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ON THE EXACTNESS OF LASSERRE RELAXATIONS AND

PURE STATES OVER REAL CLOSED FIELDS

TOM-LUKAS KRIEL AND MARKUS SCHWEIGHOFER

ABSTRACT. Consider a finite system of non-strict polynomial inequalities with
solution set S ⊆ Rn. Its Lasserre relaxation of degree d is a certain natural linear
matrix inequality in the original variables and one additional variable for each
nonlinear monomial of degree at most d. It defines a spectrahedron that projects
down to a convex semialgebraic set containing S. In the best case, the projection
equals the convex hull of S. We show that this is very often the case for sufficiently
high d if S is compact and “bulges outwards” on the boundary of its convex hull.

Now let additionally a polynomial objective function f be given, i.e., consider
a polynomial optimization problem. Its Lasserre relaxation of degree d is now
a semidefinite program. In the best case, the optimal values of the polynomial
optimization problem and its relaxation agree. We prove that this often happens if
S is compact and d exceeds some bound that depends on the description of S and
certain characteristicae of f like the mutual distance of its global minimizers on S.
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1. INTRODUCTION

1.1. Basic notation. Throughout the article, N and N0 denote the set of positive
and nonnegative integers, respectively. All rings will be commutative with 1 and,
correspondingly, ring homomorphisms always map 1 to 1 by definition. We fix
n ∈ N0 and denote by X := (X1, . . . , Xn) a tuple of n variables. For any ring A in
which 0 6= 1, we write

A[X] := A[X1, . . . , Xn]

for the polynomial ring in these variables over A. For α ∈ Nn
0 , we denote

|α| := α1 + . . . + αn and Xα := X
α1
1 · · ·Xαn

n .

If A is a ring and p = ∑α aαXα ∈ A[X] with all aα ∈ A, the degree of p is defined
as

deg p := max{|α| | aα 6= 0}
if p 6= 0 and deg p := −∞ if p = 0. For each ring A and all d ∈ N0, we set

A[X]d := {p ∈ A[X] | deg p ≤ d}.
In particular, R[X]d is the real vector space of all real polynomials of degree at
most d. We call polynomials of degree at most 1 linear polynomials, of degree at
most 2 quadratic polynomials and so on. We call a polynomial a linear form if all of
its monomials are linear.

1.2. Systems of polynomial inequalities and polynomial optimization problems.
Fix g = (g1, . . . , gm) ∈ R[X]m, consider the basic closed semialgebraic set [PD1,
Chapter 2]

S(g) := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}.
Given g, one would like to understand S(g) as well as possible. This is the task
of solving systems of polynomial inequalities. Moreover, given in addition f ∈ R[X],
one would like to compute the infimum (or the supremum) of f on S(g) and ex-
tract, if the infimum is a minimum, the corresponding minimizers. This is the
task of polynomial optimization. Both mentioned tasks are very difficult problems in
general. Lasserre and others developed a by now well-established and successful
symbolic-numeric technique to approach these problems [L1, L2, Lau, Mar].

1.3. The idea behind Lasserre relaxations. The idea is to fix a so-called relaxation
degree d and to generate from given polynomial inequalities new families of poly-
nomial inequalities of degree at most d by multiplying the gi with squares of poly-
nomials of appropriate degree. These families of polynomial inequalities are then
turned into families of linear inequalities by substituting the non-linear monomials
of degree at most d with new variables. The gist of the method is that this family
of linear inequalities corresponds to a single linear matrix inequality which is called
the degree d Lasserre relaxation of the given system of polynomial inequalities. In the
case of polynomial optimization, the objective polynomial f is also linearized in
the same way and together with the linear matrix inequality now forms a semidefi-
nite program which is called the degree d Lasserre relaxation of the given polynomial
optimization problem. For the purpose of this article, we will take a shortcut and
will not formally define the Lasserre relaxations themselves but instead directly
define in a rather abstract way the relevant convex supersets Sd(g) of S(g) (the
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projection of the spectrahedron defined by the linear matrix inequality) and the op-
timal value Lasserred( f , g) (the optimal value of the semidefinite program). For
the study of this article, it is hence not even necessary to know what is a linear
matrix inequality or a semidefinite program. We refer however the readers that
are not familiar with the Lasserre relaxation but want to understand why it is such
a natural procedure to [KS, Lau, Mar]. Occasionally, the Lasserre relaxation is also
called moment relaxation but we prefer to name it after Jean Lasserre who played a
leading role in the invention and investigation of this natural procedure [L1, L2].

1.4. Formal definitions related to Lasserre relaxations. We now fix a relaxation
degree d ∈ N0. In order to define Sd(g) and Lasserred( f , g) as promised, we first
introduce the d-truncated quadratic module Md(g) associated to g by

Md(g) :=

{
m

∑
i=0

∑
j

p2
ijgi | pij ∈ R[X], deg

(
p2

ijgi

)
≤ d

}
⊆ M(g)∩R[X]d

where g0 := 1 ∈ R[X]. Here the inner sum over j is a finite sum of arbitrary length.
Moreover, it will be of utmost importance that the degree of each individual p2

ijgi

is restricted by d (and not just the degree of the outer sum over i which would
make the inclusion into an equality). Note that Md(g) consists of polynomials of
degree at most d that are very obviously nonnegative on the whole of S(g). Now
we set

Sd(g) :=




(L(X1), . . . , L(Xn))

∣∣∣∣∣∣∣

L : R[X]d → R linear,

L(Md(g)) ⊆ R≥0,

L(1) = 1




⊆ Rn

and for f ∈ R[X]d

Lasserred( f , g) := inf





L( f )

∣∣∣∣∣∣∣

L : R[X]d → R linear,

L(Md(g)) ⊆ R≥0,

L(1) = 1




∈ {−∞} ∪R ∪ {∞}

where the infimum is taken in the ordered set {−∞} ∪R ∪ {∞}. Considering the
evaluations of degree at most d polynomials at points of S(g), it is clear that Sd(g)

contains S(g) and Lasserred( f , g) is a lower bound of the infimum of f on S(g) for
all d ∈ N0.

1.5. Our contribution towards solving systems of polynomial inequalities. We
recall that a subset S of a real vector space is called convex if

λx + (1− λ)y ∈ S

for all x, y ∈ S and λ ∈ [0, 1]. There is always a smallest convex subset containing
S. It is called the convex hull of S and we denote it by conv S. Since each Sd(g) is
obviously a convex set, it is easy to see that

S(g) ⊆ conv S(g) ⊆ . . . ⊆ S3(g) ⊆ S2(g) ⊆ S1(g) ⊆ S0(g).

The best one can hope for is thus that

conv S(g) = Sd(g)
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for some d (unfortunately, we do not prove anything about the dependance of d
on g). In Corollary 56 below, we prove that this best possible case occurs (i.e., the
Lasserre relaxation eventually becomes exact) if S(g) is compact and mild addi-
tional hypotheses are met:

• In fact, M(g) :=
⋃

d∈N Md(g) has to be Archimedean, see Definition 1, Re-
mark 4 and Proposition 5 below. This implies compactness of S(g) but is in
general not equivalent to it. However, up to changing the description g of
S(g) which is easy in most practical cases, it is equivalent to it as explained
in Remark 7 below.
• We assume S(g) to have nonempty interior near its convex boundary in

the sense of Definition 46. This is for example satisfied if the semialgebraic
set S(g) is locally full-dimensional [BCR, Definition 2.8.11] at each of its
points.
• Roughly speaking, at each point of S(g) which lies on the boundary of its

convex hull, the smooth algebraic hypersurfaces that “confine” S(g) must
have positive curvature (where the normal is chosen in a way that respects
the convexity of S(g)), in particular S(g) satisfies a kind of second order
strict convexity condition locally on the boundary of its convex hull. See
Definitions 46 and 38 as well as Remarks 39 and 57 for the exact condition
and more details. With the right description g of S(g), this often just means
that S(g) has “no flat parts” on the boundary of its convex hull.

This last “no flat borders” condition is the most severe since it can easily be vio-
lated if one of the gi is linear (i.e., deg gi ≤ 1) which happens quite often in the
applications. As shown in [KS, Example 4.10], it can however not be omitted. The
authors have however proven a variant of Corollary 56 that allows such linear in-
equalities and more generally g-sos-concave inequalities [KS, Main Theorem 4.8]
in the case where S(g) is convex. For convex S(g), our Corollary 56 is thus weaker
than [KS, Main Theorem 4.8]. Whereas [KS] builds up on the seminal work of
Helton and Nie [HN1, HN2] based on representations of positive matrix polyno-
mials, we use in this work completely different techniques, namely the technique
of pure states we will discuss below. Note that we do not know how to prove
[KS, Main Theorem 4.8] using pure states, and conversely we did not succeed to
prove Corollary 56 in this article using positivity certificates for matrix polynomi-
als. The results and techniques of this article and of [KS] thus nicely complement
each other. While we pushed in [KS] the technique of Helton and Nie [HN1, HN2]
to its limits, we develop in this article a completely new approach through pure
states.

1.6. Our contribution to polynomial optimization. Next let us explain, what we
can prove about solving polynomial optimization problems. To this end, fix some
objective f ∈ R[X]d. Again, it is easy to see that

inf{ f (x) | x ∈ S(g)} ≥ . . . ≥ Lasserred+1( f , g) ≥ Lasserred( f , g).

The best one can hope for is thus that

inf{ f (x) | x ∈ S(g)} = Lasserred( f , g)
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for some d. It follows easily from Scheiderer’s theorem [S1, Corollary 3.6] (see
also [Mar, Theorem 9.5.3]) which we reprove in Corollary 34 below that this best
possible case occurs (i.e., the Lasserre relaxation eventually becomes exact) if S(g)

is compact and nonempty, f has only finitely many global minimizers on S(g)

which lie all in the interior of S(g) and if the following mild additional hypotheses
are satisfied:

• We suppose again that M(g) is Archimedean.
• We suppose that the second order sufficient condition for a local minimum

is satisfied at each of the global minimizers of f on S(g), i.e., the Hessian
of f is positive definite at these points. (Note that the second order neces-
sary condition for a local minimum already guarantees that the Hessian is
positive semidefinite at these minimizers.)

Our contribution is now that Theorem 37 is to the best of our knowledge the first
known result about at which degree the Lasserre relaxation of a polynomial opti-
mization problem becomes exact, namely we prove that the corresponding d de-
pends on

• the description g of S(g),
• an upper bound on the degree of f ,
• an upper bound on the absolute value of the coefficients of f ,
• the number k of the finitely many distinct minimizers x1, . . . , xk of f on

S(g) (all lying in the interior of S(g)),
• a lower bound on the mutual distance of these minimizers and on their

distance to Rn \ S(g) and
• a positive lower bound of

S \ {x1, . . . , xk} → R>0, x 7→
f (x)−min{ f (ξ) | ξ ∈ S(g)}

u(x)

where u is a certain canonical nonnegative polynomial with real zeros
x1, . . . , xn (this bound will be very small if f takes values close to

min{ f (ξ) | ξ ∈ S(g)}
at local nonglobal minimizers on S(g) or if f does not grow quickly enough
around its global minimizers on S(g)).

In other words, for fixed g and for a fixed threshold for the algebraic and geomet-
ric complexity of an objective polynomial, we prove that there exists a degree d
in which the Lasserre relaxation of the polynomial optimization problem becomes
exact for all objective functions f whose complexity does not succeed this thresh-
old. Interestingly, our result seems to suggest that Lasserre’s method for polyno-
mial optimization might have difficulties with some of the phenomena that clas-
sical optimization algorithms also struggle with like for example local minimizers
at which the objective function has a value close but different from the global min-
imum.

1.7. Qualitative versus quantitative bounds. Neither in Corollary 56 concerning
systems of polynomial inequalities nor in Theorem 37 concerning polynomial op-
timization problems, we prove anything concrete on the way, the relaxation de-
gree d of exactness depends on g and the complexity of f . This is because in the
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proof we work with infinitesimal numbers rather than with real quantities so that
our analysis gives the qualitative rather than the quantitative behavior. It is con-
ceivable to find a quantitative version of the proofs and more concrete bounds by
working with real numbers only instead of real closed fields. At least for general
g, this would however be an enormous effort.

1.8. Pure states. The concept of pure states stems from functional analysis and
has recently entered commutative algebra [BSS]. Pure states on rings often just
correspond to ring homomorphisms into the real numbers and therefore can be
seen as real points of a variety [BSS, Propositions 4.4. and 4.16]. In this article,
the variety concerned is just affine space. Although, this has not been investigated
thoroughly and it seems speculative, we feel that pure states on ideals of a ring
often just correspond to a certain kind up of “blowup” at the subvariety defined
by the ideal, i.e., the subvariety is replaced by the directions pointing out from it.
All this should be understood rather in a scheme theoretic manner, i.e., a kind of
“multiplicity information” is present. In our case, we will remove the finite sub-
variety of global minimizers and replace it by second order directional derivatives
pointing out from it. These ideas are not new [BSS, Theorem 7.11] but here we add
another important idea: We extend the technique of pure states (still real valued!)
to work over real closed extension fields of R (see Subsection 2.6 below) rather than
over R itself. More precisely, we work over the subring of finite elements of a real
closed extension field of R. This leads to new phenomena which we have to deal
with. It will turn out that the standard part map from this ring to the reals will
play a very important role (see Theorem 26 below).

1.9. Positive polynomials. Most of the rest of the article is written from the per-
spective that is dual to Lasserre relaxations, namely from the perspective of sums
of squares representations of positive polynomials. Viewed from this angle, our
first main result is Theorem 31 from which Theorem 37 follows. It is a generaliza-
tion of Putinar’s Positivstellensatz [Put, Lemma 4.1] where the polynomial to be
represented is allowed to have (finitely many) zeros (of a certain kind) and which
provides at the same time qualitative (but not quantitative) degree bounds. This
result generalizes both Putinar’s Positivstellensatz with degree bounds (a qualita-
tive version of which follows already from the ideas in [Pre] and [PD1, Chapter 8],
see [NS] for a quantitative version) and Scheiderer’s generalization of Putinar’s
Positivstellensatz to polynomials with zeros [S1, Corollary 3.6]. Due to our new
proof technique, these latter two results appear in our work as Corollaries 32 and
34. Our second main result on positive polynomials is Corollary 55 from which
Corollary 56 follows. The proofs of this representation theorem for linear polyno-
mials and of the preparatory Lemmata 49, 50 and 51 are very subtle.

2. PREREQUISITES

In order to make this article more accessible for readers from the diverse back-
grounds such as optimization, numerical analysis, real algebraic geometry and
convexity, we collect in this section the necessary tools and methods and present
them in way that is tailored towards our needs.
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2.1. Notation. For a subset S of Rn, we write S and S◦ for its closure and its inte-
rior, respectively. Moreover, ∂S = S \ S◦ denotes its boundary. For ε ∈ R≥0 and
x ∈ Rn, we denote by

Bε(x) := {y ∈ Rn | ‖x − y‖ < ε}
the open ball of radius ε centered at x (for ε = 0 it is empty). Consequently,

Bε(x) := {y ∈ Rn | ‖x − y‖ ≤ ε}
is the closed ball of radius ε centered at x for ε ∈ R>0. If f is a polynomial that can be
evaluated on a set S, we simply say

f ≥ 0 on S

to express that f (x) ≥ 0 for all x ∈ S. If A and B are subsets of an additively
written abelian group (e.g., the additive group of a ring or a vector space), then we
use suggestive notations like

A + B := {a + b | a ∈ A, b ∈ B} and

∑ A := {a1 + . . . + ak | k ∈ N0, a1, . . . , ak ∈ A}.

We use similar suggestive notations with respect to the multiplication in a ring or
scalar multiplication in a vector space. If A is a ring, then A2 will often stand for
the set

A2 := {a2 | a ∈ A}
of squares in A and consequently

∑ A2 = {a2
1 + . . . + a2

k | k ∈ N0, a1, . . . , ak ∈ A}
for the set of sums of squares in A. This could conflict with the common notation

Am := A× . . .× A︸ ︷︷ ︸
m times

for the m-fold Cartesian product but from the context it should always be clear
what we mean. Another source of confusion could be that we also use the notation
I J from commutative algebra for ideals I and J of a ring A to denote their product,
i.e.,

I J := ∑ I J

where the right hand side is written in our suggestive notation. Correspondingly,
we write I2 for the product of the ideal I with itself, i.e.,

I2 := I I := ∑ I I

and similarly for higher powers of the ideal I. If N ∈ Z, we often write N and
actually mean its image under the unique ring homomorphism Z → A.

2.2. Quadratic modules.

Definition 1. Let A be a ring and M ⊆ A. Then M is called a quadratic module of
A if {0, 1} ⊆ M, M + M ⊆ M and A2 M ⊆ M.
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Definition 2. Let A be a ring and M a quadratic module of A. For u ∈ A, we set

B(A,M,u) := {a ∈ A | ∃N ∈ N : Nu± a ∈ M}
and call its elements with respect to M by u arithmetically bounded elements of A.
If u = 1, then we write B(A,M,u) := B(A,M) and omit the specification “by u”. The
quadratic module M is called Archimedean if B(A,M) = A.

Proposition 3. Suppose 1
2 ∈ A and M is a quadratic module of A. Then B(A,M) is

a subring of A such that

a2 ∈ B(A,M) =⇒ a ∈ B(A,M)

for all a ∈ A and B(A,M,u) is a B(A,M)-submodule of A for each u ∈ ∑ A2.

Proof. If N ∈ N with (N − 1)− a2 ∈ M, then

N ± a = (N − 1)− a2 +

(
1
2
± a

)2

+ 3
(

1
2

)2

∈ M.

The rest follows from [BSS, Proposition 3.2(d)]. �

Remark 4. If A is a ring and G ⊆ A, then

∑
g∈G∪{1}

∑ A2g

is the smallest quadratic module of A containing G. It is called the quadratic mod-
ule generated by G (in A). If g = (g1, . . . , gm) ∈ Am is a tuple, then the quadratic
module generated by {g1, . . . , gm} equals

m

∑
i=0

∑ A2gi

where we set g0 := 1 ∈ A and we simply call it the quadratic module generated
by g. For g ∈ R[X]m, we introduce the notation M(g) for the quadratic module
generated by g in R[X] so that we obviously have

M(g) =
⋃

d∈N0

Md(g)

where Md(g) is the d-truncated quadratic module associated to g introduced in
Subsection 1.4 above.

Proposition 5. Let M be a quadratic module of R[X]. Then the following are
equivalent:

(a) M is Archimedean.
(b) There is some N ∈ N such that N − (X2

1 + . . . + X2
n) ∈ M.

(c) There are m ∈ N and g ∈ (R[X]1 ∩ M)m such that the polyhedron S(g) is
nonempty and compact.

(d) For each f ∈ R[X]1, there is some N ∈ N such that N + f ∈ M.

Proof. This is well known (see for example [PD1, Lemma 5.1.13] and [Mar, Cor.
5.2.4]). A short proof can be found in [KS, Proposition 2.7]. �
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Remark 6. There are deep criteria on when a quadratic module is Archimedean
which are important for applications. We will not need them here. Therefore we
mention only one of them [PD1, Theorem 6.3.6, Corollary 6.3.7] and refer to [PD1,
Chapter 6] for the general case: For any quadratic module M of R[X], the follow-
ing are equivalent:
(a) There are g, h ∈ M with compact S(g, h).
(b) M is Archimedean.

Remark 7. For n ≥ 2, there are examples of g ∈ R[X]m with compact (even empty)
S(g) such that M(g) is not Archimedean (see [Mar, Example 7.3.1] or [PD1, Exam-
ple 6.3.1]). However, if one knows a big ball containing S(g), it suffices to add
its defining quadratic polynomial to g by Proposition 5(b). That is why for many
practical purposes, the Archimedean property of M(g) is not much stronger than
the compactness of S(g).

2.3. Convex sets and cones. In Subsection 1.5, we have already reminded the
reader about convex sets and convex hulls. If S is a convex set, then a point x ∈ S

is called an extreme point of S if there are no y, z ∈ S such that y 6= z and x = y+z
2 .

We call S a (convex) cone if 0 ∈ S, S + S ⊆ S and R≥0S ⊆ S. We call sets of the form

{x ∈ Rn | f (x) ≥ 0}
where f ∈ R[X]1 affine half-spaces. By [Roc, Theorem 11.5], the closure of the con-
vex hull of S is the intersection over all half-spaces containing S (where the empty
intersection is understood to be Rn), i.e.,

conv S = {x ∈ Rn | ∀ f ∈ R[X]1 : ( f ≥ 0 on S =⇒ f (x) ≥ 0)}.
Here we can omit the closure if S is compact since the closure of a compact subset
of Rn is again compact by [Roc, Theorem 17.2].

2.4. Pure states.

Definition 8. Let C be a cone in the real vector space V and u ∈ V. Then u is called
a unit for C (in V) if for every x ∈ V there is some N ∈ N with Nu + x ∈ C.

Remark 9. If u is a unit for the cone C in the real vector space V, then u ∈ C and
C− C = V.

Definition 10. Let V be a real vector space, C ⊆ V and u ∈ V. A state of (V, C, u)
is a linear function ϕ : V → R satisfying ϕ(C) ⊆ R≥0 and ϕ(u) = 1. We refer to
the set S(V, C, u) ⊆ RV of all states of (V, C, u) as the state space of (V, C, u). It is a
convex subset of the vector space RV of all real-valued functions on V. We call an
extreme point of this convex set a pure state of (V, C, u).

Remark 11. In the previous definition, a pure state is thus an extreme point of an
affine slice of the dual cone of C. The slice is given by intersecting with the affine
hyperplane consisting of linear forms on V evaluating to 1 at u. The idea will be
to investigate C by first investigating its state space.

Lemma 12. Let C be a cone in the real vector space V satisfying V = C − C and
suppose ϕ : V → R is a group homomorphism from the additive group of V into
the additive group of the reals with ϕ(C) ⊆ R≥0. Then ϕ is linear, i.e., ϕ(λx) = λx
for all λ ∈ R and x ∈ V.
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Proof. Let x ∈ V. We have to show ϕ(λx) = λx for all λ ∈ R. We know it for all
λ ∈ Z and thus even for all λ ∈ Q. Because of Remark 9, we can suppose WLOG
that x ∈ C. From ϕ(R≥0x) ⊆ ϕ(C) ⊆ R≥0, we get easily the two inequalities in

rϕ(x) = ϕ(rx) ≤ ϕ(λx) ≤ ϕ(sx) = sϕ(x)

for all r, s ∈ Q with r ≤ λ ≤ s. Letting r and s tend to λ, it follows that λϕ(x) ≤
ϕ(λx) ≤ λϕ(x) as desired. �

Theorem 13. Suppose u is a unit for the cone C in the real vector space V and let
x ∈ V. Then the following are equivalent:

(a) ∀ϕ ∈ extr S(V, C, u) : ϕ(x) > 0
(b) ∀ϕ ∈ S(V, C, u) : ϕ(x) > 0
(c) ∃N ∈ N : x ∈ 1

N u + C
(d) x is a unit for C.

Proof. Due to Lemma 12, this is [Goo, Corollary 6.4]. See also [BSS, Corollary 2.7].
Alternatively, the proof is an exercise combining the “basic separation theorem”
[Hol, Page 15, §4B, Corollary], the Banach-Alaoglu theorem [Hol, Page 70, §12D,
Corollary 1] and the Krein-Milman theorem [Hol, Page 74, §13B, Theorem]. �

Corollary 14. Suppose u is a unit for the cone C in the real vector space V and let
x ∈ V. If ϕ(x) > 0 for all pure states ϕ of (V, C, u), then x ∈ C.

Theorem 15 (Burgdorf, Scheiderer, Schweighofer). Let A be a ring containing R.
Suppose that I is an ideal and M a quadratic module of A, u is a unit for M ∩ I in
I and ϕ is a pure state of (I, I ∩M, u). Then

Φ : A→ R, a 7→ ϕ(au)

is a ring homomorphism that we call the ring homomorphism associated to ϕ and
we have

ϕ(ab) = Φ(a)ϕ(b)

for all a ∈ A and b ∈ I.

Proof. This follows from [BSS, Theorem 4.5] applied to the “quadratic pseudomod-
ule” M ∩ I together with [BSS, Lemma 4.9]. �

2.5. Positive semidefinite matrices. Fix n ∈ N0. Consider the subspace

SRn×n := {A ∈ Rn×n | A = AT}
of symmetric matrices inside the real vector space Rn×n of all real n× n matrices.
A matrix A ∈ Rn×n is called positive semidefinite if A ∈ SRn×n and xT Ax ≥ 0 for all
x ∈ Rn. It is called positive definite if A ∈ SRn×n and xT Ax > 0 for all x ∈ Rn \ {0}.
For matrices A, B ∈ Rn×n we write A � B or A ≻ B to express that A − B is
positiv semidefinite or positive definite, respectively. A matrix A ∈ Rn×n is called
negative semidefinite or negative definite if−A is positive semidefinite or positive definite,
respectively. For A, B ∈ Rn×n we write A � B and A ≺ B to express that B � A
and B ≻ A, respectively. Using the spectral theorem, one easily sees that

Rn×n
�0 := {A ∈ Rn×n | A � 0} = {BTB | B ∈ Rn×n}.



12 T.-L. KRIEL AND M. SCHWEIGHOFER

We equip SRn×n with the unique topology induced by any norm on SRn×n. It is
clear that Rn×n

�0 is a cone in SRn×n and one easily shows that its interior in SRn×n

is
Rn×n
≻0 := {A ∈ Rn×n | A ≻ 0}.

2.6. Real closed fields. We remind the reader of the basic facts about real closed
fields that we will need. A good reference is [PD1, Section 8.3].

If R is a field and R2 = {a2 | a ∈ R} is the set of its squares (using the notation
from Subsection 2.1), then R is called real closed if

a ≤ b :⇐⇒ b− a ∈ R2 (a, b ∈ R)

defines an order (i.e., a reflexive, transitive and antisymmetric relation) on the set
R with respect to which the intermediate value theorem for polynomials holds:
Whenever f ∈ R[T] and x, y ∈ R with x < y and f (x) f (y) < 0, then there is z ∈ R
with x < z < y and f (z) = 0.

The prototype of all real closed fields is the field of real numbers R. In this
article, all real closed fields we will consider will contain R as a subfield.

Fix such a real closed extension field R of R. Then

OR := B(R,R≥0)
= {a ∈ R | ∃N ∈ N : −N ≤ a ≤ N}

is a subring of R containing R (note that R≥0 = R2 is a quadratic module of R)
and we call its elements the finite elements of R. Moreover,

mR :=
{

a ∈ R | ∀N ∈ N : − 1
N
≤ a ≤ 1

N

}

is an ideal of OR and we call its elements the infinitesimal elements of R. The
complement of mR in OR is the group of units of OR, i.e.,

O×R = OR \mR

and thus mR is the unique maximal ideal of OR. Using the completeness of the
field of real numbers R, one shows easily that for every a ∈ OR, there is exactly
one st(a) ∈ R, called the standard part of a, such that

a− st(a) ∈ mR.

The map R → R, a 7→ st(a) is easily shown to be a ring homomorphism with
kernel mR. If a, b ∈ OR with a ≤ b, then st(a) ≤ st(b). Conversely, if a, b ∈ OR

satisfy st(a) < st(b), then a < b. The standard part st(p) of a polynomial p ∈
OR[X] arises by replacing each coefficient of p by its standard part. Also

OR[X]→ R[X], p 7→ st(p)

is a ring homomorphism. For x = (x1, . . . , xn) ∈ On
R, we set

st(x) := (st(x1), . . . , st(xn)).

It is easy to see that

R = R ⇐⇒ OR = R ⇐⇒ mR = {0}
and that for each a ∈ R≥0 there is a unique b ∈ R≥0 such that b2 = a which one
denotes by

√
a. By Proposition 3, we have

a ∈ OR ⇐⇒
√

a ∈ OR
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for all a ∈ R≥0 and one easily shows that

a ∈ mR ⇐⇒
√

a ∈ mR

for all a ∈ R≥0. For x ∈ Rn, we set

‖x‖2 :=
√

x2
1 + . . . + x2

n

and observe that
‖x‖2 ∈ OR ⇐⇒ x ∈ On

R.

2.7. Semialgebraic sets, real quantifier elimination and the finiteness theorem.

Let R be a real closed extension field of R and n ∈ N0. Note for later that R0 = {0}
where 0 is the empty tuple 0 = () and thus there are exactly two subsets of R0,
namely {0} and ∅. The Boolean algebra of all R-semialgebraic subsets of Rn is the
smallest set of subsets of Rn that contains {x ∈ Rn | p(x) ≥ 0} as an element for
each p ∈ R[X] and that is closed under finite intersections (the empty intersection
being defined as Rn) and under complements (thus also under finite unions). It is
easy to see that an equivalent definition would be that an R-semialgebraic subset of
Rn is a finite union of sets of the form

{x ∈ Rn | g(x) = 0, h1(x) > 0, . . . , hk(x) > 0} (k ∈ N0, g, h1, . . . , hk ∈ R[X]).

We simply say semialgebraic subset of Rn instead of R-semialgebraic subset of Rn.
It is trivial that for each semialgebraic subset S of Rn, there is an R-semialgebraic

subset S′ of Rn such that S′ ∩Rn = S (just use the same polynomials to define it)
but it is a deep theorem that there is exactly one such S′ which we denote by SR

and which we call the transfer of S to R. This follows easily from the nontrivial
fact that each nonempty R-semialgebraic subset of Rn has a point in Rn [BCR,
Proposition 4.1.1]. Having said this, it is now trivial that the correspondence

S 7→ SR

S ∩Rn ← [ S

defines an isomorphism between the Boolean algebras of semialgebraic subsets of
Rn and the Boolean algebra of R-semialgebraic subsets of Rn, that is a bijection
that respects finite intersections and complements. In particular, it preserves the
empty intersection, i.e., it maps Rn to Rn and thus the empty set to the empty set.
It also compatible with finite unions of course.

By real quantifier elimination [BCR, Proposition 5.2.2], the following is true: If
n ∈ N0 and S is a semialgebraic subset of Rn+1, then

S′ := {x ∈ Rn | ∀y ∈ R : (x, y) ∈ S} and

S′′ := {x ∈ Rn | ∃y ∈ R : (x, y) ∈ S}
are semialgebraic subsets of Rn and for all real closed extension fields R of R, we
have

S′R = {x ∈ Rn | ∀y ∈ R : (x, y) ∈ SR} and

S′′R = {x ∈ Rn | ∃y ∈ R : (x, y) ∈ SR}.
This extends in the obvious way to finitely many quantifiers. In particular, if S
is a semialgebraic subset of Rn and each of Q1, . . . , Qn stands for an universal or
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existential quantifier ∀ or ∃, then consider the statements

(∗) Q1y1 ∈ R : . . . Qnyn ∈ R : y ∈ S

and
(∗∗) Q1y1 ∈ R : . . . Qnyn ∈ R : y ∈ SR

and let S′ ⊆ R0 = {0} denote the set of all x ∈ R0 for which (∗) holds, i.e.,
S′ = {0} if (∗) holds and S′ = ∅ otherwise. Then S′R is the set of all x ∈ R0

for which (∗∗) holds, i.e., S′R = {0} if (∗) holds and S′R = ∅ otherwise. Since
S′ = ∅ ⇐⇒ S′R = ∅, we have

(∗) ⇐⇒ (∗∗).
In this way, one can transfer certain statements from R to R (or vice versa). Since
S 7→ SR is an isomorphism of Boolean algebras as described above, one can do
the same thing if one deals with expressions similar to (∗) built up from finitely
many atoms of the form “y ∈ S” (S ⊆ Rn a semialgebraic set where the arity n and
the variables y might be different each time) by the the logical connectives “and”
and “not” (and thus also “or”, “=⇒”, “⇐⇒” etc.) and quantifications over R

(such as “∀x ∈ R”). We call such expressions a formula and unlike (∗) they might
still contain free variables x ∈ Rn (i.e., variables that have not been quantified
over). In first order logic, one would formalize this notion of formula as first order
formulas in the language of ordered fields with new constant symbols for each
real number [BCR, Definition 2.2.3]. Let Ψ(x) stand for such a formula with free
variables x ∈ Rn. Then it is clear that

{x ∈ Rn | Ψ(x)}R = {x ∈ Rn | ΨR(x)}
where ΨR arises from Ψ by replacing each S by SR and each quantification over R

by the corresponding quantification over R (e.g., “∀y ∈ R” by “∀y ∈ R”) [BCR,
Corollary 5.2.4]. In particular, if Ψ has no free variables (that is n = 0), then Ψ

holds if and only if ΨR holds. This is called the Tarski transfer principle [BCR,
Proposition 5.2.3].

Of utmost importance for us will be the finiteness theorem from first order logic
[PD2, Theorem 1.5.6] that says in particular: If (Sd)d∈N is a sequence of semialge-
braic subsets of Rn such that

S1 ⊆ S2 ⊆ S3 ⊆ . . .

and if ⋃

d∈N

(Sd)R = Rn

for all real closed extension fields R of R, then there exists d ∈N such that

Sd = Rn.

In this article, we will refer to this nontrivial fact simply as the finiteness theorem. It
follows also easily from [PD1, Theorem 2.2.11]. Note that the converse is trivial: If
d ∈ N such that Sd = Rn, then even (Sd)R = Rn for all real closed extension fields
R of R.

Example 16. There is some real closed extension field R of R with R 6= R. To
prove this, we assume the contrary and we set Sd := [−d, d] ⊆ R for each d ∈ N.
Then S1 ⊆ S2 ⊆ S3 ⊆ . . . and

⋃
d∈N Sd = R and thus of course

⋃
d∈N(Sd)R = R for
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all real closed extension fields R of R (since the only such is R by assumption). By
the finiteness theorem, we get Sd = R for some d ∈ N, which is a contradiction.

A concrete example for a proper real closed extension field of R is the field of
real Puiseux series [BCR, Example 1.2.3] but we will not need this.

3. PURE STATES AND NONNEGATIVE POLYNOMIALS OVER REAL CLOSED FIELDS

Throughout this section, we let R be a real closed extension field of R and we
set O := OR and m := mR.

3.1. The Archimedean property.

Proposition 17. Suppose n ∈ N0 and M is a quadratic module of O[X]. Then the
following are equivalent:

(a) M is Archimedean.
(b) ∃N ∈ N : N −∑

n
i=1 X2

i ∈ M
(c) ∃N ∈ N : ∀i ∈ {1, . . . , n} : N ± Xi ∈ M

Proof. It is trivial that (a) implies (b).
Now suppose that (b) holds. Then N − X2

i ∈ M and thus X2
i ∈ B(O[X],M) for all

i ∈ {1, . . . , n}. Apply now Proposition 3 to see that (c) holds.
That (c) implies (a) follows from Proposition 3 since O ⊆ B(O[X],M). �

Remark 18. Looking at Proposition 5(d), one could be inclined to think that one
could add

∃m ∈ N : ∃ℓ1, . . . , ℓm ∈ M ∩O[X]1 : ∃N ∈ N :

∅ 6= {x ∈ Rn | ℓ1(x) ≥ 0, . . . , ℓm(x) ≥ 0} ⊆ [−N, N]nR

as another equivalent condition in Proposition 17. Indeed, choose R different from
R (which is possible by Example 16) and choose ε ∈ m \ {0}. Then ∅ 6= {0} =
{x ∈ R | εx ≥ 0,−εx ≥ 0} ⊆ [−1, 1]R but the quadratic module

∑O[X]2 + ∑O[X]2εX + ∑O[X]2(−εX)

generated by εX and −εX in O[X] is not Archimedean for if we had N ∈ N such
that N − X2 lies in it, then taking standard parts would yield N − X2 ∈ ∑ R[X]2

which is obviously not possible.

3.2. The relevant ideals.

Definition 19. For every x ∈ On, we define Ix to be the kernel of the ring homo-
morphism

O[X]→ O, p 7→ p(x).

Proposition 20. Let x ∈ On. Then Ix = (X1 − x1, . . . , Xn − xn).

Proof. It is trivial that J := (X1− x1, . . . , Xn − xn) ⊆ Ix. Conversely, p ≡J p(x) = 0
for all p ∈ Ix. This shows the converse inclusion Ix ⊆ J. �

Lemma 21. Suppose x, y ∈ On with st(x) 6= st(y). Then Ix and Iy are coprime, i.e.,
1 ∈ Ix + Iy.
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Proof. WLOG x1 − y1 /∈ m. Then x1 − y1 ∈ O× and

1 =
x1 − X1

x1 − y1
+

X1 − y1

x1 − y1
∈ Ix + Iy.

�

Consider x ∈ On. We remind the reader that we denote by I2
x the second power

of Ix as an ideal, see Subsection 2.1. It consist of those polynomials that have a
double zero at x, see Lemma 27 below. If one wants to show that such a polyno-
mial lies in a quadratic module of O[X], it is often advantageous to intersect this
quadratic module with I2

x . If M is Archimedean, then 1 is a unit for M according
to Definition 8 in the real vector space O[X] by Proposition 17. Since 1 is not a
member of I2

x , it would be good to find a kind of replacement for it. This role will
be played by ux from the next lemma.

Lemma 22. Let M be an Archimedean quadratic module of O[X] and x ∈ On.
Then

ux := (X1 − x1)
2 + . . . + (Xn − xn)

2

is a unit for M ∩ I2
x in the real vector space I2

x .

Proof. Using the ring automorphism

O[X]→ O[X], p 7→ p(X1 − x1, . . . , Xn − xn),

which is also an isomorphism of real vector spaces, we can reduce to the case x =
0. Since ux ∈ I2

0 , it suffices to show that I2
0 ⊆ B(O[X],M,u). Since M is Archimedean,

Proposition 3 yields that B(O[X],M,u) is an ideal of O[X]. Because of

I2
0 = (XiXj | i, j ∈ {1, . . . , n}),

it suffices therefore to show that XiXj ∈ B(O[X],M,u) for all i, j ∈ {1, . . . , n}. Thus

fix i, j ∈ {1, . . . , n}. Then 1
2 (X2

i + X2
j )± XiXj =

1
2 (Xi ± Xj)

2 ∈ M and thus 1
2 u±

XiXj ∈ M. Since u ∈ M, this implies u± XiXj ∈ M. �

3.3. States over real closed fields.

Notation 23. We use the symbols ∇ and Hess to denote the gradient and the Hes-
sian of a real-valued function of n real variables, respectively. For a polynomial
p ∈ R[X], we understand its gradient ∇p as a column vector from R[X]n, i.e.,
as a vector of polynomials. Similarly, its Hessian Hess p is a symmetric matrix
polynomial of size n, i.e., a symmetric matrix from R[X]n×n. Using formal partial
derivatives, we more generally define∇p ∈ R[X]n and Hess p ∈ R[X]n×n even for
p ∈ R[X].

Lemma 24. Suppose x ∈ On and ϕ is a state of (I2
x , ∑O[X]2 ∩ I2

x , ux) such that
ϕ|I3

x
= 0. Then there exist v1, . . . , vn ∈ Rn such that ∑

n
i=1 vT

i vi = 1 and

ϕ(p) =
1
2

st

(
n

∑
i=1

vT
i (Hess p)(x)vi

)

for all p ∈ I2
x .
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Proof. As in the proof of Lemma 22, one easily reduces to the case x = 0.

Claim 1: ϕ(aux) = 0 for all a ∈ m.

Explanation. Let a ∈ m. WLOG a ≥ 0. Then a ∈ O ∩ R≥0 = O2 and thus
aux ∈ ∑O[X]2 ∩ I2

0 . This shows ϕ(aux) ≥ 0. It remains to show that ϕ(aux) ≤ 1
N

for all N ∈N. For this purpose, fix N ∈ N. Then 1
N − a ∈ O ∩ R≥0 = O2 and thus(

1
N − a

)
ux ∈ ∑O[X]2 ∩ I2

0 . It follows that ϕ
((

1
N − a

)
ux

)
≥ 0, i.e., ϕ(aux) ≤ 1

N .

Claim 2: ϕ(aX2
i ) = 0 for all a ∈ m and i ∈ {1, . . . , n}.

Explanation. Let a ∈ m. WLOG a ≥ 0 and thus a ∈ O2. Then

n

∑
i=1

ϕ(

∈O[X]2∩I2
0︷︸︸︷

aX2
i )︸ ︷︷ ︸

≥0

= ϕ(aux)
Claim 1
= 0.

Claim 3: ϕ(aXiXj) = 0 for all a ∈ m and i, j ∈ {1, . . . , n}.
Explanation. Fix i, j ∈ {1, . . . , n} and a ∈ m. If i = j, then we are done by Claim

2. So suppose i 6= j. WLOG a ≥ 0 and thus a ∈ O2. Then

a(X2
i + X2

j ± 2XiXj) = a(Xi ± Xj)
2 ∈ O[X]2 ∩ I2

0

and thus ±2ϕ(aXiXj) =
Claim 2

ϕ(aX2
i ) + ϕ(aX2

j )± 2ϕ(aXiXj) ≥ 0.

Claim 4: ϕ(p) = 1
2 st (tr ((Hess p)(0)A)) for all p ∈ I2

0 where

A :=




ϕ(X1X1) . . . ϕ(X1Xn)
...

. . .
...

ϕ(XnX1) . . . ϕ(XnXn)


 .

Explanation. Let p ∈ I2
0 . By ϕ|I3

0
= 0, we can reduce to the case p = aXiXj with

i, j ∈ {1, . . . , n} and a ∈ O. Using Claim 3, we can assume a = 1. Comparing both
sides, yields the result.

Claim 5: A � 0

Explanation. If x ∈ Rn, then xT Ax = ϕ((x1X1 + . . . + xnXn)2) ≥ 0 since

(x1X1 + . . . + xnXn)
2 ∈ R[X]2 ∩ I2

0 ⊆∑O[X]2 ∩ I2
0 .

By Claim 5, we can choose B ∈ Rn×n such that A = BT B. Denote by vi the i-th
row of B for i ∈ {1, . . . , n}. Then by Claim 4, we get

ϕ(p) =
1
2

st(tr((Hess p)(0)A)) =
1
2

st(tr((Hess p)(0)BTB))

=
1
2

st(tr(B(Hess p)(0)BT)) =
1
2

st

(
n

∑
i=1

vT
i (Hess p)(0)vi

)

for all p ∈ I2
0 . In particular, we obtain 1 = ϕ(ux) = ∑

n
i=1 vT

i vi. �

Lemma 25. Let Φ : O[X] → R be a ring homomorphism. Then there is some
x ∈ Rn such that Φ(p) = st(p(x)) for all p ∈ O[X].
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Proof. Being a ring homomorphism, Φ maps each rational number to itself (since
it maps 1 to 1) and each square to a square. It follows that Φ|R is a monotonic
function which fixes Q pointwise. This easily implies Φ|R = idR . It is also easy
to show that Φ|m = 0. Indeed, for each N ∈ N and a ∈ m, we have 1

N ± a ∈
R≥0 ∩O = O2 and therefore 1

N ±Φ(a) ∈ R≥0. Finally set

x := (Φ(X1), . . . , Φ(Xn)) ∈ Rn

and use that Φ|R = idR , Φ|m = 0 and that Φ is a ring homomorphism. �

The following result can be seen as a dichotomy for pure states. In the situation
described in the theorem, there are two types of states: Up to a certain harmless
scaling, the first type is just evaluation at a point different from the st(xi) and
taking the standard part. The second type of pure states is, again up to a scaling,
taking the standard part of a mixture of second directional derivatives at one of
the st(xi). It shows that the state space plays roughly the role of a “blowup” of
affine space in a certain sense. The st(xi) are removed and, ignoring the subtle
issue with the mixtures, second directional derivatives at the st(xi) are thrown in
instead. In this way each st(xi) is morally replaced by a projective space (note that
second directional derivatives do not distinguish opposite directions).

If one does not ignore the scaling issue, then another interesting interpretation
is that type (2) states can be seen, in a certain sense, as mixtures of limits of type
(1) states. We leave this interpretation as an exercise to the interested reader.

In the case R = R, a less concrete variant of this theorem is [BSS, Corollary
4.12]. What is essentially new here is the case R 6= R in which the standard part
map turns out to play a big role. Note also the subtle issue that we suppose the
standard parts of the xi to be pairwise different and not just the xi. The theorem is
the main step for Theorem 28 below, on which in turn all our main results will be
based. It will not be used elsewhere in this article.

Theorem 26. Let M be an Archimedean quadratic module of O[X] and set

S := {x ∈ Rn | ∀p ∈ M : st(p(x)) ≥ 0}.
Moreover, suppose k ∈ N0 and let x1, . . . , xk ∈ On satisfy st(xi) 6= st(xj) for
i, j ∈ {1, . . . , k} with i 6= j. Then u := ux1 · · · uxk

is a unit for M ∩ I in

I := I2
x1
· · · I2

xk
= I2

x1
∩ . . . ∩ I2

xk

and for all pure states ϕ of (I, M ∩ I, u) (where I is understood as a real vector
space), exactly one of the following cases occurs:
(1) There is an x ∈ S \ {st(x1), . . . , st(xk)} such that

ϕ(p) = st
(

p(x)

u(x)

)

for all p ∈ I.
(2) There is an i ∈ {1, . . . , k} and v1, . . . , vn ∈ Rn such that ∑

n
ℓ=1 vT

ℓ
vℓ = 1 and

ϕ(p) = st




∑
n
ℓ=1 vT

ℓ
(Hess p)(xi)vℓ

2 ∏
k
j=1
j 6=i

ux j
(xi)




for all p ∈ I.
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Proof. The Chinese remainder theorem from commutative algebra shows that

I = I2
x1
· · · I2

xk
= I2

x1
∩ . . .∩ I2

xk

since Ixi
and Ix j

and thus also I2
xi

and I2
x j

are coprime for all i, j ∈ {1, . . . , k} with

i 6= j. By Lemma 22, uxi
is a unit for M ∩ I2

xi
in I2

xi
for each i ∈ {1, . . . , k}. To show

that u is a unit for the cone M ∩ I in the real vector space I, it suffices to find for all
a1, b1 ∈ Ix1 , . . . , ak, bk ∈ Ixk

an N ∈ N such that Nu + ab ∈ M where we set a :=
a1 · · · ak and b := b1 · · · bk. Because of Nu + ab = (Nu− 1

2 a2 − 1
2 b2) + 1

2 (a + b)2, it
is enough to find N ∈ N with Nu− a2 ∈ M and Nu− b2 ∈ M. By symmetry, it
suffices to find N ∈ N with Nu− a2 ∈ M. Choose Ni ∈ N with Niuxi

− a2
i ∈ M

for i ∈ N. We now claim that N := N1 · · ·Nk does the job. Indeed, the reader
shows easily by induction that actually

N1 · · ·Niux1 · · · uxi
− a2

1 · · · a2
i ∈ M

for i ∈ {1, . . . , k}. Now let ϕ be a pure state of (I, M ∩ I, u). By Theorem 15,

Φ : O[X]→ R, p 7→ ϕ(pu)

is a ring homomorphism and we have

(∗) ϕ(pq) = Φ(p)ϕ(q)

for all p ∈ O[X] and q ∈ I. By Lemma 25, we can choose x ∈ Rn such that

Φ(p) = st(p(x))

for all p ∈ O[X]. Since u ∈ I ∩∑O[X]2, we have

st(p(x)) = Φ(p) = Φ(p)ϕ(u)
(∗)
= ϕ(pu) = ϕ(up)

up∈M
∈ ϕ(M) ⊆ R≥0

for all p ∈ M which means x ∈ S.

Now first suppose that Φ(u) 6= 0. Then st(uxi
(x)) 6= 0 and therefore st(x) 6=

st(xi) for all i ∈ {1, . . . , k}. Moreover,

st(p(x)) = Φ(p) = ϕ(pu) = ϕ(up)
(∗)
= Φ(u)ϕ(p) = st(u(x))ϕ(p)

for all p ∈ I. Thus, (1) occurs.

Now suppose that Φ(u) = 0. We show that then (2) occurs. Due to

k

∏
i=1

Φ(uxi
) = Φ(u) = 0,

we can choose i ∈ {1, . . . , k} such that st(uxi
(x)) = Φ(uxi

) = 0. Then x = st(xi).
Define

ψ : I2
xi
→ R, p 7→ ϕ


p

k

∏
j=1
j 6=i

ux j


 .
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Since ux j
∈ ∑O[X]2 ∩ I2

x j
for all j ∈ {1, . . . , k}, it follows that ψ ∈ S(I2

xi
, M ∩

I2
xi

, uxi
). If p ∈ Ixi

and q ∈ I2
xi

, then

ψ(pq) = ϕ


pq

k

∏
j=1
j 6=i

ux j




(∗)
= Φ(p)ϕ


q

k

∏
j=1
j 6=i

ux j


 = 0

since Φ(p) = st(p(x)) = (st(p))(x) = (st(p))(st(xi)) = st(p(xi)) = st(0) = 0. It
follows that ψ|I3

xi
= 0. We can thus apply Lemma 24 to ψ and obtain v1, . . . , vn ∈

Rn such that ∑
n
ℓ=1 vT

ℓ
vℓ = 1 and

ψ(p) =
1
2

st

(
n

∑
ℓ=1

vT
ℓ
(Hess p)(xi)vℓ

)

for all p ∈ I2
xi

. Because of st(xi) 6= st(xj) for j ∈ {1, . . . , k} \ {i}, we have

c := Φ




k

∏
j=1
j 6=i

uxi


 =

k

∏
j=1
j 6=i

Φ(uxi
) =

k

∏
j=1
j 6=i

(st(ux j
))(st(xi)) 6= 0.

Hence we obtain

cϕ(p)
(∗)
= ψ(p)

for all p ∈ I.

It only remains to show that (1) and (2) cannot occur both at the same time. If
(1) holds, then we have obviously ϕ(u2) 6= 0. If (2) holds, then ϕ(u2) = 0 since
Hess(u2)(xi) = 0 for all i ∈ {1, . . . , k} as one easily shows. �

3.4. Nonnegative polynomials over real closed fields. In this subsection, we col-
lect the consequences for sums of squares representations of nonnegative polyno-
mials that will be important for our applications to both: systems of polynomial
inequalities and polynomial optimization problems. We begin with a remark that
shows that I2

x consist of those polynomials over O that have a double zero at x.

Lemma 27. For all x ∈ On, we have

I2
x = {p ∈ O[X] | p(x) = 0,∇p(x) = 0} .

Proof. For x = 0 it is easy. One reduces the general case to the case x = 0 as in the
proof of Lemma 22. �

In the following key theorem, note that the positivity conditions on f actually
depend just on the standard part st( f ) of f (see Subsection 2.6) but it will be essen-
tial to us that f needs to vanish doubly not necessarily at the standard parts of the
xi but only infinitesimally nearby. This key theorem will be used directly in both
Theorem 31 which has implications on polynomial optimization and Theorem 53
which is important for solving systems of polynomial inequalities.

Theorem 28. Let M be an Archimedean quadratic module of O[X] and set

S := {x ∈ Rn | ∀p ∈ M : st(p(x)) ≥ 0}.
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Moreover, suppose k ∈ N0 and let x1, . . . , xk ∈ On have pairwise distinct standard
parts. Let

f ∈
k⋂

i=1

I2
xi

such that
st( f (x)) > 0

for all x ∈ S \ {st(x1), . . . , st(xk)} and

st(vT(Hess f )(xi)v) > 0

for all i ∈ {1, . . . , k} and v ∈ Rn \ {0}. Then f ∈ M.

Proof. Define I and u as in Theorem 26. By Lemma 27, we have f ∈ I. We will
apply Corollary 14 to the real vector space I, the cone M ∩ I in I and the unit u
for M ∩ I. From Theorem 26, we see easily that ϕ( f ) > 0 for all ϕ ∈ extr S(I, M ∩
I, u). �

Corollary 29. Let M be an Archimedean quadratic module of O[X] and set

S := {x ∈ Rn | ∀p ∈ M : st(p(x)) ≥ 0}.
Moreover, let k ∈ N0 and x1, . . . , xk ∈ On such that their standard parts are pair-
wise distinct and lie in the interior of S. Let f ∈ O[X] such that

f ∈
k⋂

i=1

I2
xi

.

Set again u := ux1 · · · uxk
∈ O[X]. Suppose there is ε ∈ R>0 such that

f ≥ εu on S.

Then f ∈ M.

Proof. By Theorem 28, we have to show:
(a) ∀x ∈ S \ {st(x1), . . . , st(xk)} : st( f (x)) > 0
(b) ∀i ∈ {1, . . . , k} : ∀v ∈ Rn \ {0} : st(vT(Hess f )(xi)v) > 0
It is easy to show (a). To show (b), fix i ∈ {1, . . . , k}. Because of f − εu ≥ 0 on S
and

( f − εu)(xi) = f (xi)− εu(xi) = 0− 0 = 0,
st(xi) is a local minimum of st( f − εu) ∈ R[X] on Rn. From elementary analysis,
we know therefore that (Hess st( f − εu))(st(xi)) � 0. Because of uxi

(xi) = 0 and
∇uxi

(xi) = 0, we get

Hess u(xi) =




k

∏
j=1
j 6=i

ux j
(xi)


Hess uxi

(xi) = 2




k

∏
j=1
j 6=i

ux j
(xi)


 In.

Therefore

st(vT(Hess f )(xi)v) ≥ ε st(vT(Hess u)(xi)v) = 2εvTv st




k

∏
j=1
j 6=i

ux j
(xi)


 > 0

for all v ∈ Rn \ {0}. �
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Corollary 30. Let n, m ∈ N0 and let g ∈ R[X]m such that M(g) is Archimedean.
Moreover, let k ∈ N0 and x1, . . . , xk ∈ On and ε ∈ R>0 such that the sets

x1 + (Bε(0))R, . . . , xk + (Bε(0))R

are pairwise disjoint and all contained in S(g)R. Set u := ux1 · · · uxk
∈ O[X]. Let

f ∈ O[X] such that f ≥ εu on S(g) and

f (x1) = . . . = f (xk) = 0.

Then f lies in the quadratic module generated by g in O[X].

Proof. This follows easily from Corollary 29 once we show that

∇ f (x1) = . . . = ∇ f (xk) = 0.

Choose d ∈ N0 with f ∈ R[X]d. Since f ≥ εu ≥ 0 on S and thus f ≥ 0 on
xi + (Bε(0))R for all i ∈ {1, . . . , k}, it suffices to prove the following: If p ∈ R[X]d,
x ∈ Rn, δ ∈ R>0 such that p ≥ 0 on x +(Bδ(0))R and p(x) = 0, then∇p(x) = 0. To
see this, we employ the Tarski transfer principle: One can formulate as a formula
that ∇p(x) = 0 holds for all p ∈ R[X]d, x ∈ Rn and δ ∈ R>0 that satisfy p ≥ 0 on
x + (Bδ(0))R = Bδ(x) and p(x) = 0. Since this holds true by elementary calculus,
we can transfer it to the real closed field R. �

4. MEMBERSHIP IN TRUNCATED QUADRATIC MODULES

In this section, we study the implications of Subsection 3.4 to sums of squares
representations of arbitrary degree polynomials. In Subsection 4.2, we will see the
implications to polynomial optimization.

4.1. Degree bounds for Scheiderer’s generalization of Putinar’s Positivstellen-
satz. Scheiderer gave far-reaching generalizations of Putinar’s Positivstellensatz
to nonnegative polynomials with zeros [S1, Mar]. An important concrete instance
of this is Corollary 34 below (Putinar’s theorem [Put, Lemma 4.1] corresponds to
the special case k = 0 of that corollary). On the other hand, Prestel [Pre] proved
the existence of degree bounds for Putinar’s theorem, more precisely he proved
the statement of Corollary 32 below (this is not literally stated in his article but
follows clearly from [Pre, Section 4], see also [PD1, Chapter 8]). The next theorem
is a common generalization of both:

Theorem 31. Let n, m ∈ N0 and g ∈ R[X]m such that M(g) is Archimedean.
Moreover, let k ∈ N0, N ∈ N and ε ∈ R>0. Then there exists

d ∈N0

such that for all f ∈ R[X]N with all coefficients in [−N, N], we have for

{x ∈ S(g) | f (x) = 0} = {x1, . . . , xk} :

If the balls Bε(x1), . . . , Bε(xn) are pairwise disjoint and contained in S(g) and if we
have f ≥ εu on S(g) where u := ux1 · · · uxk

∈ R[X], then

f ∈ Md(g).

Proof. Set ν := dim R[X]N . For each d ∈ N0, define the set Sd ⊆ Rν of all a ∈ Rν

such that the following holds: If a ∈ [−N, N]ν and if a is the vector of coefficients
(in a certain fixed order) of a polynomial f ∈ R[X]N with exactly k zeros x1, . . . , xk

on S, then at least one of the following conditions (a), (b) and (c) is fulfilled:
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(a) The sets Bε(x1), . . . , Bε(xn) are not pairwise disjoint or not all contained in S.
(b) f ≥ εu on S is violated where u := ux1 · · · uxk

∈ R[X].
(c) f is not a sum of d elements from R[X] where each term in the sum is of degree

at most d and is of the form p2gi with p ∈ R[X] and i ∈ {0, . . . , m} where
g0 := 1 ∈ R[X].

It is obvious that S0 ⊆ S1 ⊆ S2 ⊆ . . . and by real quantifier elimination Sd is a
semialgebraic set for each d ∈ N0, see Subsection 2.7 above. By Corollary 30, we
have

⋃
d∈N0

(Sd)R = Rν for each real closed extension field R of R. By the finiteness
theorem (see Subsection 2.7 above), it follows that Sd = Rν for some d ∈ N0 which
is what we have to show. �

If we specialize the preceding theorem by setting k = 0, we now obtain in the
following corollary Prestel’s degree bound for Putinar’s Positivstellensatz. If we
specialize also the proof of the theorem by setting k = 0, then it simplifies dramat-
ically but it is still considerably different from Prestel’s proof. What Prestel and
we have in common is however the technique of working with non-Archimedean
real closed fields instead of the reals which enables us to work with infinitesimal
neighborhoods and prevents us at many places from having to quantify the size
of certain neighborhoods of points. Nevertheless a quantitative version of the fol-
lowing corollary has also been proven with completely different means by Nie
and the second author [NS, Theorem 6]. To extend their quantitative approach in
order to try to prove a quantitative version of the above theorem would seem to
be a very ambitious project that might be too tedious even to begin with, at least
in the general case.

Corollary 32 (Prestel). Let n, m ∈ N0 and g ∈ R[X]m such that M(g) is Archi-
medean. Moreover, let N ∈N and ε ∈ R>0. Then there exists

d ∈N0

such that for all f ∈ R[X]N with all coefficients in [−N, N] and with f ≥ ε on S(g),
we have

f ∈ Md(g).

Proposition 33. Suppose S ⊆ Rn is compact, x1, . . . , xk ∈ S◦ are pairwise distinct,
u := ux1 · · · uxk

∈ R[X] and f ∈ R[X] with f (x1) = . . . = f (xk) = 0. Then the
following are equivalent:

(a) f > 0 on S \ {x1, . . . , xk} and Hess f (x1), . . . , Hess f (xk) are positive definite.
(b) There is some ε ∈ R>0 such that f ≥ εu on S.

Proof. It is easy to show that (b) implies (a), cf. the proof of Corollary 29.
Conversely, suppose that (a) holds. We show (b). It is easy to show that one can

WLOG assume that

S =

k⋃̇

i=1

Bε(xi)

for some ε > 0. Then one finds easily an Archimedean quadratic module M of
R[X] such that

S = {x ∈ Rn | ∀p ∈ M : p(x) ≥ 0}.
A strengthened version of Theorem 28 now yields f − εu ∈ M for some ε ∈ R>0
and thus f − εu ≥ 0 on S. One gets this strengthened version of Theorem 28 by
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applying (a) =⇒ (c) from Theorem 13 instead of Corollary 14 in its proof. Alter-
natively, we leave it as an exercise to the reader to give a direct proof using only
basic multivariate analysis. �

As a consequence, we obtain Scheiderer’s well-known generalization of Puti-
nar’s Positivstellensatz to nonnegative polynomials with finitely many zeros [S1,
Corollary 3.6] that was mentioned in Subsections 1.6 and 1.9 above.

Corollary 34. Let g ∈ R[X]m such that M(g) is Archimedean. Moreover, suppose
k ∈ N0 and x1, . . . , xk ∈ S(g)◦ are pairwise distinct. Let f ∈ R[X] such that
f (x1) = . . . = f (xk) = 0, f > 0 on S \ {x1, . . . , xk} and Hess f (x1), . . . , Hess f (xk)
are positive definite. Then f ∈ M(g).

Proof. This follows from Theorem 31 by Proposition 33. �

Remark 35. Because of Proposition 33, Theorem 31 is really a quantitative version
of Corollary 34.

Remark 36. (a) In Condition (c) from the proof of Theorem 31, we speak of “a
sum of d elements” instead of “a sum of elements” (which would in general
be strictly weaker). Our motivation to do this was that this is the easiest way
to make sure that we can formulate (c) in a formula in the sense of Subsection
2.7. A second motivation could have been to formulate Theorem 31 in stronger
way, namely by letting d be a bound not only on the degree of the quadratic
module representation but also on the number of terms in it. This second mo-
tivation is however not interesting because we get also from the Gram matrix
method [PD1, Theorem 8.1.3] a bound on this number of terms (a priori bigger
than d but after readjusting d we can again assume it to be d). We could have
used the Gram matrix method already to see that “a sum of elements” (instead
of “a sum of d elements”) can also be expressed in a formula.

(b) We could strengthen condition (c) from the proof of Theorem 31, by writing
“with p ∈ R[X] all of whose coefficients lie in [−d, d]R” instead of just “with
p ∈ R[X]”. Then

⋃
d∈N0

(Sd)R = Rν would still hold for all real closed exten-
sion fields R of R since Corollary 30 states that f lies in the quadratic mod-
ule generated by g even in O[X] not just in R[X]. This would lead to a real
strengthening of Theorem 31, namely we could ensure that d is a bound not
only on the degree of the quadratic module representation but also on the size
of the coefficients in it. However, we do currently not know of any application
of this and therefore renounced to carry this out.

4.2. Consequences for the Lasserre relaxation of a polynomial optimization prob-
lem. We now harvest our first crop and present our application to polynomial
optimization that we have announced and discussed already in Subsection 1.6.

Theorem 37. Let n, m ∈ N0 and g ∈ R[X]m such that M(g) is Archimedean and
S(g) 6= ∅. Moreover, let k ∈ N, N ∈ N and ε ∈ R>0. Then there exists

d ∈N0

such that for all f ∈ R[X]N with all coefficients in [−N, N],

a := min{ f (x) | x ∈ S(g)} and {x ∈ S(g) | f (x) = a} = {x1, . . . , xk},
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we have: If the balls Bε(x1), . . . , Bε(xn) are pairwise disjoint and contained in S(g)
and if we have

f ≥ a + εu on S(g)

where u := ux1 · · · uxk
∈ R[X], then f − a ∈ M(g) and consequently

Lasserred( f , g) = a.

Proof. Set c := N (dim R[X]N)maxx∈S(g) ‖x‖ ∈ R≥0. We apply Theorem 31 to the

given data with N replaced by some N̂ ∈N satisfying N̂ ≥ N + c, and choose the
corresponding d ∈ N0. Now let f ∈ R[X]N with all coefficients in [−N, N],

a := min{ f (x) | x ∈ S(g)} and {x ∈ S(g) | f (x) = a} = {x1, . . . , xk}.

By the choice of N̂, one shows easily that all values of f on S(g) lie in the interval
[−c, c]. In particular, a ∈ [−c, c]. Therefore all coefficients of

f̂ := f − a ∈ R[X]N ⊆ R[X]N̂

lie in [−N̂, N̂]. By choice of a, we have of course

{x ∈ S(g) | f (x) = a} = {x1, . . . , xk}.
The rest is now easy using Theorem 31. �

5. LINEAR POLYNOMIALS AND TRUNCATED QUADRATIC MODULES

In this section, we study the implications of Subsection 3.4 for membership of
linear polynomials in truncated quadratic modules. It will not be sufficient to build
upon the results of the preceding section where we studied membership of arbi-
trary degree polynomials in truncated quadratic modules. Instead we will rather
have to resort again to the results about membership in quadratic modules over
real closed fields that we have obtained in Subsection 3.4. Our ultimate goal are
the applications to, in a broad sense, solving systems of polynomial inequalities
that we will harvest in Subsection 5.7.

5.1. Concavity.

Definition 38. Let g ∈ R[X]. If x ∈ Rn, then we call g strictly concave at x if
(Hess g)(x) ≺ 0 and strictly quasiconcave at x if

((∇g)(x))Tv = 0 =⇒ vT(Hess g)(x)v < 0

for all v ∈ Rn \ {0}. If S ⊆ Rn, we call g strictly (quasi-)concave on S is g is strictly
(quasi-)concave at every point of S.

Remark 39. It is trivial that quasiconcavity of a polynomial g at x depends only
on the function U → R, x 7→ g(x) where U is an arbitrarily small neighborhood
of x. But if g(x) = 0 and∇g(x) 6= 0, then it actually depends only on the function

U → {−1, 0, 1}, x 7→ sgn(g(x)).

It then roughly means that the hypersurface S(g) = {x ∈ Rn | g(x) ≥ 0} looks
locally around x almost like a “boundary piece” of a closed disk [KS, Proposi-
tion 3.4]. In the exceptional case where g(x) = 0 and ∇g(x) = 0, g is strictly
quasiconcave at x if and only if it is strictly concave at x, and in this case S(g)
equals locally the singleton set {x}.
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The following remark essentially appears in [HN1, Lemma 11].

Remark 40. For g ∈ R[X] and x ∈ Rn, the following are obviously equivalent:

(a) g is strictly quasiconcave at x.
(b) ∃λ ∈ R : λ(∇g(x))(∇g(x))T ≻ (Hess g)(x)

Lemma 41. Let g ∈ R[X]. If g is strictly (quasi-)concave at x ∈ Rn, then there is a
neighborhood U of x such that g is strictly (quasi-)concave on U.

Proof. The first statement follows from the openness of Rn×n
≻0 by the continuity of

Rn → SRn×n, x 7→ (Hess g)(x). The second statement follows similarly by using
the equivalence of (a) and (b) in Remark 40. �

Remark 42. Let g ∈ R[X] and x ∈ Rn with g(x) = 0. Then

(∇(g(1− g)k))(x) = (∇g)(x) and

(Hess(g(1− g)k))(x) = (Hess g− 2k(∇g)(∇g)T)(x).

Lemma 43. Suppose g ∈ R[X], u ∈ Rn and g(u) = 0. Then the following are
equivalent:

(a) g is strictly quasiconcave at u.
(b) There exists k ∈ N such that g(1− g)k is strictly concave at u.
(c) There exists k ∈ N such that for all ℓ ∈ N with ℓ ≥ k, we have that g(1− g)ℓ

is strictly concave at u.

Proof. Combine Remarks 42 and 40. �

5.2. Real Lagrange multipliers.

Remark 44. If u, x ∈ Rn with v := x − u 6= 0, g ∈ R[X], g is quasiconcave at u,
g(u) = 0 and g ≥ 0 on conv{u, x}, then obviously (∇g(u))Tv > 0.

Lemma 45 (Existence of Lagrange multipliers). Let u ∈ Rn, f ∈ R[X], g ∈ R[X]m,
let U be a neighborhood of u in Rn such that U∩ S(g) is convex and not a singleton.
Moreover, suppose g1, . . . , gm are quasiconcave at u, f ≥ 0 on U ∩ S(g) and

f (u) = g1(u) = . . . = gm(u) = 0.

Then there are λ1, . . . , λm ∈ R≥0 such that

∇ f =
m

∑
i=1

λi∇gi(u).

Proof. Choose x ∈ U ∩ S(g) with v := x − u 6= 0: By Remark 44, we have

(∇gi(u))
Tv > 0 for i ∈ {1, . . . , m} since S is convex. Assume the required La-

grange multipliers do not exist. Then Farkas’ lemma [Roc, Corollary 22.3.1] yields
w ∈ Rn such that (∇ f )Tw < 0 and ((∇gi)(u))

Tw ≥ 0 for all i ∈ {1, . . . , m}. Re-
placing w by w + εv for some small ε > 0, we get even ((∇gi)(u))

Tw > 0 for all
i ∈ {1, . . . , m}. Then for all sufficiently small δ ∈ R≥0, we have u + δv ∈ U ∩ S(g)

but f (u + δv) < 0  . �
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5.3. The convex boundary. We present the useful concept of the convex boundary
that has been introduced by Helton and Nie in [HN2, Pages 762 and 775].

Definition 46. Let S ⊆ Rn. We call

convbd S := S ∩ ∂ conv S

the convex boundary of S. We say that S has nonempty interior near its convex boundary
if

convbd S ⊆ S◦.

Proposition 47. Let S ⊆ Rn. Then

convbd S = {u ∈ S | ∃ linear form f in R[X]1 \ {0} : ∀x ∈ S : f (u) ≤ f (x)}.
Proof. If the affine hull of S is Rn, then this follows from [Roc, 11.6.2] and otherwise
it is trivial. �

5.4. Lagrange multipliers from a real closed field.

Notation 48. For g ∈ R[X], we denote by

Z(g) := {x ∈ Rn | g(x) = 0}
the real zero set of g.

Lemma 49. Let B ⊆ Rn be a closed ball in Rn, suppose that g1, . . . , gm ∈ R[X] are
strictly quasiconcave on B and set g := (g1, . . . , gm). Then the following hold:

(a) S(g) ∩ B is convex.
(b) Every linear form from R[X] \ {0} has at most one minimizer on S(g) ∩ B.
(c) Let u be a minimizer of the linear form f ∈ R[X] \ {0} on S(g) ∩ B and set

I := {i ∈ {1, . . . , m} | gi(u) = 0}.
Then u is also minimizer of f on

S := {x ∈ B | ∀i ∈ I : gi(x) ≥ 0} ⊇ S(g) ∩ B.

Proof. (a) Let x, y ∈ S(g) ∩ B with x 6= y and i ∈ {1, . . . , m}. The polynomial

f := gi(Tx + (1− T)y) ∈ R[T]

attains a minimum a on [0, 1]R. We have to show a ≥ 0. Because of f (0) = gi(y) ≥
0 and f (1) = gi(x) ≥ 0, it is enough to show that this minimum is not attained
in a point t ∈ (0, 1)R. Assume it is. Then f ′(t) = 0, i.e., ((∇gi)(z))

Tv = 0 for
z := tx + (1 − t)y and v := x − y 6= 0. Since z ∈ B and hence gi is strictly
quasiconcave at z, it follows that vT((Hess gi)(z))v < 0, i.e., f ′′(t) < 0. Then
f < a on a neighborhood of t  .

(b) Suppose x and y are minimizers of the linear form f ∈ R[X] \ {0} on S(g)∩
B. Then x, y ∈ convbd(S(g) ∩ B) by Proposition 47. Since f is linear, it is constant
on conv{x, y}. Hence even

conv{x, y}
Prop. 47
⊆
(a)

convbd S
(a)
= S ∩ ∂S = S ∩ (S \ S◦) S closed

= S \ S◦ = ∂S.

Since conv{x, y} \ {x, y} ⊆ B◦, we have that conv{x, y} \ {x, y} ⊆ Z(g1 · · · gm).
Assume now for a contradiction that x 6= y. Then this implies that at least one of
the gi vanishes on conv{x, y}. Fix a corresponding i. Setting v := y− x, we have
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then ((∇gi)(x))Tv = 0 and vT((Hess gi)(x))v = 0. Since gi is strictly quasiconcave
at x, this implies v = 0, i.e., x = y as desired.

(c) By definition of I, the sets S(g)∩ B and S coincide on a neighborhood of u in
Rn. Hence u is a local minimizer of f on S. Since S is convex by (a) and f is linear,
u is also a (global) minimizer of f on S. �

Lemma 50. Suppose B is a closed ball in Rn, g1, . . . , gm ∈ R[X] are strictly quasi-
concave on B and S(g) ∩ B has nonempty interior. Then the following hold:

(a) For every real closed extension field R of R and all linear forms f ∈ R[X] \ {0},
f has a unique minimizer on (S(g)∩ B)R.

(b) For every real closed extension field R of R, all linear forms f ∈ R[X] with

‖∇ f‖2 = 1

(note that∇ f ∈ Rn) and every u which minimizes f on (S(g)∩ B◦)R, there are
λ1, . . . , λm ∈ OR ∩ R≥0 with λ1 + . . . + λm /∈ mR such that

f − f (u)−
m

∑
i=1

λigi ∈ I2
u.

Proof. (a) By the Tarski transfer principle, it suffices to prove the statement in the
case R = R. But then the unicity follows from Lemma 49(b) and existence from
the compactness of S(g) ∩ B.

(b) Now let R be a real closed field extension of R, f ∈ R[X] a linear form with
‖∇ f‖2 = 1 and u a minimizer of f on (S(g)∩ B◦)R. Set

I := {i ∈ {1, . . . , m} | gi(u) = 0}
and define the set

S := {x ∈ B | ∀i ∈ I : gi(x) ≥ 0} ⊇ S(g) ∩ B

which is convex by 49(a). Using the Tarski transfer principle, one shows easily
that u is a minimizer of f on (S ∩ B◦)R by Lemma 49(c). Note also that of course
u ∈ On

R and st(u) ∈ S.
Now Lemma 45 says in particular that for all linear forms f̃ ∈ R[X] and min-

imizers ũ of f̃ on S ∩ B◦ with ∀i ∈ I : gi(ũ) = 0, there is a family (λi)i∈I in R≥0
such that

∇ f̃ = ∑
i∈I

λi∇gi(ũ).

Using the Tarski transfer priniciple, we see that actually for all real closed exten-
sion fields R̃ of R, all linear forms f̃ ∈ R̃[X] and all minimizers ũ of f̃ on (S∩ B◦)R

with ∀i ∈ I : gi(ũ) = 0, there is a family (λi)i∈I in R≥0 such that

∇ f̃ = ∑
i∈I

λi∇gi(ũ).

We apply this to R̃ := R, ũ := u, f̃ := f and thus obtain a family (λi)i∈I in R≥0
such that

(∗) ∇ f = ∑
i∈I

λi∇gi(u).

In order to show that λi ∈ OR for all i ∈ I, we choose a point x ∈ S◦ 6= ∅

with ∏i∈I gi(x) 6= 0 and thus gi(x) > 0 for all i ∈ I. Setting v := x − u ∈ On
R, we
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get from (∗) that (∇ f )Tv = ∑i∈I λi(∇gi(u))
Tv. Since st(u) ∈ S and S is convex,

Remark 44 yields st((∇gi(u))
Tv) = (∇gi(st(u)))T st(v) > 0 for all i ∈ I (use that

st(u) 6= x since gi(st(u)) = 0 while gi(x) > 0). Together with λi ≥ 0 for all i ∈ I,
this shows λi ∈ OR for all i ∈ I as desired.

It now suffices to show that ∑i∈I λi /∈ mR. But this is clear since (∗) yields in
particular

1 = ‖∇ f‖2 ≤∑
i∈I

λi‖(∇gi)(u)‖2 ≤
(

∑
i∈I

λi

)
max

i∈I
‖(∇gi)(u)‖2

(note that I 6= ∅ by the first inequality) which readily implies ∑i∈I λi /∈ mR. �

Lemma 51. Let g = (g1, . . . , gm) ∈ R[X]m such that S(g) is compact and has
nonempty interior near its convex boundary. Suppose that gi is strictly quasicon-
cave on convbd(S(g)) ∩ Z(gi) for each i ∈ {1, . . . , m}. Let R be real closed exten-
sion field of R and f ∈ R[X] be a linear form with ‖∇ f‖2 = 1. Then the following
hold:
(a) F := {u ∈ S(g) | ∀x ∈ S(g) : st( f (u)) ≤ st( f (x))} is a finite subset of

convbd(S(g)).
(b) We have S := (S(g))R ⊆ On

R and f has a unique minimizer xu on

{x ∈ S | st(x) = u}
for each u ∈ F.

(c) For every u ∈ F, there are λu1, . . . , λum ∈ OR ∩ R≥0 with λu1 + . . .+ λum /∈ mR

such that

f − f (xu)−
m

∑
i=1

λuigi ∈ I2
xu

.

Proof. (a) Obviously st( f ) 6= 0 and hence

F = {u ∈ S(g) | ∀x ∈ S(g) : (st( f ))(u) ≤ (st( f ))(x)} ⊆ convbd(S(g))

by Proposition 47. We now prove that F is finite. WLOG S(g) 6= ∅. Set

a := min{(st( f ))(x) | x ∈ S(g)}
so that

F = {u ∈ S(g) | (st( f ))(u) = a}.
By compactness of S(g), it is enough to show that every x ∈ S(g) possesses a
neighborhood U in S(g) such that U ∩ F ⊆ {x}. This is trivial for the points in
S(g) \ F. So consider an arbitrary point x ∈ F. Since x ∈ convbd(S(g)), each gi

is positive or strictly quasiconcave at x. According to Lemma 41, we can choose
a closed ball B of positive radius around x in Rn such that each gi is positive or
strictly quasiconcave even on B. By Lemma 49(b), st( f ) has at most one minimizer
on U := S(g) ∩ B, namely x, i.e., U ∩ F ⊆ {x}.

(b) First observe that S := (S(g))R ⊆ On
R since the transfer from R to R is an

isomorphism of Boolean algebras: Choosing N ∈ N with S(g) ⊆ [−N, N]n, we
have S ⊆ [−N, N]nR ⊆ On

R.
Now we fix u ∈ F and we show that f has a unique minimizer on

A := {x ∈ S | st(x) = u}.
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Choose ε ∈ R>0 such that each gi is strictly quasiconcave or positive on the ball

B := Bε(u).

Since u ∈ convbd(S(g)) ⊆ S(g)◦, Lemma 50(a) says that f has a unique minimizer
x on (S(g) ∩ B)R. Because of A ⊆ (S(g) ∩ B)R, it is thus enough to show x ∈ A.
Note that u ∈ F ∩ B ⊆ S(g)∩ B ⊆ (S(g)∩ B)R and thus f (x) ≤ f (u). This implies
st( f (st(x))) = st( f (x)) ≤ st( f (u)) which yields together with st(x) ∈ S(g) that
st(x) ∈ F (and st( f (st(x))) = st( f (u))). Again by Lemma 50(a), st( f ) has a unique
minimizer on S(g) ∩ B . But u and st(x) are both a minimizer of st( f ) on S(g) ∩ B

(note that st(x) ∈ S(g) ∩ B). Hence u = st(x) and thus x ∈ A as desired.

(c) Fix u ∈ F. Choose again ε ∈ R>0 such that each gi is strictly quasiconcave
or positive on the ball B := Bε(u) and such that B ∩ F = {u}. Since xu obvi-
ously minimizes f on (S(g) ∩ B)R, we get the necessary Lagrange multipliers by
Lemma 50(b). �

5.5. Linear polynomials and quadratic modules.

Remark 52. For all k ∈ N and x ∈ [0, 1]R, we have x(1− x)k ≤ 1
k .

The main geometric idea in the proof of the following theorem is as follows:
Consider a hyperplane that isolates a basic closed semialgebraic subset of Rn and
that is defined over a real closed extension field of R. Because we want to apply
Theorem 28 to get a sums of squares “isolation certificate”, the points where the
hyperplane gets infinitesimally close to the set pose problems unless the hyper-
plane exactly touches the set in the respective point. The idea is to find a nonlin-
ear infinitesimal deformation of the hyperplane so that all “infinitesimally near
points” becoming “touching points”. This would be easy if there is at most one
“infinitesimally near point” but since we deal in this article with not necessarily
convex basic closed semialgebraic sets, it is crucial to cope with several such points.

Theorem 53. Let g ∈ R[X]m such that M(g) is Archimedean and suppose that
S(g) has nonempty interior near its convex boundary. Suppose that gi is strictly
quasiconcave on (convbd S) ∩ Z(gi) for each i ∈ {1, . . . , m}. Let R be a real closed
extension field of R and ℓ ∈ OR[X]1 such that ℓ ≥ 0 on SR. Then ℓ lies in the
quadratic module generated by g in OR[X].

Proof. We will apply Theorem 28. Since S(g) is compact, we can rescale the gi and
suppose WLOG that

gi ≤ 1 on S(g)

for i ∈ {1, . . . , m}. Let M denote the quadratic module generated by g in OR[X].
Since M(g) is Archimedean, also M is Archimedean by Propositions 5(b) and
17(b). Moreover, S could now alternatively be defined from M as in Theorem 28.
Write

ℓ = f − c

with a linear form f ∈ OR[X] and c ∈ OR. By a rescaling argument, we can
suppose that at least one of the coefficients of ℓ lies in O×R . If st(ℓ(x)) > 0 for all
x ∈ S(g), then Theorem 28 applied to ℓ with k = 0 yields ℓ ∈ M and we are done.
Hence we can from now on suppose that there is some u ∈ S with st(ℓ(u)) = 0.
For such an u, we have st(c) = st( f (u)) so that at least one coefficient of f must lie
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in O×R . By another rescaling, we now can suppose WLOG that ‖∇ f‖2 = 1. Now
we are in the situation of Lemma 51 and we define

F, (xu)u∈F and (λui)(u,i)∈F×{1,...,m}

accordingly. Note that

F = {u ∈ S(g) | st(ℓ(u)) = 0} 6= ∅

since st(ℓ(x)) ≥ 0 for all x ∈ S(g). We have f (xu)− c = ℓ(xu) ≥ 0 and

st( f (xu)− c) = st(ℓ(u)) = 0

for all u ∈ F. Hence f (xu)− c ∈ mR ∩ R≥0 for all u ∈ F. We thus have

ℓ− ( f (xu)− c)︸ ︷︷ ︸
=:λu0∈mR∩R≥0

−
m

∑
i=1

λui︸︷︷︸
∈OR∩R≥0

gi ∈ I2
xu

for all u ∈ F by the Lemmata 51(c) and 27. Evaluating this in xu (and using
gi(xu) ≥ 0) yields

gi(xu) 6= 0 =⇒ λui = 0 and thus(∗)
λuigi ≡I2

xu
λuigi(1− gi)

k(∗∗)
for all u ∈ F, i ∈ {1, . . . , m} and k ∈ N. By the Chinese remainder theorem, we
find polynomials s0, . . . , sm ∈ OR[X] such that si ≡I3

xu

√
λui ∈ OR for all u ∈ F and

i ∈ {0, . . . , m} because the ideals I3
xu

(u ∈ F) are pairwise coprime by Lemma 21
(use that st(xu) = u 6= v = st(xv) for all u, v ∈ F with u 6= v). By an easy
scaling argument, we can even guarantee that the coefficients of s0 lie in mR since√

λu0 ∈ mR. Then we have

(∗ ∗ ∗) s2
i ≡I3

xu
λui

which means in other words

s2
i (xu) = λui, (∇(s2

i ))(xu) = 0 and (Hess(s2
i ))(xu) = 0

for all i ∈ {0, . . . , m} and k ∈ N. It suffices to show that there is k ∈ N such that
the polynomial

ℓ− s2
0 −

m

∑
i=1

s2
i (1− gi)

2kgi

(∗∗∗)
∈
(∗∗)

⋂

u∈F

I2
xu

lies in M since this implies immediately ℓ ∈ M. By Theorem 28, this task reduces
to find k ∈ N such that fk > 0 on S(g) \ F and (Hess( fk))(u) ≻ 0 for all u ∈ F

where

fk := st(ℓ)−
m

∑
i=1

st(s2
i )(1− gi)

2kgi ∈ R[X]

is the standard part of this polynomial. Note for later use that fk and ∇ fk vanish
on F for all k ∈ N. In order to find such a k, we calculate

(Hess fk)(u)
(∗∗∗)
= −

m

∑
i=1

st(λui)Hess((1− gi)
2kgi)(u)

Rem. 42
=
(∗)

m

∑
i=1

st(λui)(4k(∇gi)(∇gi)
T −Hess gi)(u)
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for u ∈ F and k ∈ N. By Lemma 43 we can choose k ∈ N such that gi(1− gi)
2k is

strictly concave on {x ∈ F | gi(x) = 0} for i ∈ {1, . . . , m}. Since

st(λ1) + . . . + st(λm) > 0

by Lemma 51(c), we get together with (∗) and Remark 42 that for all sufficiently
large k, we have (Hess fk)(u) ≻ 0 for all u ∈ F. In particular, we can choose
k0 ∈ N such that Hess( fk0

)(u) ≻ 0 for all u ∈ F. Since fk0
and ∇ fk0

vanish on F,
we have by elementary analysis that there is an open subset U of Rn containing F
such that fk0

≥ 0 on U. Then S(g) \U is compact so that we can choose N ∈ N

with st(ℓ) ≥ 1
N and st(s2

i ) ≤ N on S(g) \U. Then fk ≥ 1
N − m N

2k on S(g) \U by
Remark 52 since 0 ≤ gi ≤ 1 on S for all i ∈ {1, . . . , m}. For all sufficiently large
k ∈ N with k ≥ k0, we now have fk > 0 on S \U and because of fk ≥ fk0

> 0 on
S(g) ∩U (use again that 0 ≤ gi ≤ 1 on S(g)) even fk > 0 on S(g). �

For the applications in this article we do no longer need to work over the ring
OR of finite elements of a real closed extension field R of R (even though this
could have other potential applications in the future, cf. Remark 36(b) above) but
can directly work over R. That is why we draw the following corollary.

Corollary 54. Let g ∈ R[X]m such that M(g) is Archimedean and suppose that
S(g) has nonempty interior near its convex boundary. Suppose that gi is strictly
quasiconcave on (convbd S) ∩ Z(gi) for each i ∈ {1, . . . , m}. Let R be a real closed
extension field of R and ℓ ∈ R[X]1 such that ℓ ≥ 0 on SR. Then ℓ lies in the
quadratic module generated by g in R[X].

5.6. Linear polynomials and truncated quadratic modules. Going now from real
closed fields back to the reals, the general tools from Subsection 2.7, enable us
now to turn Corollary 54 into Corollary 55 just like we have turned the statement
Corollary 30 into Theorem 31 earlier on.

Corollary 55. Let g ∈ R[X]m such that M(g) is Archimedean and suppose that
S(g) has nonempty interior near its convex boundary. Suppose that gi is strictly
quasiconcave on (convbd S) ∩ Z(gi) for each i ∈ {1, . . . , m}. Then there exists

d ∈ N

such that for all ℓ ∈ R[X]1 with ℓ ≥ 0 on S, we have

ℓ ∈ Md(g).

Proof. For each d ∈N, consider the set Sd ⊆ Rn+1 of all a = (a0, a1, . . . , an) ∈ Rn+1

such that whenever

∀x ∈ S : a1x1 + . . . + anxn + a0 ≥ 0

holds, the polynomial a1X1 + . . . + anXn + a0 is a sum of d elements from R[X]
where each term in the sum is of degree at most d and is of the form p2gi with
p ∈ R[X] and i ∈ {0, . . . , m} where g0 := 1 ∈ R[X] (cf. Remark 36(a)). By
real quantifier elimination, it is easy to see that each Sd is a semialgebraic set, see
Subsection 2.7 above. Obviously, S1 ⊆ S2 ⊆ S3 ⊆ . . .. We want to show that
Sd = Rn+1 for some d ∈ N. By the finiteness theorem (see Subsection 2.7 above),
it suffices to show

⋃
d∈N(Sd)R = Rn+1 for all real closed extension fields R of R.

But this follows from Corollary 54. �
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5.7. Consequences for the Lasserre relaxation of a system of polynomial in-
equalities. Finally, we harvest our second crop and present our application to
solving systems of polynomial inequalities that we have announced and discussed
already in Subsection 1.5.

Corollary 56. Let g ∈ R[X]m such that M(g) is Archimedean and suppose that
S(g) has nonempty interior near its convex boundary. Suppose that gi is strictly
quasiconcave on (convbd S) ∩ Z(gi) for each i ∈ {1, . . . , m}. Then there exists
d ∈ N such that

S(g) = conv Sd(g).

Remark 57. By Remark 39 (see [KS, Proposition 3.4] or [HN1, HN2] for more de-
tails), it becomes clear that the hypothesis made in Theorem 53 and in its Corollar-
ies 54, 55 and 56 on the gi to be strictly quasiconcave on

(convbd S) ∩ Z(gi)

is mild and natural. On the other hand, it even excludes linear defining polynomi-
als but this is because the statement becomes in general false for nonconvex S(g)
in this case as [KS, Example 4.10] shows.

Example 58. The requirement that S(g) has nonempty interior near its convex

boundary cannot be dropped. Consider n = 1 and g = X(1 − X)(X − 2)2 ∈
R[X]. Then S(g) = [0, 1] ∪ {2} is compact and moreover M(g) is Archimedean,
for example by Remark 6. Also g is strictly quasiconcave on convbd S(g) = {0, 2}
since g′(0) = 4 6= 0, g′(2) = 0 and g′′(2) = −4 < 0.

It is an immediate consequence of a result of Gouveia and Netzer [GN, Propo-
sition 4.1] (see also [KS, Theorem 4.9]) that g has no exact Lasserre relaxation. By
inspection of the proof of Gouveia and Netzer, one sees that each Lasserre relax-
ation contains a right neighborhood of 2.

In the situation of Corollary 56, Helton and Nie proved that S(g) is a projec-
tion of a spectrahedron [HN2, Theorem 3.3]. To obtain this result, they showed
that certain Lasserre relaxations for “small boundary pieces” of S(g) become exact
and they glue together these pieces obtained non-constructively by a compact-
ness argument. In particular, their arguments do not give any algorithm of how
to compute such a semidefinite lifting whereas we show with our new technique
that the initial Lasserre relaxation itself just succeeds. With again completely dif-
ferent techniques, Helton and Nie tried to restrict themselves to a single Lasserre
relaxation by altering the description of S(g) but could only achieve very technical
partial results going in the direction of Corollary 56 above [HN2, Section 5]. This
is discussed in more detail at the end of the introduction of [KS].

Although already stated in Subsection 1.5, we remind the reader again that our
Corollary 56 is weaker than [KS, Main Theorem 4.8] in the case of a convex basic
closed semialgebraic set. We do not know how to extend our method using real
closed fields to prove [KS, Main Theorem 4.8] and, conversely, it seems that the
techniques in [KS] that are clever refinements of the ideas of Helton and Nie [HN1,
HN2] do not seem to work here at all if S(g) is nonconvex.

A major recent result of Scheiderer that complements our positive results on
Lasserre relaxations on the negative side is that not every convex semialgebraic set
is a projection of a spectrahedron [S2].
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5.8. What about quadratic polynomials? Finally, we show that Theorem 53 and
its corollaries do not extend from linear to quadratic polynomials. We need the
following preparation:

Proposition 59. Let g = (g1, . . . , gm) ∈ R[X]m and x ∈ S(g). Suppose that there
exists y ∈ S(g) \ {x} such that conv{x, y} ⊆ S(g). Set

I := {i ∈ {1, . . . , m} | gi(x) = 0}
and suppose that gi is strictly quasiconcave at x for all i ∈ I. Consider (taking
R := R in Definition 19)

Ix = (X1 − x1, . . . , Xn − xn) ⊆ R[X].

Fix v ∈ Rn and define ϕ : R[X] → R, p 7→ vT(Hess p)(x)v. Then

ϕ
(

M(g) ∩ I2
x

)
⊆ R≥0.

Proof. Set g0 := 1 ∈ R[X] and consider s0, . . . , sm ∈ ∑ R[X]2 such that

p :=
m

∑
i=0

sigi ∈ I2
x .

We have to show ϕ(p) ≥ 0. We will show this even under the weaker condition
that si ≥ 0 on Rn instead of si ∈ ∑ R[X]2 for i ∈ {0, . . . , m}. We have

m

∑
i=0
i/∈I

si(x)︸ ︷︷︸
≥0

gi(x)︸ ︷︷ ︸
>0

= 0

and therefore si ∈ I2
x for each i ∈ {0, . . . , m} \ I. In particular,

q := ∑
i∈I

sigi ∈ I2
x

and
ϕ (sigi) = gi(x)︸ ︷︷ ︸

>0

vT (Hess si)(x)︸ ︷︷ ︸
�0

v ≥ 0

for all i ∈ {0, . . . , m} \ I. Hence ϕ(p) ≥ ϕ(q). We will show that ϕ(q) = 0. In fact,
we will even show that sigi ∈ I3

x for all i ∈ I. It suffices to show that si ∈ I2
x for all

i ∈ I. Setting v := y− x, we have (∇gi(x))Tv > 0 for i ∈ I by Remark 44. Hence

∑
i∈I

si(x)︸ ︷︷︸
≥0

(∇gi(x))Tv︸ ︷︷ ︸
>0

= (∇q(x))T = 0.

This implies si(x) = 0 and thus si ∈ I2
x and hence sigi ∈ I3

x for i ∈ I, using that
si ≥ 0 on Rn. �

Now we come to the promised example.

Example 60. Consider

g := 1− (X− 1)2 − Y2 ∈ R[X, Y] and

h := 1− X2 − (Y− 1)2 ∈ R[X, Y]

One shows easily that M(g, h) is Archimedean (for example by Remark 6). We
have X ≥ 0 on the ball S(g) and Y ≥ 0 on the ball S(h) and thus XY ≥ 0 on
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S(g, h). The Hessian of both g and h is constantly −2I2 ≺ 0. Hence g and h are
strictly concave on R2. Set v :=

(
1
−1

)
∈ R2 and consider

ϕ : R[X] → R, p 7→ vT(Hess p)(x)v.

By Proposition 59, we have ϕ(M(g, h)∩ I2
x) ⊆ R≥0. On the other hand ϕ(XY) =

−2 < 0. Since XY ∈ I2
0 , this shows that XY /∈ M(g, h).
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