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Abstract

We investigate the problem of estimating the number of modes (i.e., local maxima)—a
well known question in statistical inference—and we show how to do so without presmooth-
ing the data. To this end, we modify the ideas of persistence barcodes by first relating
persistence values in dimension one to distances (with respect to the supremum norm) to
the sets of functions with a given number of modes, and subsequently working with norms
different from the supremum norm. As a particular case we investigate the Kolmogorov
norm. We argue that this modification has certain statistical advantages. We offer confidence
bands for the attendant Kolmogorov signatures, thereby allowing for the selection of relevant
signatures with a statistically controllable error. As a result of independent interest, we show
that taut strings minimize the number of critical points for a very general class of functions.
We illustrate our results by several numerical examples.

AMS subject classification: Primary 62G05,62G20; secondary 62H12

1 Introduction

Persistent homology [16, 17] provides a quantitative notion of the stability or robustness of critical
values of a (sufficiently nice) real valued function f on a topological space: the persistence of a
critical value is a lower bound on the amount of perturbation (in the supremum norm) required
for its elimination. Persistence measures the life span of homological features in terms of the
difference between birth and death of such features—according to the filtration of the underlying
topological space that arises from the sublevel sets of f . Birth and death of homological features
of f can be encoded in a barcode diagram, see [17]. In this article, we consider what we call
persistence signatures, defined as (half) the life span (or persistence) of critical values, i.e.,
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persistence signatures correspond to (half) the lengths of persistence barcodes and (when properly
ordered) give rise to a descending sequence

s0,∞( f ) ≥ s1,∞( f ) ≥ s2,∞( f ) ≥ · · · , (1)

where we appropriately account for multiplicity of critical values. In our setup, s0,∞( f ) denotes
the largest finite persistence value of f , and we append the sequence by zeros beyond the smallest
positive persistence value of f .

We consider one dimensional signals f : [0, 1]→ R. For the moment, to illustrate our results,
let X denote the space of piecewise constant real-valued functions on a (variable) equipartition
of [0, 1]. (Later in our exposition, we also consider more general function spaces.) Let Xk ⊂ X
denote the space of functions with at most k modes, i.e., local maxima, where we only count inner
local maxima. Our point of departure is the observation that

sk,∞( f ) = dist∞( f , Xk) ,

i.e., sk,∞( f ) equals the distance of f to the space of functions with at most k modes with respect to
the sup norm. This follows from the combination of two facts. First, from the celebrated stability
theorem in persistent homology [10], which asserts that

|sk,∞( f ) − sk,∞(g)| ≤ ‖ f − g‖∞ for all k ≥ 0 .

Second, from the fact that in oder to eliminate all positive persistence signatures of f : [0, 1]→ R
with value less or equal to δ, it suffices to change f by δ in the sup norm, see [2].1

The fact that persistence signatures correspond to distances (with respect to the sup norm) to
sets of functions with at most k modes leads us to considering norms different from the sup norm.
Our motivation is to ask how signatures arising from different norms compare in a statistical
sense. To this end, consider an arbitrary metric d on X and define the metric signatures

sk( f ) := dist( f , Xk) with respect to d .

Then (sk( f )) is an descending sequence as in (1), see Fig. 1. Moreover, since distance to sets in
metric spaces is 1-Lipschitz, stability is immediate:

|sk( f ) − sk(g)| ≤ d( f , g) for all k ≥ 0 .

The resulting signatures sk( f ) will in general be different from persistence signatures. The aim of
this article is to analyze, from a statistical and algorithmic point of view, one particular example:
the Kolmogorov metric dK and its resulting Kolmogorov signatures sK . For one dimensional
signals f : [0, 1]→ R the Kolmogorov norm is defined as the L∞-norm of the antiderivative F of
f , subject to F(0) = 0. The Kolmogorov norm plays a prominent role in probability and statistics,
see, e.g., [29]. Our approach is based on the observation that if sk( f ) = 0, then (the unknown
function) f has at most k modes. This provides a link between mode hunting, a widely studied
problem in statistics [23, 19, 22, 12, 30], and the robust estimation of signatures. Most related to
our approach is [12], where the Kolmogorov norm has been used for mode hunting in the context
of density estimation.

1Note that this result does no longer hold in dimensions greater than two.
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Figure 1: Illustration of metric signatures, i.e., distances of some f ∈ X to the sets Xk containing
those functions with at most k modes.

In the sequel we consider the following basic statistical additive regression model. Sup-
pose that f : [0, 1] → R is corrupted by random noise ε and observed by a finite number of
(equidistantly sampled) measurements (Yi)n

i=0, i.e.,

Yi = f (ti) + εi, ti = i/n . (2)

Throughout we assume that the noise (εi) is independently distributed with mean zero such that
for some κ > 0, v > 0 and all m ≥ 2,

E |εi|
m ≤ vm!κm−2/2 for all i = 1, . . . , n . (3)

We are concerned with the following question: With what probability can one estimate
the number of modes of f (or provide bounds for its under- and overestimation) from the
observations Y?

In dimension one, where mode hunting is intimately related to persistent homology, this
question has been addressed in topological data analysis (TDA). A well known problem in this
context is the fact that the stability theorem of persistent homology is based on the sup norm,
which potentially makes this approach non-robust to outliers or unbounded noise. Therefore,
several methods have been recently suggested to overcome this problem in various settings
[1, 3, 5, 6, 8, 9, 25, 28]. Roughly speaking, these methods have in common that they first
regularize or filter the data in one form or another—in order to improve stability with respect
to the sup norm—and then work with the persistence diagram of the so obtained preprocessed
result. This is based on the initial estimation of f itself. From a statistical perspective, however,
having to estimate f in a first step somewhat weakens the potential appeal of TDA. Already
in dimension one of the underlying space, estimating f by any regularization technique leads
to difficult problems, e.g., data driven smoothing or parameter thresholding. We stress that in
addition, this sensibly affects the resulting persistence properties in a statistically hard to control
manner, see, e.g., [1, 6, 18] for the case of a kernel estimator. In fact, presmoothing with a kernel
estimator leads to what has been sometimes called the notorious bandwidth selection problem,
which does not posses a widely accepted solution since the optimal bandwidth (e.g., in the sense
of minimizig the mean squared error between f and its kernel estimate)—although theoretically
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known—depends on unknown characteristics of f , such as its curvature (see [32] among many
others). Hence, we argue that a conceptual simplification and a computational advantage of TDA
would result from circumventing explicit estimation of f .

One aim of this paper is to show that direct estimation of topological properties of f without
having to estimate f itself is indeed a doable task by using Kolmogorov signatures. We confine
ourselves to dimension one because using the Kolmogorov norm in this case lends itself to an
efficient algorithm (O(n log n) in the number of data points). We stress that that our statistical
analysis carries over higher dimensions.

A second aim of this paper is to provide confidence statements on the empirical Kolmogorov
signatures with a controllable statistical error, similar in spirit to [18], where asymptotic con-
fidence bands for the empirical (sup norm based) persistence diagram are given for data on a
manifold. Their approach, however, is based on presmoothing for unbounded noise using a kernel
density estimator, which we avoid in this paper.

Inference for Kolmogorov signatures Using the Kolmogorov metric and the resulting Kol-
mogorov signatures, we investigate how well the empirical signatures sk(Y), obtained by inter-
preting Y as a piecewise constant function, estimate the signatures sk( f ). As a starting point,
Theorem 1 asserts that under the moment condition (3), for any δ > 0 one has

P

(
max
k∈N0
|sk(Y) − sk( f )| ≥ δ

)
≤ 2 exp

(
−

δ2n
2v + 2κδ

)
.

Using this, Theorem 2 asserts that for a given probability α ∈ (0, 1), one can construct non-
asymptotic confidence regions for the entire sequence (sk( f )) of signatures in the sense that

P
(
sk( f ) ∈

[
(sk(Y) − τn(α))+ , sk(Y) + τn(α)

]
for all k ∈ N0

)
≥ 1 − α , (4)

where (x)+ = max(0, x). Here τn(α) depends in an explicit manner on n, α, κ, and v, which are
known constants or can be easily estimated from the data. We drop the dependence of τn on κ
and v by considering κ and v fixed since we are mainly concerned with the dependence on n and
α. For fixed α, κ, v, one asymptotically has τn(α) ≈ 1/

√
n. The parameter τn(α) can be used to

threshold the empirical signatures sk(Y) by defining

kε(Y) = max{k ∈ N0 : sk−1(Y) ≥ ε} ,

where, as a convention, we define s−1(Y) = ∞. Then Theorem 3 asserts that for all k ∈ N0,
f ∈ Xk, and α ∈ (0, 1), one has

P
(
kτn(α)(Y) > k

)
≤ α ,

i.e., the threshold parameter τn(α) controls the probability of overestimating the number of
modes for any function f ∈ X. Notice that τn(α) is independent of the number and magnitude
of the modes of f , so in this sense the result is universal. Obtaining a universal result in
the other direction, i.e., controlling the probability of underestimating the number of modes,
is a more delicate task. Indeed, as pointed out in [14], obtaining such results is in general
impossible if the modes of f are allowed to become arbitrarily small. As a consequence, without
a priori information on the “smallest scales” of f , no method can provide a control for their
underestimation. Therefore, it is only possible to provide a bound for underestimating those
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signatures of f that are larger than a certain threshold. Theorem 4 asserts that for any k ∈ N0,
f ∈ Xk, and α ∈ (0, 1), one has

P
(
kτn(α)(Y) < k2τn(α)( f )

)
≤ α .

Combining the latter results, we obtain two sided bounds for the estimated number of modes.
More precisely, for any f ∈ Xk and any α ∈ (0, 1) we obtain that

P
(
k2τn(α/2)( f ) ≤ kτn(α/2)(Y) ≤ k

)
≥ 1 − α .

As mentioned before, for fixed α, κ, v, one has τn(α) ≈ 1/
√

n. Therefore there exists a constant
C such that asymptotically (for large enough n) by thresholding at C/

√
n, it can be guaranteed

at a level α that all signatures above this threshold are detected. Notice that so far we have not
made use of any a priori information about f . This changes with Theorem 5, which asserts that if
f ∈ Xk and sk−1( f ) ≥ ε, then

P
(
kε/2(Y) = k

)
≥ 1 − 2 exp

(
−

ε2n
8v + 4κε

)
, (5)

i.e., the number of modes of f can be estimated exponentially fast (in the number of samples) by
thresholding the empirical signature provided that one has a priori lower bounds on magnitude
(in the Kolmogorov norm) of the smallest mode of f . Notice that this result is independent of the
number of modes of f .

Kolmogorov signatures vs. persistence signatures Kolmogorov signatures offer an alterna-
tive to persistence signatures, since they behave more robust for large errors εi. The intuitive
reason is that the Kolmogorov norm damps these errors, while they remain dominant using the
sup norm without prefiltering. This is relevant, e.g., for unbounded noise (such as normally
distributed errors, which are included in our noise model (3)) or for data with outliers.

Nevertheless, Kolmogorov signatures are not always superior to persistence signatures in
terms of statistical efficiency. This can be seen by comparing their probabilities to detect a non
vanishing signature from the data. To this end, we consider two limiting scenarios. The first
comprises sparse signals with high peaks and small support, while the second comprises weak
signals with large support. To illustrate these scenarios, we consider functions with one single
mode and i.i.d. normal errors with variance one, i.e., εi ∼ N(0, 1).

In the first scenario, we consider a sequence of functions

fn(x) =

(1 + ε)
√

2 log n if x ∈ [ j/n, ( j + 1)/n) ,
0 otherwise ,

(6)

for some ε > 0 and for some j ∈ {0, . . . , n − 1} that is a priori not known. We show in Theorem 6
that asymptotically (as n → ∞) it is impossible to distinguish fn from the zero function by
thresholding Kolmogorov signatures at τn(α) as above. In contrast, for such signals, sup norm
based thresholding of the vector (Y1, . . . ,Yn) is known to behave asymptotically minimax efficient
in the sense of detecting a non vanishing mode with probability tending to one as n → ∞, see,
e.g., [13, 24]. Whether this efficiency carries over to persistence signatures is unknown to us.

In the second scenario, we consider a sequence of functions

fn(x) =

δn if x ∈ [1/3, 2/3) ,
0 otherwise ,

(7)
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with δn → 0. It is well known that it is possible to detect the single mode of fn with probability
tending to one as n → ∞ if δn

√
n → ∞, see, e.g., [31]. From (5) it follows, using ε = δn, that

Kolmogorov signatures can correctly detect the single mode of signals in (7) by thresholding
signatures at δn/2. In contrast, for persistence signatures, there exists no thresholding strategy
that can detect the single mode with probability one. To be precise, let again δn

√
n → ∞, and

assume additionally δn
√

log n→ 0. Then Theorem 7 asserts that for an arbitrary sequence (qn)
of reals one has lim supn→∞ P

(
kqn(Y) = 1

)
< 1.

Efficient computation using taut strings While our approach can in principle be extended
to metric different from the ones induced by the sup or Kolmogorov norms, not every metric
lends itself to an efficient computation of the requisite signatures. The difficulty is to compute
the distance of a given function to the set of functions with at most k modes. Using taut strings
(which are intimately related to total variation (TV) minimization [20, 21, 11, 26]), we prove that
the set of Kolmogorov signatures can be computed in O(n log n) time, where n is the number of
observations. Given f ∈ L∞([0, 1]) and α ≥ 0, the taut string, Fα, is the function whose graph has
minimal total length (as a curve) among all absolutely continuous functions in the α-tube around
the antiderivative F of f . Letting fα = F′α denote the derivative of the taut string, Theorem 8
provides a result of independent interest that has been implicitly used several times in the existing
literature but has never been proven rigorously to our knowledge: fα minimizes the number of
modes among all L∞-functions in the (closed) α-ball around f with respect to the Kolmogorov
norm. Indeed, our result generalizes previous results on the mode-minimizing property of fα,
which were shown in the special context of piecewise constant functions using the Kolmogorov
norm, see, e.g., [11, 12, 22, 26].

2 Modes and signatures

Modes Let f : [0, 1] → R be an arbitrary function. In order to define the number of modes
(local maxima) of f , consider a finite partition P = {t0, . . . , t|P|} of [0, 1] such that 0 = t0 < t1 <
· · · < t|P|−1 < t|P| = 1. For each 0 < i < |P| let

M ( f , P, i) =

1 if max( f (ti−1), f (ti+1)) < f (ti)
0 else .

Define the number of modes of f with respect to P and the total number of modes of f by

M ( f , P) =

|P|−1∑
i=1

M ( f , P, i) and M ( f ) = sup
P

M ( f , P) ,

respectively. It is easy to see that if f is constant, then M ( f ) = 0 and if f is a Morse function in
the classical sense (i.e., a smooth function with only nondegenerate critical points), then M ( f )
equals the (possibly infinite) number of local maxima of f on the open interval (0, 1). Notice that
different from Morse theory, though, we are not concerned with critical values or critical points
of functions; M ( f ) merely counts the number of modes, without referring to their individual
positions or values.
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Metric signatures We denote by L ∞ the linear space of Lebesgue-measurable essentially
bounded functions on [0, 1]. Notice that we do not regard L ∞ as a space of equivalence classes
of functions. Throughout this article we work with functions in some (to be specified) set
X ⊂ L ∞. For example, X may consist of functions of bounded variation or piecewise polynomial
functions. We do not a priori require X to be a linear space. By (X, d) we denote X together with
some metric, but we do not require (X, d) to be a complete metric space. Additionally, we allow
that d attains the value∞. Particular choices of (X, d) will be specified below.

Definition 1 (Metric signatures) Let Xk denote the subset of X with at most k modes, i.e.,
Xk := { f ∈ X : M ( f ) ≤ k}. Define the kth metric signature of f ∈ X as

sk( f ) := d( f , Xk) = inf
g∈Xk

d( f , g) for k ∈ N0 ,

i.e., the distance of f to the set of functions with at most k modes. �

Clearly, Xk ⊆ Xk+1 are nested models; hence, the sequence (sk( f ))k∈N is monotonically decreasing,
and sk( f ) measures the minimal distance by which f needs to be moved (with respect to the
metric d) in order to remove all but its k most significant modes. What is considered significant
and what is not, however, heavily depends on the choice of metric. In any case, so far we have
not excluded pathologies, i.e., situations where M ( f ) > k but sk( f ) = d( f , Xk) = 0. Hence:

Definition 2 (Descriptive metric) (X, d) is called descriptive if M ( f ) > k implies that sk( f ) > 0
for every f ∈ X and all k ∈ N0. �

Stability Regardless of the concrete choice of metric, notice that distance to (arbitrary) sets in
metric spaces is 1-Lipschitz; therefore stability essentially comes for free:

Lemma 1 (Stability of signatures) Let f , g ∈ X. Then

|sk( f ) − sk(g)| ≤ d( f , g)

for all k ∈ N0. �

Stability implies that a small perturbation of f results in a small perturbation of the signatures
sk( f ).

3 Persistence signatures and Kolmogorov signatures

In our setting a “good” metric is one that leads to signatures that clearly separate significant
modes (with respect to a given noise model) from insignificant ones. We investigate two choices.

Persistence signatures One possible choice of metric is the one induced by the sup norm, i.e.,
d∞( f , g) = supx | f (x) − g(x)|, which leads to signatures that have an interpretation in the context
of persistent homology, as we show below.

Lemma 2 (X, d∞) is descriptive for every X ⊂ L ∞. �
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Proof Being descriptive is equivalent to Xk being closed in X for all k. Suppose that there exists
k ∈ N0 such that Xk is not closed, i.e., there exist f ∈ X \ Xk and a sequence ( fn) in Xk with
d∞( fn, f )→ 0. Since f < Xk, there exists a partition P = {t0, . . . , t|P|} of [0, 1] and some index set
I with k < |I| < |P| such that max( f (ti−1), f (ti+1)) < f (ti) for all i ∈ I. Since d∞( fn, f )→ 0, there
exists N ∈ N such that max( fn(ti−1), fn(ti+1)) < fn(ti) for all n ≥ N and all i ∈ I. Contradiction.�

The following lemma makes precise the relation between topological persistence and our notion
of metric signatures for the sup norm.

Lemma 3 Let X be a space of tame functions, i.e., H∗( f −1(−∞, t]) has finite rank for all f ∈ X
and all t ∈ R, and every f ∈ X has a finite number of homologically critical values. Order the finite
persistence values (counted with multiplicity) of some f ∈ X according to their persistence, from
highest to lowest, yielding a persistence sequence (pk( f ))k≥1. Using d∞ yields pk( f ) = 2sk−1( f )
for all k ≥ 1. �

Proof Let k ≥ 1. We first claim that pk( f ) ≤ 2sk−1( f ). Let ( fn) be a sequence in Xk−1 with
d∞( fn, f ) ≤ sk−1( f ) + 1

n . Notice that pk(g) = 0 for all g ∈ Xk−1 ⊂ X. By the stability theorem for
persistence diagrams [10], one has |pk(g) − pk( f )| ≤ 2d∞( f , g) for all f , g ∈ X. Together these
facts imply that

pk( f ) = |pk( f ) − pk( fn)| ≤ 2d∞( f , fn) ≤ 2sk−1( f ) +
2
n
,

which proves the first claim.
To see that pk( f ) ≥ 2sk−1( f ), observe that the bound provided by the stability theorem is tight

in dimensions less or equal to 2, see [2]. Indeed, if f is tame, then by moving f by at most δ in
the sup norm, it is possible to remove all its persistence pairs with persistence less or equal to 2δ
without increasing the number of remaining persistence pairs. Hence there exists a function g ∈
Xk−1 with d∞(g, f ) ≤ 1

2 pk( f ), which implies that sk−1( f ) = d∞( f , Xk−1) ≤ d∞( f , g) ≤ 1
2 pk( f ). �

Kolmogorov signatures For reasons that will become evident in the next section, we propose
an alternative to persistence signatures, which we call Kolmogorov signatures. Let L 1 denote
the space of Lebesgue-integrable functions on [0, 1]. Due to compactness of [0, 1], we have that
L ∞ ⊂ L 1. The Kolmogorov distance, dK , is defined as follows. Let f , g ∈ L ∞, and let F,G
denote the respective antiderivatives, where, as a convention, we require that F(0) = G(0) = 0.
Define

dK( f , g) := d∞(F,G) .

Notice that dK does not induce a metric on arbitrary subsets X ⊂ L ∞ since if f = g almost
everywhere (a.e.), then dK( f , g) = 0. Therefore, we work with a unique representative in each
equivalence class of a.e. identical functions by requiring that

X ⊂ L :=

 f ∈ L ∞ : f (t) = lim
ε→0

inf
0<δ<ε

1
t+(δ) − t−(δ)

∫ t+(δ)

t−(δ)
f (s) ds for all t ∈ [0, 1]

 , (8)

where t−(δ) = max(0, t − δ) and t+(δ) = min(1, t + δ).
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There indeed exists a (unique) representative in L for every equivalence class of a.e. identical
functions in L ∞, since the right hand side of (8) exists (and is finite) for all t ∈ [0, 1] and all
f ∈ L ∞, and since Lebesgue’s differentiation theorem asserts that every f ∈ L 1 satisfies

f (t) = lim
δ→0

1
2δ

∫ t+δ

t−δ
f (s) ds a.e. on (0, 1) .

We thus obtain a projection operator P : L ∞ → L ⊂ L ∞. Notice, however, that L is not a
linear space, since f ∈ L does not necessarily imply that − f ∈ L . Nonetheless, we may of
course choose linear subspaces X ⊂ L for specific applications.

The following lemma further motivates our choice of L .

Lemma 4 For any class [ f ] of a.e. identical functions in L ∞, its unique representativeP( f ) ∈ L
minimizes the number of modes within that class. �

Proof Let f ∈ L ∞ with representative f̃ := P( f ) ∈ L . We show that M ( f̃ ) ≤ M [ f ].
Consider any finite partition P of [0, 1] and assume that ti counts a mode of f̃ , i.e., f̃ (ti) −
max( f̃ (ti−1), f̃ (ti+1)) > ε for some ε > 0. Consider any open neighborhood Ui of ti. Since

f̃ (ti) = lim
ε→0

inf
0<δ<ε

1
t+i (δ) − t−i (δ)

∫ t+i (δ)

t−i (δ)
f (s) ds ,

there must be some t ∈ Ui with f (t) ≥ f̃ (ti) − ε/2. Since Ui can be chosen arbitrarily small, there
exists t′i arbitrarily close to ti such that f (t′i ) ≥ f̃ (ti) − ε/2. By the same argument, there exist
t′i−1 and t′i+1 arbitrarily close to ti−1 and ti+1, respectively, such that f (t′i−1) ≤ f̃ (ti−1) + ε/2 and
f (t′i+1) ≤ f̃ (ti+1) + ε/2. By our choice of ε this implies f (t′i ) > max( f (t′i−1), f (t′i+1)). Continuing
this way yields a partition P′ with M ( f , P′) ≥M ( f̃ , P). �

Lemma 5 (X, dK) is descriptive for every X ⊂ L . �

Proof We show that X \ Xk is open wrt. the Kolomogorov metric. Let f ∈ X \ Xk. Then there
exists a finite partition P = {t0, . . . , t|P|} of [0, 1] and some index set I with k < |I| < |P| such
that f (ti) −max( f (ti−1), f (ti+1)) > ε for all i ∈ I and some small enough ε > 0. Without loss of
generality, we assume that ti−1 > 0 and ti+1 < 1 for all i ∈ I. Let δ > 0 be small enough such that
for all i ∈ I the intervals [ti−1 − δ, ti−1 + δ], [ti − δ, ti + δ], and [ti+1 − δ, ti+1 + δ] are contained in
[0, 1] and are mutually disjoint. Additionally, for all i ∈ I and all j ∈ {−1, 0, 1} let δi, j ≤ δ be such
that ∣∣∣∣∣∣ f (ti+ j) −

1
2δi, j

∫ ti+ j+δi, j

ti+ j−δi, j

f (s)ds

∣∣∣∣∣∣ < ε

4
.

Let δ′ = mini∈I, j∈{−1,0,1} δi, j. Let g ∈ X with dK( f , g) < 1
4εδ
′. Then∣∣∣∣∣∣

∫ b

a
( f (s) − g(s))ds

∣∣∣∣∣∣ < 1
2
ε δ′

for all 0 ≤ a < b ≤ 1. Hence,∣∣∣∣∣∣ f (ti+ j) −
1

2δi, j

∫ ti+ j+δi, j

ti+ j−δi, j

g(s)ds

∣∣∣∣∣∣ < ε

4
+
ε δ′

4δi, j
≤
ε

2
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Figure 2: A function with exactly two modes (left) and its closest function with exactly one mode
w.r.t. the Kolmogorov norm (right, in purple). Notice that the attendant Kolmogorov signature,
s1, for removing the smallest mode of f , can be read off from the light-blue areas. The purple
function is computed using taut strings (see Section 5).

for all i ∈ I and all j ∈ {−1, 0, 1}. Therefore, there exists t′i ∈ [ti−δi,0, ti +δi,0] with g(t′i ) > f (ti)− ε
2 .

Likewise, there exist t′i±1 ∈ [ti±1 − δi±1,±1, ti±1 + δi±1,±1] with g(t′i±1) < f (ti±1) + ε
2 . Thus there

exists a partition P′ of [0, 1] with M [g, P′]> k, i.e., g ∈ X \ Xk. Since ε and δ′ only depend on f
and since g was chosen arbitrarily in the open Kolmogorov-ball of radius 1

4εδ
′ around f , this ball

is contained in X \ Xk. �

Figure 2 offers a visualization for a function with two modes and its closest function with
a single mode with respect to the Kolmogorov norm. Before elaborating on how to compute
Kolmogorov signatures, though, we examine their statistical properties.

4 Statistical perspective

Throughout this section we assume that the noise (εi) in Model (2) is independently distributed
with mean zero such that for some κ > 0, v > 0 and all m ≥ 2,

E
[
|εi|

m]
≤ vm!κm−2/2 for all i = 1, . . . , n . (9)

Distributions which satisfy (9) include the centered normal distribution with variance σ2 > 0,
the (centered) Poisson distribution with intensity λ, or the Laplace distribution with variance
2λ2. Moreover, any symmetric distribution around zero with compact support is covered by (9),
including the uniform distribution on an interval [−B, B].

4.1 Thresholding Kolmogorov signatures

In this subsection we prove an exponential deviation inequality for the empirical Kolmogorov
signatures (Theorem 1), which allows us to construct uniform confidence bands for the unknown
signatures (sj ( f )) j∈N0 . More precisely, we provide a data dependent sequence of intervals
(I(n)(α) j) j∈N0 that covers the (unknown) signatures with probability at least 1 − α.

Let f ∈ Xk ⊂ X ⊂ L , with L defined in (8), have (an unknown number of) exactly k modes.
As stressed in the introduction, we do not aim at estimating the regression function f itself but
rather at inferring directly the sequence of signatures sj ( f ) together with the number of modes k

10



in such a way that estimates for these quantities can be provided at a prespecified error rate. This
can be achieved by properly thresholding the sequence of empirical signatures.

In our analysis we consider equidistant sampling points i/n and piecewise constant functions
f (n) : [0, 1]→ R defined as

f (n)(t) =

n−1∑
i=0

1[
i
n ,

i+1
n )(t) f

( i
n

)
.

We define X(n)
j as the corresponding set of piecewise constant functions with at most j modes,

and we call sj ( f (n)) = dist( f (n), X(n)
j ) the quantized signature of f . Further, for the observation

vector Y = (Y1, . . . ,Yn) we define the piecewise constant function

Y (n)(t) =

n∑
i=1

1[
i−1
n , i

n )(t)Yi .

In the following, we call sj (Y (n)) the empirical signatures.

Function spaces In principle, the results of this subsection hold for any function space X ⊂
L as long as one can control the distance dK( f , f (n)) between f and the quantized function
f (n). Accordingly, all subsequent results are formulated for the quantized signatures sj ( f (n)).
From those, the corresponding statements concerning sj ( f ) can be obtained along the following
reasoning. Consider the (deterministic) approximation error between f (n) and f in terms of the
Kolmogorov metric

dK( f , f (n)) = sup
s∈[0,1]

∣∣∣∣∣∫ s

0
f (t) − f (n)(t)dt

∣∣∣∣∣ . (10)

Then, due to Lemma 1 and the triangle inequality, it follows that

max
j∈N0
|sj (Y (n)) − sj ( f )| ≤ max

j∈N0
|sj (Y (n)) − sj ( f (n))| + dK( f , f (n)) .

Therefore, if dK( f , f (n)) is known, then the subsequent estimates on |sj (Y (n))− sj ( f (n))| can readily
be modified to obtain estimates on |sj (Y (n)) − sj ( f )|. E.g., if f Hölder continuous, i.e.,

| f (x) − f (y)| ≤ C |x − y|γ ∀(x, y) ∈ [0, 1], γ > 0 ,

then

dK( f , f (n)) ≤
C

γ + 1
n−γ, (11)

so that the approximation error is of order n−γ. Hence, due to Lemma 1,

max
j∈N0
|sj (Y (n)) − sj ( f )| ≤ max

j∈N0
|sj (Y (n)) − sj ( f (n))| + O(n−γ) ,

and all subsequent estimates and results can be modified accordingly.

11



Statistical inference of signatures and modes without a priori information We return to
our initial goal of providing tools for statistical inference on the signatures and modes. We start
with investigating how well the empirical signatures sj (Y (n)) estimate the quantized signatures
sj ( f (n)). To this end, we control dK( f (n),Y (n)) by the following exponential deviation bound,
which is a direct consequence of [27, Theorem B.2].

Theorem 1 Assume the moment condition in (9). Then, for any δ > 0 and any f ∈ X, one has

P

(
max
j∈N0
|sj (Y (n)) − sj ( f (n))| ≥ δ

)
≤ 2 exp

(
−

δ2n
2v + 2κδ

)
. �

Proof By stability of metric signatures (Lemma 1), we have that

P

(
max
j∈N0
|sj (Y (n)) − sj ( f (n))| ≥ δ

)
≤ P

(
dK( f (n),Y (n)) ≥ δ

)
.

Let S k =
∑k

i=1 εi and observe that dK(Y (n), f (n)) = maxk |S k|/n. From [27, Theorem B.2] we
obtain

P
(
dK(Y (n), f (n)) ≥ δ

)
= P

(
max

k
|S k| ≥ δn

)
≤ 2 exp

(
−

δ2n
2v + 2κδ

)
. �

This results shows that the empirical signatures sj (Y (n)) are close to the quantized signatures
sj ( f (n)) with high probability simultaneously for all j ∈ N0.

Remark 1 (Sharpness of bound) Figure 3 offers two examples of how the signatures of Y (n)

deviate from those of f (n). Notice that in these examples, the signatures of f (n) are almost
indistinguishable from the highest signatures of Y (n)—indeed, their difference is less than what is
predicted by Theorem 1. The reason is that, while the bound in Theorem 1 is sharp in general
(since stability of metric signatures provides a sharp bound in general), it may be arbitrarily
suboptimal for concrete examples, i.e., if |sk( f ) − sk(Y)| is small while dK( f ,Y) is large. �

A useful application of Theorem 1 is that for a given probability α, we can construct a
non-asymptotic and honest (uniform) confidence region covering the signatures sj ( f (n)) with
probability at least 1 − α, as shown in the following theorem.

Theorem 2 Fix some α ∈ (0, 1) and let

τn(α) :=
1
n

(√
log(α/2)

(
log(α/2)κ2 − 2nv

)
− κ log(α/2)

)
.

Assume the regression model (2) and the moment condition in (9). Then

inf
f∈X
P
(
sj ( f (n)) ∈

[(
sj (Y (n)) − τn(α)

)
+
, sj (Y (n)) + τn(α)

]
for all j ∈ N0

)
≥ 1 − α ,

where (x)+ = max(0, x). �

Proof From Theorem 1 we obtain

P
(
|sj (Y (n)) − sj ( f (n))| ≤ τn(α) for all j ∈ N0

)
≥ 1 − 2 exp

(
−

τn(α)2n
2ν + 2κτn(α)

)
= 1 − α .

Since sj ( f (n)) ≥ 0 for all j ∈ N0, this completes the proof. �
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Figure 3: Noisy samples of signals (top) and signatures of both original signal and sample
(bottom, log-scale). Left: Function generated by random sampling and smoothing. Right: signal
bumps [15]. Sampling noise normally distributed with standard deviation σ = 1. Notice that the
largest signatures of signal and sample are very close (almost indistinguishable), and that there is
a clear gap between the smallest signature of the signal (left: k = 4, right: k = 5) and the next
signature of the noisy sample.

Note that τn(α) is a quantity that only depends on the values n, κ, v, and the confidence level α.
Here we assume for simplicity that κ and ν are known—and while in practice this might not be the
case, these numbers can be estimated from the data, e.g., in the case of a normal distribution, such
an estimate boils down to estimating the variance σ2. Fixing α, we obtain a (random) sequence
of intervals [(

sj (Y (n)) − τn(α)
)
+
, sj (Y (n)) + τn(α)

]
,

which, according to Theorem 2, cover the sequence of true quantized signatures sj ( f (n)) with
confidence level 1 − α. For smaller values of α, i.e., for larger confidence, these intervals become
wider. Notice that for a fixed error α ∈ (0, 1), the interval lengths 2τn(α) behave like 1/

√
n as

n→ ∞.
Theorem 1 shows that sj (Y (n)) approximates sj ( f (n)) well in the sup norm. However, the

number of estimated signatures greater than zero might still be large. Consequently, s(Y (n)) does
not directly indicate which signatures are significantly larger than zero and hence will be of
limited use for estimating the number of modes of f . Nonetheless, such an estimate can readily
be obtained by thresholding the empirical signatures. Define

kε(Y (n)) = max{ j ∈ N0 : s j−1(Y (n)) ≥ ε} , (12)

where, as a convention, we define s−1(Y (n)) = ∞.
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The threshold parameter τn(α) has an immediate statistical interpretation: It controls the
probability of overestimating the number of modes for any function f ∈ X.

Theorem 3 Let f ∈ X, assume the regression model (2) and the moment condition (9), let
α ∈ (0, 1), and let k ∈ N0 be such that f (n) ∈ Xk. Then

P
(
kτn(α)(Y (n)) > k

)
≤ α . �

Proof First, observe from the definition of kτn(α)(Y (n)) in (12) that

P
(
kτn(α)(Y (n)) > k

)
= P

(
sk(Y (n)) ≥ τn(α)

)
.

Notice that f (n) ∈ Xk implies that sk( f (n)) = 0. Therefore, for f (n) ∈ Xk, Theorem 1 and the
definition of τn(α) imply (similar to the proof of Theorem 2) that

P
(
sk(Y (n)) ≥ τn(α)

)
≤ α . �

Hence, whatever the number of modes of f (n) might be, the thresholding index kτn(α)(Y (n))
overestimates this number with probability less or equal to α. Notice that the thresholding
parameter τn(α) is independent of the number and magnitude of the modes of f , so in that sense,
this result is universal.

As mentioned in the introduction, obtaining a universal result in the other direction, i.e.,
controlling the probability of underestimating the number of modes, is a more delicate task since
modes can become arbitrarily small. Recalling the definition of kε( f ) as in (12), we find:

Theorem 4 Let f ∈ X, assume the regression model (2) and the moment condition (9), let
α ∈ (0, 1), and let k ∈ N0 be such that f (n) ∈ Xk. Then

P
(
kτn(α)(Y (n)) < k2τn(α)( f (n))

)
≤ α . (13)

Proof Let f (n) ∈ Xk and let l denote the largest integer such that sl−1( f (n)) ≥ 2τn(α), i.e.,
l = k2τn(α)( f (n)). If l = 0, then (13) is trivially satisfied, since kτn(α)(Y (n)) ≥ 0. So suppose that
l > 0. Then

P
(
kτn(α)(Y (n)) < l

)
= P

(
sl−1(Y (n)) < τn(α)

)
≤ P

(
sl−1( f (n)) − sl−1(Y (n)) > τn(α)

)
≤ P

(
|sl−1( f (n)) − sl−1(Y (n))| > τn(α)

)
≤ α ,

where the last inequality follows from Theorem 1 and the definition of τn(α). �

We have thus expressed the underestimation error of the number of modes as an explicit function
of the signature threshold 2τn(α). Combining the latter results, we obtain two sided bounds for
the estimated number of modes. More precisely, for any f and k with f (n) ∈ Xk and any α ∈ (0, 1)
we have that

P
(
k2τn(α/2)( f (n)) ≤ kτn(α/2)(Y (n)) ≤ k

)
≥ 1 − α .
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As mentioned above, for fixed α, κ, v one has τn(α) ≈ 1/
√

n. Therefore there exists a constant C
such that asymptotically (for large enough n) by thresholding at C/

√
n, it can be guaranteed at a

level α that all signatures above this threshold are detected.
Based on the previous results we now construct confidence intervals for kε( f (n)), i.e., for the

number of modes whose signatures exceed a certain size ε.

Corollary 1 Assume the regression model (2), the moment condition (9), let ε ≥ 0, and let
f (n) ∈ Xk. Define

l(α, ε) =

max
{
j ∈ N0 : sj (Y (n)) > ε + τn(α)

}
if ε < s0(Y (n)) − τn(α)

0 otherwise

and

u(α, ε) =

min
{
j ∈ N0 : sj (Y (n)) < ε − τn(α)

}
if ε > τn(α)

∞ otherwise.

Then

P
(
kε( f (n)) ∈ [l(α, ε), u(α, ε)]

)
≥ 1 − α . �

Proof Suppose, for the moment, that

dK(Y (n), f (n)) ≤ τn(α) . (14)

Since sj ( f (n)) ≥ ε for all j < kε( f (n)), stability of metric signatures implies that sj (Y (n)) ≥ ε−τn(α)
for all j < kε( f (n)). Hence, by the definition of u(α, ε), we have u(α, ε) ≥ kε( f (n)).

Further, while still assuming (14), sj (Y (n)) > ε + τn(α) implies that sj ( f (n)) > ε. Hence, by the
definition of l(α, ε), we find that sl(α,ε)( f (n)) > ε. This in turn implies kε( f (n)) ≥ l(α, ε). Therefore,
we have so far shown that (14) implies that

l(α, ε) ≤ kε( f (n)) ≤ u(α, ε) .

Since (14) holds with probability ≥ 1 − α (see proof of Theorem 1), this proves the assertion. �

Note that the upper bound for kε jumps to ∞ if ε ≤ τn(α). This reflects the fact, that
meaningful upper bounds cannot be provided for signatures whose size is of the order of the noise
level.

Remark 2 (Distribution of signatures) Assume the setting of Theorem 1 and suppose that Xk

is scaling invariant for all k ∈ N0, i.e., {λg : g ∈ Xk} = Xk for all 0 < λ ∈ R. Assume for simplicity
that f ≡ 0, the general case still being unknown. Then, for any k ∈ N0, we have that

√
n
(
sk(Y (n)) − sk( f (n))

)
=
√

n inf
g∈Xk

sup
s∈[0,1]

∣∣∣∣∣∫ s

0

(
ε(n)(t) − g(t)

)
dt

∣∣∣∣∣
= inf

g∈Xk
sup

s∈[0,1]

∣∣∣∣∣∣∣ 1
√

n

dnse∑
i=1

εi −

∫ s

0

√
ng(t)dt

∣∣∣∣∣∣∣
= inf

g∈Xk
sup

s∈[0,1]

∣∣∣∣∣∣∣ 1
√

n

dnse∑
i=1

εi −

∫ s

0
g(t)dt

∣∣∣∣∣∣∣ ,
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where the last equality follows from the scaling invariance of Xk. Noting that

1
√

n
max

m=1,...,n

∣∣∣∣∣∣∣
m∑

i=1

εi

∣∣∣∣∣∣∣ D→ sup
0≤x≤1

B(x) ,

where B denotes a standard Brownian motion on [0, 1] and using that f ≡ 0, it follows that
√

n
(
s(Y (n))

) D
→ s(B′) ,

where B′ denotes the derivative of a standard Brownian Motion on [0, 1] in a weak sense. This
follows from the continuity of the functional s w.r.t. the Kolmogorov norm. �

Remark 3 (Gaussian observation) If the noise ε in (2) is Gaussian with mean zero and vari-
ance σ2, then Theorem 1 can be sharpened, due to a refined large deviation result for Gaussian
observations (see, e.g., [4]):

P
(
dK( f (n),Y (n)) ≥ δ

)
≤ 2 exp

(
−
δ2n
2σ2

)
. (15)

Hence, in the Gaussian case, all results of Section 4 remain true if τn(α) is replaced by the simpler
(and slightly sharper) threshold

τ̃n(α) =

√
−2σ2/n log(α/2) . �

Obtaining the correct number of modes using a priori information Notice that so far we
have not made any a priori assumption about f (n). If, however, f (n) ∈ Xk, and if we impose prior
information on the smallest strictly positive signature sk−1( f (n)), then we obtain an explicit bound
for the probability that the number of modes is estimated correctly.

Theorem 5 Assume the regression model (2) and the moment condition (9). Let f (n) ∈ Xk be
such that sk−1( f (n)) ≥ ε. Then

P
(
kε/2(Y (n)) = k

)
≥ 1 − 2 exp

(
−

ε2n
8v + 4κε

)
. (16)

Proof First suppose that k > 0. Notice that by (12) we have that kε/2(Y) = k iff sk−1(Y (n)) ≥ ε
2

and sk(Y (n)) < ε
2 . Furthermore, by assumption we have that sk−1( f (n)) ≥ ε and sk( f (n)) = 0.

Therefore, kε/2(Y) , k implies that

|sk−1( f (n)) − sk−1(Y (n))| ≥
ε

2
or |sk( f (n)) − sk(Y (n))| ≥

ε

2
.

For k = 0, by a similar argument, we have that kε/2(Y (n)) , 0 implies that |sk( f (n)) − sk(Y (n))| ≥ ε
2 .

Thus, for all k ≥ 0, Theorem 1 implies that

P
(
kε/2(Y (n)) , k

)
≤ P

(
max
j∈N0
|sj (Y (n)) − sj ( f (n))| ≥

ε

2

)
≤ 2 exp

(
−

ε2n
8v + 4κε

)
. �

We stress that the bound in Theorem 5 is remarkably simple, as it depends on the signatures
sj ( f (n)), j ∈ {0, . . . , k − 1}, only through sk−1( f (n)), which in a sense represents the signature that
is hardest to detect. Notice furthermore that the bound in Theorem 5 does not depend on the
(unknown) number of signatures k.
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Limitations of Kolmogorov signatures Kolmogorov signatures are by no means suitable for
all kinds of signals. Indeed, as might be expected intuitively, Kolmogorov signatures are not
well suited for sparse signals that have high peaks with small support (the needle in a haystack
problem). In order to illustrate this effect, consider signals of the following kind:

fn(x) =

(1 + ε)
√

2 log n if x ∈ [ j/, ( j + 1)/n) ,
0 otherwise ,

(17)

for some ε > 0 and for some j ∈ {0, . . . , n − 1} that is a priori not known. Note that there exists
no statistical testing procedure that can asymptotically (as the number of observation n → ∞)
detect signals with intensity as in (17) for ε < 0 with positive detection power, see, e.g., [13]. For
ε > 0, sup norm based thresholding is known to achieve the optimal detection boundary [13].
In contrast, Kolmogorov signature based thresholding at τn(α) as described above is not able to
detect signals of the type (17) for any ε > 0:

Theorem 6 (Kolmogorov signatures and sparse signals) Let fn : [0, 1] → R be as in (17),
and let Yi = fn( i

n ) + εi, where ε1, . . . , εn
i.i.d.
∼ N(0, 1). Then for any α ∈ (0, 1) one has

lim
n→∞
P
(
kτn(α)(Y (n)) = 1

)
= 0 ,

i.e., it is impossible to detect the single mode of fn when thresholding Kolmogrov signatures at
τn(α). �

Proof We have

P
(
kτn(α)(Y (n)) = 1

)
≤ P

(
kτn(α)(Y (n)) ≥ 1

)
= P

(
s0(Y (n)) ≥ τn(α)

)
≤ P

(
dK(Y (n), 0) ≥ τn(α)

)
,

where dK(Y (n), 0) denotes the Kolmogorov distance of the observations Y (n) to the zero function.
Let µn := (1 + ε)

√
2 log n. Then the last term can be further estimated as

P
(
dK(Y (n), 0) ≥ τn(α)

)
= P

1
n

max
m=1,...,n

∣∣∣∣∣∣∣
m∑

i=1

εi + µn

∣∣∣∣∣∣∣ ≥ τn(α)


≤ P

1
n

max
m=1,...,n

∣∣∣∣∣∣∣
m∑

i=1

εi

∣∣∣∣∣∣∣ +
µn

n
≥ τn(α)


= P

 1
√

n
max

m=1,...,n

∣∣∣∣∣∣∣
m∑

i=1

εi

∣∣∣∣∣∣∣ +
µn
√

n
≥
√

nτn(α)

 .
The claim now follows from the fact that with n→ ∞ one has µn/

√
n→ 0,

√
nτn(α)→ ∞, and

1
√

n
max

m=1,...,n

∣∣∣∣∣∣∣
m∑

i=1

εi

∣∣∣∣∣∣∣ D→ sup
0≤x≤1

B(x) ,

where B denotes a standard Brownian motion on [0, 1]. �
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Figure 4: Left: signal blocks; Right: signal bumps [15].

4.2 Simulations using Kolmogorov signatures

We illustrate the validity of our approach by means of a simulation study for the signals blocks
and bumps [15], which are shown in Fig. 4. Concerning detection of modes, the two signals are
of different types as they contain modes of different lengths. For a function f with k modes and
observations Y from (2) the theory in the previous Section shows that the number of modes k can
be estimated by thresholding of the empirical signatures. This approach clearly relies on the fact
that sk−1(Y (n)) and sk(Y (n)) can be distinguished with high probability. Here, we investigate this
empirically by considering the quantity

∆(Y) =
sk−1(Y (n))
sk(Y (n))

.

For our simulation we consider independent Gaussian noise. We note that the bound in Remark 3
is constant for increasing n if the variance is linearly increasing in n. This suggests that the
expected value of ∆(Y) is also constant in this case.

We chose σ =
√

n/16 for blocks and σ =
√

n/256 for bumps and computed the average value
of ∆(Y) in 1000 Monte-Carlo simulations. The results in Fig. 4 show that ∆(Y) is approximately
constant for n ≥ 1024. Further, for both signals the ratio ∆(Y) is bounded away from 1, which
empirically confirms that the number of modes can be estimated by thresholding.

n blocks bumps
256 1.28726 2.08565

1024 1.57086 1.8708
4096 1.52344 1.85699
16384 1.52735 1.84809
65536 1.52647 1.83197

Table 1: Average values of ∆(Y) for blocks and bumps as in Fig. 4. The results are obtained from
1000 simulations with independent Gaussian noise with σ =

√
n/16 and σ =

√
n/256 for blocks

and bumps, respectively. As becomes evident from Fig. 4, the correct number of modes of the
signal is k = 5 and k = 11, respectively.
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4.3 Sup norm based persistence signatures

We contrast the results of the previous sections with what holds true for persistence signatures.
Throughout this section, let s j,∞ denote the signatures with respect to the sup norm. For simplicity
we restrict our exposition to functions with one single mode. More precisely, we consider
functions of the type

fn(x) =

δn if x ∈ [1/3, 2/3) ,
0 otherwise ,

(18)

with δn → 0. It is well known that it is possible to detect the single mode of fn with probability
tending to one as n→ ∞ if

δn
√

n→ ∞ , (19)

see, e.g., [7, 31]. From Theorem 5 it follows, using ε = δn, that Kolmogorov signatures can
correctly detect the single mode of signals in (7) by thresholding signatures at δn/2. In contrast,
for persistence signatures, there exists no thresholding strategy that can detect the single mode
with probability one:

Theorem 7 Let Yi = fn(i/n) + εi, where ε1, . . . , εn
i.i.d.
∼ N(0, 1), and let fn : [0, 1] → R be as in

(18) with δn such that δn
√

log n→ 0. For any arbitrary sequence qn ∈ R

lim sup
n→∞

P
(
k∞qn

(Y) = 1
)
< 1 . �

The proof of Theorem 7 requires some preparation. First, recall that a sequence of random
variables Z1, . . . ,Zn follows a Gumbel extreme value limit (GEVL) with sequences an and bn if

lim
n→∞
P
(
max
1≤i≤n

Zi ≤ an + bnx
)

= e−e−x
.

A sequence of i.i.d. standard normal random variables follows a GEVL with

an =
√

2 log n −
(
1/2 log log n + log 2

√
π
)
/
√

2 log n , bn = 1/
√

2 log n . (20)

Another essential ingredient of the proof of Theorem 7 is the following lemma.

Lemma 6 Let m ∈ N, assume ε1, . . . , ε2m
i.i.d.
∼ N(0, 1), and set

∆m = min
h∈R2m:h1≤ h2≤···≤ h2m

||ε − h||∞ .

Then, with am and bm as in (20),

lim
m→∞

P (∆m ≤ am + bmx) ≤ e−e−x
. �

Proof (of Lemma 6) Consider a fixed vector h ∈ R2m such that h1 ≤ h2 ≤ · · · ≤ h2m. In
particular, h j ≤ hm for all j ≤ m and h j ≥ hm for all j ≥ m. Let M(1) = maxi=1,...,m εi and
M(2) = mini=m+1,...,2m εi, and observe

||ε − h||∞ ≥ max
{
M(1) − hm, hm − M(2)

}
.
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Hence,

∆m ≥ min
ζ∈R

max
{
M(1) − ζ, ζ − M(2)

}
=

1
2

(
M(1) − M(2)

)
D
= M(1),

where A D= B means that A and B are equally distributed. This implies that

lim
m→∞

P (∆m ≤ am + bmx) ≤ lim
m→∞

P
(
M(1) ≤ am + bmx

)
= e−e−x

, (21)

because M(1) is the maximum of m independent standard normal random variables and follows a
GEVL with am and bm. �

Proof (of Theorem 7) To ease notation, we assume that n = 6m for some m ∈ N and hence
m = m(n). First, we observe that

P
(
k∞qn

(Y (n)) ≥ 1
)

= P
(
s0,∞(Y (n)) ≥ qn

)
and P

(
k∞qn

(Y (n)) > 1
)

= P
(
s1,∞(Y (n)) ≥ qn

)
. (22)

Since s0,∞(Y (n)) ≤ d∞( fn,Y) + s0( fn) (by Lemma 1) and s0( fn) = δn/2 it holds that

P
(
k∞qn

(Y (n)) ≥ 1
)
≤ P (d∞( fn,Y) ≥ qn − δn/2) (23)

= P

(
d∞( fn,Y) − an

bn
≥

qn − an

bn
−

δn

2bn

)
= P

(
d∞( fn,Y) − an

bn
≥

qn − an

bn
+ o(1)

)
,

with an and bn as in (20). Since d∞( fn,Y) = maxi=1,...,n |εi| it follows that for any x ∈ R one has
P (d∞( fn,Y) ≥ x) ≤ 2P

(
maxi=1,...,n εi ≥ x

)
by symmetry. Therefore,

lim
n→∞
P

(
d∞( fn,Y) − an

bn
≥ x

)
≤ 2

(
1 − e−e−x)

. (24)

Further, for i = 0, . . . , 5 we define

∆±i = min
h∈Rm:h1≤ h2≤···≤ hm

|| ± (Yim+1, . . . ,Y(i+1)m) − h||∞ .

Recall that s1,∞(Y (n)) = infg∈X1 d∞(g,Y). Observe that any g ∈ X1 is either monotonically
increasing or decreasing on [i/6, (i+1)/6] for some 0 ≤ i ≤ 5. Otherwise g would have two modes,
which contradicts g ∈ X1. For this reason, we find s1,∞(Y (n)) ≥ min

{
∆−0 ,∆

+
0 , . . . ,∆

−
5 ,∆

+
5

}
. Note

that ∆−0 ,∆
+
0 , . . . ,∆

−
5 ,∆

+
5 are identically distributed and independent asymptotically. Therefore,

P
(
k∞qn

(Y (n)) > 1
)

= lim
n→∞
P
(
s1,∞(Y (n)) ≥ qn

)
≥ lim

n→∞
P
(
min

{
∆−0 ,∆

+
0 , . . . ,∆

−
5 ,∆

+
5

}
≥ qn

)
= lim

n→∞

(
1 − P

(
∆−0 < qn

))12
.

In order to prove the assertion, we show that for some β ∈ (0, 1)

lim
n→∞
P
(
k∞qn

(Y (n)) ≥ 1
)
≥ 1 − β
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already implies
lim
n→∞
P
(
k∞qn

(Y (n)) > 1
)
> 0

for any sequence qn ∈ R. In other words, no thresholding procedure can estimate the number
of true modes k = 1 with probability tending to one. Combining (23) and (24) shows that
limn→∞ P

(
k∞qn

(Y (n)) ≥ 1
)
≥ 1 − β implies

qn ≤ an + bnzβ + o(bn)

where zβ is defined by 2(1 − exp(− exp(−zβ))) = β (it is assumed w.l.o.g. that β < e1/6/2). We
then find from (13) that

lim
n→∞
P
(
k∞qn

(Y (n)) > 1
)
≥ lim

n→∞

(
1 − P

(
∆−0 < an + bnzβ + o(bn)

))12

= lim
n→∞

(
1 − P

(
∆−0 − am

bm
<

an − am

bm
+

bn

bm
zβ

))12

≥

(
1 − e−e−zβ−log 6

)12
.

Here the last inequality follows from Lemma 6 together with bn
bm
→ 1 and an−am

bm
→ log 6. The

proof is then completed by observing that zβ + log 6 < ∞, which yields
(
1 − e−e−zβ−log 6

)
> 0. �

5 Taut strings

In order to compute Kolmogorov signatures, we require some well known and also some less
known results about taut strings, see e.g. [11, 26]. We prove a result that is central for our
exposition and appears to be interesting in its own right: Taut strings minimize the number of
critical points within a certain (quite general) class of functions.

For a given f ∈ L with antiderivative F, consider the d∞-ball Dα(F) of radius α ≥ 0 around
F. We refer to Dα(F) as the α-tube around F. The taut string, denoted by Fα, is the unique
function in Dα(F) whose graph, regarded as a curve in R2, has minimal total curve length, subject
to boundary conditions

Fα(0) = F(0) and Fα(1) = F(1) .

For existence and uniqueness, we refer to [20, 21]. Fα is Lipschitz continuous for all α > 0
(see [20], proof of Lemma 2); thus its derivative fα (defined a.e.) is in L ∞ and we may hence
choose fα ∈ L .

Therefore, the properties that Fα ∈ Dα(F) and that the graph of Fα has minimal curve length
are equivalent to

dK( f , fα) ≤ α and
∫ 1

0

√
1 + f 2

α (t) dt = min ,

respectively. The aim of this section is to show the following result.

Theorem 8 For all f ∈ L and all α > 0, the derivative fα ∈ L of the taut string Fα minimizes
the number of modes among all function g ∈ L with dK( f , g) ≤ α. �

21



f

fα

F±α

Fα

Figure 5: Taut string Fα (purple) in the α-tube around F (top) and its derivative fα (bottom).

The proof requires some preparation. Let the top and bottom functions of the α-tube around the
antiderivative F of f ∈ L be denoted by

Tα(t) := F(t) + α and Bα(t) := F(t) − α ,

respectively. Furthermore, let

S T,α = {t ∈ [0, 1] : Fα(t) = Tα(t)} and S B,α = {t ∈ [0, 1] : Fα(t) = Bα(t)}

denote the sets where the taut string touches the top (resp. bottom) of the α-tube.

Lemma 7 (Grasmair and Obereder [21]) For every α > 0, the taut string Fα is the unique
function in Dα(F) with Fα(0) = F(0) and Fα(1) = F(1) that is convex on every connected
component of (0, 1) \ S B,α and concave on every connected component of (0, 1) \ S T,α. In
particular, Fα is piecewise affine outside of S B,α ∪ S T,α. �

Lemma 7 gives rise to a characterization of the modes of the derivative of a taut string (see
Lemma 10 below). This characterization resembles the fact that an isolated local maximum (local
minimum) of fα corresponds to a point (or interval) where its antiderivative Fα changes from
being locally convex to locally concave (concave to convex), see Fig. 5. Accordingly, we define:

Definition 3 (maximally concave, convex, and affine intervals) Fix α > 0. An interval I =

[a, b] ⊂ [0, 1] is called maximally affine if Fα is affine on I but not on any interval that properly
contains I. An interval I = [a, b] ⊂ [0, 1] that is not maximally affine is called maximally convex
(concave) if Fα is convex (concave) on I but not on any interval that properly contains I. �
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Observe that by Lemma 7, if Fα is not affine on all of [0, 1], then every t ∈ [0, 1] is contained
in a maximally concave or a maximally convex interval (or possibly both). By construction,
maximally convex (concave) intervals are mutually disjoint (within their respective classes).

Definition 4 (positive and negative inflection intervals) Fix α > 0. An interval I = [a, b] ⊂
(0, 1) is called a positive (negative) inflection interval of Fα if I is a maximally affine interval
of Fα and Fα is convex (concave) on some non empty neighborhood of a and concave (convex)
on some non empty neighborhood of b. �

Notice that we deliberately require that a > 0 and b < 1 in our definition of inflection intervals.
As a direct consequence of Lemma 7 we obtain:

Lemma 8 Fix α > 0. If [a, b] is a positive inflection interval of Fα, then Fα(a) = Tα(a) and
Fα(b) = Bα(b); if it is a negative inflection interval, then Fα(a) = Bα(a) and Fα(b) = Tα(a). �

Moreover we have:

Lemma 9 Fix α > 0. Then Fα has the following properties:

(i) The number of maximally convex, the number of maximally concave, and the number of
inflection intervals of Fα is finite.

(ii) Maximally convex and maximally concave intervals are interleaved, i.e., the set of points
between two consecutive maximally convex (concave) intervals belongs to a maximally
concave (convex) interval.

(iii) The intersection of a maximally convex (concave) with an immediately consecutive max-
imally concave (convex) interval is a positive (negative) inflection interval, and every
inflection interval arises in this way. �

Proof Let Tα and Bα denote the top and bottom of the α-tube around Fα, respectively. Since
Fα is continuous, the graphs of Tα and Bα are compact sets. Let I be a maximally concave, a
maximally convex, or an inflection interval of Fα. By Definitions 3 and 4 and Lemma 7, the graph
of Fα restricted to I must then contain an affine segment that connects Tα with Bα (or Bα with
Tα). Therefore, the arc length of the graph of Fα, restricted to I, is bounded from below by the
Euclidean distance dα between the graphs of Bα and Tα. Since these sets are compact and disjoint,
one has dα > 0. Since dα is independent of I, and since Fα is Lipschitz, it follows that the length
of I is bounded from below by a number that only depends on α and the Lipschitz constant of
Fα. Hence, since maximally convex (concave) intervals are mutually disjoint, there can only
exist finitely many of them. Likewise, since positive (negative) inflection intervals are disjoint,
there can only exist finitely many of those. Properties (i) and (ii) are then a straightforward
consequence of Lemma 7. �

The next lemma states the promised characterization of the modes of the derivative of a taut string.

Lemma 10 Fix α > 0 and define

fα(t) = lim
ε→0

inf
0<δ<ε

Fα(t + δ) − Fα(t − δ)
2δ

if 0 < t < 1

and fα(t) = lims→t fα(s) for t ∈ {0, 1}. Then the number of positive inflection intervals of Fα

equals the number of modes of fα, and this number is finite. �
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Proof First notice that the definition of fα(0) and fα(1) is meaningful since Fα is affine in some
neighborhood of 0 and 1.

If Fα is affine on all of [0, 1], then there is nothing to show. So suppose that this is not the
case. Consider a finite partition P = {t0, . . . , t|P|} of [0, 1]. Notice that fα is nowhere decreasing
(nowhere increasing) on intervals where Fα is convex (concave). Hence, for ti to count a mode of
fα, i.e., M ( fα, P, i) = 1, the pair (ti−1, ti) must not belong to the same maximally concave interval
and the pair (ti, ti+1) must not belong to the same maximally convex interval of Fα. Since, by
assumption, Fα is not affine on all of [0, 1], every t ∈ [0, 1] belongs to a maximally concave or
maximally convex interval (or both). Therefore, by property (i) of Lemma 9, to each mode of fα
counted by P there corresponds at least one change from a maximally convex to an immediately
consecutive maximally concave interval. By property (ii) of Lemma 9, the total number of such
changes is equal to the number of positive inflection intervals, which we denote by I +(Fα). It
follows that I +[Fα] ≥M ( fα).

Vice versa, by considering a partition of [0, 1] such that there exists (apart from t0 = 0
and t|P| = 1) exactly one point in each positive and each negative inflection interval, it is
straightforward to show that I +[Fα] ≤M ( fα).

Finally, finiteness of M ( fα) follows from the fact that there are only finitely many positive
inflection intervals. �

With these preparations, we are now in the position to prove Theorem 8.

Proof (of Theorem 8) Let g ∈ L with antiderivative G such that dK( f , g) ≤ α. Consider a
positive inflection interval [a, b] of Fα. By Lemma 8, Fα(a) = Tα(a), Fα(b) = Bα(b), and Fα is
affine on [a, b]. In particular, G(a) ≤ Fα(a) and G(b) ≥ Fα(b), and thus

fα(t) =
Fα(b) − Fα(a)

b − a
≤

G(b) −G(a)
b − a

for all t ∈ (a, b) .

For every Lebesgue-integrable g : [a, b] → R with G(t) = G(a) +
∫ t

a g(s) ds, there exist sets
C1,C2 ⊂ [a, b] of positive Lebesgue measure such that

g(c1) ≤
G(b) −G(a)

b − a
≤ g(c2)

for all c1 ∈ C1 and all c2 ∈ C2.
Hence, for every positive inflection interval [a, b] there exists t ∈ (a, b) such that g(t) ≥ fα(t).

By a similar argument, for every negative inflection interval [a, b] there exists t ∈ (a, b) such
that g(t) ≤ fα(t). By Lemma 10, whenever M ( fα) > 0 (otherwise there is nothing to show),
the set of positive inflection intervals of Fα is not empty. Therefore, one can choose a partition
P = {t0, . . . , t|P|} of [0, 1] that contains (apart from t0 = 0 and t|P| = 1) exactly one point
in the interior of each inflection interval of Fα such that g(ti) ≥ fα(ti) whenever ti lies in a
positive inflection interval and g(ti) ≤ fα(ti) whenever ti lies in a negative inflection interval.
By the proof of Lemma 10, M ( fα) = M ( fα, P) for any partition P that contains (apart from
t0 = 0 and t|P| = 1) exactly one point in the interior of each inflection interval. Such partitions
P count a mode of fα precisely for every positive inflection interval of Fα. Since positive
and negative inflection intervals are interleaved and their interiors are disjoint, we obtain that
M (g, P) ≥M ( fα, P) = M ( fα). Thus M (g) ≥M ( fα). �
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6 Computing Kolmogorov signatures

The results of the previous section lead to an efficient algorithm for computing Kolmogorov
signatures. Let X ⊂ L be some subset, and let f ∈ X with antiderivative F. Suppose that X
contains the derivatives fα of the taut stings Fα for all α ≥ 0. For example, let X be the space of
piecewise constant functions. For α large enough, Fα is affine on all of [0, 1], and its derivative fα
has no modes. If f has any modes at all, then by lowering α continuously, Fα will at some point
develop a positive inflection interval below some threshold α0 > 0. By Theorem 8 and Lemma 10,
the value of α0 is precisely the distance of f to the set of functions in X with zero modes, i.e.,
s0( f ) = α0. Continuing this way, and defining αk as the smallest α for which fα has at most k
modes, one finds that sk( f ) = αk for all k.

The idea of the algorithm below is to reverse this observation: Starting from f = f0, we
incrementally compute the values of α (in increasing order) at which the number of modes of fα
decreases. To this end, we work with the space X of piecewise constant functions on a fixed
partition 0 = t0 < t1 < · · · < tn = 1 of [0, 1]. Notice that since we require X ⊂ L , we have
f (ti) = 1

2 ( f |(ti−1,ti) + f |(ti,ti+1)) for all non-boundary points ti of the partition.
Our starting point is a reformulation of Lemma 7 for piecewise constant functions.

Lemma 11 Let f be a piecewise constant function with antiderivative F. Then the taut string Fα

is the unique continuous piecewise linear function in Dα(F) with Fα(0) = F(0) and Fα(1) = F(1)
such that if t is an increasing (decreasing) discontinuity of fα = F′α, then Fα(t) = F(t) + α

(Fα(t) = F(t) − α). �

Fix α ≥ 0. Let I = (a, b) ⊆ (0, 1) be an open interval, and let fα be constant on (a, b). We
call I regular for fα if either a = 0 and b = 1 or a > 0, b < 1, and there exists ε > 0 such
that for all 0 < δ ≤ ε either fα(a) > fα(a − δ) and fα(b) < fα(b + δ) or fα(a) < fα(a − δ) and
fα(b) > fα(b + δ). We call I = (a, b) maximal (respectively minimal) for fα if a > 0, b < 1, and
there exists ε > 0 such that for all 0 < δ ≤ ε one has fα(a) > fα(a − δ) and fα(b) > fα(b + δ)
(respectively fα(a) < fα(a − δ) and fα(b) < fα(b + δ)). We call I critical if it is minimal or
maximal. Finally, we call I = (a, b) a boundary interval for fα if either a = 0 and b < 1 or a > 0
and b = 1, and (a, b) is the largest such interval on which fα is constant. As a consequence of
Lemma 11 we obtain:

Corollary 2 Away from discontinuities, fα has the following form: either

• t lies on a regular interval I = (a, b) of fα with value fα(t) =
F(b)−F(a)

b−a ,

• t lies on a locally minimal/maximal interval I = (a, b) of fα with value fα(t) =
F(b)−F(a)±2α

b−a ,
or

• t lies on a boundary interval of fα with value fα(t) =
F(b)−F(a)±α

b−a . �

This corollary is central for our computation of Kolmogorov signatures. First observe
that a value of a maximal interval is continuously decreasing with growing α, the value of a
minimal interval is continuously increasing, and the value of a regular interval remains unchanged.
Moreover, if α is increased only slightly, then the discontinuities of fα remain unchanged; indeed:

Lemma 12 Let F be piecewise linear. For every α ≥ 0 there is δ > 0 such that the points of
discontinuity of fβ coincide with those of fα for all β with α ≤ β < α + δ. Moreover, if t lies on a
regular interval of fα, then fβ(t) = fα(t). �
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Proof Define Gβ by the properties of Lemma 11, using the discontinuities of fα, i.e., if t is an
increasing (decreasing) discontinuity of fα, then define Gβ(t) := F(t) + β (resp. Gβ(t) := F(t)− β);
set Gβ(0) := F(0) and Gβ(1) := F(1), and interpolate linearly. Then ‖Gβ − Fα‖∞ = β − α and
thus, since Fα ∈ Dα(F), we have that ‖Gβ − F‖∞ ≤ β, i.e., Gβ ∈ Dβ(F). For δ sufficiently small,
the discontinuities of gβ = G′β have the same type as those of fα. But since Fβ is uniquely defined
by the properties of Lemma 11 with respect to these discontinuities, we must have Fβ = Gβ. �

As a consequence, for every α ≥ 0, there exists a minimal number µ(α) > α such that
fβ and fα have the same points of discontinuity for all β with α ≤ β < µ(α) but the set of
points of discontinuity of fµ(α) is different from that of fα. We call µ(α) the merge value of α.
The merge value is the smallest number strictly greater than α for which a critical interval or a
boundary interval of fµ(α) reaches the value of an adjacent constant interval, and the corresponding
discontinuity vanishes. Each discontinuity of fα that is incident to a critical or a boundary interval
is a possible candidate for such an event. Consider such a discontinuity b between two consecutive
constant intervals I = [a, b] and J = [b, c] of fα. For an interval I = [a, b], let FI := F(b) − F(a).
As a consequence of Corollary 2 and Lemma 12, we obtain that the merge value µ(α) is the
smallest number among all merge value candidates mI,J of fα, which are computed as follows:

If I is critical and J is regular or vice-versa, then the merge value candidate is

mI,J =
1
2

∣∣∣∣∣FI −
|I|
|J|

FJ

∣∣∣∣∣ .
If both I and J are critical, then the merge value candidate is

mI,J =

∣∣∣∣∣ |I|FJ − |J|FI

2(|I| + |J|)

∣∣∣∣∣ .
If I is critical and J is a boundary interval, then the merge value candidate is

mI,J =

∣∣∣∣∣ |I|FJ − |J|FI

|I| + 2|J|

∣∣∣∣∣ .
If I is a boundary interval and J is critical, then the merge value candidate is

mI,J =

∣∣∣∣∣ |I|FJ − |J|FI

2|I| + |J|

∣∣∣∣∣ .
If I is a boundary interval and J is regular or vice-versa, then the merge value candidate is

mI,J =

∣∣∣∣∣FI −
|I|
|J|

FJ

∣∣∣∣∣ .
If both I and J are boundary intervals, then the merge value candidate is

mI,J =

∣∣∣∣∣ |I|FJ − |J|FI

|I| + |J|

∣∣∣∣∣ .
We define the sequence of merge values µ1 < µ2 < µ3 < . . . of f as follows. Starting from

µ1 := µ(0), let µi+1 := µ(µi). By construction, the values α = µi are precisely those values where
the number of discontinuities of fα decreases with increasing α.

Observe that the merge value candidates of fµi+1 are equal to those of fµi except only for the
merged intervals I and J, i.e., those intervals that have the same value for fµi+1 but did not have
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the same value for fµi . This suggests an efficient way for computing Kolmogorov signatures
of f in reverse order. Starting with α = 0, we iterate in increasing order through the sequence of
merge values of f . In a min-priority queue, we maintain the merge value candidates mI,J . In each
iteration i, the lowest merge value candidate is the next value µi. Upon a merge, the corresponding
discontinuity is removed, and the merge value candidates of the neighboring discontinuities are
recomputed and updated in the priority queue. The discontinuities are organized in a linked list to
allow fast access to the neighbors. If the number of modes of fα has decreased upon a merge, the
value α is prepended to the sequence of computed signatures. This can only occur if one of the
merged intervals is maximal. The method is summarized in pseudocode in Algorithm 1. Using an
appropriate heap data structure, the running time is O(n log n), where n is the number of function
values of f .

Algorithm 1 Computing Kolmogorov signatures
1: procedure KolmogorovSequence( f : list of function values)
2: α = 0
3: S = empty sequence
4: L = jumps of f (linked list)
5: Q = merge values of the jumps (priority queue)
6: while the priority queue Q is not empty do
7: let α be the smallest merge value in Q
8: let I = [a, b] and J = [b, c] be the corresponding intervals
9: if I and J are minimum/maximum or boundary/maximum of fα then

10: prepend α to S
11: remove b from the list L of discontinuities
12: remove α from the priority queue Q
13: recompute merge values of a and c and update priority queue Q
14: return S
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