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CONVERGENCE THEORY FOR PRECONDITIONED

EIGENVALUE SOLVERS IN A NUTSHELL ∗

MERICO E. ARGENTATI† , ANDREW V. KNYAZEV‡ , KLAUS NEYMEYR§ ,

EVGUENI E. OVTCHINNIKOV¶, AND MING ZHOU§

Abstract. Preconditioned iterative methods for numerical solution of large matrix eigenvalue
problems are increasingly gaining importance in various application areas, ranging from material sci-
ences to data mining. Some of them, e.g., those using multilevel preconditioning for elliptic differential
operators or graph Laplacian eigenvalue problems, exhibit almost optimal complexity in practice, i.e.,
their computational costs to calculate a fixed number of eigenvalues and eigenvectors grow linearly
with the matrix problem size. Theoretical justification of their optimality requires convergence rate
bounds that do not deteriorate with the increase of the problem size. Such bounds were pioneered
by E. D’yakonov over three decades ago, but to date only a handful have been derived, mostly for
symmetric eigenvalue problems. Just a few of known bounds are sharp. One of them is proved in
[doi:10.1016/S0024-3795(01)00461-X] for the simplest preconditioned eigensolver with a fixed step
size. The original proof has been greatly simplified and shortened in [doi:10.1137/080727567] by us-
ing a gradient flow integration approach. In the present work, we give an even more succinct proof,
using novel ideas based on Karush-Kuhn-Tucker theory and nonlinear programming.
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iterative method; Karush–Kuhn–Tucker theory.
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1. Introduction. Preconditioning is a technique developed originally for the
iterative solution of linear systems that aims at the acceleration of convergence of the
iterations. In its simplest form, the system Ax = b is multiplied by a matrix T such
that the spectral condition number of TA, the ratio of the largest to the smallest
singular value thereof, is considerably smaller than that of A, which generally leads
to faster convergence.

Iterative methods for solving linear systems normally do not require A and T
to be explicitly formed as matrices: it is sufficient that matrix-vector multiplications
are implemented and performed via user-defined procedures. The same is true for
iterative methods that compute eigenvalues and eigenvectors of a very large matrix,
as, e.g., in [24], calculating one eigenvector of a 100-billion size matrix, or in [4].

A classical application area for preconditioned solvers is the discretized boundary
value problems for elliptic partial differential operators; see, e.g., [5]. With multigrid
preconditioning, preconditioned solvers may achieve linear complexity on problems
from this area; see, e.g., [12] and references there for symmetric eigenvalue prob-
lems. D’yakonov seminal work, summarized in [5], proposes “spectrally equivalent”
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preconditioning for elliptic operator eigenvalue problems in order to guarantee con-
vergence that does not deteriorate with the increasing dimension of the discretized
problem. Owing to this, for large enough problems such preconditioners outperform
direct solvers, which factorize the original sparse matrix A. Inevitable matrix fill-
ins, especially prominent in discretized differential problems in more than two spatial
dimensions, destroy the matrix sparsity, resulting in computer memory overuse and
non-optimal performance.

Preconditioning has also long since been a key technique in ab initio calculations
in material sciences; see, e.g., [2] and references therein. In the last decade, precondi-
tioning for graphs is attracting growing attention as a tool for achieving an optimal
complexity for large data mining problems, e.g., for graph bisection and image seg-
mentation using graph Laplacian and Fiedler vectors since [10]; for recent work see,
e.g., [22].

Preconditioned iterative methods for the original linear system Ax− b = 0 are in
many cases mathematically equivalent to standard iterative methods applied for the
preconditioned system T (Ax−b) = 0. For example, the classical Richardson iteration
step applied to the preconditioned system becomes

xn+1 = xn − τnT (Axn − b),(1.1)

where τn is a suitably chosen scalar.
Turning now to eigenvalue problems, let us consider the computation of an eigen-

vector of a real symmetric positive definite matrix A corresponding to its smallest
eigenvalue. Borrowing an argument from [9], suppose that the targeted eigenvalue
λ∗, or a sufficiently good approximation thereof, is known. Then the corresponding
eigenvector can be computed by solving a homogeneous linear system (A−λ∗I)x = 0,
or, equivalently, the system T (A−λ∗I)x = 0, where I is an identity. The Richardson
iteration step now becomes

xn+1 = xn − τnT (A− λ∗I)xn.(1.2)

Theoretically, the best preconditioners for Ax − b = 0 and (A − λ∗I)x = 0 are,
correspondingly, T = A−1 and T = (A − λ∗I)

†, where † denotes a pseudo-inverse,
making both Richardson iteration schemes, (1.1) and (1.2), converge in a single step
with τn = 1. Under the standard assumption T ≈ A−1, both in (1.1) and (1.2),
convergence theory is straightforward, e.g., in terms of the spectral radius ρ(I − TA)
of I − TA. Sharp explicit convergence bounds, not relying on generic constants,
can be derived in the form of inequalities that allow one to determine whether the
convergence deteriorates with the increasing problem size by analyzing every term in
the bound.

For some classes of eigenvalue problems, the efficiency of choosing T ≈ A−1 has
been demonstrated, both numerically and theoretically, in [1, 11]. This choice allows
the easy adaptation of a vast variety of preconditioners already developed for linear
systems to the eigensolvers.

In practice, the theoretical value λ∗ in the Richardson iteration above has to be
replaced with its approximation. A standard choice for λ∗ is a Rayleigh quotient
function λ(x) = xTAx/xTx, leading to

xn+1 = xn − τnT (A− λ(xn)I)xn.(1.3)

It is well known that the Rayleigh quotient λ(xn) gives a high quality (quadratic)
approximation of the eigenvalue λ∗, if the sequence xn converges to the corresponding
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eigenvector. Thus, asymptotically as λ(xn)→λ∗, where n→∞, methods (1.2) and
(1.3) are equivalent, and so may be their asymptotic convergence rate bounds. How-
ever, asymptotic convergence rate bounds naturally contain generic constants, which
are independent of n → ∞, but may depend on the problem size.

Due to the changing value λ(xn), a non-asymptotic theoretical convergence anal-
ysis is much more difficult, compared to the case for linear systems, even for the
simplest methods, such as the Richardson iteration (1.3). D’yakonov pioneering work
from the eighties, summarized in [5, Chapter 9], includes the first non-asymptotic
convergence bounds for preconditioned eigensolvers proving their linear convergence
with a rate, which can be bounded above independently of the problem size.

Just a few of the known bounds are sharp. One of them is proved for the simplest
preconditioned eigensolver with a fixed step size (1.3) in a series of papers by Neymeyr
over a decade ago; see [11] and references therein. The original proof has been greatly
simplified and shortened in [13] by using a gradient flow integration approach.

In this paper we present a new self-contained proof of a sharp convergence rate
bound from [11] for the preconditioned eigensolver (1.3), Theorem 2.1. Following the
geometrical approach of [11, 13], we reformulate the problem of finding the conver-
gence bound for (1.3) as a constrained optimization problem for the Rayleigh quotient.
The main novelty of the proof is that here we use inequality constraints, which brings
to the scene the Karush-Kuhn-Tucker (KKT) theory; see, e.g. [6, 18]. KKT conditions
allow us to reduce our convergence analysis to the simplest scenario in two dimensions,
which is the key step in the proof. We have also found several simplifications in the
two dimensional convergence analysis, compared to that of [11, 13]. We believe that
the new proof will greatly enhance the understanding of the convergence behavior
of increasingly popular preconditioned eigensolvers, whose application area is quickly
expanding: see, e.g., [14, 15, 16, 17, 20, 21, 22].

2. Convergence rate bound. We consider a real generalized eigenvalue prob-
lem Ax = λBx with real symmetric positive definite matrices A and B. The objective
is to approximate iteratively the smallest eigenvalue λ1 by minimizing the Rayleigh
quotient λ(x) = xTAx/xTBx. A direct formulation of the convergence analysis with
respect to this form of the eigenvalue problem has some disadvantages. Instead, the
inverted form Bx = µAx with µ = 1/λ results in more compact representation of
the problem and the proof (many inverses like A−1 and 1/λ can be avoided), cf.
[11, 13]. For this inverted form the objective is to approximate the largest eigenvalue
µ1 of Bx = µAx by maximizing the Rayleigh quotient µ(x) = xTBx/xTAx. We
denote the eigenvalues by µ1 > . . . > µm > 0, which can have arbitrary multiplicity.
Corresponding eigenspaces are denoted by V1, . . . ,Vm.

The increase of µ(x) can be achieved by correcting the current iterate x along the
preconditioned gradient of the Rayleigh quotient, i.e.

(2.1) x′ = x+
1

µ(x)
T (Bx− µ(x)Ax);

see [11, 19, 13] and references therein. If B = I, then µ(x) = 1/λ(x) and method
(2.1) turns into (1.3) with τn = 1, discussed in the Introduction.

In all our prior work on preconditioned eigensolvers for symmetric eigenvalue
problems, including [11, 13], we have always assumed that the preconditioner T is a
symmetric and positive definite matrix, typically satisfying conditions

(2.2) (1 − γ)zTT−1z ≤ zTAz ≤ (1 + γ)zTT−1z, ∀z, for a given γ ∈ [0, 1),
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or equivalent, up to the scaling of T . Recently, the authors of [3] have noticed and
demonstrated that T does not have to be symmetric positive definite, and a less
restrictive assumption

(2.3) smax

(

I −A1/2TA1/2
)

≤ γ < 1,

can be used instead, where smax denotes the matrix largest singular value, and A1/2

is the symmetric positive definite square root of A. It is verified in [3] that (2.2) and
(2.3) are equivalent if T is symmetric and positive definite.

In what follows, we give a complete and concise proof of the following convergence
rate bound, first proved in [11, 13],

Theorem 2.1. If µi+1 < µ(x) < µi and T satisfies (2.3), then for x′ given by

(2.1) it holds that either µ(x′) ≥ µi or

(2.4) 0 <
µi − µ(x′)

µ(x′)− µi+1

≤ σ2 µi − µ(x)

µ(x) − µi+1

, σ = γ + (1− γ)
µi+1

µi
.

The first step, Lemma 2.2, of the proof of Theorem 2.1 is the same as that in
[11, 13], where we characterize a set of possible next step iterates x′ in (2.1) vary-
ing the preconditioner T constrained by assumption (2.3), aiming at eliminating the
preconditioner T from consideration. The only difference is that in [11, 13] we start
with changing an original coordinate basis to an A-orthogonal basis, which transforms
A into the identity I, resulting in a one-line proof of Lemma 2.2. Here, we choose
to present a detailed proof of Lemma 2.2, for a general A, demonstrating that the
transformation of A into the identity I, made after Lemma 2.2, is well justified.

Lemma 2.2. Let us denote κ = µ(x) and

x′
A = A1/2x′, xA = A1/2x, BA = A−1/2BA−1/2, TA = A1/2TA1/2, rA = BAxA−κxA,

and define a closed ball

BA = {y : (BAxA − y)
T
(BAxA − y) ≤ γ2 (rA)

T
rA}

centered at BAxA. Let T satisfy (2.3), then for x′ given by (2.1) it holds that

κx′
A = BAxA − (I − TA)(BAxA − κxA) ∈ BA.

Proof. Left-multiplying (2.1) by µ(x)A1/2 gives

µ(x)A1/2x′ = µ(x)A1/2x+A1/2TA1/2A−1/2BA−1/2A1/2x− µ(x)A1/2TA1/2A1/2x,

or, in our new notation,

κx′
A = κxA + TABAxA − κTAxA = BAxA − (I − TA)(BAxA − κxA),

resulting BAxA − κx′
A = (I − TA)rA. Since smax (I − TA) ≤ γ by (2.3), we get

(BAxA − κx′
A)

T
(BAxA − κx′

A) = ((I − TA)rA)
T
((I − TA)rA) ≤ γ2 (rA)

T
rA.

The second step of the proof is traditional—reducing the generalized symmetric
eigenvalue problem Bx = µAx to the standard eigenvalue problem for the symmetric
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positive definite matrix BA = A−1/2BA−1/2 by making the change of variables as
hinted by Lemma 2.2. We use the standard inner product in ·A variables, i.e.

(yA, zA) = yTAzA =
(

A1/2y
)T (

A1/2z
)

= yTAz,

and the corresponding vector norm ‖yA‖ = (yA, yA)
1/2, so, e.g.,

κ = µ(x) =
xTBx

xTAx
=

xT
ABAxA

xT
AxA

=
(xA, BAxA)

(xA, xA)
= µA(xA).

We later use BA and B−1
A -based scalar products and norms defined as follows, e.g.,

(yA, zA)BA
= yTABAzA =

(

A1/2y
)T

A−1/2BA−1/2
(

A1/2z
)

= yTBz.

For brevity we drop the subscript ·A in the rest of the paper. In the following T
refers to TA = A1/2TA1/2, B refers to BA = A−1/2BA−1/2, x refers to xA = A1/2x,
and so on, cf. Lemma 2.2. Furthermore, µ(x) = (x,Bx)/(x, x), and method (2.1) is
µ(x)x′ = Bx− (I −T )(Bx−µ(x)x). The new form of condition (2.3) is ‖I −T ‖ ≤ γ.
This means that A1/2TA1/2 approximates the identity matrix with respect to the
notation used in Lemma 2.2. The closed ball has the form B = {y : ‖Bx−y‖ ≤ γ‖r‖}
with the radius γ‖r‖ centered at Bx. Since µ(x)x′ ∈ B and µ(x′) = µ

(

µ(x)x′
)

, we
can estimate µ(x′) by using a minimizer of µ(·) in B (i.e. by considering the worst
case). We observe that, effectively, we set A = I without loss of generality.

3. The special case with γ=0 : the power method. The main idea of the
geometrical approach of [11, 13], which we also employ in this paper, is that the
convergence rate of iterations (2.1) is slowest, in terms of the Rayleigh quotient, if
x is a linear combination of two eigenvectors, which makes the further convergence
analysis trivial. A new proof of this fact actually occupies a major part of our paper.
In order to illustrate how such a dramatic reduction in dimension becomes possible,
in this section we apply our technique to a simplified case T = I corresponding to
γ = 0. It is not difficult to see that under this assumption (2.1) turns into one
iteration µ(x)x′ = Bx of the power method, and bound (2.4) holds with γ = 0 and
thus σ = µi+1/µi. Let us make a historic note that exactly this result has apparently
first appeared in [7, 8].

The left-hand side of bound (2.4) is monotone in µ (x′) = µ(Bx). One way to find
out at which x the behavior of (2.1) is the worst is to minimize f(x) = µ(Bx) for all
x that satisfy µ(x) = κ for some fixed κ ∈ (µi+1, µi). Slightly abusing the notation
in the proof, we keep denoting by x both the initial approximation in (2.1) and the
vector in the minimization problem.

We notice that µ(x) = κ is equivalent to h(x) = κ(x, x)− (x,Bx) = 0. Therefore,
at a stationary point we have, using Lagrangian multipliers, that

(3.1) ∇f(x) + a∇h(x) = 0,

where a is some constant. This yields

2B(B − µ(Bx)I)Bx

‖Bx‖2
+ 2a(κx−Bx) = 0,

which can be rewritten as

(3.2) B3x− µ(Bx)B2x− cBx+ cκx = 0,
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where c = ‖Bx‖2a. Since

µ(Bx) =

(

Bx,B(Bx)
)

(

Bx,Bx
)

implies (B3x− µ(Bx)B2x, x) = 0, we obtain

c‖Bx− κx‖2 = (B3x− µ(Bx)B2x,Bx − κx)

= (B3x− µ(Bx)B2x,Bx− µ(Bx)x) = ‖B2x− µ(Bx)Bx‖2,

which shows that c > 0. Thus, equation (3.2) can be viewed as a polynomial equation
p3(B)x = 0, where p3(t) is a third degree polynomial with positive first and last
coefficients, specifically 1 and cκ, correspondingly.

Inserting x =
∑m

i=1
vi, where vi are the projections of x onto the eigenspaces

Vi, leads to
∑m

i=1
p3(µi)vi = 0. Since the eigenspaces are orthogonal to each other,

the products p3(µi)vi must be zero for each i. Owing to the positiveness of the first
and last coefficients, the polynomial p3 must have a non-positive root, and thus at
most two positive roots, i.e. p3(µi) can be zero for some two indexes i = k and i = l
at most, allowing the only possibly nonzero vk and vl from all projections vi. We
conclude that x is a linear combination of at most two normalized eigenvectors xk

and xl, corresponding to distinct eigenvalues µk and µl of the matrix B.
We assume without loss of generality that x = xk + αxl, then

α2 =
µk − µ(x)

µ(x)− µl
= tan2 ∠ (x, xk) .

Similarly, since Bx = µkxk + αµlxl, we obtain

(3.3) tan2 ∠ (Bx, xk) =
µk − µ(Bx)

µ(Bx)− µl
=

µ2
l

µ2
k

α2 = σ2µk − µ(x)

µ(x)− µl
, with σ =

µl

µk
.

Let µk > µl, then κ ∈ (µl, µk) implies µl ≤ µi+1 < µ(x) = κ < µi ≤ µk. By using
monotonicity of the ratio of the quotients in µk and µl and the fact that the vector
x here corresponds to the worst-case scenario, i.e. minimizing µ (x′) = µ(Bx) over
all x with the fixed value µ(x) = κ, we obtain (2.4) with γ = 0. Since (3.3) is an
equality, we also prove that the upper bound in (2.4) with γ = 0 is sharp, turning
into an equality if the initial approximation in (2.1) satisfies x ∈ span {xi, xi+1}.

In the next section, we apply the described dimensionality reduction technique to
the general case. We formulate the conditions that “the worst case” x must satisfy,
which yield the generalization of equation (3.1), and rewrite this equation as a cubic
equation p3(B)x = 0. We show that the first and last coefficients of this equation are
positive, which, as we have just seen, implies that x is a linear combination of two
eigenvectors. A simple two-dimensional analysis completes the proof of Theorem 2.1.

4. The general case with γ ∈ [0, 1) : the preconditioned eigensolver (2.1).
Next the proof of Theorem 2.1 is given: Let us denote r = Bx − µ(x)x and define
B = {y : ‖Bx−y‖ ≤ γ‖r‖}, a closed ball with the radius γ‖r‖ centered at Bx. On the
one hand, it holds that µ(y) > µ(x) for any vector y ∈ B since x is not an eigenvector
and r 6= 0. Indeed, taking into account ‖Bx− y‖2 < ‖r‖2 = ‖Bx− µ(x)x‖2, we have

‖y‖2 < 2(x, y)B − 2µ(x)‖x‖2B + µ(x)2‖x‖2 = 2(x, y)B − µ(x)‖x‖2B

=
(

‖y‖2B − ‖y − µ(x)x‖2B
)

/µ(x) ≤ ‖y‖2B/µ(x)
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so that µ(x) < ‖y‖2B/‖y‖
2 = µ(y). On the other hand, µ(x)x′ = Bx − (I − T )r ∈ B,

since ‖(I − T )r‖ ≤ γ‖r‖, see Lemma 2.2. This proves µ(x′) > µ(x) > µi+1 and, thus,
the left inequality in (2.4), provided that µ(x′) < µi.

In the previous proof with γ = 0, the ball B shrinks to a single point Bx and
the only choice of y = Bx is possible. The present case γ > 0 is significantly more
difficult for the worst-case scenario analysis, involving a minimization problem with
two variables, x and y. In our previous work, see [11, 13] and references therein, we
first vary y ∈ B intending to minimize µ(y) for a given x, and then vary x fixing
µ(x) = κ. The first minimization problem defines y as an implicit function of x,
and then Lagrangian multipliers are used, as in Section 3, to analyze the second
minimization problem, in x. It turns out that the proof is much simpler if we vary
both x and y at the same time and attack the required two-parameter minimization
problem in x and y directly by using the KKT arguments as provided below.

Lemma 4.1. For γ ∈ [0, 1) and a fixed value κ that is not an eigenvalue of B, let

a pair of vectors {x∗, y∗} denote a solution of the following constrained minimization

problem:

minimize µ(y) subject to ‖Bx− y‖ ≤ γ‖Bx− κx‖ and µ(x) = κ.

If x∗ is not an eigenvector of B, then both x∗ and y∗ belong to a two-dimensional

invariant subspace of B corresponding to two distinct eigenvalues, and

(4.1) sin∠(Bx∗, y∗) = γ sin∠(Bx∗, x∗),

where ∠(·, ·) denotes an angle between two vectors defined by ∠(u, v) := arccos

(

(u, v)

‖u‖‖v‖

)

.

Proof. We consider the equivalent problem

minimize f(x, y) = µ(y), x 6= 0,

subject to g(x, y) = ‖Bx− y‖2 − γ2‖Bx− κx‖2 ≤ 0, and

h(x, y) = κ(x, x) − (x,Bx) = 0.

We first notice that the assumption x 6= 0 implies y 6= 0 because of the first constraint
and γ < 1. Thus, µ(y) is correctly defined. Next, let us temporarily consider a
stricter constraint ‖x‖ = 1, instead of x 6= 0. Combined with the other constraints,
this results in minimization of the smooth function f(x, y) on a compact set, so there
exists a solution {x∗, y∗}. Finally, let us remove the artificial constraint ‖x‖ = 1 and
notice that any nonzero multiple of {x∗, y∗} is also a solution. Thus we can consider
the Karush-Kuhn-Tucker (KKT) conditions, e.g., [6, Theorem 9.1.1], [6, 18], in any
neighborhood of {x∗, y∗}, which does not include the origin.

Next we show that the gradients of g and h are linearly independent. For the
gradient of h, it holds that ∂h/∂x = −2r with r 6= 0, since x is not an eigenvector of
B, and it holds that ∂h/∂y = 0, since h does not depend on y. Assuming the linear
dependence of the gradients of g and h implies that ∂g/∂y = 0, so that 2(y−Bx) = 0
and y = Bx. By using y = Bx, it holds that

∂g

∂x
= 2

(

B2x−By − γ2(B − κI)r
)

= −2γ2(B − κI)r,

while ∂h/∂x = −2r, i.e. (using again the assumed linear dependence) the vector
r = Bx − κx is an eigenvector of B − κI, and, hence x is an eigenvector of B,
contradicting the lemma assumption.
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Therefore, the gradients of g and h are linearly independent. All functions in-
volved in our constrained minimization are smooth. We conclude that the stationary
point {x∗, y∗} is regular, i.e., the KKT conditions are valid. The KKT stationarity
condition states that there exist constants a and b such that

∇f(x∗, y∗) + a∇g(x∗, y∗) + b∇h(x∗, y∗) = 0

at the critical point {x∗, y∗}. The independent variables {x, y} no longer appear, so to
simplify the notation, in the rest of the proof we drop the superscript ∗ and substitute
{x, y} for {x∗, y∗}. We separately write the partial derivatives with respect to x,

(4.2) 2a
(

B2x−By − γ2(B − κI)r
)

− 2br = 0,

and with respect to y,

(4.3) 2
By − µ(y)y

(y, y)
+ 2a(y −Bx) = 0.

The KKT complementary slackness condition ag(x, y) = 0 must be satisfied, implying

(4.4) ‖Bx− y‖ = γ‖r‖ if a 6= 0.

If y is an eigenvector then By − µ(y)y = 0 in condition (4.3), leading to y = Bx,
i.e. vector x is also an eigenvector of B, thus we are done. Now we consider a
nontrivial case, where neither x nor y is an eigenvector. Condition (4.3) then implies
a 6= 0, so identity (4.4) holds unconditionally, condition (4.2) turns into

(4.5) B(Bx − γ2r − y) = cr with c =
b

a
− γ2κ,

and taking the inner product of (4.3) with y gives

(4.6) (Bx − y, y) = 0.

Taking the inner products of both sides of (4.5) with B−1r results in

c‖r‖2B−1 = (Bx− y, r)− γ2‖r‖2 = (Bx− y, r)− ‖Bx− y‖2 = −κ(Bx− y, x).

Therein we use (4.4) and (4.6).
Denoting d = a‖y‖2 − µ(y), we rewrite (4.3) as

(4.7) By − µ(y)Bx = d(Bx − y).

Taking the inner products of both sides of (4.7) with y − µ(y)x yields

0 ≤ ‖y − µ(y)x‖2B = d(Bx − y, y − µ(y)x) = −dµ(y)(Bx − y, x),

where the orthogonality (Bx − y, y) = 0 has been used again. Therefore, we obtain
cd‖r‖2B−1 = −dκ(Bx− y, x) ≥ 0, which implies cd ≥ 0.

Substituting r = Bx− κx and multiplying through by B in (4.5) results in

(1− γ2)B3x+ (κγ2 − c)B2x−B2y + cκBx = 0.

Multiplying through by d + µ(y) and substituting (d + µ(y))Bx = (B + dI)y, which
follows from (4.7), we obtain p3(B)y = (c3B

3 + c2B
2 + c1B + c0)y = 0, where p3(·)
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is a third degree polynomial with c3 = 1 − γ2 > 0 and c0 = cdκ ≥ 0, which cannot
have more than two positive roots. Thus, y is a linear combination of two normalized
eigenvectors xk and xl corresponding to two distinct eigenvalues (cf. Section 3), i.e.
y ∈ Z := span{xk, xl}. Since d+ µ(y) = a‖y‖2 6= 0, by (4.7) so is x.

Furthermore, the orthogonality (Bx− y, y) = 0 from (4.6) shows that

cos2 ∠(Bx, y) =
(Bx, y)2

‖Bx‖2‖y‖2
=

(y, y)2

‖Bx‖2‖y‖2
=

‖y‖2

‖Bx‖2
,

and sin2 ∠(Bx, y) = 1− cos2 ∠(Bx, y) = (‖Bx‖2−‖y‖2)/‖Bx‖2 = ‖Bx− y‖2/‖Bx‖2.
This leads to sin∠(Bx, y) = ‖Bx−y‖/‖Bx‖, since the angles between vectors have the
range [0, π] (due to arccos). Similarly, (Bx − κx, x) = 0 together with κ > 0 implies
sin∠(Bx, x) = sin∠(Bx, κx) = ‖Bx − κx‖/‖Bx‖. Then we have sin∠(Bx, y) =
γ sin∠(Bx, x) by using (4.4).

We now derive bound (2.4) in a two-dimensional B-invariant subspace.
Lemma 4.2. Let x∗ and y∗ belong to a two-dimensional invariant subspace of

B corresponding to the eigenvalues µk > µl and satisfy (4.1), where x∗ is not an

eigenvector. It holds that

µk − µ(y∗)

µ(y∗)− µl

µ(x∗)− µl

µk − µ(x∗)
≤

(

γ + (1 − γ)
µl

µk

)2

.(4.8)

Proof. In this proof we drop the superscript ∗ upon x and y. The vectors x, y
and Bx can be represented by the coefficient vectors

u := c1(1, α)
T , v := c2(1, β)

T and w := c1(µk, αµl)
T

with respect to an orthonormal basis {xk, xl}, where xk and xl are eigenvectors as-
sociated with µk and µl. Evidently, it holds that (Bx, y) = (w, v), ‖Bx‖ = ‖w‖,
‖y‖ = ‖v‖ by using the orthonormal basis. Therefore, ∠(Bx, y) = ∠(w, v), and sim-
ilarly ∠(Bx, x) = ∠(w, u). This allows us to rewrite (4.1) in the form sin∠(w, v) =
γ sin∠(w, u). Using the geometric property of the cross products

ṽ :=

[

w
0

]

×

[

v
0

]

and ũ :=

[

w
0

]

×

[

u
0

]

,

we have

‖ṽ‖

‖w‖ ‖v‖
= γ

‖ũ‖

‖w‖ ‖u‖
,

which yields

γ2 =
‖ṽ‖2‖u‖2

‖ũ‖2‖v‖2
=

(βµk − αµl)
2(1 + α2)

(αµk − αµl)2(1 + β2)
.

Further, we use the equalities

α2 = tan2 ∠(x, xk) =
µk − µ(x)

µ(x) − µl
, β2 = tan2 ∠(y, xk) =

µk − µ(y)

µ(y)− µl
,

which can be derived in a similar way to Section 3. Then
1 + α2

1 + β2
=

µ(y)− µl

µ(x) − µl
≥ 1,

so that

γ2 ≥
(βµk − αµl)

2

(αµk − αµl)2
, and

∣

∣

∣

∣

β

α
−

µl

µk

∣

∣

∣

∣

≤ γ

∣

∣

∣

∣

1−
µl

µk

∣

∣

∣

∣

.
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Since 0 < µl/µk < 1, we have

∣

∣

∣

∣

β

α

∣

∣

∣

∣

≤

∣

∣

∣

∣

β

α
−

µl

µk

∣

∣

∣

∣

+

∣

∣

∣

∣

µl

µk

∣

∣

∣

∣

≤ γ

(

1−
µl

µk

)

+
µl

µk
= γ + (1− γ)

µl

µk
,

which proves (4.8) by using
µk − µ(y)

µ(y)− µl

µ(x) − µl

µk − µ(x)
=

∣

∣

∣

∣

β

α

∣

∣

∣

∣

2

.

The proof of Theorem 2.1 is completed by deriving convergence bound (2.4) from
its two-dimensional version. We restate the assumption µi+1 < µ(x) < µ(x′) < µi.
According to Lemma 4.1, there exists a minimizer y with µ(y) ≤ µ(x′), which satisfies
(4.8) with µl < µ(x) < µ(y) < µk, and the interval (µi+1, µi) is a subset of (µl, µk).
Using monotonicity arguments, (4.8), and the same arguments as Section 3, we obtain

µi − µ(y)

µ(y)− µi+1

µ(x) − µi+1

µi − µ(x)
=

µi − µ(y)

µi − µ(x)

µ(x) − µi+1

µ(y)− µi+1

≤
µk − µ(y)

µk − µ(x)

µ(x)− µl

µ(y)− µl

=
µk − µ(y)

µ(y)− µl

µ(x) − µl

µk − µ(x)
≤

(

γ + (1− γ)
µl

µk

)2

≤

(

γ + (1− γ)
µi+1

µi

)2

.

This proves (2.4) since (µi − µ(x′))/(µ(x′)− µi+1) ≤ (µi − µ(y))/(µ(y)− µi+1).

Conclusions. We have presented a succinct proof of the standard sharp con-
vergence rate bound for the simplest fixed step size preconditioned eigensolver. The
key argument of the new proof is the characterization of the case of poorest conver-
gence as a constrained optimization problem for the Rayleigh quotient. Employing
the Karush-Kuhn-Tucker conditions and some elementary matrix algebra, we dramat-
ically simplify the convergence analysis by reducing it to a subspace spanned by two
eigenvectors. We expect the analytical framework developed in this paper to be a
valuable tool in the convergence analysis of a variety of preconditioned eigensolvers;
see, e.g., the analysis of the preconditioned steepest descent method in [16].

Appendix. I. An alternative estimate for the left-hand side of (4.8), which is
sharp with respect to all variables, can be derived as follows: With δ := β/α and
ε := µl/µk, a new representation of γ2 is given by

γ2 =
(δ − ε)2(1 + α2)

(1− ε)2(1 + α2δ2)
.

This results in a quadratic equation for δ with the roots

δ± =
ε(1 + α2)± γ(1− ε)

√

(1 + α2)(1 + α2ε2)− α2γ2(1 − ε)2

(1 + α2)− α2γ2(1− ε)2
.

Since δ2 =
β2

α2
=

µk − µ(y)

µ(y)− µl

µ(x) − µl

µk − µ(x)
, a strictly sharp bound for the estimate in

(4.8) is given by max{δ2+, δ
2
−} = δ2+. We note that in the limit case µ(x) → µk it

holds that α → 0, and δ2+ turns into (ε+ γ(1 − ε))2. This coincides with the known
bound in (4.8).
II. The bound in (4.8) contains a convex combination of 1 and µl/µk. Interestingly,
this bound can also be derived by using a convex function as follows: Without loss of
generality, we assume that x has a positive xk coordinate. Then ∠(x, xk) is an acute
angle. Since B > 0, ∠(Bx, x) and ∠(Bx, xk) are also acute angles. The equality (4.1)
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together with γ < 1 shows further ∠(Bx, y) < ∠(Bx, x) < π/2. Since ∠(Bx, xk) and
∠(Bx, y) are acute angles, the vectors xk and y are located in a half-plane whose
boundary line is orthogonal to Bx. A simple case differentiation shows that ∠(y, xk)
is either equal to |∠(Bx, xk)− ∠(Bx, y)| or equal to ∠(Bx, xk) + ∠(Bx, y). Further,
we use the equalities

tan2 ∠(y, xk) =
µk − µ(y)

µ(y)− µl
, tan2 ∠(x, xk) =

µk − µ(x)

µ(x)− µl
,

tan2 ∠(Bx, xk)

tan2 ∠(x, xk)
=

µ2
l

µ2
k

,

which can be derived in a similar way to Section 3. The last equality proves∠(Bx, xk) <
∠(x, xk), since the tangent is an increasing function for acute angles, and µl < µk.
This leads to ∠(x, xk) = ∠(Bx, xk) + ∠(Bx, x), since x,Bx, xk are all in the same
quadrant. In summary, it holds that

(4.9) ∠(y, xk) ≤ ∠(Bx, xk) + ∠(Bx, y) < ∠(Bx, xk) + ∠(Bx, x) = ∠(x, xk) < π/2,

i.e., ∠(y, xk) is a further acute angle. Using these acute angles, we write (4.8) equiv-
alently as

(4.10) tan∠(y, xk) ≤ γ tan∠(x, xk) + (1 − γ) tan∠(Bx, xk).

In order to prove (4.10), we use (4.1) again, together with ϕ := ∠(Bx, x), ϑ :=
∠(Bx, xk) and the first inequality in (4.9). It holds that

tan∠(y, xk) ≤ tan[ϑ+ arcsin
(

γ sin(ϕ)
)

] =: f(γ).

Because of

f ′(γ) =

(

1 + f(γ)2
)

sin(ϕ)
√

1−
(

γ sin(ϕ)
)2

≥ 0 for γ ∈ [0, 1],

f(γ) is a monotonically increasing function in [0, 1]. The numerator of f ′(γ) is also
a monotonically increasing function and its denominator is monotonically decreasing
in γ ∈ [0, 1]. These two functions are positive so that f ′(γ) is also a monotonically
increasing function. Thus f(γ) is a convex function in [0, 1], and

tan∠(y, xk) ≤ f(γ) ≤ (1− γ)f(0) + γf(1) = (1− γ) tan(ϑ) + γ tan(ϑ+ ϕ),

which proves (4.10) and hence (4.8).
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