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THE DIFFERENTIAL COUNTING POLYNOMIAL

MARKUS LANGE-HEGERMANN

Abstract. The aim of this paper is a quantitative analysis of
the solution set of a system of polynomial nonlinear differential
equations, both in the ordinary and partial case. Therefore, we
introduce the differential counting polynomial, a common general-
ization of the dimension polynomial and the (algebraic) counting
polynomial. Under mild additional assumptions, the differential
counting polynomial decides whether a given set of solutions of a
system of differential equations is the complete set of solutions.

1. Introduction

Many systems of differential equations do not admit closed form
solutions in “elementary” functions and hence cannot be solved sym-
bolically. Despite this, increasingly good heuristics are implemented
in computer algebra systems to find solutions [4, 3]. Given such a set
of closed form solutions returned by a computer algebra system, the
question remains whether this set is the complete solution set. More
generally, the goal of this paper is to “measure” the sizes of solution
sets U ⊆ V in order to decide whether U = V.

There are many classical measures of the size of the solution set (cf.
[19] for an overview), the strongest1 of which is Kolchin’s dimension
polynomial [10, 13]. However, the dimension polynomial can only de-
scribe solution sets given by characterizable differential ideals and only
the dimension of such solution sets, but no finer details (cf. Exam-
ple 4.9). It was a great surprise to the author that such finer details
can appear in the solution set of a differential equation, for example
countable infinite exceptional sets (cf. Example 4.8).

This paper introduces the differential counting polynomial, a more
detailed description of a solution set of a system of differential equa-
tions. If it exists, it generalizes the dimension polynomial (Theo-
rem 4.5) and decides in many cases whether solution sets are equal
(Theorem 4.3 and Proposition 4.4).

2010 Mathematics Subject Classification. 12H05, 35A01, 35A10, 34G20,
Key words and phrases. dimension polynomial, differential counting polynomial.
1It implies other descriptions like Cartan characters or Einstein’s strength.
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The idea of the differential counting polynomial originates from Ples-
ken’s algebraic counting polynomial [16]. The algebraic counting poly-
nomial is an element c(V ) ∈ Z[∞] which describes the size of a con-
structible set V in affine n-space. Here, ∞ is a free indeterminate,
which can be thought of as representing the cardinality of an affine
1-space. For example, the algebraic counting polynomial of an affine
i-space is ∞i ∈ Z[∞], and if V is a j-fold unramified cover of W , then
c(V ) = j ·c(W ) ∈ Z[∞]. Two constructible sets U ⊆ V are equal if and
only if their algebraic counting polynomials c(U) and c(V ) coincide.

The differential counting polynomial is the algebraic counting poly-
nomial for the different Taylor polynomials of degree ℓ of all formal
power series solutions. We restrict to formal power series solutions as
they exist in a formally consistent system of differential equations for
any formal power series given as initial data. Similar results hold for
analytic [18] but not for smooth initial data (cf. Lewy’s example [15]).

Determining the differential counting polynomial of a set of differen-
tial equations is not algorithmic in general. Even in the case of a single
inhomogeneous linear differential equation the problem of the existence
of formal power series solutions can be reduced to Hilbert’s unsolvable
tenth problem about Diophantine equations [5]. Also, the existence of
the differential counting polynomial is still an open problem. However,
the author succeeded in computing the differential counting polynomial
using Theorem 4.6 and inductive proofs similar to Examples 4.8 and
4.9 for all of the various classes of examples of differential equations he
encountered.

So, it is hard to determine the differential counting polynomial from
a set of differential equations without explicitly knowing the corre-
sponding full set of solutions V. In contrast, the differential counting
polynomial c(U) of an explicitly given set of solutions U can be com-
puted more easily by determining how unrestrictedly the power series
coefficients of elements in U are chooseable (cf. Example 4.9). Once
the differential counting polynomial c(V ) of V is known, one can often
decide whether an explicitly given set of solutions U is equal to the
complete set of solutions V by comparing c(U) and c(V ).

Sections 2 and 3 recapitulate simple systems and Plesken’s algebraic
counting polynomial, respectively, and generalize them for our needs.
In Section 4 we define the differential counting polynomial, state its
basic properties, and give examples. The author’s PhD thesis [14] con-
tains additional (classes of) examples. The proofs follow in Section 5.
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2. Simple σ-Systems

Simple systems stratify constructible sets into sets with convenient
geometric properties. Such systems underlie Plesken’s counting poly-
nomial. This section recapitulates simple systems and generalizes them
to describe differential equations.

Let R := C[y1, . . . , yn] be a polynomial ring. We fix the total order,
called ranking, y1 < y2 < . . . < yn on {y1, . . . , yn}. The <-greatest
variable ld(p) occurring in p ∈ R\C is called leader of p. The coefficient
ini(p) of the highest power of ld(p) in p is called the initial of p. For
S ⊂ R \ C define ld(S) := {ld(p)|p ∈ S} and similarly ini(S). Denote
by S<yi, S≤yi, and Syi the sets S ∩C[y1, . . . , yi−1], S∩C[y1, . . . , yi], and
{p ∈ S | ld(p) = yi}, respectively, for all 1 ≤ i ≤ n.

We call a set of finitely many equations and countably many inequa-
tions a σ-system. If this set is finite, we call it system. Let S be a
σ-system over R. We denote the set of solutions in Cn of S by Sol(S).
Call S weakly triangular if it contains no equation or inequation in C
and it contains either at most one equation or arbitrary many inequa-
tions of leader yi for each 1 ≤ i ≤ n. We say that S has non-vanishing
initials if no initial vanishes when substituting an a ∈ Sol(S). Sub-
stituting all indeterminates yi 6= ld(p) in p ∈ S by an ai ∈ C results
in a univariate polynomial. If all these univariate polynomials result-
ing from the p ∈ S and a ∈ Sol(S) are square-free, then we call S
square-free. We call S a simple σ-system if it is weakly triangular,
has non-vanishing initials, and is square-free.

A set {S1 . . . , Sl} of simple σ-systems with disjoint solution sets
is called an algebraic Thomas decomposition of a σ-system S
if Sol(S) =

⊎
1≤i≤l Sol(Si). Such a Thomas decomposition is called

comprehensive with respect to an indeterminate yk if Sol((Si)≤yk)∩
Sol((Sj)≤yk) ∈ {∅,Sol(Si)} for all 1 ≤ i, j ≤ l.

3. Algebraic Counting Polynomials

This section recapitulates Plesken’s algebraic counting polynomial
for constructible sets [16, 17], and generalizes it to be suitable for de-
scribing differential equations. We consider the affine n-space Cn with
projections πi : Cn → Ci : (a1, . . . , an) 7→ (a1, . . . , ai).

Definition 3.1. The following four axioms iteratively2 applied to a
constructible set V ⊆ Cn yield its algebraic counting polynomial,
an element in the univariate polynomial ring Z[∞].

(1) c(V ) = |V | if V is finite.

2This is independent of the order in which the axioms are applied [16, Prop. 3.3].



4 MARKUS LANGE-HEGERMANN

(2) c(V ) = ∞ for an affine 1-space V over C.
(3) c(V ⊎W ) = c(V ) + c(W ) for disjoint constructible sets V,W ⊂

Cn.
(4) If V ⊂ Cn is constructible and for some 1 ≤ i ≤ n each non-

empty fiber W of πi has the same value under c, then c(V ) =
c(W ) · c(πi(V )).

The algebraic Thomas decomposition makes the computation of the
algebraic counting polynomial algorithmic [16]. The following theorem
shows how the algebraic counting polynomial can be used to compare
constructible sets. Our goal is a similar theorem for solution sets of
differential equations.

Theorem 3.2 ([16, Cor. 3.4]). Let U ⊆ V ⊆ Cn be constructible sets.
Then U = V if and only if c(U) = c(V ).

In solution sets of differential equations, countable exceptional sets
appear naturally (cf. Example 4.8). To describe these sets, we gener-
alize the algebraic counting polynomial.

Definition 3.3. Let V ⊆ Cn. Then, call any element c(V ) in the
polynomial ring Z[∞,ℵ0] constructed by iteratively applying the four
axioms from Definition 3.1 above and the following fifth axiom an al-

gebraic counting polynomial of V .

(5) c(C1 \M) = ∞− ℵ0 for M ⊂ C1 is countably infinite.

Remark 3.4. In general, the algebraic counting polynomial is not
unique. For example, the set Sol({x− i 6= 0|i ∈ Z≥0}) = Sol({x− i 6=
0|i ∈ Z≥1})⊎{0} can have both algebraic counting polynomial ∞−ℵ0

and ∞− ℵ0 + 1. Hence, Theorem 3.2, which states that the algebraic
counting polynomial decides equality of contained constructible sets,
cannot hold in general, but it holds for the important special case of
well-fibered sets (cf. Theorem 3.6).

Even worse, it is not clear in which cases an algebraic counting poly-
nomial exists, i.e. that there exists a way to apply the axioms terminat-
ing in an element in Z[∞,ℵ0]. Simple algebraic σ-systems are a first
example where existence (and some uniqueness) holds.

Theorem 3.5. Let S ⊂ C[y1, . . . , yn] be a simple algebraic σ-system.
Then an algebraic counting polynomial of Sol(S) exists.

Consider counting polynomials as polynomials in the indeterminate
∞. Then degree and leading coefficient of any algebraic counting poly-
nomial c(Sol(S)) are equal to those of the (unique, cf. [16, Prop. 3.3])

counting polynomial c(Sol(S)) of its Zariski closure Sol(S). In par-

ticular, the degree of c(Sol(S)) is equal to the dimension of Sol(S).
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In particular, the degrees and leading coefficients of these algebraic
counting polynomials are well defined and the leading coefficients are
natural numbers. We postpone the proof of this theorem to page 15.

Countable exceptional sets complicate the use of the algebraic count-
ing polynomial for σ-systems in applications. However, the counting
polynomial is well behaved for well-fibered sets, which we define as
sets with a counting polynomial in Z[∞]. These sets behave similarly
as constructible sets with regard to algebraic counting polynomials; in
particular the algebraic counting polynomial is strong enough to decide
equality of such sets contained in each other.

Theorem 3.6. Let U ⊆ V ⊆ Cn be two well-fibered sets. Then U = V
if and only if c(U) = c(V ). In particular, the counting polynomial of
well-fibered sets is well-defined in the sense that it is unique.

We postpone the proof of this theorem to page 16.
Even when ℵ0 appears in algebraic counting polynomials of two sets

U ⊆ V , one might be able to prove U 6= V by estimating the algebraic
counting polynomial. First, any subset of C1 with a countably infinite
complement can be enlarged to a set with finite complement. Second,
any subset of C1 with a countably infinite complement can be shrunk
to a finite set. Thus, for p(ℵ0,∞) ∈ Z[ℵ0,∞] and q(∞) ∈ Z[∞] we
define p ≺ q if p(∞ − k,∞) = q(∞) and p ≻ q if p(k,∞) = q(∞)
for some k ∈ Z≥0. Additionally, we use the total order q < q′ if there
exists an x0 with q(x) < q′(x) for all x > x0 for q, q′ ∈ Q[∞].

Proposition 3.7. Let U ⊆ V ⊆ Cn have algebraic counting poly-
nomials p1(ℵ0,∞) := c(U) and p2(ℵ0,∞) := c(V ). If there exist
q1, q2 ∈ Z[∞] with p1 ≺ q1 � q2 ≺ p2, then U 6= V .

The proof of this proposition is a natural generalization of one im-
plication of the proof of [16, Cor. 3.4].

4. The Differential Counting Polynomial

This section defines the differential counting polynomial and states
some of its properties. Beforehand, we fix some notation.

4.1. Preliminaries. Let F ⊇ C be a field of meromorphic functions
in n complex variables x1, . . . , xn, and ∆ = {∂x1, . . . , ∂xn

} the corre-
sponding set of partial differential operators. Let U := {u(1), . . . , u(m)}

be a set of differential indeterminates and define u
(j)
µ := ∂µu(j) for

∂µ := ∂µ1
x1

. . . ∂µn

xn
, µ ∈ (Z≥0)

n. The differential polynomial ring F{U} is
the infinitely generated polynomial ring in the indeterminates {U}∆ :=
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{u
(j)
µ |1 ≤ j ≤ m,µ ∈ (Z≥0)

n}. Denote by F{U}≤ℓ its subring of el-
ements of order at most ℓ The derivations ∂xi

: F → F extend to
∂xi

: F{U} → F{U} via additivity and Leibniz rule. Let sep(p) be the
separant of p ∈ F{U}. A ranking of F{U} is a total ordering < of {U}∆
satisfying the two properties (1) u

(j)
µ < ∂u

(j)
µ and (2) u

(j)
µ < u

(j′)
µ′ implies

∂u
(j)
µ < ∂u

(j′)
µ′ for all u

(j)
µ , u

(j′)
µ′ ∈ {U}∆ and ∂ ∈ ∆. A ranking < is called

orderly if |µ| < |µ′| implies u
(j)
µ < u

(j′)
µ′ , where |µ| := µ1 + . . . + µn. In

what follows, we fix an orderly ranking < on F{U}.
Now, we extend the formalism of differential algebra to incorporate

algebraic constraints for power series coefficients. We consider the set

G := G(U,∆) :=
{
g(j)µ | µ ∈ Zn

≥0, 1 ≤ j ≤ m
}

of indeterminates and call the polynomial ring C[G] the polynomial

ring of power series coefficients. The bijection ρ : {U}∆ →

G(U,∆) : u
(j)
µ 7→ g

(j)
µ extends the orderly ranking < on F{U} to an

(algebraic) ranking on C[G]. For ℓ ∈ Z≥0 let C[G]≤ℓ be the subring

generated by all indeterminates g
(j)
µ of order |µ| ≤ ℓ.

We call a union of finitely many differential equations in F{U},
finitely many power series coefficient equations in C[G], and countably
many power series coefficient inequations in C[G] an algebraically re-

stricted σ-system of differential equations and an algebraically

restricted system of differential equations if it is finite.
We are concerned with power series solutions in the power series

ring Pζ := C[[x1 − ζ1, . . . , xn − ζn]] centered around ζ = (ζ1, . . . , ζn) ∈
Cn. We interpret equations in F{U} as equations for functions, e.g.,

u
(1)
(0,...,0) = 0 implies that u(1) is the zero function, whereas equations in

C[G] are equations for single power series coefficients, e.g., g
(1)
(0,...,0) = 0

implies that u(1) has a zero at its center of expansion ζ . More precisely,
a solution of power series coefficient equations or inequations is defined
as a tuple of power series f ∈ PU

ζ
∼=

⊕
U Pζ that evaluates to zero

or non-zero, respectively, when substituting g
(j)
µ by the coefficient of

(x1 − ζ1)
µ1 . . . (xn − ζn)

µn in f(u(j)). Our definition of a solution of a
differential equation in F{U}, where all coefficients are holomorphic in
ζ , is the usual one. Denote the set of formal power series solutions of
an algebraically restricted σ-system of differential equations S around
ζ by Solζ(S) ⊆ PU

ζ .
We consider Taylor polynomials which extend to a Taylor series.

Let PU
ζ,>ℓ be the Pζ-submodule of PU

ζ generated by the u(j) 7→ (x1 −
ζ1)

µ1 . . . (xn−ζn)
µn for µ ∈ Zn

≥0 with |µ| > ℓ. Define the set Solζ(S)≤ℓ of
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formal power series solutions of S around ζ truncated at order

ℓ as the image of Solζ(S) in PU
ζ /PU

ζ,>ℓ under the natural epimorphism

PU
ζ ։ PU

ζ /PU
ζ,>ℓ.

4.2. Definition of the Differential Counting Polynomial. The
algebraic Thomas decomposition computes the algebraic counting poly-
nomial. For differential equations, there is a similar decomposition.

Theorem 4.1. Let S be an algebraically restricted system of differential
equations, such that the center of expansion ζ ∈ Cn is not a pole of
any coefficient of a differential equation. Let ℓ ∈ Z≥0. There exists a
countable set C of simple algebraic σ-systems in C[G]≤ℓ with

Solζ(S)≤ℓ =
⊎

S̃∈C

Solζ(S̃)≤ℓ .

We postpone the proof of this theorem to page 17. This theorem
justifies the following definition of the differential counting polynomial.

Definition 4.2. Let S be an algebraically restricted system of differ-
ential equations. Let Cℓ be a countable set of algebraic σ-systems with

Solζ(S)≤ℓ =
⊎

S̃∈Cℓ
Solζ(S̃)≤ℓ for each ℓ ∈ Z≥0.

If an algebraic counting polynomial exists for Cℓ, then define an ℓ-
th differential counting polynomial of S as c(Cℓ) ∈ Z[∞,ℵ0]. If
an ℓ-th differential counting polynomial exists for all ℓ, then define a
counting sequence c(S) ∈ Z[∞,ℵ0]

Z≥0 of S (or Solζ(S)) as

c(S) : ℓ 7→ c(Cℓ) .

If there exists a p ∈ Q[ℓ,ℵ0,∞,∞ℓ,∞
ℓ
2

2! , . . . ,∞
ℓ
n

n! ] such that c(S)(ℓ) =
p for ultimately all ℓ, then call p a differential counting polynomial

of S (or Solζ(S)) and denote it by c̄(S). For a differential ideal I =
〈p1, . . . , pk〉∆ define c(I) := c({p1, . . . , pk}) and c̄(I) := c̄({p1, . . . , pk}).

We write ∞ℓ2 instead of (∞
ℓ
2

2! )2 and use similar simplifications.

The existence of a differential counting sequence or a differential
counting polynomial is not clear, in general.

4.3. Deciding Equality of Sets. The following theorem and propo-
sition use counting sequences and differential counting polynomials to
decide equality of sets contained in each other.

Theorem 4.3. Let S1, S2 be two algebraically restricted systems of dif-
ferential equations with Solζ(S1) ⊆ Solζ(S2).
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(1) Assume that both counting sequences c(S1) and c(S2) exist and
that c(S1)(ℓ), c(S2)(ℓ) ∈ Z[∞] for all ℓ ∈ Z≥0. Then Solζ(S1) =
Solζ(S2) if and only if c(S1)(ℓ) = c(S2)(ℓ) for all ℓ ∈ Z≥0. In
particular, c(S1) is the unique counting sequence of S1.

(2) Assume both differential counting polynomials c̄(S1) and c̄(S2)

exist and c̄(S1), c̄(S2) ∈ Q[ℓ,∞,∞ℓ,∞
ℓ
2

2! , . . . ,∞
ℓ
n

n! ] holds. Then
Solζ(S1) = Solζ(S2) if and only if c̄(S1) = c̄(S2). In particular,
c̄(S1) is the unique differential counting polynomial of S1.

The sets Solζ(S1)≤ℓ and Solζ(S2)≤ℓ of formal power series solutions
truncated at order ℓ are well-fibered under the conditions of (1) and
well-fibered for high enough ℓ under the conditions of (2). Thus, this
theorem is a corollary of Theorem 3.6.

Remark 3.4 indicates that a stronger version of this theorem is un-
likely. However, we can show that two sets are not equal in the differ-
ential case similar to Proposition 3.7, by using the total order < and
the estimation ≺, both defined before Proposition 3.7.

Proposition 4.4. Let S1, S2 be two algebraically restricted systems of
differential equations with Solζ(S1) ⊆ Solζ(S2) such that the counting
sequences c(S1) and c(S2) exist. If there exist an ℓ ∈ Z≥0 and q1, q2 ∈
Z[∞] with c(S1)(ℓ) ≺ q1 � q2 ≺ c(S2)(ℓ), then Solζ(S1) 6= Solζ(S2).

This proposition follows from Proposition 3.7 just as Theorem 4.3
follows from Theorem 3.6.

4.4. Comparison to the Differential Dimension Polynomial.

The counting sequence and the differential counting polynomial are
connected to the differential dimension polynomial (cf. [10, 13, 12, 9])
in the version defined for characterizable differential ideals (cf. [6, 7]).

For the following theorem, we consider an ℓ-th differential counting
polynomial as a polynomial in the indeterminate ∞ and coefficients in
Z[ℵ0]. Similarly, we consider a differential counting polynomial as a

polynomial in the indeterminates ∞
ℓ
i

i! for 0 ≤ i ≤ n and coefficients in

Q[ℵ0, ℓ]. We order the indeterminates ∞
ℓ
n

n! > . . . > ∞
ℓ
2

2! > ∞ℓ > ∞.

Theorem 4.5. Let I := 〈S〉∆ : (ini(S)∪ sep(S))∞ be a characterizable
differential ideal given by a regular chain S. Denote by

ΩI : Z≥0 7→ Z≥0 : ℓ 7→ dim(F{U}≤ℓ/(I ∩ F{U}≤ℓ))

its differential dimension function and by ωI(l) its dimension polyno-
mial, the unique polynomial that agrees with the dimension function for
all large enough ℓ. If an ℓ-th differential counting polynomial c(I)(ℓ)
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of I exists, then its leading term is
(∏

p∈S
ord(p)≤ℓ

degld(p) p
)
· ∞ΩI(ℓ) .

If a differential counting polynomial c̄(I) of I exits, then its leading
term is

(∏

p∈S

degld(p) p
)
· ∞ωI(ℓ) .

We postpone the proof to page 18.
Under the assumptions of this theorem, the differential counting

polynomial implies the same invariants of differential birational maps
as the differential dimension polynomial. In particular, the differential
type, typical dimension, and differential dimension can be read off the
exponent of ∞ in the leading term. This exponent is a polynomial in
ℓ equal to the differential dimension polynomial. The differential type
t is the degree of this exponent, and when writing it as

∑n

i=0 ai
(
ℓ+i

i

)

the typical dimension is at and the differential dimension is an (cf. [13,
Theorem 1.1]).

4.5. Simple Differential Systems without Inequations. For semi-
linear systems of differential equations there exists a closed formula for
the differential counting polynomial that holds once all differential con-
sequences are obvious from the system (such systems are called passive
[8], involutive [2] or coherent [11]). It follows from this formula, that
the differential counting polynomial of such systems does not involve
ℵ0. This holds for the more general class of differential equations given
by a simple differential system S without inequations [2, Def. 3.5]. Let
I(S) := 〈T 〉∆ : q∞ be the corresponding characterizable differential
ideal, where T are the equations in S and q is the product of the ini-
tials and separants of T . Let ΩI(S) denote its differential dimension
function and ωI(S) its dimension polynomial [13].

Theorem 4.6. Let S = {p1, . . . , ps} be a simple differential system
in F{U} without inequations. Consider formal power series solutions
around a point ζ ∈ Cn such that neither evaluating the coefficients of
S at ζ yields a pole nor any initial or separant vanishes identically.
Then, its unique counting sequence is

c(S) : l 7→
( ∏

1≤i≤s
ord(pi)≤ℓ

degld(pi)(pi)
)
· ∞ΩI(S)(ℓ) ,



10 MARKUS LANGE-HEGERMANN

and its differential counting polynomial is

c̄(S) =
( ∏

1≤i≤s

degld(pi)(pi)
)
· ∞ωI(S)(ℓ) .

We postpone the proof to page 18.
Differential inequations in the sense of Thomas (cf. [2]) are not well-

suited to count power series solutions, as u(x) 6= 0 just implies that at
least one power series coefficient of u is non-zero.

Many examples of systems of differential equations yield a Thomas
decomposition into a single simple differential system without inequa-
tions. Examples are systems of linear differential equations and semi-
linear formally integrable systems of differential equations. We show
an example of the latter class.

Example 4.7. Let F = C, ∆ = {∂x, ∂y, ∂z, ∂t}, U = {u, v, w, p}, and
fix a ranking, such that the leaders are the underlined indeterminates.
The incompressible Navier-Stokes equations are

S := { ut + uux + vuy + wuz + px −
(
uxx + uyy + uzz

)
= 0,

vt + uvx + vvy + wvz + py −
(
vxx + vyy + vzz

)
= 0,

wt + uwx + vwy + wwz + pz −
(
wxx + wyy + wzz

)
= 0,

ux + vy + wz = 0 }.

A differential Thomas decomposition for S is given by the one system

S ∪
{
2uyvx + 2uzwx + 2vzwy + u2

x + v2y + w2
z + pxx + pyy + pzz = 0

}
,

where the Poisson pressure equation is added to S. In particular, the
Thomas decomposition of S does not contain any inequation. A com-
binatorial calculation shows that the differential counting polynomial
of the incompressible Navier-Stokes equations is ∞ℓ3+ 11

2
ℓ2+ 17

2
ℓ+4.

4.6. Examples. To transform a differential equation into an equa-
tion for a single power series coefficient, we define the partial map

ρ : F{U} → C[G] as additive, multiplicative, mapping u
(j)
µ to g

(j)
µ , and

mapping any meromorphic f ∈ F to f(ζ) ∈ C if it has no pole in ζ .
We call the following the postponing of a differential equation p ∈

F{U}: Replace p by its first derivatives {∂x1p, . . . , ∂xn
p} and ρ(p); this

does not change the solution set.
In the following example, there is a power series coefficient that can

be chosen arbitrarily except for a countable infinite exceptional set for a
solution to exist. This exceptional set corresponds to the indeterminate
ℵ0 in the differential counting polynomial. In particular, there exists
a set of differential equations for which the indeterminate ℵ0 appears
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in the differential counting polynomial. This countable exceptional set
carries over from the set of formal power series solutions to the set an-
alytical solutions, as all formal power series solutions in this example
have a positive radius of convergence. The author did not find a simi-
lar set of differential equations which describes natural phenomena or
appears in the scientific literature.

Example 4.8. Let U = {u(1), u(2)}, ∆ = {∂t}, F = C(t), and < the
orderly ranking with u(1) > u(2). We show the following. For all ℓ ≥ 1

c̄(S) = c(S)(ℓ) = ∞3 −∞2 +∞− ℵ0

for formal power series solutions of S := {p := u(2)u
(1)
1 − u(1) + 1

t
=

0, u
(2)
2 = 0} centered around ζ ∈ C \ {0}. Each of these solutions is

locally convergent and S has no solutions centered around 0.

Use the ansatz u(1)(t) =
∑∞

i=0 g
(1)
i

(t−ζ)i

i!
and u(2)(t) =

∑∞

i=0 g
(2)
i

(t−ζ)i

i!
.

Adding g
(2)
0 6= 0 to S yields T := {p = 0, u

(2)
2 = 0, g

(2)
0 6= 0}. It has ℓ-th

differential counting polynomial c(T )(ℓ) = ∞3 − ∞2 for every order
ℓ ≥ 1. This follows by means of the proof of Theorem 4.6 on page 18;

the inequation g
(2)
0 6= 0 ensures that the initials of the derivatives of p

are non-zero after applying ρ.

The system S∪{g
(2)
0 = 0}, which is complementary to the previously

treated system S ∪ {g
(2)
0 6= 0}, is equivalent to

S1 := { ∂tp = u(2)u
(1)
2 + (u

(2)
1 − 1)u

(1)
1 −

1

t2
= 0, u

(2)
2 = 0,

g
(1)
0 −

1

ζ
= 0, g

(2)
0 = 0} ,

by postponing p. This system S1 belongs to the family

Sk := {qk := u(2)u
(1)
k+1 + (ku

(2)
1 − 1)u

(1)
k + (−1)k

k!

tk+1
= 0, u

(2)
2 = 0,

(ig
(2)
1 − 1)g

(1)
i + (−1)i

i!

ζ i+1
= 0 ∀ 0 ≤ i < k,

∏k−1
i=1 (ig

(2)
1 − 1) 6= 0, g

(2)
0 = 0}

of systems. Here qk results from differential reduction of ∂k
t p by u

(2)
2 .

After application of ρ and reduction with elements in Sk, the differen-

tial equations qk yield (kg
(2)
1 −1)g

(1)
k +(−1)k k!

ζk+1 . To ensure a non-zero

initial, we add (kg
(2)
1 − 1) 6= 0 to Sk. Then, postponing qk, which after

reduction by u
(2)
2 results in qk+1, yields the system Sk+1. Complemen-

tary, when adding kg
(2)
1 − 1 = 0 to Sk, the system is inconsistent, since
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reducing ∂tqk by u
(2)
2 results in qk+1. Then

ρ(qk+1) = g
(2)
0 g

(1)
k+2 + (kg

(2)
1 − 1)g

(1)
k+1 + (−1)k+1 (k + 1)!

ζk+2
= 0

yields the contradiction (−1)k+1 (k+1)!
ζk+2 = 0 by using the relations g

(2)
0 =

0 and kg
(2)
1 − 1 = 0.

Study the remaining system S∞ :=
⋃∞

i=1 Si. The equations (kg
(2)
1 −

1)g
(1)
k + (−1)k k!

ζk+1 = 0 make p superfluous. Furthermore, g
(2)
1 cannot

equal 1
k

for any k ∈ Z≥1. Thus, there exists a countable infinite set

of exceptional values for the power series coefficient g
(2)
1 for which no

solution exists. This results in

T∞ := { u
(2)
2 = 0, g

(2)
0 = 0,

(kg
(2)
1 − 1)g

(1)
k + (−1)k

k!

ζk+1
= 0 ∀ k ∈ Z≥0,

kg
(2)
1 − 1 6= 0 ∀ k ∈ Z≥1 } .

Hence, Solζ(S) = Solζ(T ) ⊎Solζ(T∞).

For order ℓ = 0 this system has one solution {g
(1)
0 = 1

ζ
, g

(2)
0 = 0} and

thus its differential counting polynomial is 1. Its solution set is disjoint
with that of T , which has differential counting polynomial ∞2 − ∞.
Thus, the zeroth differential counting polynomial is ∞2 − ∞ + 1 for
ℓ = 0. Now assume ℓ ≥ 1. The only choice in the special case system

T∞ is for g
(2)
1 and it may be chosen freely in C \

{
1
k

∣∣k ∈ Z≥1

}
. Thus,

c(T∞) = ∞− ℵ0. This implies that the counting sequence of S is

c(S) = l 7→

{
∞3 −∞2 +∞− ℵ0, ℓ ≥ 1

∞2 −∞+ 1, ℓ = 0 .

These exceptional values for g
(2)
1 correspond to the indeterminate ℵ0 in

the differential counting polynomial.
All formal power series solutions of this example converge. This is

implied for the ones of T by Riquier’s Existence Theorem [18]. For
system T∞ the solutions of u(2) are lines and the radius of convergence
for the formal power series solutions of u(1) is |ζ | by the ratio test:

∣∣∣∣∣
g
(1)
k+1

(k + 1)g
(1)
k

∣∣∣∣∣ =
∣∣∣∣∣

kg
(2)
1 − 1

(k + 1)g
(2)
1 − 1

∣∣∣∣∣ ·
∣∣∣∣
1

ζ

∣∣∣∣ −→
∣∣∣∣
1

ζ

∣∣∣∣ , k → ∞
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The following example demonstrates that the additional information
contained in the differential counting polynomial can be used to decide
that a symbolic solver of differential equations did not find all solutions.

Example 4.9. Let U = {u(1), u(2)}, ∆ = {∂t}, F = C, and < the
orderly ranking with u(1) > u(2). We show the following. For all ℓ ≥ 1

c̄(S) = c(S)(ℓ) = ∞ℓ+2 −∞ℓ+1 + (ℓ+ 1)∞ℓ − ℓ∞ℓ−1

for formal power series solutions of S := {p := u(2)u
(1)
1 − u(1) = 0}

centered around zero. The dimension polynomial is ℓ+2 (using Theo-
rem 4.5 and the Low Power Theorem [11, IV.§15]).

Maple’s dsolve [1] returns an arbitrary u(2)(t) and

u(1)(t) = a · e
∫
t

0
1

u(2)(h)
dh

for a constant a. This set of solutions depends on ℓ + 2 generically
arbitrary constants up to order ℓ, in accordance with the dimension
polynomial. The zeroth power series coefficient of u(2)(t) cannot be
zero, as otherwise the integral does not exist. Thus, Maple’s dsolve

finds ∞ℓ+2−∞ℓ+1 solutions up to order ℓ and a subset of the solutions
with ℓ-th counting polynomial (ℓ + 1)∞ℓ − ℓ∞ℓ−1 is not found. The
dimension polynomial does not account for these additional solutions,
some of which are analytic.

Now we show the claims from above. Use the ansatz u(1)(t) =∑∞

i=0 ai
ti

i!
and u(2)(t) =

∑∞

i=0 bi
ti

i!
. Let

ρ : C{U} → C[ai, bi|i ∈ Z≥0] : u
(1)
i 7→ ai, u

(2)
i 7→ bi .

Adding b0 6= 0 to S yields T := {p = 0, b0 6= 0} with ℓ-th differential
counting polynomial c(T )(ℓ) = (∞− 1)∞ℓ+1 for every order ℓ ≥ 1.

Complementary, the system {p = 0, b0 = 0} is equivalent to S1 :=
{∂tp = 0, a0 = 0, b0 = 0} by postponing p. It is part of the family

Sk := { ∂k
t p = u(2)u

(1)
k+1 + (ku

(2)
1 − 1)u

(1)
k +

∑k

i=2

(
k

i

)
u
(2)
i u

(1)
k+1−i = 0,

a0 = . . . = ak−1 = b0 = 0,
∏k−1

i=1 (ib1 − 1) 6= 0 }

of systems. Consider the initial of the equation ρ(∂k
t p), which is equal

to (kb1 − 1)ak after reduction in Sk. Adding its initial (kb1 − 1) 6= 0 to
Sk, and postponing ∂k

t p results in the system Sk+1. Complementary,
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adding (kb1 − 1) = 0 to Sk and postponing ∂k
t p yields the system

Tk := { ∂k+1
t p = 0,

a0 = . . . = ak−1 = 0,

b0 = kb1 − 1 = 0}.

The inequations from Sk are superfluous in Tk because of the equation
kb1−1 = 0. The equation ρ(∂k+1+j

t p) reduces to 1
k
ak+1+j+

(
k+1+j

2

)
b2ak+j

in the context of Tk for all j ∈ Z≥0. This reduced form has the leader
ak+1+j for all j ∈ Z≥0; there is no constraint for ak.

Consider the remaining system T∞ :=
⋃∞

i=1 Si. The equations ak = 0
for all k ≥ 0 combine to the differential equation u(1) = 0; this makes
the differential equation p superfluous. Furthermore, b1 is not allowed
to be of the form 1

i
for any i ∈ Z≥1. Summing up, the system T∞ :=

{u(1) = 0, b0 = 0, ib1 6= 1 ∀i ∈ Z≥1} describes these remaining solutions.
We discuss the ℓ-th differential counting polynomials for ℓ ≥ 1 of

the sets of solutions of T∞ and Tk, k ≥ 1. These systems have disjoint
sets of solutions in orders ℓ ≥ 1, since b1 takes different values. The
ℓ-th differential counting polynomial of Tk for k ≤ ℓ is ∞ℓ, since the
values for the indeterminates ak, b2, . . . , bℓ are freely chooseable and the
other values are fixed. In the union

⊎
k>ℓ,k=∞

Sol0(Tk)≤ℓ the value for

b1 can be freely chosen except for the ℓ values 1
1
, . . . , 1

ℓ
. Then, the

indeterminates b2, . . . , bℓ have no constraint and the indeterminates ai
are uniquely determined. Thus,

c
( ⊎

k>0,k=∞

Sol0(Tk)≤ℓ

)
=

∑

1≤k≤ℓ

c
(
Sol0(Tk)≤ℓ

)
+ c

( ⊎

k>ℓ,k=∞

Sol0(Tk)≤ℓ

)
.

= ℓ · ∞ℓ + (∞− ℓ) · ∞ℓ−1

= (ℓ+ 1)∞ℓ − ℓ · ∞ℓ−1

Adding this ℓ-th counting polynomial to the one of T results in ∞ℓ+2−
∞ℓ+1 + (ℓ+ 1)∞ℓ − ℓ∞ℓ−1, as claimed above.

Riquier’s Existence Theorem [18] implies the convergence for the
power series solutions of system T for analytical initial conditions. Sys-
tem T∞ gives the zero power series for u(1), which converges and only
restricts the choice for the first two power series coefficients of u(2),
hence u(2) can be chosen to converge. The solutions of the systems Tk

can diverge even for analytical initial conditions. E.g., consider system
T1 and prescribe b0 = 0, b1 = 1, b2 = 1, bi = 0 for all i ≥ 3. By the ratio
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test the radius of convergence of the solution for u(1) is zero, as
∣∣∣∣

ak+1

(k + 1)ak

∣∣∣∣ =
k − 1

k

∣∣∣∣∣

∑k

i=2

(
k

i

)
bi+1

i+1
ak+1−i

∑k

i=2

(
k

i

)
biak+1−i

+
k

2
b2

∣∣∣∣∣ =
k − 1

2
−→ ∞

for k → ∞. The analytical initial condition b0 = 0, b1 = 1, b2 = 0, bi =
i!, for i ≥ 3, gives 1 as radius of convergence by a similar computation.

5. Proofs

This section proves the theorems of the previous sections.

5.1. Proof of Theorem 3.5. By abuse of notation, let c denote the
counting polynomials for subsets in Ck for all 1 ≤ k ≤ n.

Proof of existence. Let S ⊂ C[y1, . . . , yn] be a simple algebraic σ-sys-
tem. Furthermore, let τ(Syi) be the degree of the equation if Syi is a
singleton of an equation, τ(S ′) =

∏
p∈S′ degyi(p) if Syi is a finite set of

inequations, and τ(Syi) = ∞ − ℵ0 if Syi is a countably infinite set of
inequations. Then, the product

∏n

i=1 τ(Syi) is a counting polynomial.
The correctness of this formula follows from the fibration structure
of simple systems as discussed in [16], which also holds for simple σ-
systems. �

Write T := Sol(S) and T for its Zariski closure. Let π : Cn →
Cn−1 be the projection to the first n − 1 components. The projected
set π(T ) is equal to the solution set of the simple σ-system S<yn in
C[y1, . . . , yn−1].

Proof of uniqueness. For systems (instead of σ-systems), the claim is
shown in [16, Prop. 3.3]; in this case, Lazard’s Lemma implies that the
degree of the algebraic counting polynomial is equal to the dimension
of the set of solutions.

In this proof we can ignore sets of lower dimension, since any count-
ing polynomial of such a set is of lower degree and we can proceed
by an induction on dim(T ). Any partition of T into solution sets of
algebraic σ-systems of the same dimension is finite. Such a finite parti-
tion does not change the degree and leading coefficient of the counting
polynomial, by the same arguments as in step 3 of the proof of [16,
Prop. 3.3]. Thus, in the following we can always assume that a set is
suitably partitioned into a disjoint union of sets.

The claim is clear for n = 1. We show the claim for the dimension
n of the surrounding space under the assumption that it is shown for
dimensions 0 up to n− 1. The crux of the proof is that only axiom (4)
in Definition 3.1 allows to increase this dimension.
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By the assumption on n − 1, the algebraic counting polynomials of
the two projections π(T ) ⊆ π(T ) have the same degree, say d, and
leading coefficients, say a, as their Zariski closures coincide.

As first case consider that Syn is a set of inequations. By Defini-
tion 3.1.(4), any algebraic counting polynomial of T is an algebraic
counting polynomial of π(T ) multiplied by ∞ − b for b ∈ Z[ℵ0]. In
particular, any leading coefficient is a and any degree is d + 1. Fur-
thermore, T = π(T ) × C has a unique counting polynomial, which is
c(π(T )) · ∞ and also has leading coefficient a and degree d+ 1.

As second case consider that Syn is an equation. In this case we
do an induction over dim(T ). The claim is clear for dim(T ) = 0, so
assume that it is shown for all dimensions from 0 to dim(T )− 1.

On the one hand, by Definition 3.1.(4), the degree of any counting
polynomial of T is again d and any leading coefficient is a · degyn(Syn).

On the other hand, consider T . The map π makes T an degyn(Syn)-

sheeted cover of π(T ). Denote by R ⊆ π(T ) the corresponding set of
ramification points and by U := π(T ) \R the set of unramified points.
To apply Definition 3.1.(4), one needs to partition T into (a refine-
ment of) π−1(R) and π−1(U), thus any algebraic counting polynomial
needs to be defined using this partition. As U and R are locally closed,
their algebraic counting polynomials exist and are unique. The Zariski
closures of U and π(T ) coincide, so by induction on n the leading co-
efficient of c(U) is a and deg∞(c(U)) = d. By Definition 3.1.(4), the
algebraic counting polynomial of π−1(U) has the same degree and lead-
ing coefficient as that one of T , as π−1(U) is an unramified degyn(Syn)-

sheeted cover of U and the set π−1(R) is of lower dimension than T . �

5.2. Proof of Theorem 3.6. The proof of Theorem 3.2 is given in
[16, Cor. 3.4]. The following two lemmas directly generalize this proof
to showing Theorem 3.6. We call a set W ⊂ Cn elementarily well-

fibered if either n = 1 and W is constructible or n > 1, π(W ) ⊆ Cn−1

is elementarily well-fibered, and all fibers of π−1({w}) for w ∈ π(W ) are
constructible with equal algebraic counting polynomials. They admit
an algebraic counting polynomial in Z[∞] by definition.

Lemma 5.1. Let V be a well-fibered set. Then there exists a finite
partition V =

⊎k

i=1Wi of V into elementarily well-fibered sets Wi.

Proof. The claim clearly holds for n = 1. The only one of the five ax-
ioms for the algebraic counting polynomial that allows one to increase
the dimension is axiom (4). In general, one needs to partition V before
applying axiom (4), but this partition needs to be finite, as otherwise
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axiom (3) is not applicable to recombine the resulting algebraic count-
ing polynomials. Elementarily well-fibered sets are exactly the sets for
which axiom (4) is applicable without additional partitioning. �

Lemma 5.2. Let V be a well-fibered set. Then the algebraic counting
polynomial of V is unique.

Proof. The proof of [16, Prop. 3.3] regarding the uniqueness of algebraic
counting polynomials holds for well-fibered sets. One only needs to
replace a partition into solution sets of simple systems with a partition
into elementarily well-fibered sets, which exists by Lemma 5.1. �

5.3. Proof of Theorem 4.1. Transform the algebraically restricted
system of differential equations S by keeping all equations and inequa-
tions in C[G] and apply ρ (cf. page 10) to the differential equations and
all their (iterated) derivatives. Call the resulting set Q; it consists of
infinitely many equations and inequations in C[G] and has the same set
of solutions as S. Write G = {g1, g2, . . .} ordered by the ranking, i.e.,
gi < gi+1 for all i. Note that Q ∩ C[g1, . . . , gi] is finite for all i ∈ Z>0.

Let gj be the largest element in G of order ℓ. Define the set L0 :=
Decompose(Q ∩ C[g1, . . . , gj]) of simple systems, where Decompose is
the Thomas decomposition algorithm from [2]. Iteratively, define the
sets Lk of simple systems by making

{Decompose(T ∪ (Q \ C[g1, . . . , gj+k−1]) ∩ C[g1, . . . , gj+k]) | T ∈ Lk−1}

comprehensive (cf. section 2) with respect to gj for each k ∈ Z>0. Let
L′
k := {T ∩ C[g1, . . . , gj] | T ∈ Lk} for each k ∈ Z≥0. The simple

systems in L′
k have disjoint sets of solutions, as Lk is comprehensive

w.r.t. gj.
For any power series which is not a solution of the input system S

there exists a k large enough such that it is no longer the solution of
any system in Lk, as each constraint in Q is taken into account at some
step.

Next we show that equations stabilize by looking at ideals. Let
Jk :=

⋂
T∈L′

k

I(T ) be an ideal in the Noetherian ring C[G]≤ℓ for each

k ∈ Z≥0. This ideal is equal to intersecting C[G]≤ℓ with the vanishing
ideal of Q∩C[g1, . . . , gj+k]. In particular, this ascending chain of ideals
does stabilize after a finite number k′ of steps. This stable ideal is the
vanishing ideal of all power series solutions truncated at order ℓ.

By construction for each simple system Tk+1 ∈ L′
k+1 there is a unique

simple system Tk ∈ L′
k with Sol(Tk+1) ⊆ Sol(Tk); if additionally

I(Tk+1) = I(Tk), then call Tk+1 the (unique) heir of Tk. Define a
successor as an element in the transitive hull of heir.
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As Jk′ is a radical ideal in the Noetherian ring C[G]≤ℓ, it has a
finite prime decomposition. There is a minimal L′′

k ⊆ L′
k such that

Jk′ =
⋂

T∈L′′
k

I(T ) for each k ≥ k′. By increasing k′ we may assume

that the cardinality of each L′′
k is equal for all k ≥ k′. In particular,

each Tk ∈ L′′
k has an heir in L′′

k+1.
A closer look at the algebraic Thomas decomposition algorithm De-

compose reveals that a system and all its successors do not only have
equal ideals but also equal sets of equations. In particular, a system
and its heir only differ in their set of inequations. We can slightly adapt
the algebraic Thomas decomposition algorithm Decompose such that
the simple systems (and the candidate simple systems ST ) allow more
than one inequation with the same leader, as long as the conditional
gcd of these inequations with the same leader have no common zero
with the system. This adaption changes nothing of the previous dis-
cussion. However, now the inequations of a simple system are a subset
of the inequations of its heir, and thus the union of any system in L′′

k′

with all its successors is a simple algebraic σ-system.
This results in a finite set of algebraic σ-systems having truncated so-

lutions that are dense in the truncated solutions of S. The complement
of this dense set is described by a countable set of systems. Continue
with these systems inductively. The ideals of these complementary
systems are strictly larger than the previous ideals. In particular, de-
scending chains of these systems are finite in length. Hence, the number
of algebraic σ-systems remains countable. �

5.4. Proof of Theorem 4.5. The claim for the ℓ-th differential count-
ing polynomial is a corollary to Theorem 3.5. Thereby, we can assume
without loss of generality that the set of solutions Solζ(I)≤ℓ up to order
ℓ is constructible. Now, the claim follows directly from the definition
of the differential dimension function ΩI : ℓ 7→ dim(F{U}≤ℓ/I≤ℓ) and
that the dimension coincides with the degree of the algebraic count-
ing polynomial. The formula for the coefficient also follows from the
proof of Theorem 3.5; we do not need to consider the degrees of the
(quasilinear) derivatives of the equations.

The claim for the differential counting polynomial follows, as the
dimension polynomial ωI ultimately coincides with ΩI .

5.5. Proof of Theorem 4.6. We prove this theorem by creating suit-
able simple algebraic systems S≤ℓ ⊂ C[G]≤ℓ, which describe the formal
power series solutions of S around a point ζ truncated at order ℓ.
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For this, define S by applying ρ (cf. page 10) to the equations in S
and all their reductive prolongations (cf. [2, §3]). Then, define S≤ℓ :=
S ∩ C[G]≤ℓ.

It is straightforward that S≤ℓ is a simple algebraic system in C[G]≤ℓ,
e.g. derivatives are squarefree, as they are quasilinear and the initial of
a derivative is the separant of the original equation.

Next, we show that the formal power series solutions of S around a
point ζ truncated at order ℓ are the same as those of S, i.e., Solζ(S)≤ℓ =
Solζ(S≤ℓ)≤ℓ. This would be clear if S contained all derivatives of equa-
tions in S and not only the reductive prolongations. However, the
non-reductive prolongations are redundant, as S is involutive (cf. [2,
3.5]).

Finally, the existence proof of Theorem 3.5 on page 15 allows to read
off the counting polynomial from S≤ℓ: The number of free variables is
equal to the value of the differential dimension function at ℓ (and to the
value of the dimension polynomial for ℓ large enough). Furthermore,
one needs to multiply the degrees of the equations to get the coefficient;
these degrees are one for all derivatives, and thus one is left with the
degrees of the equations in S.

The uniqueness follows from Theorem 4.3, as no ℵ0 appears. �
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