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Abstract

We prove that Collet-Eckmann rational maps have poly-time computable Julia sets.
As a consequence, almost all real quadratic Julia sets are poly-time.

1 Introduction.

A chaotic dynamical system can have a simple mathematical description, and thus be easy
to implement on a computer. And yet, numerical simulation of its orbits is often impractical,
since small computational errors are magnified very rapidly. The modern paradigm of the
numerical study of chaos can be summarized as follows: while the simulation of an individual
orbit for an extended period of time does not make a practical sense, one should study the
limit set of a typical orbit. Perhaps, the best known illustration of this approach is the
study of Julia sets of rational maps which are repellers of the dynamics, that is, limit sets of
typical backward orbits. Julia sets may be the most drawn objects in mathematics, and the
study of the theoretical aspects of computing them is important both for practicing Complex
Dynamicists, and as a “simple” test case of the paradigm.

This paper is motivated by the following general question, which we address in the context
of quadratic Julia sets:

Question 1. Can the attractor/repeller of a typical dynamical system be efficiently simu-
lated on a computer?

To be more specific, let us first recall that a compact set K in the plane is computable if
there exists an algorithm to draw it on a computer screen with an arbitrarily high resolution.
Any computer-generated picture is a finite collection of pixels. If we fix a specific pixel size
(commonly taken to be 2−n for some n) then to accurately draw the set within one pixel
size, we should fill in the pixels which are close to the set (for instance, within distance 2−n

from it), and leave blank the pixels which are far from it (for instance, at least 2−(n−1)-far).

1

ar
X

iv
:1

70
2.

05
76

8v
2 

 [
m

at
h.

D
S]

  9
 A

ug
 2

01
7



Thus, for the set K to be computable, there has to exist an algorithm which for every square
of size 2−n with dyadic rational vertices correctly decides whether it should be filled in or
not according to the above criteria. We say that a computable set has a polynomial time
complexity (is poly-time) if there is an algorithm which does this in a time bounded by a
polynomial function of the precision parameter n, independent of the choice of a pixel. We
typically view poly-time computable sets as the ones which can be simulated efficiently in
practice, indeed, in known applications, this is generally the case.

When we talk of computability of the Julia sets of a rational map R, the algorithm
drawing it is supposed to have access to the values of the coefficients of the map (again
with an arbitrarily high precision). Using estabilished terminology such an algorithm can
query an oracle for the coefficients of R; naturally, reading each additional binary digit of a
coefficient takes a single tick of the computer clock.

Computability of Julia sets has been explored in depth by M. Braverman and the second
author (see monograph [9] and references therein) and turns out to be a very non-trivial
problem. They have shown that even in the quadratic family fc(z) = z2 + c there exist
values of c such that the corresponding Julia sets Jc are not computable. Moreover, such a
value of c can be computed explicitly, and even, modulo a broadly accepted conjecture in
one-dimensional dynamics, in polynomial time.

The phenomenon of non-computability is quite rare, and “most” quadratic Julia sets are
computable. However, even a computable Julia set could have such a high computational
complexity as to render any practical simulations impossible. Indeed, in [3] it was shown
that there exist computable quadratic Julia sets with an arbitrarily high time complexity.

Restricted to the class of quadratic Julia sets, our first question transforms into:

Question 2. Is it true that for almost every c ∈ C the Julia set Jc is poly-time?

Poly-time computability has been previously established for several types of quadratic Julia
sets. Firstly, all hyperbolic Julia sets are poly-time [6, 18]. This theoretical result corresponds
to a known efficient practical algorithm for such sets, developed by J. Milnor [14] and known
as Milnor’s Distance Estimator.

The requirement of hyperbolicity may be weakened significantly. Braverman [7] showed
that parabolic quadratics also have poly-time computable Julia sets; and presented an effi-
cient practical refinement of Distance Estimator for parabolics. The first author showed in
[12] that maps with non-recurrent critical orbits have poly-time Julia sets. Finally, in our
previous joint work [13], we have shown that Feigenbaum Julia set is poly-time. The last
example is particularly interesting, since in contrast with the other ones mentioned above,
its proof does not use any weak hyperbolicity properties of the map itself, but rather a com-
putational scheme based on self-similarity (Feigenbaum universality) properties of the Julia
set.

Our main result gives a positive answer for Question 2 in the case of real parameters c:

Main Theorem. For almost every real value of the parameter c, the Julia set Jc is poly-time.
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Our principal technical result, which implies Main Theorem, establishes poly-time com-
putability for Collet-Eckmann Julia sets (see the definitions below). Conjecturally, Collet-
Eckmann parameters together with hyperbolic parameters form a set of full measure in C.
This very strong conjecture would imply a positive answer to Question 2 as well (an even
stronger form of this conjecture can be made about the parameter spaces of rational maps
of degree d, d ≥ 2, with similar consequences). However, at present, this is only known for
c ∈ R.

Below we briefly recall the principal definitions of Computability Theory and Complex
Dynamics, and then proceed with the proofs.

1.1 Preliminaries on computability

In this section we give a very brief review of computability and complexity of sets. For
details we refer the reader to the monograph [9]. The notion of computability relies on the
concept of a Turing Machine (TM) [19], which is a commonly accepted way of formalizing
the definition of an algorithm. The computational power of a Turing Machine is provably
equivalent to that of a computer program running on a RAM computer with an unlimited
memory. We will use the terms “TM” and “algorithm” interchangeably.

Definition 1.1. A function f : N→ N is called computable, if there exists a TM which takes
x as an input and outputs f(x).

Note that Definition 1.1 can be naturally extended to functions on arbitrary countable
sets, using a convenient identification with N.

Let us denote D the set of dyadic rationals, that is, the set of rational numbers of the
form a/2b where a ∈ Z and b ∈ N.

To define computability of functions of real or complex variable we need to introduce the
concept of an oracle:

Definition 1.2. A function φ : N → D + iD is an oracle for c ∈ C if for every n ∈ N we
have

|c− φ(n)| < 2−n.

A TM equipped with an oracle (or simply an oracle TM) may query the oracle by reading
the value of φ(n) for an arbitrary n.

Definition 1.3. Let S ⊂ C. A function f : S → C is called computable if there exists an
oracle TM Mφ with a single natural input n such that if φ is an oracle for z ∈ S then Mφ(n)
outputs w ∈ D + iD such that

|w − f(z)| < 2−n.

3



When calculating the running time of Mφ, querying φ with precision 2−m counts as m
time units. In other words, it takes m ticks of the clock to read the argument of f with
precision m dyadic digits (bits). This is, of course, in an agreement with the computing
practice.

We say that a function f is poly-time computable if in the above definition the algorithm
Mφ can be made to run in time bounded by a polynomial in n, independently of the choice
of a point z ∈ S or an oracle representing this point.

Let d(·, ·) stand for Euclidean distance between points or sets in R2. Recall the definition
of the Hausdorff distance between two sets:

dH(S, T ) = inf{r > 0 : S ⊂ Ur(T ), T ⊂ Ur(S)},

where Ur(T ) stands for the r-neighborhood of T :

Ur(T ) = {z ∈ R2 : d(z, T ) 6 r}.

We call a set T a 2−n approximation of a bounded set S, if dH(S, T ) 6 2−n. When we try
to draw a 2−n approximation T of a set S using a computer program, it is convenient to let
T be a finite collection of disks of radius 2−n−2 centered at points of the form (x, y) with
x, y ∈ D. We will call such a set dyadic. A dyadic set T can be described using a function

hS(n, z) =


1, if d(z, S) 6 2−n−2,
0, if d(z, S) > 2 · 2−n−2,
0 or 1 otherwise,

(1.1)

where n ∈ N and z = (i/2n+2, j/2n+2), i, j ∈ Z.

Using this function, we define computability and computational complexity of a set in R2 in
the following way.

Definition 1.4. A bounded set S ⊂ R2 is called computable in time t(n) if there is a TM,
which computes values of a function h(n, •) of the form (1.1) in time t(n). We say that S
is poly-time computable, if there exists a polynomial p(n), such that S is computable in time
p(n).

Computability and complexity of compact subsets of the Riemann sphere Ĉ are defined
in a completely analogous fashion, substituting the Euclidean metric in the above with the
standard spherical metric given by dz/(1 + |z|2). Since the two metrics are equivalent on
any compact subset of C, we have the following:

Proposition 1.5. Let S b C. Then computability of S as a subset of C in the Euclidean
metric is equivalent to computability of S as a subset of Ĉ in the spherical metric. Moreover,
S is poly-time in the former sense if and only if it is poly-time in the latter.

The proof is a trivial exercise and will be left to the reader.
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1.2 Collet-Eckmann maps and the statement of the principal re-
sult

We recall that for a rational map f : C → C of degree deg f ≥ 2 its Fatou set Ff is the
domain of Lyapunov stability of the dynamics of f . That is, Ff consists of points z ∈ C
for which there exists a neighborhood U 3 z in which the sequence of iterates {fn|U}n∈N is

equicontinuous with respect to the spherical metric on Ĉ. The complement of Ff is the Julia

set Jf ; it is an always non-empty compact subset of Ĉ which is fully invariant under f , that

is f−1(Jf ) = Jf . The Julia set has non-empty interior if and only if it is equal to all of Ĉ.
A rational map f with deg f ≥ 2 is called hyperbolic if there exists a smooth Riemannian

metric µ on an open neighborhood of Jf such that f is strictly expanding with respect to
the corresponding Riemannian norm:

||Df(z)||µ > 1. (1.2)

Such maps have a particularly tractable dynamics. As was shown by Braverman [6] and
Rettinger [18], hyperbolic Julia sets are poly-time computable. Note, that a hyperbolic Julia
set cannot contain any critical points of f , that is, points c where f ′(c) = 0. In fact, an
equivalent definition of hyperbolicity is that every critical point has an orbit which converges
to an attracting cycle of f (all such cycles are evidently in the Fatou set). Hyperbolicity of
f is thus an open condition in the parameter space of rational maps of degree d ≥ 2.

It is the main open conjecture in the field of Complex Dynamics, that hyperbolic rational
maps form a dense set in the parameter space of rational maps of degree d ≥ 2. It is well-
known, however, that the set of hyperbolic parameters does not have full measure in this
space for any such d. A particularly useful class of rational maps which exhibits a weak
version of the hyperbolic expansion property (1.2) is given by the Collet-Eckmann condition
described below:

Definition 1.6. A non-hyperbolic rational map f is called Collet-Eckmann if there exist
constants C, γ > 0 such that the following holds: for any critical point c ∈ Jf of f whose
forward orbit does not contain any critical points one has:

|Dfn(f(c))| > Ceγn for any n ∈ N. (1.3)

In [2] Avila and Moreira showed:

Theorem 1.7. For almost every real parameter c the map fc(z) = z2 + c is either Collet-
Eckmann or hyperbolic.

In [1] Aspenberg proved that the set of Collet-Eckmann parameters has positive Lebesgue
measure in the space of coefficients of all rational maps of fixed degree d > 2. Moreover, there
is a conjecture that almost all parameters in this space correspond to either Collet-Eckmann
or hyperbolic maps.
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The following property can be viewed as a form of weak hyperbolicity for a rational
mapping:

Definition 1.8. A rational map f satisfies Exponential Shrinking of Components (ESC)
condition if there exists λ < 1 and r > 0 such that for every n ∈ N, any x ∈ Jf and any
connected component W of f−n(Ur(x)) one has diam(W ) < λn.

In a fundamental paper on Collet-Eckmann dynamics, Przytycki, Rivera-Letelier, and
Smirnov showed [17]:

Theorem 1.9. Collet-Eckmann condition implies Exponential Shrinking of Components con-
dition.

It is elementary to see that ESC implies that f does not have rotational domains or
parabolic periodic points. Jointly with Binder and Braverman, the second author has shown
(cf.[4, 9]):

Theorem 1.10. Let f be a rational map without rotation domains. Then its Julia set is
computable in the spherical metric by an oracle Turing machine Mφ with an oracle rep-
resenting the coefficients of f . The algorithm uses non-uniform information on parabolic
periodic points of f (which is sufficient to lower-compute the parabolic basins).

We also use the following result (see [15]):

Proposition 1.11. For any rational map f there exists µ > 0 such that for any critical
point c in Jf and any n ∈ N one has |fn(c)− c| > µn.

Our principal result is the following:

Theorem 1.12. For each d > 2 there exists an oracle Turing Machine Mφ
d with an oracle

for the coefficients of a rational map f of degree deg f = d satisfying ESC, such that the
following holds. Given the non-uniform information:

• dyadic numbers λ and r for which the conditions of Definition 1.8 hold and such that
U2r(Jf ) \ Jf does not contain any critical points of f ,

• and a dyadic number µ which satisfies the statement of Proposition 1.11,

Mφ computes Jf in polynomial time.

Theorem 1.12, together with Theorems 1.9 and 1.7, imply the Main Theorem.
Note that if f has no attracting cycles, then Fatou-Sullivan classification implies that

f has no Fatou components, and hence Jf = Ĉ, so the proof of Theorem 1.12 becomes a

triviality in this case. We thus assume that f has at least one attracting cycle in Ĉ, which,
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in particular, covers the case when f is a polynomial (characterized by f−1(∞) = ∞, so
that ∞ is a super-attracting point). Moreover, if ∞ ∈ Jf we can construct a dyadic point
a ∈ C belonging to some attracting basin of f and consider the map fa = h−1a ◦ f ◦ha, where
ha(z) = 1

z
+ a. Then ∞ /∈ Jfa . Therefore, without loss of generality, we can assume that

∞ /∈ Jf . In view of Proposition 1.5, we can thus prove the statement of Theorem 1.12 with
respect to computability in the Euclidean metric in C.

As a preparatory step in the proof of Theorem 1.12, using Theorem 1.10 we construct a
positive dyadic number ε < r and a dyadic neighborhood U of Jf such that:

U2ε(Jf ) ⊂ U and f(Uε(U)) ⊂ Ur(Jf ). (1.4)

2 Proof of Theorem 1.12.

2.1 Distortion bounds.

We will use the classical Koebe One-Quarter Theorem (see e.g. [10]):

Theorem 2.1. Suppose f : Ur(z) → C is a univalent function. Then the image f(Ur(z))
contains the disk of radius 1

4
r|f ′(z)| centered at f(z).

Recall that the postcritical set of a rational map is defined as the closure of the union of the
orbits of its critical points. First, let us prove the following technical statement:

Lemma 2.2. Assume that a rational map f such that ∞ /∈ Jf satisfies ESC and λ, r are
the corresponding constants (see Definition 1.8). Then there is an algorithm which given an
oracle for f computes dyadic numbers α, β > 0 such that for any x ∈ Jf , r > δ > 0, n ∈ N
and any connected component W of f−n(Uδ(x)) one has:

diam(W ) 6 αδβλn.

Proof. Let R = sup{|Df(z)| : z ∈ Ur(Jf )}, N = [logR
r
δ
], where [a] stands for the maximal

integer less or equal to a. Then fN(Uδ(x)) ⊂ Ur(f
N(x)). The inequality of Lemma 2.2 now

follows from applying Definition 1.8 to Ur(f
N(x)).

We need a generalization of Koebe Distortion Theorem for maps with critical points.
From Lemma 2.1 from [16] we deduce the following:

Proposition 2.3. For each D ∈ N there exists a constant C > 0 such that the following is
true. Let W ⊂ C be a domain and f : W → U1(0) be a holomorphic map of degree at most
D. Then for any 0 < t 6 1

2
and any y ∈ f−1(0) for the component W ′ 3 y of f−1(Ut(0)) one

has:

diam(W ′) 6
Ct

|f ′(y)|
.
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Figure 1: Sets Vkj .

Proposition 2.4. Let U , ε be as in (1.4). There is an algorithm computing dyadic constants
K1, K2, C > 0 such that for any z ∈ U and any k ∈ N if fk(z) ∈ Ur(Jf ) \ Uε(Jf ) then one
has

K1

|Dfk(z)|
6 dist(z, Jf ) 6

K2C
√
k

|Dfk(z)|
.

Proof. Let k, z be as in the conditions of Proposition 2.4. Then the disk Uε(f
k(z)) does

not intersect the postcritical set of f . Applying Koebe Quarter Theorem 2.1 to the inverse
branch of f−k in this disk, we obtain

dist(z, Jf ) >
ε

4|Dfk(z)|
.

Set zj = f j(z) and rj = 2−jr for all j > 0. Let W0 be the connected component of
f−k(Ur(zk)) containing z. Set Wl = f l(W0) for 0 6 l 6 k. Fix the smallest N0 ∈ N such that

λN0 < min{2β−1, 1
4
α−1r1−β}.

Lemma 2.2 implies that for any x ∈ Jf and any j ∈ Z+ the connected component of
f−N0(j+1)(Urj(f

N0(j+1)(x))) containing x has diameter less than

αrβj λ
N0(j+1) = αrβλN0(2−βλN0)j < 1

4
r · 2−j = 0.5rj+1

and therefore is a subset of U0.5rj+1
(x). Introduce indexes

k = k0 > k1 > k2 > . . . > kl = 0

such that
kj+1 = kj −N0(j + 1) if kj > N0(j + 1)

and kj+1 = 0 otherwise. Observe that l = O(
√
k).
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Let 0 6 j < l. For kj+1 6 i < kj let Vi be the connected component of f i−kj(Urj(zkj))
containing zi. By the construction of the sequence kj we have

Vkj ⊂ U0.5rj(zkj) for all j < l.

Moreover, Lemma 2.2 and definition of rj imply that there exists C1 > 0, γ < 1 depending
only on α, β, λ and r such that for all kj+1 6 i < kj one has diam(Vi) < C1γ

j. Assume that
for some indexes kj+1 6 i1 < i2 < kj both Vi1 and Vi2 contain the same critical point c. Since
f i2−i1(Vi1) = Vi2 using Proposition 1.11 we obtain that

µi2−i1 6 |f i2−i1(c)− c| < C1γ
j and so i2 − i1 > logµC1 + j logµ γ.

It follows that the number of times Vi contains a critical point for kj+1 6 i < kj is bounded by
some constant M = M(C1, γ, µ, r, deg f). Therefore, the degree of fkj−kj+1 : Vkj+1

→ Urj(zkj)
is bounded by N1 = (2 deg f − 1)M . Since Wkj ⊂ U0.5rj(zkj) for all j < l using Proposition
2.3 we obtain that

diam(Wkj+1
) 6

C · diam(Wkj)

|Dfkj−kj+1(zkj)|
for some constant C. Taking product of the latter inequality for all 0 6 j < l we obtain that

diam(W0) 6
C
√
k

2 r

|Dfk(z)|
,

where C2 can be computed given λ, r and an oracle for f . This finishes the proof.

2.2 The algorithm

Let f be a rational map satisfying ESC and λ, r be as in Definition 1.8. Let U, ε be as in
(1.4). Assume that we would like to verify that a dyadic point z is 2−n−1 close to Jf . If
z /∈ U , we can approximate the distance from z to Jf by dist(z, U) + r up to a constant
factor.

Now assume that z ∈ U . Consider the following subprogram:
i := 1
while i 6 L(n) = −[(n+ 1) logλ 2 + 1] do
(1) Compute dyadic approximations

pi ≈ f i(z) = f(f i−1(z)) and di ≈
∣∣Df i(z)

∣∣ =
∣∣Df i−1(z) ·Df(f i−1(z))

∣∣
with precision min{2−n−1, ε}.
(2) Check the inclusion pi ∈ U :

• if pi ∈ U , go to step (5);
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• if pi /∈ U , proceed to step (3);

(3) Check the inequality di > K2C
√
i2n+1 + 1. If true, output 0 and exit the subprogram,

otherwise
(4) output 1 and exit subprogram.
(5) i→ i+ 1
end while
(6) Output 0 end exit.
end

The subprogram runs for at most

L = −[(n+ 1) logλ 2 + 1] = O(n)

number of while-cycles each of which consist of a constant number of arithmetic operations
with precision O(n) dyadic bits. Hence the running time of the subprogram can be bounded
by O(n2 log n log log n) using efficient multiplication.

Proposition 2.5. Let h(n, z) be the output of the subprogram. Then

h(n, z) =


1, if d(z, Jf ) > 2−n−1,
0, if d(z, Jf ) < K2−n−1,
either 0 or 1, otherwise,

(2.1)

where

K = K(n) =
K1

K2C
√
L(n) + 1

,

Proof. Suppose first that the subprogram runs the while-cycle L times and exits at the step
(6). This means that pi ∈ U for i = 1, . . . , L. In particular, pL−1 ∈ U . It follows that
fL(z) ∈ Ur(Jf ). By ESC condition we obtain:

dist(z, Jf ) 6 λ−L 6 2−n−1.

Thus if d(z, Jf ) > 2−n−1, then the subprogram exits at a step other than (6).
Now assume that for some i 6 L the subprogram falls into the step (3). Then

pi−1 ∈ U and pi /∈ U.

Conditions (1.4) imply that f i(z) ∈ Ur(Jf ) \ Uε(Jf ). Now, if

di > K2C
√
i2n+1 + 1, then |Df i(z)| > K2C

√
i2n+1.

By Proposition 2.4,
d(z, Jf ) 6 2−n−1.
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Otherwise, when the algorithm reaches step (4),

|Df i(z)| 6 K2C
√
i2n+1 + 2 6 (K2C

√
i + 1)2n+1.

In this case Proposition 2.4 implies that

d(z, Jf ) >
K1

K2C
√
L(n) + 1

2−n−1.

Now, to distinguish the case when d(z, Jf ) < 2−n−1 from the case when d(z, Jf ) > 2−n

we can partition each pixel of size 2−n × 2−n into pixels of size (2−n/K)× (2−n/K) and run
the subprogram for the center of each subpixel. This would increase the running time at
most by a factor linear in n.
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