclidean space intersect transversally at a
point, then the method of alternating projections, started nearby, converges linearly
to a point in the intersection.

The August 2013 Ph.D. thesis of Drusvyatskiy seems to be the first reference for
this result and its proof [13, Theorem 3.2.3], as well as the definition of “intrinsic”
transversality on which it relies [13, Definition 3.2.1]. The result (without proof)
was published in August 2014, in Lewis’s lecture for the International Congress of
Mathematicians [27, Theorem 2.1]. The initial version of the current work [15] was
made public and submitted in January 2014.

A new and general framework for analyzing the convergence of nonconvex alter-
nating projections (using properties of short sequences of iterates) was submitted
for publication and disseminated in December 2013 — see [33]. That manuscript
did not show that transversality implies linear convergence (Theorem 2.1 above).
Although result statements in a later revision [34, Corollary 7] (and the final pub-
lished version [32]) do subsume Theorem 2.1, they do so by explicitly relying on our
core argument in [15]2. It is that argument that we present here.

In general, for two intersecting sets, no matter how close an initial point is to the
intersection, the iterates generated by the method of alternating projections may
not tend to the intersection. However, such pathologies rarely appear in practice.
To end, we show how our basic technique proves that, if the two sets X and Y

2The proof of [34, Proposition 8] states: “Following entirely the argument in [15, p.6]. . . ”.
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are semi-algebraic and one of the sets is compact, then the method of alternating
projections initiated sufficiently close to the intersection always generates iterates
whose distance to the intersection tends to zero. Further regularity guarantees
convergence of the sequence of iterates [32]. An analogous but independent result
for averaged projections appears in [2].

3 Intrinsic transversality

Theorem 2.1 is not the last word on the local linear convergence of the method of
alternating projections. It does not cover classically well-understood cases like two
distinct intersecting lines in R3, a gap discussed in some recent work [1,4,5,17,32].

The approach in [17] depends, among other assumptions, on subtransversality
(called there “local linear regularity”). Using a very different proof technique, we
rely only on the following property, which we show to be intermediate in strength
between transversality and subtransversality.

Definition 3.1 Two closed sets X, Y ⊂ E are intrinsically transversal at a common
point if there exists an angle α > 0 such that, nearby, any two points x ∈ X ∩ Y c

and y ∈ Y ∩Xc cannot have difference x−y simultaneously making an angle strictly
less than α with both the cones NY (y) and −NX(x).

(The normal cones may equivalently be replaced by proximal normal cones [15].)
While intrinsic transversality is widely applicable, we make no attempt at a

detailed comparison with other variants of transversality. Some relationships may
be found in [15], and extensive discussions appear in [32] and [24,25]. Our focus here
is rather a clear and complete presentation of the new and subtle geometric argument
opened up by the idea of intrinsic transversality, proving linear convergence.

Intrinsic transversality, as described in Definition 3.1, is a geometric idea. How-
ever, for the purposes of our proof, a variational perspective is more useful.

Using the normalization map ̂: E\{0} → E, defined by ẑ = z
|z|

, we can rephrase
the definition as follows. Two sets X, Y ⊂ E are intrinsically transversal at a
common point if there exists a constant κ ∈ (0, 1] (called a constant of transversality)
such that nearby, any two points x ∈ X ∩ Y c and y ∈ Y ∩ Xc have normalized
displacement u = x̂− y satisfying

(3.2) max
{
d
(
u,NY (y)

)
, d
(
u,−NX(x)

)}
≥ κ.

With this in mind, we have the following easy observation.

Proposition 3.3 Transversality implies intrinsic transversality. Indeed, if two
closed sets X, Y ⊂ E intersect transversally at a point z ∈ X ∩ Y , and θ ∈ (0, π]
is the minimal angle between vectors in the normal cones NY (z) and −NX(z), then
intrinsic transversality holds with any constant in the interval (0, sin θ

2
).
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Proof Clearly we have

min
|u|=1

max
{
d
(
u,NY (z)

)
, d
(
u,−NX(z)

)}
= sin

θ

2
.

(We define θ = π in the trivial case when either normal cone is {0}.) Transver-
sality simply means θ > 0, and in that case an easy limiting argument shows that
inequality (3.2) holds providing that 0 < κ < sin θ

2
. ✷

Several other common special cases are also covered under the umbrella of intrin-
sic transversality. Examples include two closed convex sets with intersecting relative
interiors, and two arbitrary intersecting sets that are polyhedra (or finite unions of
polyhedra).

We mention one particular classical generalization of transversality in this con-
text (see [1]). Two smooth manifolds X, Y ⊂ E intersect cleanly at a point z ∈ X∩Y
(see [18]) if the intersection X ∩ Y is a manifold and the tangent spaces at z satisfy

TX∩Y (z) = TX(z) ∩ TY (z).

One consequence is local linear convergence of the method of alternating projections,
since, in fact, clean intersection implies intrinsic transversality. To see this, we note
that, assuming clean intersection at z, there exists a diffeomorphism mapping z

to zero and the two manifolds onto two linear subspaces [18, Proposition C.3.1].
However, intrinsic transversality always holds at zero for subspaces, and an easy
exercise shows that it is preserved under diffeomorphisms, so the result follows.

4 Slope and the coupling function

Intrinsic transversality has its roots in a fundamental variational-analytic idea: slope.
Denoting the extended reals [−∞,+∞] by R, if a function f : E → R is finite at a
point x ∈ E, then its slope there is

|∇f |(x) = lim sup
w→x

w 6=x

f(x) − f(w)

|x− w| ,

unless x is a local minimizer, in which case we set |∇f |(x) = 0. The limiting slope
at x is

|∇f |(x) = lim inf
w→x

f(w)→f(x)

|∇f |(w),

and when f is lower semicontinuous we have the following relationship:

(4.1) |∇f |(x) ≥ |∇f |(x) = d
(
0, ∂f(x)

)
,
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where ∂f denotes the set of subgradients [35]. For a proof, see [19, Propositions 1
and 2, Chapter 3], or, for example, [14, Proposition 4.6].

Now consider a “coupling” function for the two nonempty closed sets X, Y ⊂ E.
We define a function φ : E2 → R by

φ(x, y) = δX(x) + |x− y| + δY (y),

where δX and δY denote the indicator functions of the sets X and and Y respectively.
We also consider the marginal function φy : E → R (for any fixed point y ∈ E)
defined by φy(x) = φ(x, y), and the marginal function φx : E → R (for any fixed
point x ∈ E) defined by φx(y) = φ(x, y). Standard subdifferential calculus applied
to the coupling function and its marginals shows, for distinct points x ∈ X and
y ∈ Y , with normalized displacement u = x̂− y,

∂φy(x) = u + NX(x) and ∂φx(y) = −u + NY (y),

and furthermore
∂φ(x, y) = ∂φy(x) × ∂φx(y).

Using the relationship (4.1), we arrive at the following expressions for the limiting
slopes:

|∇φy|(x) = d
(
u,−NX(x)

)
and |∇φx|(y) = d

(
u,NY (y)

)
.

Hence the sets X and Y are intrinsically transversal at a common point z exactly
when there exists a constant κ ∈ (0, 1] such that, near z, for any two points x ∈
X ∩ Y c and y ∈ Y ∩Xc, the limiting slopes |∇φy|(x) and |∇φx|(y) cannot both be
strictly less than κ. The following result is an interesting alternative view.

Proposition 4.2 Two closed sets X, Y ⊂ E are intrinsically transversal at a point
z ∈ X ∩ Y if and only if the coupling function has slope uniformly bounded away
from zero for pairs (x, y) with x ∈ X ∩ Y c and y ∈ Y ∩Xc, both near z.

Proof We note the relationship

(4.3)
(
|∇φ|(x, y)

)2
=

(
|∇φy|(x)

)2
+
(
|∇φx|(y)

)2
,

from which the result follows immediately. ✷

5 Error bounds and level sets

We use the following key tool [19, Basic Lemma, Chapter 1], giving a slope-based
criterion for a lower semicontinuous function f to have a nonempty level set

[f ≤ α] = {u ∈ E : f(u) ≤ α}.
We note in passing that the result (and the proof we present) holds more generally,
with E replaced by an arbitrary complete metric space.
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Theorem 5.1 (Error bound) Consider any lower semicontinuous function
f : E → R, finite at the point x ∈ E, and constants δ > 0 and α < f(x) satisfying

inf
w∈E

{
|∇f |(w) : α < f(w) ≤ f(x), |w − x| ≤ δ

}
>

f(x) − α

δ
.

Then the level set [f ≤ α] is nonempty, and furthermore its distance from x is no
more than 1

K

(
f(x)−α

)
, where K denotes the left-hand side of the inequality above.

Proof We present two proofs. The first, suitable in any complete metric space,
applies the Ekeland variational principle to the function g : E → R, defined as the
positive part of the function f−α. We deduce, for any constant γ ∈

(
1

δ
(f(x)−α), K

)
,

the existence of a point v minimizing the function g + γ| · −v| and satisfying the
properties g(v) ≤ g(x) and |v − x| ≤ 1

γ
g(x) < δ. The minimizing property of v

shows |∇g|(v) ≤ γ < K. Hence g(v) = 0, since otherwise |∇g|(v) = |∇f |(v) ≥ K.
The result now follows by letting γ approach K.

A second, more elementary proof dispenses with the Ekeland principle when E
is a Euclidean space. Assuming as before 1

δ
(f(x) − α) < γ < K, define a set

W = {w ∈ E : f(w) ≤ f(x) − γ|w − x|
}
.

The value β = infW f satisfies β ≤ f(x). Any sequence (wr) in W with f(wr) → β

must be bounded, and any limit point w̄ satisfies β = f(w̄) ≤ f(x) − γ|w̄ − x|.
We claim β ≤ α. If not, then α < f(w̄) ≤ f(x) and

|w̄ − x| ≤ f(x) − f(w̄)

γ
<

f(x) − α

γ
< δ,

so by definition K ≤ |∇f |(w̄). Hence, by definition of the slope, there is a point
w ∈ E satisfying

f(w) < f(w̄) − γ|w̄ − w| < β.

Furthermore, the central expression is bounded above by f(x)−γ(|w̄−x|+ |w̄−w|),
and hence by f(x) − γ|w − x|, so w ∈ W , contradicting the definition of β.

We conclude β ≤ α, so we have constructed a point w̄ in the level set [f ≤ α],
as required. To see the distance estimate, notice (as in the first proof) that we can
assume f ≥ α, by replacing f by max{f, α}. In that case, we have in fact proved
β = α and hence |w̄ − x| ≤ 1

γ
(f(x) − α). Now let γ approach K as before. ✷

Our main result follows quickly from the following appealing geometric conse-
quence of Theorem 5.1. This tool concerns the distance from a point y to a set X .
Given a trial point x ∈ X , it shows how to improve the upper bound |x− y| under
the assumption of a uniform lower bound on the angle between normal vectors to
X at points w near x and line segments from w to y.
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Theorem 5.2 (Distance decrease) Consider a closed set X ⊂ E and points x ∈
X and y 6∈ X with ρ := |y − x|. Given any constant δ > 0, if

inf
w∈X

{
d
(
ŷ − w,NX(w)

)
: w ∈ Bρ(y) ∩ Bδ(x)

}
= µ > 0,

then
d(y,X) ≤ |y − x| − µδ.

Proof We apply Theorem 5.1 (Error bound) to the function f = | · −y| + δX .
Inequality (4.1) and a repeat of our calculation of |∇φy| in the previous section
shows

|∇f |(w) ≥ |∇f |(w) = d
(
ŷ − w,NX(w)

)
.

In the notation of Theorem 5.1, assuming α < f(x), we have

µ ≤ K = inf
w∈X

{
|∇f |(w) : α < |w − y| ≤ |x− y|, |w − x| ≤ δ

}
.

Hence, providing α satisfies µ > 1

δ
(|x − y| − α), we deduce the first conclusion of

Theorem 5.1: the level set [f ≤ α] is nonempty, or in other words d(y,X) ≤ α. The
result now follows. ✷

6 Main result

The following is our main result.

Theorem 6.1 (Linear convergence) If two closed sets X, Y ⊂ E are intrinsi-
cally transversal at a point z ∈ X ∩ Y , with constant κ > 0, then, for any constant
c in the interval (0, κ), the method of alternating projections, initiated sufficiently
near z, converges to a point in the intersection X ∩ Y with R-linear rate 1 − c2.

Proof There exists a constant ǫ > 0 such that for any distinct points x ∈ X and
y ∈ Y , both lying in the open ball Bǫ(z), we have

max
{
d
(
u,NY (y)

)
, d
(
u,−NX(x)

)}
≥ κ for u = x̂− y.

Now consider any point x ∈ X , close to z, and y ∈ PY (x). We aim to deduce
the inequality

d(y,X) ≤ (1 − c2)|y − x|.
The result will then follow by a routine induction. We can assume y 6∈ X , since
otherwise there is nothing to prove.

Define ρ = |x− y| and assume

x, y ∈ Bǫ−κρ(z),

9



as certainly holds if x is sufficiently close to z. Consider any point w ∈ X ∩Bκρ(x).
Since |w − x| < κ|x− y| ≤ dY (x), we see w 6∈ Y , and in particular w 6= y. We have

d
(
ŵ − y,NY (y)

)
≤ d

(
ŵ − y,R+(x− y)

)
,

since x − y ∈ NY (y). To bound the right-hand side, note that any nonzero vectors
p, q ∈ E satisfy the inequalities

d(p̂,R+q) ≤
∣∣p̂− 〈p̂, q̂〉q̂

∣∣ ≤ |p− q|
|q| .

Setting p = w − y and q = x− y shows, for any w ∈ X ∩ Bκρ(x), the inequality

d
(
ŵ − y,NY (y)

)
< κ,

and hence, using intrinsic transversality

d
(
ŷ − w,NX(w)

)
≥ κ.

We next apply Theorem 5.2 with δ = cρ. In the notation of that result, we have
µ ≥ κ > c, so we deduce

d(y,X) ≤ ρ− µcρ ≤ (1 − c2)|y − x|,

as required. The result now follows. ✷

Theorem 2.1 now follows, by applying Proposition 3.3. Indeed, if two closed
sets X, Y ⊂ E intersect transversally at a point z ∈ X ∩ Y , and the minimal angle
between vectors in the closed cones NY (z) and −NX(z) is θ ∈ (0, π], then for any
constant r ∈ (cos2 θ

2
, 1), the method of alternating projections, initiated sufficiently

near z, must converge to a point in X ∩ Y with R-linear rate r.
Another consequence of the proof technique is the following result.

Theorem 6.2 Intrinsic transversality implies subtransversality.

Proof Under the assumptions of Theorem 6.1, consider any point x ∈ X near the
intersection point z, and any point y ∈ PY (x). We proved d(y,X) ≤ (1−c2)d(x, Y ),
so by induction, alternating projections converges to a limit in the intersection X∩Y
whose distance from x is no more than

d(x, Y )

∞∑

n=0

(1 − c2)n.

Hence d(x,X ∩ Y ) ≤ c−2d(x, Y ).
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Now consider any point w ∈ E near the intersection point z, and any point
x ∈ PX(w). The triangle inequality implies

d(x, Y ) ≤ |x− w| + d(w, Y ) = d(w,X) + d(w, Y ).

and hence

d(w,X ∩ Y ) ≤ |w − x| + d(x,X ∩ Y )

≤ d(w,X) + c−2d(x, Y )

≤ (1 + c−2)
(
d(w,X) + d(w, Y )

)
,

which proves subtransversality. ✷

Transversality is a strictly stronger condition than intrinsic transversality, as
shown by two intersecting lines in R3. In turn, intrinsic transversality is strictly
stronger than subtransversality. Indeed, subtransversality alone does not even guar-
antee local convergence of alternating projections, as the following example shows.

Consider the two closed sets in R2

X =
{

(x, 0) : x ≥ 0
}

Y =
{

(0, 0)
}
∪

∞⋃

n=−∞

{(
x,

1

2
(3n+1 − x)(3−nx− 1)

)
: 3n ≤ x ≤ 3n+1

}
.

Geometrically, X is just the nonnegative x-axis, and Y consists of sequence of
parabolic arches based on the x-axis and scaling linearly down towards the origin.
Subtransversality at the origin is routine to check. However, intrinsic transver-
sality fails: for any integer n, the point (2 · 3n, 0) ∈ X projects onto the point
(2 · 3n, 1

2
3n) ∈ Y and vice versa, so alternating projections cycles at points arbitrar-

ily close to the origin.

7 Semi-algebraic intersections

In this last section we turn to the case where the two sets are semi-algebraic. Al-
ternating projections on algebraic varieties, in particular, was considered in [1].

Classically (and reassuringly) two smooth manifolds “typically” intersect trans-
versally: almost all translations to the manifolds satisfy transversality throughout
the intersection. We first show the same result for semi-algebraic sets. See [22] for
the role of semi-algebraic ideas in nonsmooth optimization, and for the more general
“tame” setting, to which all results of this section extend.

Theorem 7.1 (Generic transversality) Consider two closed semi-algebraic sets
X, Y ⊂ E. Then for almost every vector e in E, transversality holds at every point
in the (possibly empty) intersection of the sets X and Y − e.

11



Proof Consider the set-valued mapping F from E to E2 defined by

F (z) = (X − z) × (Y − z).

In standard variational-analytic language [20,21], we define a value of this mapping
(a, b) ∈ E2 as critical when F is not metrically regular for (a, b) at some point

z ∈ F−1(a, b) = (X − a) ∩ (Y − b).

By a simple coderivative calculation (cf. [28, p. 491]), this is equivalent to the sets
X−a and Y −b not intersecting transversally at z. The semi-algebraic Sard theorem
[20, 21] now shows that the semi-algebraic set of critical values (a, b) ∈ E2 has
dimension strictly less than 2 dim E. The result now follows by Fubini’s theorem. ✷

It is interesting to ask whether convergence of alternating projections is guar-
anteed (albeit sublinear) even without intrinsic transversality. This is particularly
important, since in practice to check whether transversality holds requires knowl-
edge of a point in the intersection. As the example in the previous section shows,
without intrinsic transversality, even limit points of alternating projection iterates
may not lie in the intersection. Nevertheless, such pathologies do not occur in the
semi-algebraic setting. A key tool for establishing this result is the following theo-
rem based on [7, Theorem 14], a result growing out of the work of [26] extending the
classical  Lojasiewicz inequality for analytic functions to a nonsmooth semi-algebraic
setting. See [22, Corollary 6.2] for a related version.

Theorem 7.2 (Kurdyka- Lojasiewicz inequality) Given a semi-algebraic
lower-semicontinuous function f : E → R, consider a bounded open set U ⊂ E.
Then, for any value τ ∈ R, there exists a constant ρ > 0 and a continuous strictly
increasing semi-algebraic function θ : (τ, τ + ρ) → (0,+∞), such that the inequality

|∇f |(x) ≥ θ
(
(f(x)

)

holds for all x ∈ U with τ < f(x) < τ + ρ.

We now arrive at the main result of this section.

Theorem 7.3 (Semi-algebraic intersections) Consider two nonempty closed
semi-algebraic sets X, Y ⊂ E, with X bounded. If the method of alternating projec-
tions starts in Y and near X, then the distance of the iterates to the intersection
X ∩ Y converges to zero, and hence every limit point lies in X ∩ Y .

Proof Define a bounded open set

U = {z : d(z,X) < 1}.
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The coupling function φ from Section 4 is semi-algebraic, so the Kurdyka- Lojasiewicz
inequality above implies that there exists a constant ρ ∈ (0, 1) and a continuous
function h : (0, ρ) → (0,+∞) such that all points x ∈ X and y ∈ Y ∩ U with
0 < |x− y| < ρ satisfy the inequality

|∇φ|(x, y) ≥
√

2 · h(|x− y|).

From equation (4.3), we deduce

(7.4) max
{
|∇φx|(y), |∇φy|(x)

}
≥ h(|x− y|).

Suppose the initial point y0 ∈ Y satisfies d(y0, X) < ρ. The distance between
successive iterates |xn − yn| is decreasing: our aim is to prove its limit is zero. By
way of contradiction, suppose in fact |xn − yn| ↓ α ∈ (0, ρ).

Associated with the continuous function h, around any nonzero vector v, we
define a radially symmetric open“cusp”

K(v) :=
{
z ∈ E : 0 < |z| < ρ and d

(
ẑ,R+v

)
< h

(
|z|

)}
,

where R+v is the ray generated by v. For each iteration n = 1, 2, 3, . . ., consider
the normal vector vn = xn − yn ∈ NY (yn). Note |vn| > α. Obviously the open
set K(vn) contains the point vn: we next observe that in fact it also contains a
uniform neighborhood. Specifically, we claim there exists a constant ǫ > 0 such that
x− yn ∈ K(vn) whenever |x− xn| ≤ ǫ. Otherwise there would exist a sequence (x′

n)
in E satisfying

|x′
n − xn| → 0 and x′

n − yn 6∈ K(vn).

Notice that the distance between the vector x′
n − yn and the vector vn converges to

0, so the same is true after we normalize them (normalization being a lipschitz map
on the set {v ∈ E : |v| > α

2
}). But continuity of h now gives the contradiction

∣∣x̂′
n − yn − v̂n

∣∣ ≥ d
(
x̂′
n − yn,R+vn

)
≥ h

(
|x′

n − yn|
)

→ h(α) > 0.

We deduce that any point x ∈ X with |x− yn| < ρ and |x− xn| ≤ ǫ satisfies

|∇φx|(yn) = d
(
x̂− yn, NY (yn)

)
≤ d

(
x̂− yn,R+vn}

)
< h

(
|x− yn|

)
,

and hence, using inequality (7.4),

(7.5) |∇φyn|(x) ≥ h
(
|x− yn|

)
.

Denote by β the minimum value of the strictly positive continuous function h on
the interval

[
α, d(y0, X)

]
, so β > 0. Inequality (7.5) implies

d
(
ŷn − x,NX(x)

)
≥ β,

13



and hence, using Theorem 5.2 (Distance decrease),

|xn+1 − yn+1| ≤ |xn+1 − yn| ≤ |xn − yn| − ǫβ,

giving a contradiction for large n. The result follows. ✷

We remark that the technique we present here applies to much broader classes of
sets — those “definable in an o-minimal structure” [11]. Under a further regularity
condition, [32, Corollary 9] proves convergence of the full alternating projection
sequence in the semi-algebraic (or, more broadly, subanalytic) setting.
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