
Exploiting Sparsity for Semi-Algebraic Set Volume Computation∗

M. Tacchi1,2 T. Weisser3 J. B. Lasserre1,4 D. Henrion1,5

July 28, 2020

Abstract

We provide a systematic deterministic numerical scheme to approximate the volume (i.e.
the Lebesgue measure) of a basic semi-algebraic set whose description follows a correlative
sparsity pattern. As in previous works (without sparsity), the underlying strategy is to
consider an infinite-dimensional linear program on measures whose optimal value is the
volume of the set. This is a particular instance of a generalized moment problem which
in turn can be approximated as closely as desired by solving a hierarchy of semidefinite
relaxations of increasing size. The novelty with respect to previous work is that by exploiting
the sparsity pattern we can provide a sparse formulation for which the associated semidefinite
relaxations are of much smaller size. In addition, we can decompose the sparse relaxations
into completely decoupled subproblems of smaller size, and in some cases computations can
be done in parallel. To the best of our knowledge, it is the first contribution that exploits
correlative sparsity for volume computation of semi-algebraic sets which are possibly high-
dimensional and/or non-convex and/or non-connected.

1 Introduction

This paper is in the line of research concerned with computing approximations of the volume (i.e.
the Lebesgue measure) of a given compact basic semi-algebraic set K of Rn neither necessarily
convex nor connected. Computing or even approximating the volume of a convex body is hard
theoretically and in practice as well. Even if K is a convex polytope, exact computation of
its volume or integration over K is a computational challenge. Computational complexity of
these problems is discussed in, e.g. [1, 2, 3]. In particular, any deterministic algorithm with
polynomial-time complexity that would compute an upper bound and a lower bound on the
volume cannot yield an estimate on the bound ratio better than polynomial in the dimension
n. For more detail, the interested reader is referred to the discussion in [4] and to [5] for a
comparison.

If one accepts randomized algorithms that fail with small probability, then the situation is
more favorable. Indeed, the probabilistic approximation algorithm of [6] computes the volume
to fixed arbitrary relative precision ε > 0 in time polynomial in 1/ε. The algorithm uses
approximation schemes based on rapidly mixing Markov chains and isoperimetric inequalities,
see also hit-and-run algorithms described in e.g. [7, 8, 9]. So far, it seems that the recent work
[10] has provided the best algorithm of this type.

1LAAS-CNRS, Université de Toulouse, France.
2Réseau de Transport d’Electricité (RTE), France.
3Theoretical Division (T-5/CNLS), Los Alamos National Laboratory, Los Alamos, USA.
4Institut de Mathématiques de Toulouse, Université de Toulouse, France.
5Faculty of Electrical Engineering, Czech Technical University in Prague, Czechia.
∗This work was partly funded by the RTE company and by the ERC Advanced Grant Taming.

1

ar
X

iv
:1

90
2.

02
97

6v
2

 [
m

at
h.

O
C

]
 2

7
Ju

l 2
02

0

The moment approach for volume computation

In [4] a general deterministic methodology was proposed for approximating the volume of a
compact basic semi-algebraic set K, not necessarily convex or connected. It was another illus-
tration of the versatility of the so-called moment-SOS (sums of squares) hierarchy developed in
[11] for solving the Generalized Moment Problem (GMP) with polynomial data.

Briefly, the underlying idea is to view the volume as the optimal value of a GMP, i.e., an
infinite-dimensional Linear Program (LP) on an appropriate space of finite Borel measures.
Then one may approximate the value from above by solving a hierarchy of semidefinite pro-
gramming (SDP) relaxations with associated sequence of optimal values indexed by an integer
d. Monotone convergence of the bounds is guaranteed when d increases. Extensions to more
general measures and possibly non-compact sets were then proposed in [12]. The order d in the
hierarchy encodes the amount of information that is used, namely the number of moments of
the Lebesgue measure up to degree d. It is a crucial factor for the size of the associated SDP
problem. More precisely, the size grows in dn as d increases, which so far limits its application
to sets of small dimension n, typically up to 4 or 5.

In view of the growth of the size of the SDP problem with increasing order it is desirable to
converge quickly towards the optimal value of the LP. However, this convergence is expected to
be slow in general. One reason becomes clear when looking at the dual LP which attempts to
compute a polynomial approximation (from above) of the (discontinuous) indicator function of
the set K. Hence one is then faced with a typical Gibbs effect1, well-known in the theory of ap-
proximation. To overcome this drawback the authors in [4] have proposed to use an alternative
criterion for the LP, which results in a significantly faster convergence. However in doing so,
the monotonicity of the convergence (a highly desirable feature to obtain a sequence of upper
bounds) is lost. In the related work [12] the author has proposed an alternative strategy which
consists of strengthening the relaxations by incorporating additional linear moment constraints
known to be satisfied at the optimal solution of the LP. These constraints come from a spe-
cific application of Stokes’ theorem. Remarkably, adding these Stokes constraints results in a
significantly faster convergence while keeping monotonicity.

Motivation

The measure approach for the volume computation problem is intimately linked to the use
of occupation measures, in dynamical systems theory, for computing the region of attraction
(ROA) of a given target set. Indeed, in [13], the problem of estimating the ROA is formulated
as a GMP very similar to the volume computation problem. The idea is to maximize the volume
of a set of initial conditions that yield trajectories ending in the target set after a given time.

This problem of estimating the ROA of a target set is crucial in power systems safety
assessment, since the power grids must have good stability properties. Perturbations (such
as short-circuits or unscheduled commutations) should be tackled before they get the system
outside the ROA of the nominal operating domain. Currently the stability of power grids is
estimated through numerous trajectory simulations that prove very expensive. In the wake of
the energy transition, it is necessary to find new tools for estimating the stability of power
systems. The conservative, geometric characterization of the region of attraction as formulated
in [13] is a very promising approach for this domain of application, see [14].

As in volume computation, the main limitation of this method is that only problems of
modest dimension can be handled by current solvers. Exploiting sparsity seems to be the best
approach to allow scalability both in volume computation and ROA estimation. Since volume
estimation is a simpler instance of the GMP than ROA estimation, we decided to address first
the former problem.

1The Gibbs effect appears at a jump discontinuity when one approximates a piecewise continuously differen-
tiable function with a continuous function, e.g. by its Fourier series.

2

In addition, volume computation with respect to a measure satisfying some conditions (e.g.
compactly supported or Gaussian measure) also has applications in the fields of geometry and
probability computation, which is the reason why many algorithms were already proposed for
volume computation of convex polytopes and convex bodies in general.

Contribution

We design deterministic methods that provide approximations with strong asymptotic guaran-
tees of convergence to the volume of K. The methodology that we propose is similar in spirit
to the one initially developed in [4] as described above and its extension to non-compact sets
and Gaussian measures of [12]. However it is not a straightforward or direct extension of [4] or
[12], and it has the following important distinguishing features:

(i) It can handle sets K ⊂ Rn of potentially large dimension n provided that some sparsity
pattern (namely: correlative sparsity, see section 2.3 as well as [15, 16] for details) is present in
the description of K. This is in sharp contrast with [4].

(ii) The computation of upper and lower bounds can be decomposed into smaller independent
problems of the same type, and depending on the sparsity pattern, some of the computations
can even be done in parallel. This fact alone is remarkable and unexpected.

To the best of our knowledge, this is the first deterministic method for volume computation
that takes benefit from a correlative sparsity pattern in the description of K in the two directions
of (a) decomposition into problems of smaller size and (b) parallel computation. Of course this
sharp improvement is performed at some price: our framework only works on semi-algebraic
sets that present the appropriate correlative sparsity pattern (see Assumption 16 as well as
section 6.5 and appendix A for detailed discussion on its applicability).

The key idea is to provide a new and very specific sparse formulation of the original prob-
lem in which one defines a set of marginal measures whose (small dimensional) support is in
accordance with the correlative sparsity pattern present in the description of the set K. How-
ever, those marginal measures are not similar to the ones used in the sparse formulation [17] of
polynomial optimization problems over the same set K. Indeed they are not expected to satisfy
the consistency condition of [17]2.

Finally, in principle, our floating point volume computation in large dimension n is faced
with a crucial numerical issue. Indeed as in Monte-Carlo methods, up to rescaling, one has to
include the set K into a box B of unit volume. Therefore the volume of K is of the order εn

for some ε ∈ (0, 1) and therefore far beyond machine precision as soon as n is large. To handle
this critical issue we develop a sparsity-adapted rescaling which allows us to compute very small
volumes in potentially very high dimension with good precision.

A motivating example

Consider the following set

K := {x ∈ [0, 1]100 : xixi+1 ≤ 1/2, i = 1, . . . , 99}.

This is a high-dimensional non-convex sparse semi-algebraic set. The precise definition of a
sparse semi-algebraic set will be given later on, but so far notice that in the description of K
each constraint involves only 2 variables out of 100. The volume of K is hard to compute, but
thanks to the structured description of the set we are able to prove numerically that its volume
is smaller than 2 · 10−5 in less than 2 minutes on a standard computer.

For this we have implemented a specific version of the moment-SOS hierarchy of SDP relax-
ations to solve the GMP, in which we exploit the correlative sparsity pattern of the set K. The

2If two measures share some variables then the consistency condition requires that their respective marginals
coincide.

3

basic idea is to replace the original GMP that involves an unknown measure on R100 (whose SDP
relaxations are hence untractable) with a GMP involving 99 measures on R2 (hence tractable).
In addition, this new GMP can be solved either in one shot (with the 99 unknown measures) or
by solving sequentially 99 GMPs involving (i) one measure on R2 and (ii) some data obtained
from the GMP solved at previous step. Our approach can be sketched as follows.

First, we rescale the problem so that the set K is included in the unit box B := [0, 1]n on
which the moments of the Lebesgue measure are easily computed.

Next, we describe the volume problem on K as a chain of volume subproblems on the
subspaces Im(πi) where πi(x1, . . . , x100) = (xi, xi+1), with a link between the i-th and (i+ 1)-th
sub-problems.

Finally, in this example, as n = 100 and K ⊂ B, the volume of K is very small and
far below standard floating point machine precision. To handle this numerical issue, we have
implemented a sparsity-adapted strategy which consists of rescaling each subproblem defined on
the projections of K to obtain intermediate values all with the same order of magnitude. Once
all computations (involving quantities of the same order of magnitude) have been performed,
the correct value of the volume is obtained by a reverse scaling.

The sparse formulation stems from considering some measure marginals appropriately de-
fined according to the correlative sparsity pattern present in the description of K. It leads to a
variety of algorithms to compute the volume of sparse semi-algebraic sets.

The outline of the paper is as follows. In Section 2 we describe briefly the moment-SOS
hierarchy for semi-algebraic set volume approximation, as well as our notion of sparse semi-
algebraic set. In Section 3, we introduce a first constructive theorem that allows to efficiently
compute the volume of specific sparse sets with the hierarchy. Section 4 is dedicated to a
method for accelerating the convergence of the sparse hierarchy, and in section 5 we discuss
some numerical examples. Eventually, Section 6 presents the general theorem for computing
the volume of a more general variety of sparse sets using parallel computations, accompanied
with some other examples.

2 Preliminaries

2.1 Notations and definitions

Given a closed set K ⊂ Rn, we denote by C (K) the space of continuous functions on K, M (K)
the space of finite signed Borel measures on K, with C+(K) and M+(K) their respective cones
of positive elements.

The Lebesgue measure on Rn is λn(dx) := dx1 ⊗ dx2 ⊗ · · · ⊗ dxn = dx, and its restriction
to a set K ⊂ Rn is λK := 1Kλ

n , where 1K denotes the indicator function equal to 1 in K and
zero outside. In this paper, we focus on computing the volume or Lebesgue measure of K, that
we denote by vol K or λn(K) or λK(Rn).

Given a Euclidean space X and a subspace Xi ⊂ X, the orthogonal projection map from
X to Xi is denoted by πXi . Let ej denote the j-th vector of the canonical basis of Rn such
that if x = (x1, . . . , xn) then xj = x · ej , where the dot denotes the scalar product between
vectors. The m-dimensional subspace spanned by vectors ei1 , . . . , eim is denoted 〈xi1 , . . . , xim〉
or 〈xij 〉1≤j≤m. Given a measure µ ∈ M (X), its marginal with respect to Xi is denoted by
µXi ∈M (Xi). It is equal to the image or push-forward measure of µ through the map πXi .

Let R[x] be the ring of polynomials in the variables x = (x1, . . . , xn) and let R[x]d be the
vector space of polynomials of degree at most d, whose dimension is s(d) :=

(
n+d
n

)
. For every

d ∈ N, let Nn
d := {α ∈ Nn : |α| (=

∑
i αi) ≤ d}, and let vd(x) = (xα)α∈Nn

d
be the vector of

monomials of the canonical basis (xα)α∈Nn
d

of R[x]d. A polynomial p ∈ R[x]d is written as

x 7→ p(x) =
∑
α∈Nn

pα xα = p · vd(x)

4

for some vector of coefficients p = (pα)α∈Nn
d
∈ Rs(d).

We say that µ ∈ M (Rn) is a representing measure of the sequence m = (mα)α∈Nn ⊂ R
whenever

mα =

∫
xα dµ(x)

for all α ∈ Nn. Given a sequence m = (mα)α∈Nn , let Lm : R[x]→ R be the linear functional

f

(
=
∑
α

fα xα

)
7→ Lm(f) :=

∑
α

fαmα.

Given a sequence m = (mα)α∈Nn , and a polynomial g :=
∑

γ gγ xγ ∈ R[x], the localizing
moment matrix of order d associated with m and g is the real symmetric matrix Md(gm) of
size s(d) with rows and columns indexed in Nn

d and with entries

Md(gm)(α, β) := Lm(g(x) xα+β)

=
∑
γ

gγmα+β+γ , α, β ∈ Nn
d .

When g ≡ 1, the localizing moment matrix Md(m) is called simply the moment matrix.

2.2 The Moment-SOS hierarchy for volume computation

Let B := [0, 1]n ⊂ X := Rn be the n-dimensional unit box, and let K ⊂ B be a closed basic
semialgebraic set defined by

K := {x ∈ X : gi(x) ≥ 0, i = 1, . . . ,m } = {x ∈ X : g(x) ≥ 0}

where g = (gi)i=1,...,m ∈ R[x]m and the rightmost vector inequality is meant entrywise. As in
[4] consider the infinite-dimensional linear program (LP) on measures

max
µ, µ̂∈M+(B)

∫
dµ

s.t. µ+ µ̂ = λB
spt µ ⊂ K
spt µ̂ ⊂ B.

(1)

Its value is equal to vol K and the measures µ∗ = λK, µ̂∗ := λB\K are the unique optimal
solutions of (1). The dual of (1) is the infinite-dimensional LP on continuous functions

inf
v∈C+(B)

∫
v dλB

s.t. v ≥ 1K.
(2)

It turns out that there is no duality gap between (1) and (2), i.e., they both have the same
optimal value. Notice that a minimizing sequence of (2) approximates the indicator function
1K from above by polynomials of increasing degrees.

The LP (1) is a particular and simple instance of the Generalized Moment Problem (GMP).
As described in [4] one may approximate its optimal value as closely as desired by using the
following key result in [11]. Given an infinite dimensional LP on measures, one can construct
a hierarchy of finite dimensional semidefinite programs3 (SDP) whose associated sequence of
optimal values converges monotonically to the optimal value of the original infinite dimensional
LP. The basic idea is to represent a measure with the sequence m of its moments, and to

3A semidefinite program is a convex conic optimization problem that can be solved numerically efficiently,
e.g. by using interior point methods.

5

formulate finite dimensional SDPs on truncations of the sequence m. When this strategy
is applied to LP (1), the step d of the moment-SOS hierarchy consists of solving the SDP
relaxation

Pd : max
m, m̂∈Rs(d)

m0

s.t. mα + m̂α =
∫
B xα dx, α ∈ Nn

2d

Md(m) � 0, Md(m̂) � 0
Md−di(gi m) � 0, i = 1, . . . ,m

(3)

where m = (mα)α∈Nn
2d

, m̂ = (m̂α)α∈Nn
2d

, and di = d(deg gi)/2e, i = 1, . . . ,m.
The sequence of SDP problems (Pd)d∈N indexed by the relaxation order d is a hierarchy

in the sense that its sequence of values converges monotonically from above to vol K when d
increases. Each SDP relaxation Pd has a dual formulated in terms of sums of squares (SOS)
of polynomials, which leads to a dual SOS hierarchy, whence the name moment-SOS hierarchy.
The basic moment-SOS hierarchy can be modeled using the GloptiPoly Matlab toolbox [18]
and solved using any SDP solver, e.g. SeDuMi or Mosek. For more details on the moment-SOS
hierarchy and some of its applications, the interested reader is referred to [11].

2.3 The correlative sparsity pattern and its graph representation

This work heavily relies on a specific notion of sparsity defined as follows.

Definition 1. A scalar polynomial p is said to be sparse when its vector of coefficients p is
sparse. In other words, p is a linear combination of a small number of monomials.

Definition 2. A family of polynomial vectors (g1, . . . ,gm) is said to be correlatively sparse
whenever its correlative sparsity pattern matrix R := (Rij)1≤i,j≤n, defined by

Rij := δij +

m∑
k=1

∥∥∥∥ ∂

∂xi
gk

∥∥∥∥∥∥∥∥ ∂

∂xj
gk

∥∥∥∥
(where δij = 1 if i = j and 0 otherwise, and ‖ · ‖ is any norm on polynomial vectors), is
sparse. In other words, for many pairs of indices i 6= j, the variables xi and xj do not appear
simultaneously in any element of {g1, . . . ,gm}.

Definition 3. The correlation graph G = (V,E) of (g1, . . . ,gm) is defined by vertices V =
{1, . . . , n} and edges E =

{
(i, j) ∈ {1, . . . , n}2 : i 6= j & Rij 6= 0

}
. The correlative sparsity CS

of (g1, . . . ,gm) is the treewidth of its correlation graph.

This paper proposes a method to reduce the size of the volume computation SDP to
(
CS+d+1

d

)
instead of

(
n+d
d

)
, under appropriate assumptions.

Definition 4. The support of gi is the set S(gi) :=
{
j ∈ {1, . . . , n} : ∂

∂xj
gi 6= 0

}
. The support

subspace of gi is the set Xi := 〈xj〉j∈S(gi), whose dimension is smaller than n. Since by definition
gi = gi ◦ πXi , we use both notations with the same meaning. Then X :=

∑m
i=1 Xi is called the

coordinate subspace decomposition associated to (g1, . . . ,gm).

Without loss of generality, we can suppose that X = Rn (otherwise, there would be variables
that appear in none of the gis).

Definition 5. A sparse basic semi-algebraic set has a description

K := {x ∈ X : gi(πXi(x)) ≥ 0, i = 1, . . . ,m}

where (gi)1≤i≤m is a correlatively sparse family of polynomial vectors (inequalities are meant
entrywise) and X =

∑m
i=1 Xi is the coordinate subspace decomposition associated to (gi)1≤i≤m

(and, by extension, to K). A sparse semi-algebraic set is a finite union of sparse basic semi-
algebraic sets that share the same coordinate subspace decomposition.

6

A simple example of a sparse basic semi-algebraic set is

K := {x = (x1, x2, x3, x4) ∈ R4 : g1(x1, x2) ≥ 0, g2(x2, x3) ≥ 0, g3(x3, x4) ≥ 0} (4)

for X = R4, X1 = 〈x1, x2〉, X2 = 〈x2, x3〉, X3 = 〈x3, x4〉 and the projection maps are πX1(x) =
(x1, x2), πX2(x) = (x2, x3), πX3(x) = (x3, x4).

Our methodology is based on the classical theory of clique trees. Up to a chordal extension
(which is equivalent to slightly weakening the correlative sparsity pattern), we suppose that the
correlation graph is chordal (i.e. every cycle of length greater than 3 has a chord, i.e. an edge
linking two nonconsecutive vertices). Then we construct the maximal cliques of the graph (a
clique C is a subset of vertices such that every vertex of C is connected to all the other vertices
of C, a clique is maximal when its cardinal is maximal). Most of the time, up to concatenation
of some of the gi the maximal cliques of a chordal correlation graph are exactly the supports
of the gi: Ci = S(gi), so in the following we will consider only such case4. Figure 1 illustrates
this constuction for the sparse set (4), the vertices are denoted by xi and our maximal cliques
are denoted by Cj .

x2x1 x3

C1

x4

C2 C3

Figure 1: Graph associated to the sparse set (4).

Then, we construct a clique tree which is instrumental to the computer implementation.
It is proved in [19] that if the graph is chordal, then its maximal cliques can be organized
within a tree satisfying the clique intersection property: for two maximal cliques C and C ′ the
intersection C ∩ C ′ is contained in every maximal clique on the path from C to C ′. Figure 2
represents the clique tree associated to the sparse set (4).

C1 C2 C3

Figure 2: Linear clique tree associated to the sparse set (4).

For a slightly more complicated illustration, consider the sparse set

K := {x ∈ R6 : g1(x1, x2) ≥ 0, g2(x2, x3, x4) ≥ 0, g3(x3, x5) ≥ 0, g4(x4, x6) ≥ 0} (5)

whose correlation graph is represented on Figure 3 and whose clique tree is represented on
Figure 4. The clique tree of Figure 2 is called linear because all maximal cliques form a single
chain (i.e. they are in a sequence) with no branching. In contrast, the clique tree of Figure 4 is
called branched.

Our method consists of conveniently rooting the clique tree and splitting the volume compu-
tation problem into lower-dimensional subproblems that are in correspondence with the maximal
cliques of the graph. The subproblem associated with a maximal clique C takes as only input
the solutions of the subproblems associated with the children of C in the clique tree. This way,
one can compute in parallel the solutions of all the subproblems of a given generation, and then
use their results to solve the subproblems of the parent generation. This is the meaning of the
arrows in Figures 2 and 4. The volume of K is the optimal value of the (last) sub-problem
associated with the root C1 of the tree.

4The only exception would be cliques forming a triangle and is tackled in detail in section 6.5.

7

x2

x3

x4

C2

x5

x6

C3

C4

x1

C1

Figure 3: Graph associated to the sparse set (5).

C1

C3

C4

C2

Figure 4: Branched clique tree associated to the sparse set (5).

3 Linear sparse volume computation

In this section we describe the method in the prototype case of linear clique trees. The more
general case of branched clique trees is treated later on.

3.1 An illustrative example: the bicylinder

Before describing the methodology in the general case, we briefly explain the general underlying
idea on a simple illustrative example. Consider the sparse semi-algebraic set

K :=
{
x ∈ R3 : g1(x1, x2) := 1− x21 − x22 ≥ 0, g2(x2, x3) := 1− x22 − x23 ≥ 0

}
(6)

modelling the intersection of two truncated cylinders K1 := {x ∈ R3 : x21 + x22 ≤ 1} and
K2 := {x ∈ R3 : x22 + x23 ≤ 1}, see Figure 3.1. The subspaces are X1 = 〈x1, x2〉 and
X2 = 〈x2, x3〉 and the projection maps are πX1(x) = (x1, x2) and πX2(x) = (x2, x3). Let
Ui := πXi(Ki) for i = 1, 2.

Following [4], computing volK is equivalent to solving the infinite-dimensional LP (1). Next
observe that in the description (6) of K there is no direct interaction between variables x1 and
x3, but this is neither exploited in the LP formulation (1) nor in the SDP relaxations (3) to solve

8

Figure 5: A representation of the bicylinder produced by the AutoDesk Fusion 360 software.

(1). To exploit this correlative sparsity pattern we propose the following alternative formulation

vol K = max
µi∈M+(Xi)

i=1,2

∫
R2

dµ1 (7)

s.t. µ2 ≤ λ⊗ λ
µ1 ≤ λ⊗ µ〈x2〉2

spt µ1 ⊂ U1, spt µ2 ⊂ U2

where µ
〈x2〉
2 denotes the marginal of µ2 in the variable x2.

In the sparse case, the basic idea behind our reformulation of the volume problem is as
follows. We are interested in vol K. However, as the marginal of a measure has the same mass
as the measure itself, instead of looking for the full measure µ in problem (1), we only look for
its marginal on X1.

This marginal µX1 is modeled by µ1 in (7). In order to compute it, we need some additional
information on µ captured by the measure µ2 in (7). The unique optimal solution µ of (1) is

dµ(x) = dλK(x)

= 1U1(x1, x2) 1U2(x2, x3) dx

and therefore its marginal µ1 := µX1 on (x1, x2) is

dµ1(x1, x2) =

∫ 1

0
dµ(x1, x2, x3)

= 1U1(x1, x2) dx1

(∫ 1

0
1U2(x2, x3) dx3

)
dx2︸ ︷︷ ︸

dµ
〈x2〉
2 (x2)

(8)

where

dµ2(x2, x3) = dλU2(x2, x3). (9)

What is the gain in solving (7) when compared to solving (1) ? Observe that in (7) we have
two unknown measures µ1 and µ2 on R2, instead of a single measure µ on R3 in (1). In the
resulting SDP relaxations associated with (7) this translates into SDP constraints of potentially
much smaller size. For instance, and to fix ideas, for the same relaxation degree d:

9

• The SDP relaxation Pd associated with (1) contains a moment matrix (associated with µ
in (1)) of size

(
3+d
d

)
;

• The SDP relaxation Pd associated with (7) contains two moment matrices, one associated
with µ1 of size

(
2+d
d

)
, and one associated with µ2 of size

(
2+d
d

)
, where µ1 and µ2 are as in

(7).

As the size of those matrices is the crucial parameter for all SDP solvers, one can immediately
appreciate the computational gain that can be expected from the formulation (7) versus the
formulation (1) when the dimension is high or the relaxation order increases. Next it is not dif-
ficult to extrapolate that the gain can be even more impressive in the case where the correlative
sparsity pattern is of the form

K = {(x0, . . .xm) ∈ X : gi(xi−1,xi) ≥ 0, i = 1, . . . ,m }, (10)

with xi ∈ Rni and ni � n for i = 0, . . . ,m. In fact, it is straightforward to define examples
of sets K of the form (10) where the first SDP relaxation associated with the original dense
LP formulation (1) cannot be even implemented on state-of-the-art computers, whereas the
SDP relaxations associated with a generalization of the sparse LP formulation (7) can be easily
implemented, at least for reasonable values of d.

3.2 Linear computation theorem

Let
Ki := {x ∈ X : gi(πXi(x)) ≥ 0}

with gi ∈ R[xi]
pi , so that our sparse semi-algebraic set can be written

K =
m⋂
i=1

Ki.

Moreover, let
Ui := {xi ∈ Xi : gi(xi) ≥ 0} = πXi(Ki)

and let
Yi := Xi ∩X⊥i+1= 〈xj〉j∈Ci∩Cc

i+1

be a subspace of dimension ni:= |Ci ∩ Cci+1| for i = 1, . . . ,m−1 with Ym = Xm. The superscript
⊥ denotes the orthogonal complement.

Assumption 6. For all i ∈ {2, . . . ,m} it holds Xi ∩
i−1∑
j=1

Xj 6= {0}.

Assumption 7. For all i ∈ {2, . . . ,m} it holds Xi ∩
i−1∑
j=1

Xj ⊂ Xi−1.

If Assumption 6 is violated then K can be decomposed as a Cartesian product, and one
should just apply our methodology to each one of its factors. Assumption 7 ensures that the
associated clique tree is linear.

Theorem 8. If Assumptions 6 and 7 hold, then vol K is the value of the LP problem

max
µi∈M+(Xi)
i=1,...,m

∫
dµ1 (11)

s.t. µi ≤ µXi∩Xi+1

i+1 ⊗ λni i = 1, . . . ,m− 1 (12)

µm ≤ λnm (13)

spt µi ⊂ Ui i = 1, . . . ,m. (14)

10

Proof. Let us first prove that the value of the LP is larger than vol K. For i = 1, . . . ,m, let

Zi := X⊥i ∩
m∑

j=i+1
Xj so that

m∑
j=i

Xj = Xi ⊕ Zi. For xi ∈ Xi define

dµi(xi) := 1Ui(xi)

∫
Zi

m∏
j=i+1

1Uj ◦ πXj (xi + zi) dzi

 dxi. (15)

By construction µi ∈ M+(Xi) and constraints (14) are enforced. In addition, one can check
that, if xi,i+1 ∈ Xi ∩Xi+1, then

dµ
Xi∩Xi+1

i+1 (xi,i+1)
def
=

∫
yi,i+1∈X⊥i ∩Xi+1

dµi+1(xi,i+1 + yi,i+1)

(15)
=

(∫
X⊥i ∩Xi+1

1Ui+1(xi,i+1 + yi,i+1)∫
Zi+1

m∏
j=i+2

1Uj ◦ πXj (xi,i+1 + yi,i+1 + zi+1) dzi+1

 dyi,i+1

 dxi,i+1

=

∫
Zi

m∏
j=i+1

1Uj ◦ πXj (xi,i+1 + zi) dzi

 dxi,i+1

since (X⊥i ∩Xi+1)⊕ Zi+1 = Zi.
Thus, constraints (12) are satisfied. Moreover, they are saturated on Ui. Eventually, one

has
X = X1 ⊕ Z1

and thus ∫
X1

dµ1 =

∫
X1

1U1(x1)

∫
Z1

m∏
j=2

1Uj ◦ πXj (x1 + z1) dz1

 dx1

=

∫
X

 m∏
j=1

1Uj ◦ πXj (x)

 dx

=

∫
X

1K(x) dx

= vol K,

that is, we have just proved that the value of the LP is larger than or equal to vol K.
To prove the converse inequality, observe that our previous choice µ1, . . . , µm saturates the

constraints (12) while enforcing the constraints (14). Any other feasible solution µ̃1, . . . , µ̃m
directly satisfies the inequality µ̃i ≤ µi. In particular, µ̃1 ≤ µ1 and thus∫

dµ̃1(x1) ≤ vol K.

Remark 9. The dual of the LP problem of Theorem 8 is the LP problem

inf
vi∈C+(Xi)
i=1,...,m

∫
Xm

vm(xm) dxm

s.t. v1(x1) ≥ 1 ∀ x1 ∈ U1

vi+1(xi+1) ≥
∫
Yi

vi(yi, πXi(xi+1)) dyi ∀ xi+1 ∈ Ui+1, i = 1, . . . ,m− 1.

(16)

11

According to [11], there is no duality gap, i.e. the value of the dual is vol K. For example, in
the case of the bicylinder treated in Section 3.1, the dual reads:

inf
v1, v2∈C+([0,1]2)

∫ 1

0

∫ 1

0
v2(x2, x3) dx2dx3

s.t. v1(x1, x2) ≥ 1 ∀ (x1, x2) ∈ U1

v2(x2, x3) ≥
∫ 1

0
v1(x1, x2) dx1 ∀ (x2, x3) ∈ U2.

Thus, if (vk1 , v
k
2)k∈N is a minimizing sequence for this dual LP, then the sets

Ak :=

{
(x1, x2, x3) ∈ [0, 1]3 : vk1 (x1, x2) ≥ 1 , vk2 (x2, x3) ≥

∫ 1

0
vk1 (x, x2)dx

}
are outer approximations of the set K and the sequences (vol Ak)k and (

∫
vk2 dλ

2) decrease to
vol K. Similar statements can be made for the general dual problem.

Corollary 10. [Convergence of the linear computation scheme]
The Moment-SOS hierarchy associated to problem (11) converges to vol K.

Proof. We know that vol K is the value of the infinite dimensional primal LP on measures
(11). The absence of duality gap (which is a consequence of the strong duality property in

[4]) implies that there exists a sequence of continuous maps (v
(k)
1 , . . . , v

(k)
m)k∈N feasible for its

dual LP on functions (16) and such that
∫
Xm

v
(k)
m (xm) dxm −→

k→∞
vol K. The Stone-Weierstrass

Theorem allows to replace these continuous maps with vectors of polynomials while keeping
the convergence of the optimization criterion. Eventually, Putinar’s Positivstellensatz allows
to replace the positivity constraints with SOS constraints while keeping the convergence of the
optimization criterion. Thus, there is no relaxation gap between the dual (16) and its SOS
reinforcement. Since the Moment-SOS hierarchy only consists of restricting the feasible set to
bounded degree to enforce finite dimension, we can conclude that it converges to vol K when
the upper bound on the degree tends to infinity.

Remark 11. The LP (11)-(14) is formulated as a single problem on m unknown measures.
However, it is possible to split it in small chained subproblems to be solved in sequence. Each
subproblem is associated with a maximal clique (in the linear clique tree) and it takes as input
the results of the subproblem associated with its parent clique. This way, the sparse volume
computation is split into m linked low-dimension problems and solved sequentially. This may
prove useful when m is large because when solving the SDP relaxations associated with the single
LP (11)-(14), the SDP solver may encounter difficulties in handling a high number of measures
simultaneously. It should be easier to sequentially solve a high number of low-dimensional
problems with only one unknown measure. Both formulations being strictly equivalent, this
would not change the convergence properties of the sparse scheme.

3.3 Lower bounds for the volume

As explained in the introduction, the hierarchy of SDP relaxations associated with our infinite-
dimensional LP provides us with a sequence of upper bounds on vol K. One may also be
interested in computing lower bounds on vol K. In principle it suffices to apply the same
methodology and approximate from above the volume of B \K since K is included in the unit
box B. However, it is unclear whether B\K has also a sparse description. We show that this is
actually the case and so one may exploit correlative sparsity to compute lower bounds although
it is more technical. The following result is a consequence of Theorem 8:

12

Corollary 12. If K is sparse, then K̂ := B \K is sparse as well, and vol K̂ is the value of the
LP problem

max
µi,j∈M+(Xj)
1≤i≤j≤m

m∑
j=1

∫
Xj

dµ1,j

s.t. µj,j ≤ λmj

µi,j ≤ µXi∩Xi+1

i+1,j ⊗ λni i = 1, . . . , j − 1

spt µi,j ⊂ Ui i = 1, . . . j − 1

spt µj,j ⊂ cl Ûj

where mj := dim Xj, ni := dim X⊥i+1 ∩Xi, Ûj := [0, 1]mj \Uj is open and cl Ûj denotes its
closure5.

Proof. The following description

K̂ =
m⊔
j=1

[
j−1⋂
i=1

Ui ∩ Ûj

]
,

where
⊔

stands for disjoint union, is sparse. Indeed the description of the basic semi-algebraic
set

Vj :=

j−1⋂
i=1

Ui ∩ Ûj

is sparse. In addition, by σ-additivity of the Lebesgue measure, it holds

vol K̂ =

m∑
j=1

vol Vj .

Finally, by using Theorem 8 we conclude that volVj is the value of LP consisting of maximizing∫
Xj
dµ1,j subject to the same constraints as in the above LP problem. Summing up yields the

correct value.

4 Accelerating convergence

As already mentioned, the convergence of the standard SDP relaxations (3) for solving the
GMP (1) is expected to be slow in general. To cope with this issue we introduce additional
linear constraints that are redundant for the infinite dimensional GMP, and that are helpful
to accelerate the convergence of the SDP relaxations. These constraints come from a specific
application of Stokes’ theorem.

4.1 Dense Stokes constraints

We first focus on the dense formulation (1). We know that the optimal measure of our infinite
dimensional LP is µ = λK. Thus, one can put additional constraints in the hierarchy in order to
give more information on the target sequence of moments, without increasing the dimension of
the SDP relaxation. To keep the optimal value unchanged, such constraints should be redundant
in the infinite dimensional LP. Ideally, we would like to characterize the whole set of polynomials
p such that ∫

K
p(x) dµ(x) = 0.

5This is necessary since the support of a measure is a closed set by definition.

13

Indeed, given any such polynomial p, the moments m of µ necessarily satisfy the linear constraint
Lm(p) = 0. However, for a general semi-algebraic set K, we do not have an explicit description
of this set of polynomials. Nevertheless, we can generate many of them, and hence improve
convergence of the SDP relaxations significantly, as it was done originally in [20] in another
context. Let us explain how we generate these linear moment constraints.

We recall that Stokes’ theorem states that if O is an open set of Rn with a boundary ∂O
smooth almost everywhere, and ω is a (n− 1)-differential form on Rn, then one has∫

∂O
ω =

∫
O
dω.

A corollary to this theorem is obtained by choosing ω(x) = h(x) · n(x) σ(dx), where the
dot denotes the inner product between h, a smooth (ideally polynomial) vector field, and n
the outward pointing unit vector orthogonal to the boundary ∂O, and σ denotes the (n − 1)-
dimensional Hausdorff measure on ∂O. In this case, one obtains the Gauss formula [21]∫

∂O
h(x) · n(x) σ(dx) =

∫
O

div h(x) dx.

Choosing h(x) = h(x) ei, where h is a smooth function (ideally a polynomial) and ei is the i-th
vector of the canonical basis of Rn, one obtains the following vector equality∫

∂O
h(x) n(x) dσ(x) =

∫
O

grad h(x) dx.

Then, if we choose O = K \ ∂K and a polynomial h vanishing on ∂K, the vector constraint∫
K

grad h(x) dx = 0

is automatically satisfied and it can be added to the optimization problem (1) without changing
its optimal value. Such constraints are redundant in the infinite-dimensional LP formulation
(1) but not in the SDP relaxations (3). It has been numerically shown in [20] that adding these
constraints dramatically increases the convergence rate of the hierarchy of SDP relaxations.

These so-called Stokes constraints can be added to the formulation of problem (1) to yield

max
µ, µ̂∈M+(B)

∫
dµ

s.t. µ+ µ̂ = λB
(grad h)µ = grad (hµ)
spt µ ⊂ K
spt µ̂ ⊂ B

(17)

where h is any polynomial vanishing on the boundary of K, without changing its value vol K.
The vector constraint (gradh)µ = grad(hµ) should be understood in the sense of distributions,
i.e. for all test functions v ∈ C 1(B) it holds∫

(grad h)v dµ = −
∫

(grad v)h dµ

or equivalently ∫
((grad h)v + (grad v)h) dµ =

∫
grad (hv) dµ = 0

which becomes a linear moment constraint

Lm(grad (hv)) = 0

if v is polynomial. In practice, when implementing the SDP relaxation of degree d, we choose
h(x) :=

∏m
j=1 gj(x) and v(x) = xα, α ∈ Nn, |α| ≤ d+ 1−

∑m
j=1 deg gj .

14

Remark 13. The dual to the LP problem (17) is the LP problem

inf
v∈C+(B)
w∈C (B)n

∫
v dλB

s.t. v + div(hw) ≥ 1K.

It follows that the function v is not required anymore to approximate from above the discontin-
uous indicator function 1K, so that the Gibbs effect is reduced. We believe that the infimum in
this dual of Stokes is in fact a minimum, i.e. there exists optimal decision variables v,w. This
would make the Gibbs effect totally disappear. Proving this reduces to a problem of existence
and uniqueness of the solution to a degenerate linear PDE, and it is out of the scope of this
paper.

4.2 Sparse Stokes constraints: the bicylinder

We have designed efficient Stokes constraints for the dense formulation of problem (1), at the
price of introducing in problem (4) a polynomial h vanishing on the boundary of K. However,
in the sparse case (7), the polynomial h would destroy the sparsity structure, as it is the
product of all polynomials defining K. So we must adapt our strategy to introduce sparse
Stokes constraints.

In this section, to keep the notations simple, we illustrate the ideas on our introductive
bicylinder example of Section 3.1. Considering the optimal measures µ1 and µ2 defined in
(8),(9), we can apply Stokes constraints derived from the Gauss formula, in the directions in
which they are Lebesgue: for µ1 in the x1 direction and for µ2 in the remaining directions. To
see this, define

h1(x1, x2) = g1(x1, x2) e1,

h2(x2, x3) = g2(x2, x3) e2,

h3(x2, x3) = g2(x2, x3) e3

where gi(xi, xi+1) = 1 − x2i − x2i+1, such that h1 · nU1 vanishes on the boundary of U1 and
h2 · nU2 and h3 · nU2 vanish on the boundary of U2, where nUi is the outward point vector
orthogonal to the boundary of Ui. For i, j, k ∈ N, the Gauss formula yields∫

U1

∂

∂x1
(g1(x1, x2)x

i
1x
j
2) dµ1 = 0,∫

U2

∂

∂x2
(g2(x2, x3)x

j
2x
k
3) dµ2 = 0,∫

U2

∂

∂x3
(g2(x2, x3)x

j
2x
k
3) dµ2 = 0.

Hence, adding these constraints does not change the optimal value of the LP problem (7).

4.3 General sparse Stokes constraints

Consider the sequential decomposition of Theorem 8:

max
µi∈M+(Xi)

∫
dµi

s.t. µi ≤ µXi∩Xi+1

i+1 ⊗ λni

spt µi ⊂ Ui

15

for 1 ≤ i ≤ m− 1, and

max
µm∈M+(Xm)

∫
dµm

s.t. µm ≤ λnm

spt µm ⊂ Um.

Our algorithm consists of sequentially solving these problems, starting with determining µm,
then µm−1, and so on until µ1, whose mass will be vol(K). We implement Stokes constraints on
each one of these problems. For the problem in µm, we implement regular Stokes constraints
as in section 4.1:

max
µm∈M+(Xm)

∫
dµm

s.t. µm ≤ λnm

(grad hm)µm = (grad hmµm)

spt µm ⊂ Um

where hm is a polynomial vanishing on ∂Um.
Then, let i ∈ {1, . . . ,m − 1} and suppose that µi+1 is known, such that determining µi is

reduced to a linear programming problem. From the arguments of Section 3, we know that the
optimal measure µi is supported on Ui and that on this set it is the product measure between
µ
Xi∩Xi+1

i+1 and the uniform measure on Yi = 〈xj〉j∈Ci∩Cc
i+1

. Since Stokes’ theorem is only valid

for uniform measures, it will only apply to µYi
i .

Let J ⊂ {1, . . . , n}. For f ∈ C 1(Rn) we define

∇Jf :=

(
∂f

∂xj

)
j∈J

such that ∇{1,...,n}f = grad f and ∇{j}f = ∂f
∂xj

for example. This notation allows us to define

Stokes constraints exactly in the directions we are interested in and to formulate the general
sparse Stokes constraints:

max
µi∈M+(Xi)

∫
dµi

s.t. µi ≤ µXi∩Xi+1

i+1 ⊗ λni

(∇Ci∩Cc
i+1
hi)µi = (∇Ci∩Cc

i+1
hiµi)

spt µi ⊂ Ui

where hi is a polynomial vanishing on ∂Ui.

Remark 14. In some cases, in both dense and sparse contexts, these Stokes constraints can be
slightly improved by choosing a different polynomial hj for each basis vector ej when applying
the Gauss formula, such that hj can be taken with the lowest possible degree, allowing for
a better implementation of the hierarchy. For example, if one is looking for the volume of
K := [0, 1]2, the polynomial vanishing on ∂K with the lowest degree is h(x1, x2) := x1(1 −
x1)x2(1 − x2), but one can formulate Stokes constraints by applying the Gauss formula to
x1(1− x1)e1 and x2(1− x2)e2, instead of h(x1, x2)e1 and h(x1, x2)e2. By doing so, one would

replace the constraint (grad h)µ = grad (hµ) with
(
∂hj
∂xj

)
µ = ∂

∂xj
(hjµ) for every possible j.

This is what we actually implemented in our numerical examples, but we presented the Stokes
constraints in the restrictive case of hj = h for all j for the sake of readability.

16

5 Numerical examples

5.1 Bicylinder revisited

We refer to (1) as the dense problem and to (7) as the sparse problem. For both problems, we
consider instances with and without additional Stokes constraints. Note that for the bicylinder
example of Section 3.1 the optimal value for both the dense and the sparse problem is

vol K =
16

3
≈ 5.3333

since adding Stokes constraints does not change the optimal value.
We solve the SDP relaxations with Mosek on a standard laptop, for various relaxation orders

and we report the bounds and the computation times in Table 1. We observe a slow convergence

full sparse
d without Stokes with Stokes without Stokes with Stokes

2 7.8232 (1.0s) 5,828 (1.1s) 7,7424 (1.1s) 5,4984 (1.1s)
3 7.2368 (0.9s) 5,4200 (1.3s) 7,1920 (0.9s) 5,3488 (1.1s)
4 7.0496 (1.4s) 5,3520 (2.2s) 7,0040 (1.2s) 5,3376 (1.2s)
5 6,8136 (3.1s) 5,3400 (4.4s) 6,7944 (1.8s) 5,3352 (1.8s)
6 6,7376 (7.2s) 5,3376 (8.2s) 6,6960 (2.1s) 5,3344 (2.3s)
7 6,6336 (12.8s) 5,3360 (18.3s) 6,6168 (2.6s) 5,3344 (3.2s)

Table 1: Bounds on the volume (and computation times in seconds) vs relaxation order for the
bicylinder.

for the dense and the sparse versions without Stokes constraints, and a much faster convergence
with Stokes constraints. We also observe significantly smaller computation times when using
the sparse formulation.

5.2 A nonconvex set

Let X := R5, X1 = 〈x1, x2〉, X2 = 〈x1, x3〉, X3 = 〈x1, x4〉, X4 = 〈x1, x5〉 and

• gi(x1, xi+1) := (2x21 − x21+i − 1 , x1 (1− x1) , xi+1 (1− xi+1)), i = 1, . . . , 4

• Ui := g−1i
(
(R+)3

)
= {(x1, xi+1) ∈ [0, 1]2 : 2x21 − x2i+1 ≥ 1}, i = 1, . . . , 4.

Let us approximate the volume of the sparse set

K :=
{

(x1, x2, x3, x4, x5) ∈ [0, 1]5 : 2x21 − x2i+1 ≥ 1, i = 1, . . . , 4
}

=
4⋂
i=1

π−1Xi
(Ui) .

Here the coordinates x2, x3, x4 and x5 do not interact: they are only linked with the coordinate
x1. The proper way to apply our linear computation Theorem 8 is to define a linear clique tree
as shown in Figure 6.

17

x1

x3

x4

C2

C3

x2

x5

C1

C4

(a) Variable graph

C1 C2

C3C4

(b) Clique tree

Figure 6: Graph with linear clique tree for the nonconvex set.

This yields the following formulation

vol K = max
µi∈M+(Xi)
i=1,...,4

∫
X1

dµ1 (18)

s.t. dµ1(x1, x2) ≤ dµ〈x1〉2 (x1) dx2

dµ2(x1, x3) ≤ dµ〈x1〉3 (x1) dx3

dµ3(x1, x4) ≤ dµ〈x1〉4 (x1) dx4

dµ4(x1, x5) ≤ dx1 dx5
spt µi ⊂ Ui i = 1, . . . , 4

with Stokes constraints

∂

∂x2

[
(2x21 − x22 − 1) x2 (1− x2)

]
dµ1(x1, x2) =

∂

∂x2

[
(2x21 − x22 − 1) x2 (1− x2) dµ1(x1, x2)

]
∂

∂x3

[
(2x21 − x23 − 1) x3 (1− x3)

]
dµ2(x1, x3) =

∂

∂x3

[
(2x21 − x23 − 1) x3 (1− x3) dµ2(x1, x3)

]
∂

∂x4

[
(2x21 − x24 − 1) x4 (1− x4)

]
dµ3(x1, x4) =

∂

∂x4

[
(2x21 − x24 − 1) x4 (1− x4) dµ3(x1, x4)

]
∂

∂x5

[
(2x21 − x25 − 1) x5 (1− x5)

]
dµ4(x1, x5) =

∂

∂x5

[
(2x21 − x25 − 1) x5 (1− x5) dµ4(x1, x5)

]
∂

∂x1

[
(2x21 − x25 − 1) x1 (1− x1)

]
dµ4(x1, x5) =

∂

∂x1

[
(2x21 − x25 − 1) x1 (1− x1) dµ4(x1, x5)

]
.

We can compute analytically

vol K =
1

15

(
7− 4

√
2
)
' 0.0895.

On Figure 7 we show results from solving several relaxations via the dense and the sparse
approach, with and without Stokes constraints. While solving with Mosek the degree 12 dense
relaxation took about 1000 seconds, solving the degree 12 sparse relaxation took less than
10 seconds. With the sparse relaxations it was possible to go much higher in the hierarchy.
Figure 7b shows convincingly how Stokes constraints accelerate the convergence of the hierarchy.
We can also observe that the nonconvexity of K poses no special difficulty for the volume
computation.

18

(a) Computation time vs relaxation order. (b) Bounds on the volume vs relaxation order.

Figure 7: Performance for the nonconvex set.

5.3 A high dimensional polytope

Consider
Kn := {x ∈ [0, 1]n : xi + xi+1 ≤ 1, i = 1, . . . , n− 1}.

According to [22], for any θ ∈]− π
2 ,

π
2 [, one has the elegant formula :

tan θ + sec θ = 1 +
∞∑
n=1

vol Kn θ
n

which allows to compute analytically the volume for n arbitrarily large. For example when
n = 20 we obtain

vol K20 =
14814847529501

97316080327065600
≈ 1.522 · 10−4.

From the SDP viewpoint, vol Kn is computed by solving relaxations of the LP problem
given in Theorem 8 where m = n−1, Xi = 〈xi, xi+1〉 and gi(xi, xi+1) = (xi, xi+1, 1−xi−xi+1),
i = 1, . . . , n− 1.

We implemented the volume computation algorithm for n = 20, with Stokes contraints.
This cannot be achieved without resorting to sparse computation as the dimension is too high
for regular SDP solvers. With the sparse formulation however we could solve relaxations up
to degree 28 in less than 100 seconds, see Figure 8. Note however, that the analytic volume is
of the order of 10−4. In consequence we observe a non monotonicity of the relaxation values
which contradicts the theory. This issue is surprising as the Mosek SDP solver terminates
without reporting issues. This indicates that computing small volumes in large dimension can
be numerically sensitive.

In order to fix the monotonicity issue, we added a sparse rescaling to our problem. The idea
is the following: at each step of the algorithm, the mass of the measure µi is less than the mass
of the reference measure

ρi := µ
Xi∩Xi+1

i+1 ⊗ λni .

Defining

εi :=
|µi|
|ρi|
∈]0, 1[,

we obtain that

vol K =

m∏
i=1

εi

19

Figure 8: Bounds on the volume vs relaxation order for the high dimensional polytope.

(a) Without rescaling. (b) With rescaling.

Figure 9: Bounds on the volume vs relaxation order for the high dimensional polytope.

as a telescoping product, since |ρm| = vol B = 1. As a result, if m is large and the εi are small,
one can expect the volume to be very small, which explains why the SDP solver encounters
difficulties. Thus, a solution is to multiply each domination constraint by a well-chosen rescaling
factor ε such that the mass of µi does not decrease too much. The resulting LP is as follows

vol K = εm−1 max
µi∈M+(Xi)
i=1,...,m

∫
X1

dµ1 (19)

s.t. ε µi ≤ µXi∩Xi+1

i+1 ⊗ λni i = 1, . . . ,m− 1

µm ≤ λnm

spt µi ⊂ Ui i = 1, . . . ,m.

Figure 9 gives a comparison between the results obtained with and without sparse rescaling,
using the SDP Solvers SeDuMi and Mosek, for the choice ε = 1

2 .
First, one can see that without rescaling (Figure 9a), both SeDuMi and Mosek have accuracy

issues that make them lose monotonicity, while the rescaling (Figure 9b) allows to recover
monotonicity at least when using SeDuMi (which is slower but more accurate than Mosek to
our general experience). Second, it is clear that the relative approximation error is much smaller
with scaling. This, combined to the fact that the error is relative (after rescaling, the error is

20

much smaller), demonstrates the power of our rescaling method.

5.4 A nonconvex high dimensional set

Finally, we consider the set already mentioned in the introduction, which is both nonconvex
and high dimensional. Let

Kn := {x ∈ [0, 1]n : xi+1 xi ≤ 1/2, i = 1, 2, . . . , n− 1}

whose analytic volume is a function of the dimension n. For n = 3 the analytic volume is
0.75, for n = 4 it is 0.6566, approximately. In higher dimensions we do not have an analytic
expression for the volume. However, in order to get a feeling for its value for bigger n, we ran
a Monte Carlo simulation6 with one million samples for n = 10, 20, 50, and 100.

Before we go on, let us emphasize that the method proposed in this paper is not in con-
currence with the Monte Carlo approach. While the Monte Carlo gives a probabilistic estimate
of the volume, our method provides a guaranteed upper bound. Nonetheless, it would be con-
cerning if the computed upper bound was much smaller than the confidence interval, and we
consider our approximation valid, when it returns something in the order of the Monte Carlo
approximation. The results for different dimensions n and solved with the Mosek SDP solver
are summarized in Table 2. As in the previous section we experience accuracy issues for the
relaxations of order 14 and n = 20, 100, as well as for order 16 and n = 50. Otherwise, the
approximations provide better upper bounds for increased relaxation orders as expected. For
n = 3, 4 the approximation is reasonably close to the analytic value. For n = 10, 20, 50 our
scheme provides an upper bound in the same order of magnitude as the 99%-confidence interval
of the Monte Carlo simulation. We interpret this as a validation for both the Monte Carlo
approach and our own approach. For n = 100 we could not derive a meaningful confidence
interval. Indeed, as our approximation shows, the volume for n = 100 is less than 9 · 10−6. In
order to get an accuracy of ε = 10−6 one would have to draw approximately N = 1

ε2
= 1012 sam-

ples. With our non-sophisticated implementation, the Monte Carlo simulation for one million
points took about 5 seconds. Extending this linearly to a simulation with 1012 samples would
therefore take a little less than 2 months (5 · 106 s ' 1389 h ' 58 d). With more sophisticated
methods, this time could certainly be reduced dramatically. However, it sets the 44 minutes it
took to solve relaxation order 16 for n = 100 into perspective.

6 General sparse volume computation

6.1 General correlative sparsity pattern

Let us describe a general method to compute the volume of

K :=

m⋂
i=1

Ki

where Ki = {x ∈ X : gi(x) ≥ 0} and (g1, . . . ,gm) is a correlatively sparse family of polynomial
vectors with associated coordinate subspace decomposition X =

∑m
i=1 Xi. For this we construct

the correlation graph G = (V,E) as follows:

• V = {1 . . . , n} represents the canonical basis {e1, . . . , en} of X;

• E = {(i, j) ∈ {1, . . . , n}2 : i 6= j & ei, ej ∈ Xk for some k ∈ {1, . . . ,m}}.
6We provide a quick introduction in Appendix B.

21

n=3 n = 4 n=10
d value time (s) value time (s) value time (s)

4 7.86E-01 0.95 7.09E-01 0.61 3.93E-01 1.24
5 7.73E-01 2.87 6.90E-01 0.78 3.57E-01 1.84
6 7.69E-01 2.74 6.84E-01 0.86 3.45E-01 4.21
7 7.66E-01 4.58 6.79E-01 1.83 3.38E-01 4.55
8 7.63E-01 5.00 6.77E-01 2.29 3.34E-01 5.97
9 7.63E-01 6.11 6.74E-01 3.33 3.30E-01 11.56
10 7.62E-01 9.83 6.73E-01 6.86 3.26E-01 18.21
11 7.61E-01 18.16 6.72E-01 8.57 3.26E-01 22.24
12 7.60E-01 19.45 6.71E-01 10.43 3.23E-01 33.78
13 7.60E-01 22.49 6.70E-01 17.89 3.22E-01 74.00
14 7.60E-01 27.02 6.69E-01 26.84 3.21E-01 79.68
15 7.59E-01 32.90 6.69E-01 39.25 3.20E-01 119.7
16 7.58E-01 78.20 6.68E-01 61.32 3.19E-01 176.6

ana/mc 7.50E-01 - 6.57E-01 - [2.99e-01, 3.03e-01]

n = 20 n=50 n = 100
d value time (s) value time (s) value time (s)

4 1.47E-01 5.11 7.68E-03 10.64 9.49E-05 15.19
5 1.20E-01 3.58 4.78E-03 15.10 4.80E-05 26.87
6 1.11E-01 8.13 3.86E-03 21.75 2.84E-05 49.89
7 1.07E-01 11.06 3.42E-03 48.31 2.27E-05 77.07
8 1.03E-01 17.93 3.20E-03 72.78 1.91E-05 135.08
9 1.00E-01 33.31 2.99E-03 120.49 1.63E-05 202.12
10 9.81E-02 41.02 2.99E-03 103.61 1.44E-05 299.44
11 9.70E-02 85.83 2.89E-03 165.56 1.22E-05 441.67
12 9.59E-02 117.08 2.77E-03 220.84 1.19E-05 623.24
13 9.51E-02 138.38 2.67E-03 314.00 1.08E-05 850.92
14 9.57E-02 156.32 2.60E-03 457.92 1.10E-05 1175.02
15 9.39E-02 249.82 2.54E-03 685.64 9.86E-06 1589.49
16 9.36E-02 357.87 2.56E-03 859.60 9.46E-06 2623.02

ana/mc [8.09e-02, 8.24e-02] [1.48e-03, 1.68e-03] -

Table 2: A nonconvex high dimensional set: ana/mc refers to the analytic value and the
99%-confidence interval, respectively.

22

As stated in Section 2, we suppose that the correlation graph of (gi)1≤i≤m has exactly m max-
imal cliques (see Section 6.5 for discussions when it is not the case) that are in correspondence
with the Xi.

Let K be the set of maximal cliques of G. We will use the following property of graphs:

Definition 15. (CIP) The graph G = (V,E) is said to satisfy the clique intersection property
(CIP) iff there is a clique tree T = (K, E), such that for all C,C ′ ∈ K, C ∩C ′ ⊂ C ′′ for any C ′′

on the path connecting C and C ′ in the tree T .

Such a property ensures that G is chordal7, see [19]. We then replace Assumption 7 with
the following strong correlative sparsity assumption:

Assumption 16. (DIP) We suppose that there is a clique tree T = (K, E), rooted in some
C1, that simultaneously satisfies the CIP and the following disjoint intersection property (DIP):
∀C,C ′, C ′′ ∈ K, if (C,C ′) ∈ ET and (C,C ′′) ∈ E then C ′ = C ′′ or C ′ ∩ C ′′ = ∅.

In words, each clique has an empty intersection with all its siblings. See Appendix A for
details on how to check this assumption and construct such a tree when it exists. See Section
6.5 for possible solutions when Assumption 16 does not hold. Figure 10 illustrates the meaning
of this assumption for n = 12 and m = 8. One can check that Assumptions 6 and 16 hold.

Remark 17. With these assumptions, the only possible clique trees for applying our method
to the nonconvex example illustrated in Figure 6 are linear clique trees. Indeed, any branched
clique tree would imply sibling cliques containing x1.

x2

x3

x4

C2

x5

x6

x7

x8

C3

C4

x9

x10

x11

x12

C5

C6

C7

C8

x1

C1

C1

C5

C6

C7

C8

C2

C3

C4

Figure 10: Chordal graph (left) with its clique tree (right).

7The CIP always holds, up to a chordal extension. In particular, cyclic graphs can be handled with empty
interactions between well-chosen variables.

23

6.2 Distributed computation theorem

One can formulate a simple generalization of the sequential implementation of Theorem 8 to
our general correlative sparsity pattern.

Theorem 18. Let Assumptions 6 and 16 hold. Let T = (K, E) be a clique tree as in Assumption

16. Then vol K =

∫
X1

dµ∗1 where for i = 1, . . . ,m, µ∗i is an optimal solution to

max
µi∈M+(Xi)

∫
Xi

dµi (20)

s.t. µi ≤

 ⊗
(Ci,Cj)∈E

µ
∗Xi∩Xj

j

⊗ λni (21)

spt µi ⊂ Ui (22)

and ni = dim Xi ∩

(∑
(Ci,Cj)∈E

Xj

)⊥
=

∣∣∣∣∣Ci ∩
(⋃

(Ci,Cj)∈E
Cj

)c∣∣∣∣∣.
Proof. We define, for i = 1, . . . ,m,

Yi := Xi ∩

 ∑
(Ci,Cj)∈E

Xj

⊥ = 〈xk〉k∈Ci ; (Ci,Cj)∈E⇒k/∈Cj

and we observe that, according to Assumption 16, for any i = 1, . . . ,m

Xi =

 ⊕
(Ci,Cj)∈E

Xi ∩Xj

⊕Yi.

Thus, constraint (21) is well-posed.
For i = 1, . . . ,m, let D(i) := {j 6= i : ∃ an oriented path from Ci to Cj in T}, the set of

descendants of Ci, as well as Zi :=
∑

j∈D(i)
Xj = 〈xk〉k∈Cj ; j∈D(i) and qi := dim Zi =

∣∣∣∣∣ ⋃j∈D(i)Cj
∣∣∣∣∣.

We are going to show by induction that for i = 1, . . . ,m,

µ∗i = 1Ui

 ∏
j∈D(i)

1Uj ◦ πXj λ
qi

Xi∩Zi

⊗ λni .

Our base cases are the leaves of T , i.e. the i such that D(i) = ∅. Then, problem (20) is
reduced to the classical problem of computing the volume of Ui, whose optimal solution is
exactly µ∗i = λUi = 1Ui λ

ni (because D(i) = ∅⇒ ni = dim Xi), which is the expected result.
Then we can proceed to the induction: let i be a node of T that is not a leaf: D(i) 6= ∅;

and suppose that for j ∈ D(i) such that (Ci, Cj) ∈ E ,

µ∗j = 1Uj

 ∏
k∈D(j)

1Uk
◦ πXk

λqj

Xj∩Zj

⊗ λnj .

Then, constraint (21) can be rewritten as

µi ≤

 ⊗
(Ci,Cj)∈E

1Uj

 ∏
k∈D(j)

1Uk
◦ πXk

λqj

Xj∩Zj

⊗ λnj

Xi∩Xj

⊗ λni

24

which in turn is simplified into

µi ≤

 ⊗
(Ci,Cj)∈E

1Uj

 ∏
k∈D(j)

1Uk
◦ πXk

 λnj+qj

Xi∩Zj
⊗ λni

since the CIP ensures that Xi ∩Xj ∩ Zj = Xi ∩ Zj : indeed Cj is on the path between Ci and
any Ck with k ∈ D(j), so that Ci ∩ Ck ⊂ Cj and thus Xi ∩Xk ⊂ Xj , yielding Xi ∩ Zj ⊂ Xj .
At this point one can notice that nj + qj = dim(Xj + Zj).

Then, using the DIP, we know that if (Ci, Cj), (Ci, Ck) ∈ E with j 6= k then Cj ∩ Ck = ∅
and with the CIP Cj ∩Cl = ∅ for any l ∈ D(k). This yields that (Xj + Zj) ∩ (Xk + Zk) = {0}
and thus Zi =

⊕
(Ci,Cj)∈E

(Xj + Zj), allowing to rewrite constraint (21) as

µi ≤

 ⊗
(Ci,Cj)∈E

1Uj

 ∏
k∈D(j)

1Uk
◦ πXk

 λnj+qj

Xi∩Zi

⊗ λni ,

which simplifies into

µi ≤

 ∏
j∈D(i)

1Uj ◦ πXj λ
qi

Xi∩Zi

⊗ λni .

Eventually, we are again faced to a classical instance of the dense volume problem for Ui, with(∏
j∈D(i)

1Uj ◦ πXj λ
qi

)Xi∩Zi

⊗ λni instead of only the uniform Lebesgue measure, and we know

that the optimal solution is obtained by multiplying this non-negative dominating measure with
the indicator of Ui, yielding

µ∗i = 1Ui

 ∏
j∈D(i)

1Uj ◦ πXj λ
qi

Xi∩Zi

⊗ λni

which is the announced result.
We conclude by using the fact that D(1) = {2, . . . ,m} and Rn = X1 + Z1 = X1⊕ (X⊥1 ∩Z1)

to compute the value:

∫
X1

dµ∗1 =

∫
X1

1U1

 m∏
j=2

1Uj ◦ πXj λ
q1

X1∩Z1

dλn1

=

∫
X1

1U1(x1)

∫
X⊥1 ∩Z1

m∏
j=2

1Uj ◦ πXj (x1 + z1) dz1

 dx1

=

∫
Rn

(
m∏
i=1

1Ui ◦ πXi(x)

)
dx

=

∫
Rn

(
m∏
i=1

1Ki(x)

)
dx

=

∫
Rn

1K(x) dx

= vol K.

25

Therefore one obtains a sequence of infinite dimensional LPs on measures that can be algo-
rithmically addressed using the usual SDP relaxations. The computations start from the leaves
of the clique tree and proceed down to the root. It is worth noting that all the maximal cliques
of the same generation in the tree are totally independent, which allows to treat them simul-
taneously, i.e. to partially parallelize the computations. Let d ∈ N. We consider the solutions

m
(d)
i to the moment relaxations, for i = 1, . . . ,m:

Pd,i = max
mi,m̂i∈Rs(d)

mi,0 (23)

s.t. mi,(α(j))j ,β
+ m̂i,(α(j))j ,β

=

 ∏
(Ci,Cj)∈E

m
(d)

j,α(j),0

 `i,β (24)

Md(mi) � 0,Md(m̂i) � 0

Md−di(gimi) � 0

where (α(j))j , β are appropriate multi-indices and `i,β is the β moment of λni on the appropriate
projection of B. We are going to study the convergence of the sequence Pd,1 to vol K.

Theorem 19 (Convergence of the branched Moment-SOS hierarchy). Let Ci ∈ K such that

for Cj ∈ K satisfying (Ci, Cj) ∈ E, we have a converging sequence of moment vectors (m
(d)
j)d:

m
(d)
j ∈ Rs(d) and for any appropriate multi-index α, m

(d)
j,α−→

d→∞

∫
xα dµ∗j .

In this setting, if each relaxation of the LP problem (23) associated to the clique Ci has at
least one feasible solution, then the Moment-SOS hierarchy associated to clique Ci converges, in

the sense that for any appropriate multi-index α, m
(d)
i,α −→

d→∞

∫
xα dµ∗i .

Thus, by induction, if at all nodes of T the moment relaxations remain feasible at all degrees
of relaxation, then the branched Moment-SOS hierarchy converges, namely Pd,1 −→

d→∞
vol K.

Proof. The feasibility assumption ensures that the m
(d)
i are properly defined at all degrees d.

Then, pointwise convergence of the (m
(d)
j)d yields that m

(d)
j,0 is bounded for the weak-∗ topology

on R[x]′. Constraint (24) yields that (m
(d)
i)d is bounded for the weak-∗ topology on R[x]′, which

means, according to Banach-Alaoglu’s theorem, that it has an accumulation point. Finally, by
uniqueness of the solution to the infinite dimensional LP problem (20), the convergence of

(m
(d)
j)d to the moment sequence of µ∗j ensures that this accumulation point is none other than

the moment sequence of µ∗i . This proves existence and uniqueness of the accumulation point of

(m
(d)
i)d. Then, we get for any appropriate multi-index α

m
(d)
i,α −→

d→∞

∫
xα dµ∗i .

To conclude for the global convergence of the sparse scheme, we just need to check the base
case of this induction. Here again the base case is the leaves of the tree at which we are face to
standard instances of the volume problem, whose associated Moment-SOS hierarchy is already
proved to converge. Thus, our convergence assumption is satisfied, which means that as long
as all the relaxations are feasible, their solutions converge weakly-∗ to the infinite dimensional
optimal measures, and in particular

Pd,1 −→
d→∞

vol K.

Remark 20. Stokes constraints can be implemented similarly to the linear case.

26

6.3 Example: 6D polytope

Let X := R6 and X1 = 〈x1, x2〉, X2 = 〈x2, x3, x4〉, X3 = 〈x3, x5〉, X4 = 〈x4, x6〉. For i = 1, 3, 4
let gi(x, y) := (x, y, 1 − x − y) and Ui := g−1i

(
R2
+

)
= {(u, v) ∈ [0, 1]2 : u + v ≤ 1}. Let

g2(x, y, z) := (x, y, z, 1 − x − y − z) and U2 := g−12

(
R3
+

)
= {(x, y, z) ∈ [0, 1]3 | x + y + z ≤ 1}.

Let us approximate the volume of the 6D polytope

K := {x ∈ R6
+ : x1 + x2 ≤ 1, x2 + x3 + x4 ≤ 1, x3 + x5 ≤ 1, x4 + x6 ≤ 1} =

4⋂
i=1

π−1Xi
(Ui) .

No linear clique tree is associated to this problem through Proposition 16. The only possible
clique trees for applying our method are the two branched clique trees of Figure 11.

x2

x3

x4

C2

x5

x6

C3

C4

x1

C1

C1

C3

C4

C2

(a) 3 step clique tree

x2

x3

x4

C1

x5

x6

C3

C4

x1

C2

C3

C2

C4

C1

(b) 2 step clique tree

Figure 11: Two possible branched clique trees for the 6D polytope.

Let us compare the performance of the algorithms derived from the two possible clique tree
configurations and with the dense problem. For that, we first write the problem associated with
the 3 step clique tree configuration of the top of Figure 11:

vol K =

∫
X1

dµ∗1 (25)

27

where

µ∗1 = argmax
µ1∈M+(X1)

∫
X1

dµ1

s.t. dµ1(x1, x2) ≤ dx1 dµ∗〈x2〉2 (x2)

spt µ1 ⊂ U1

µ∗2 = argmax
µ2∈M+(X2)

∫
X2

dµ2

s.t. dµ2(x2, x3, x4) ≤ dx2 dµ∗〈x3〉3 (x3) dµ
∗〈x4〉
4 (x4)

spt µ2 ⊂ U2

µ∗i = argmax
µi∈M+(Xi)

i=3,4

∫
Xi

dµi

s.t. µi ≤ λ2

spt µi ⊂ Ui, i = 3, 4.

This problem can be complemented with the following Stokes constraints:

∂

∂x1

[
x1 (1− x1 − x2)

]
dµ1(x1, x2) =

∂

∂x1
[x1 (1− x1 − x2) dµ1(x1, x2)]

∂

∂x2

[
x2 (1− x2 − x3 − x4)

]
dµ2(x2, x3, x4) =

∂

∂x2
[x2 (1− x2 − x3 − x4) dµ2(x2, x3, x4)]

∂

∂xi

[
xi (1− xi − xi+2)

]
dµi(xi, xi+2) =

∂

∂xi
[xi (1− xi − xi+2) dµi(xi, xi+2)]

∂

∂xi+2

[
xi+2 (1− xi − xi+2)

]
dµi(xi, xi+2) =

∂

∂xi+2
[xi+2 (1− xi − xi+2) dµi(xi, xi+2)] i = 3, 4.

The 2 step clique tree of the bottom of Figure 11 yields the following formulation

vol K =

∫
X2

dµ∗2 (26)

where

µ∗2 = argmax
µ2∈M+(X2)

∫
X2

dµ2

s.t. dµ2(x2, x3, x4) ≤ dµ∗〈x2〉1 (x2) dµ
∗〈x3〉
3 (x3) dµ

∗〈x4〉
4 (x4)

spt µ2 ⊂ U2

µ∗i = argmax
µi∈M+(Xi)
i=1,3,4

∫
Xi

dµi

s.t. µi ≤ λXi

spt µi ⊂ Ui, i = 1, 3, 4

with Stokes constraints

∂

∂xi

[
xi (1− xi − xj)

]
dµi(xi, xj) =

∂

∂xi
[xi (1− xi − xj) dµi(xi, xj)]

∂

∂xj

[
xj (1− xi − xj)

]
dµi(xi, xj) =

∂

∂xj
[xj (1− xi − xj) dµi(xi, xj)]

for (i, j) = (1, 2), (3, 5), (4, 6). However, no Stokes constraints can be applied for the com-
putation of µ2 (there is no Lebesgue measure in the domination constraint, so the optimal

28

measure is not uniform). For this reason one can expect a slower convergence than in the linear
configuration.

We implement the hierarchies associated to the 2 and 3 step sparse formulations, as well as
the dense problem hierarchy, and compare their performance in Figure 12. We can compute
analytically

vol K =
1

18
' 0.0556.

(a) Computation time vs relaxation order. (b) Bounds on the volume vs relaxation order.

Figure 12: Performance for the 6D polytope.

Both sparse formulations outperform the dense one in terms of computational time needed
to solve the corresponding SDPs (Figure 12a). On the accuracy side however (Figure 12b), we
observe that the 2 step formulation seems to be less efficient than the 3 step formulation. In
particular when considering the accuracy/time effort relation at order 3 the dense formulation
provides a better value in almost the same time.

We believe that this can be explained by the way Stokes constraints are added to the
program. Indeed, at a given clique, Stokes constraints can only be implemented in the variables
that are not shared with the input measure. In the fully (2 step) branched configuration, the
last step of the optimization program cannot be accelerated by Stokes constraints at all, while
in the 3 step configuration, step 1 includes Stokes constraints in x3, x4, x5, x6, step 2 includes
Stokes constraints in x2 and step 3 includes Stokes constraints on x1, which explains the gap
between the optimal values of these two configurations.

Moreover, it seems that even the least branched (3 step) configuration still presents a gap
between its optimal value and the analytic solution. This might also happen with a non-sparse
instance of the Moment-SOS hierarchy (which converges theoretically) and it is likely due to
the choice of the monomial basis to represent polynomials. Indeed, most of the Moment-SOS
parsers generate SDP problems with the basis of monomials, while sometimes other bases (e.g.
Chebyshev or Legendre polynomials) are more appropriate. However, in this precise case,
it might also be linked again with the sparse Stokes constraints implementation. Indeed, in
step 2 of the scheme, the unknown measure measures x2, x3 and x4 but Stokes constraints are
implemented only in x2, leaving a possible Gibbs effect in x3, x4. Unlike most of our numerical
examples, this one still includes an optimization step in which most of the variables are not
controlled through Stokes constraints. The gap between the optimal value and the analytic
value for the 3 step branched formulation in Figure 12b could be explained by a Gibbs effect in
the second optimization step.

As a consequence, in the following, one should avoid the branched hierarchies that cannot
be accelerated at each step at least partially by Stokes constraints. Such a hierarchy appears

29

when the root of the chosen clique tree shares all its vertices with its children cliques. It can
be proved that such a configuration can always be avoided while implementing sparse volume
computation, by choosing a leaf as the new root of the tree.

6.4 Example: 4D polytope

Let X := R4, X1 := 〈x1, x2〉, X2 := 〈x2, x3〉, X3 := 〈x3, x4〉, gi(u, v) := (u, v, 1 − u − v),
i = 1, 2, 3 and Ui := g−1i

(
R3
+

)
= {(u, v) ∈ [0, 1]2 : u+ v ≤ 1}. Let us approximate the volume

of the 4D polytope

K :=
{

(x1, x2, x3, x4) ∈ R4
+ : x1 + x2 ≤ 1, x2 + x3 ≤ 1, x3 + x4 ≤ 1

}
=

3⋂
i=1

π−1Xi
(Ui) .

In such a case, there are two possible configurations for the associated clique tree of Proposition
16, see Figure 13. Accordingly, we can compute vol K in two different ways. The first way

x2x1 x3

C1

x4

C2 C3

C1 C2 C3

(a) linear clique tree

x2x1 x3

C2

x4

C1 C3

C1

C2

C3

(b) branched clique tree

Figure 13: Two possible clique trees for the 4D polytope.

vol K = max
µ1∈M+(X1)
µ2∈M+(X2)
µ3∈M+(X3)

∫
X1

dµ1 (27)

s.t. dµ1(x1, x2) ≤ dx1 dµ〈x2〉2 (x2)

dµ2(x2, x3) ≤ dx2 dµ〈x3〉3 (x2)

dµ3(x3, x4) ≤ dx3 dx4
spt µi ⊂ Ui, i = 1, 2, 3.

is the linear formulation given by Corollary 8, which is under the form of a non-parallelizable
single linear problem. The following additional Stokes constraints can be added:

∂

∂x1

[
x1 (1− x1 − x2)

]
dµ1(x1, x2) =

∂

∂x1
[x1 (1− x1 − x2) dµ1(x1, x2)]

∂

∂x2

[
x2 (1− x2 − x3)

]
dµ2(x2, x3) =

∂

∂x2
[x2 (1− x2 − x3) dµ2(x2, x3)]

∂

∂x3

[
x3 (1− x3 − x4)

]
dµ3(x3, x4) =

∂

∂x3
[x3 (1− x3 − x4) dµ3(x3, x4)]

30

∂

∂x4

[
x4 (1− x3 − x4)

]
dµ3(x3, x4) =

∂

∂x4
[x4 (1− x3 − x4) dµ3(x3, x4)] .

On the other hand, if one associates the maximal clique C1 to the subspace X2 and the maximal
clique C2 to the subspace X1, one also has

vol K =

∫
X2

dµ∗2 (28)

where

µ∗2 = argmax
µ2∈M+(X2)

∫
X2

dµ2

s.t. dµ2(x2, x3) ≤ µ∗〈x2〉1 (dx2) dµ
∗〈x3〉
3 (x3)

spt µ2 ⊂ U2

µ∗1 = argmax
µ1∈M+(X1)

∫
X1

dµ1

s.t. dµ1(x1, x2) ≤ dx1 dx2
spt µ1 ⊂ U1

µ∗3 = argmax
µ3∈M+(X3)

∫
X3

dµ3

s.t. dµ3(x3, x4) ≤ dx3 dx4
spt µ3 ⊂ U3

which is the branched formulation associated to Theorem 18. Here one can see that µ∗1 and µ∗3
can be computed independently in parallel, and then re-injected in the problem to which µ∗2 is
the solution. One can add the following Stokes constraints:

∂

∂x1

[
x1 (1− x1 − x2)

]
dµ1(x1, x2) =

∂

∂x1
[x1 (1− x1 − x2) dµ1(x1, x2)]

∂

∂x2

[
x2 (1− x1 − x2)

]
dµ1(x1, x2) =

∂

∂x2
[x2 (1− x1 − x2) dµ1(x1, x2)]

∂

∂x3

[
x3 (1− x3 − x4)

]
dµ3(x3, x4) =

∂

∂x3
[x3 (1− x3 − x4) dµ3(x3, x4)]

∂

∂x4

[
x4 (1− x3 − x4)

]
dµ3(x3, x4) =

∂

∂x4
[x4 (1− x3 − x4) dµ3(x3, x4)] .

We can compute analytically

vol K =
5

24
' 0.2083.

In Figure 14 we compare the two sparse formulations with and without Stokes constraints.
Surprisingly the linear formulation is faster than the branched one for small relaxation degrees,
most probably because at this level of precision the branching costs more in terms of constructing
and parsing the LMIs than it saves in computational time. When going deeper in the hierarchy
we see the advantage of the branched formulation where more computations are done in parallel.
As observed in the previous example however, the branched formulation seems to have problems
to converge to the optimal value on an early relaxation. While the values of both formulations
without Stokes constraints almost coincide, the values of the linear formulation with Stokes are
strictly better than the ones of the accelerated branched formulation. This further supports
our conjecture that formulations where Stokes constraints can be added at every step of the
optimization program are to be preferred: the fact that both configurations behave equally

31

without Stokes constraints and that the branched configuration keeps a relaxation gap when
implementing Stokes constraints suggests that these Stokes constraints behave better in linear
configurations than in branched configurations. For this reason, in the 6D case where all possible
configurations are branched, we could not completely eliminate the relaxation gap, while in this
case where there is a linear configuration, the relaxation gap vanishes.

(a) Computation time vs relaxation order. (b) Bounds on the volume vs relaxation order.

Figure 14: Performance for the 4D polytope.

6.5 Discussion on the DIP assumption

It may happen that Assumption 16 does not hold, in which case all the above results would not
apply. For example one could think of the following set:

K :=
{
x ∈ R6 : x21 + x22 + x23 ≤ 1, x2i + x2i+2 + x2i+3 ≤ 1, i = 2, 3

}
whose correlative graph is represented on Figure 15. Here the DIP and CIP cannot be simulta-
neously enforced: the CIP would only be satisfied by a branched clique tree, but since all the
cliques share common vertices, in such a branched tree there would automatically be sibling
cliques with nonempty intersection. Also, one can notice that in this case (and, as far as we
know, only in similar configurations where Assumption 16 is violated), the clique C2 does not
correspond to a polynomial appearing in the description of K.

First, we would like to emphasize that the core of this article is the linear computation
theorem, for which the working assumption always holds. The branched generalizations are
only consequences of this linear computation theorem.

Second, the fact that Assumption 16 does not hold is not a dead-end for using our scheme.
In fact, even the simpler CIP might not hold, in which case one would need to perform a chordal
extension, which consists of adding virtual links between variables to construct a chordal graph.
Basically, a chordal extension would make the graph chordal at the price of slightly weakening
the correlative sparsity pattern. In general, the same can be performed to enforce Assumption
16: one could add virtual links between variables to enforce the assumption to hold. For
example, if one artificially links variables x3 and x4 in the correlation graph of K, one obtains
a new correlation graph, with an associated clique tree satisfying all our working assumptions
(see Figure 16). This manipulation results in increasing the correlative sparsity from 3 to 4,
which is a weakening of the correlative sparsity pattern. However, our framework still allows to
reduce the dimensionality of the problem from 6 to 4.

Remark 21. There might exist examples for which the DIP would only be obtained by com-
pletely destroying the sparsity pattern one wants to exploit. However, this could also happen

32

x2

x3

x1

C1 C2

x5

x4

x6

C3

C4

Figure 15: A correlation graph that violates Assumption 16.

x2

x3

x1

C1

x5

x4

x6

C3

C2

C1 C2 C3

Figure 16: A way to fix our counterexample.

with the more common CIP. In either case, an option might be to consider the dual problem of
(2) as a way to find minimizing sequences (vk)k that approximate 1K, and to apply it to each

one of the Ui := {xi ∈ Xi : gi(xi) ≥ 0} to obtain a sequence
(
v
(k)
1 , . . . , v

(k)
m

)
k

such that
(
v
(k)
i

)
k

approximates 1Ui . Then, one would still have to prove that the convergence of the hierarchy

is stable by product (which is nontrivial) to conclude that

∫ m∏
i=1

v
(k)
i ◦ πXi(x) dx converges to

vol K. The major drawback of this solution is that in order for (vk)k to approximate 1K, we
cannot implement Stokes constraints, as they would modify problem (2) (see Remark 13) in a
way that makes us lose the convergence to an indicator (this is precisely the point of Stokes
constraints: they allow to obtain the volume without trying to approximate discontinuous func-
tions with polynomials). However, we know that the volume approximation hierarchy has a
bad convergence rate without Stokes constraints. In general, we should not expect any method
that approximates indicators with polynomials to yield satisfactory results in terms of volume
computation. Such a method should be considered only as a last resort if any trial to apply

33

the above scheme fails. Finally, this option represents a framework that would be completely
independent from the above and thus it remains out of the scope of this paper.

Conclusion

Our results

In this paper we addressed the problem of approximating the volume of sparse semi-algebraic sets
with the Moment-SOS hierarchy of SDP relaxations. As illustrated by our examples, our sparse
formulation allows to dramatically decrease the computational time for each relaxation, and to
tackle high dimensional volume computation problems that are not tractable with the usual SDP
methods. By splitting the problems into low dimensional subproblems, one drastically reduces
the dimension of each relaxation, without loss of precision. This reduction of complexity is
due to the correspondance between the structure of our algorithm and the correlative sparsity
pattern in the description of the semi-algebraic set.

We also showed that additional Stokes constraints have a huge effect on convergence and
precision for volume computation, and that they can successfully be adapted to our sparse
formulations. This yields a much better rate of convergence for the corresponding hierarchy.
However, implementing these Stokes constraints leads to subtle constraints that have to be
enforced if one wants to efficiently compute the volume:

• First, one should always prefer the linear formulation of Theorem 8 whenever possible,
since this ensures that Stokes constraints can always be efficiently implemented.

• Then, in the more general case of Theorem 18, one should always avoid formulations
in which the root at the computation tree has no Stokes constraint; fortunately, such
configurations can always be avoided by chosing a leaf as the root of the clique tree.

Furthermore, in the branched case, one should be aware of the fact that each step of the
algorithm introduces an approximation error, and the errors accumulate until the root is reached.
Consequently, a formulation in which the clique tree has too many generations will lead to
a larger global error than a formulation with less generations. For this reason, one should
minimize the number of generations in the clique tree, which is equivalent to parallelizing as
much as possible. In addition to that, when the problem has many dimensions and branches,
parallelization can obviously drastically increase the speed of the computations.

Applications and future work

To the best of our knowledge, this sparse method for solving volume problems is new and full
of promises for future applications. For instance, the problem of computing the mass of any
compactly supported measure absolutely continuous (with respect to the Lebesgue measure)
can be adressed using this sparsity method. Also, measures that are not compactly supported
but have some decay properties (e.g. Gaussian measures) can also be handled by our method,
which may prove useful in computations for probability and statistics. Also, specific constraints
could probably be used in addition to Stokes constraints when the semi-algebraic set presents
a specific structure (e.g. a polytope, a convex body).

Furthermore, the framework of exploiting correlative sparsity can be applied to any method
that relies on computations on measures, whether these measures are represented by their
moments (as it is done in this paper), or by samples (as in the stochastic volume computation
methods). In particular, we believe that this formalism could easily be extended to Monte-
Carlo-based volume computations.

Finally, we also believe that this method can be adapted to the computation of regions of
attraction, through the formalism developed in [13], for high dimensional differential-algebraic

34

systems that present a network structure, such as power grids, distribution networks in gen-
eral and possibly other problems. The main difficulty resides in taking sparsity into account
when formulating the Liouville equation, and keeping uniqueness of the solution as in the non-
controlled non-sparse framework.

Acknowledgements

We are grateful to an anonymous Reviewer for a deep insight that helped us significantly improve
the initial version of this paper.

A Disjoint Intersection Property

Definition 22. Let G = (V,E) be a graph with vertices set V and edges set E ⊂ V 2. The
following definitions can be found in e.g. [19]:

• The degree deg v of v ∈ V is the cardial of the set {w ∈ V : (v, w) ∈ E} i.e. the number
of vertices connected to v.

• A clique of G is a subset of vertices C ⊂ V such that u, v ∈ C implies (u, v) ∈ E.

• A graph G is chordal if every cycle of length greater than 3 has a chord, i.e. an edge
connecting two nonconsecutive vertices on the cycle.

• A tree T = (K, E) is a graph without cycle.

• The treewidth of a chordal graph is the size of its biggest clique minus 1. Thus the
treewidth of a tree is 1 and the treewidth of a complete graph (E = V 2) of size n is n− 1.

• A rooted tree is a tree in which one vertex has been designated the root.

• In a rooted tree, the parent of a vertex v is the vertex w connected to it on the path
to the root; v is then called a child of w; two vertices that have the same parent are
called siblings; a descendant of a vertex v is any vertex which is either the child of v or
is (recursively) the descendant of any of the children of v; v is then called an ancestor of
itself and any of its descendants.

• The vertices of a rooted tree can be partitioned between the root, the leaves (the vertices
that have parents but no children) and the branches (that have children and parents).

• Let K be the set of maximal cliques of G. A clique tree T = (K, E) of G is a tree whose
vertices are the maximal cliques of G.

• A clique tree satisfies the clique intersection property (CIP) if for every pair of distinct
cliques C,C ′ ∈ K, the set C ∩ C ′ is contained in every clique on the path connecting C
and C ′ in the tree. We denote by T ct the set of clique trees of G that satisfy the CIP.

• Let A ⊂ V . Then, the subgraph of G generated by A is given by 〈A〉G := (A,E ∩A2).

Theorem 23. A connected graph G is chordal if and only if T ct 6= ∅ if and only if K admits
an ordering that satisfies the RIP.

Definition 24. Let G = (V,E) be chordal and connected. Let T = (K, E) ∈ T ct be a clique
tree rooted in C1 ∈ K. T satisfies the Disjoint Intersection Property (DIP) if ∀C,C ′, C ′′ ∈ K, if
(C,C ′) ∈ E and (C,C ′′) ∈ E then C ′ = C ′′ or C ′ ∩C ′′ = ∅. In words, each clique has an empty
intersection with all its siblings.

35

We are now going to give a systematic way to enforce Assumption 16 and generate the
associated clique trees. Let (g1, . . . ,gm) be a correlatively sparse family of polynomial vectors
with a connected chordal correlation graph G = (V,E). Let K be the set of maximal cliques of
G. We construct the clique graph GK = (K,F) such that (C,C ′) ∈ F iff C ∩C ′ 6= ∅. One can
in turn define cliques (called meta-cliques) for this new graph, and its correlative sparsity CSK
is the size of its biggest maximal meta-clique minus 1. One can note that any clique tree is a
subtree of GK including all its vertices.

Remark 25. If GK itself is a tree (as in section 6.3), then it trivially satisfies the DIP and CIP,
and Assumption 16 automatically holds.

Lemma 26. Let T = (K, E) be a clique tree satisfying Assumption 16.

1) Let C,C ′ ∈ K such that C 6= C ′ and C ∩ C ′ 6= ∅. Then, up to permuting them, C is a
descendant of C ′.

2) Let K be a meta-clique. Then, 〈K〉T is an oriented path of T : the elements of K are
ancestor to one another and each C ∈ K has its parent in K except one of them.

Proof.

1) Let C ′′ be the last common ancestor of C and C ′, meaning that C ′′ is an ancestor of both
C and C ′ but any child of C ′′ is the ancestor of at most one of them. Such ancestor exists
since the root C1 is a common ancestor to C and C ′. Then, C ′′ is on the path between C
and C ′. Since C 6= C ′, up to permuting them, we can suppose that C 6= C ′′.

By contradiction, we suppose that C ′ 6= C ′′. Then, let Ĉ be the child of C ′′ that is also
the ancestor of C, and C̃ the child of C ′′ that is also the ancestor of C ′. Both exist since
C ′′ is an ancestor of C and C ′ and C 6= C ′ 6= C ′′. C ′′ being the latest common ancestor
of C and C ′, we deduce that Ĉ 6= C̃ so that Ĉ and C̃ are siblings. Then, the DIP ensures
that Ĉ ∩ C̃ = ∅. However, Ĉ and C̃ are on the path between C and C ′, so according to
the CIP they both contain C ∩ C ′ which is nonempty. This is a contradiction.

2) According to point 1), all elements of K are descendants of one another, so that they
are all on the same path in T . We only have to show that any C between two elements
C ′, C ′′ of K on this path is also an element of K. Indeed, let C ′′′ ∈ K. Then, up to a
permutation on {C ′, C ′′, C ′′′} we can suppose that the unoriented path includes in this
order: (C ′, C, C ′′, C ′′′). Then, C is on the path between C ′ and C ′′′, so the CIP implies
that C ⊃ C ′ ∩C ′′′ is nonempty (since C ′ and C ′′′ belong to the same clique K), and then
C has a nonempty intersection with C ′′′. This shows that C has a nonempty intersection
with any element of K, which by maximality of K is the definition of C ∈ K.

Corollary 27. If GK is a complete graph (all pairs of maximal cliques have nonempty inter-
section as in section 6.4), then the only candidates for our clique tree are linear clique trees.
In such case, Assumption 16 is equivalent to the existence of a reordering of (g1, . . . ,gm) such
that Assumption 7 holds.

We now give an alogrithm to generate a clique tree T = (K, E) that satisfies the DIP and
the CIP. In case Assumption 16 does not hold, this algorithm automatically adds edges to E
until it finds an appropriate clique tree (see Algorithm 1).

Remark 28. Algorithm 1 deserves some explanations:

• Minimizing degC1 is a way to ensure Stokes constraints will be fully implementable, in
contrast to the 2 step implementation in section 6.3.

36

Algorithm 1: How to build an appropriate clique tree

Data: G = (V,E) and its clique graph GK = (K,F).
Result: T = (K, E) satisfying CIP & DIP if Assumption 16 holds, G = (V,E) with

additional edges else.
1 Initialization: Choose C1 ∈ K with minimal degree in GK;
2 Initialize i = j = k = 1, P1 := {C1}, E1 := ∅;
3 while k < |K| do
4 while Mik := {K maximal meta-clique : K ∩ Pck 6= ∅, Ci ∈ K} 6= ∅ do
5 Choose Kj ∈ argmax

K∈Mik

|K|;

6 while Kj ∩ Pck 6= ∅ do
7 l := max{r ≤ k : Cr ∈ Kj};
8 if ∃(C,C ′) ∈ argmax{|Ĉ ∩ Cl| : (C̃, Ĉ) ∈ Pk ×Kj ∩ Pck, C̃ ∩ Ĉ * Cl} then
9 if |Cl ∪ C| > |Cl ∪ C ′| then

10 foreach v ∈ C ′, w ∈ Cl do E ← E ∪ {(v, w), (w, v)};
11 return G = (V,E) ;

12 else
13 foreach v ∈ C,w ∈ Cl do E ← E ∪ {(v, w), (w, v)};
14 return G = (V,E) ;

15 end

16 else
17 Choose Ck+1 ∈ argmax

C∈Kj∩Pc
k

|C ∩ Cl|

18 end
19 if ∃C ∈ Pk s.t. (Cl, C) ∈ Ek & C ∩ Ck+1 6= ∅ then
20 if |C ∪ Ck+1 < |Cl ∪ Ck+1| ∧ |Cl ∪ C| then
21 foreach v ∈ C,w ∈ Ck+1 do E ← E ∪ {(v, w), (w, v)};
22 return G = (V,E) ;

23 else if |Cl ∪ C| > |Cl ∪ Ck+1| then
24 foreach v ∈ Ck+1, w ∈ Cl do E ← E ∪ {(v, w), (w, v)};
25 return G = (V,E) ;

26 else
27 foreach v ∈ C,w ∈ Cl do E ← E ∪ {(v, w), (w, v)};
28 return G = (V,E) ;

29 end

30 else
31 Pk+1 := Pk ∪ {Ck+1};
32 Ek+1 := Ek ∪ {(Cl, Ck+1)};
33 k ← k + 1 ;

34 end

35 end
36 j ← j + 1 ;

37 end
38 i← i+ 1 ;

39 end
40 return T := (P|K|, E|K|);

37

• Index i denotes a clique that has already been added to the tree; the algorithm adds to
the tree every clique that shares vertices with Ci, and then increments i.

• Index j denotes the meta-clique in which we are working; according to Lemma 26, in such
meta-clique the cliques should be added in line.

• Index k denotes the number of elements that have already been added to the tree; when
k is equal to the number of cliques, our clique tree is complete.

• Index l denotes the lates clique of the meta-clique Kj that has been added to the tree;
according to Lemma 26, Cl should then be the parent of Ck+1.

• At line 5 we maximize |Kj | to favor linear configurations as they are the most compatible
with Stokes constraints.

• The if loop at line 8 checks whether it is possible to add the remaining cliques of Kj to
our tree without destroying the CIP.

• The if loop at line 19 checks whether the clique we want to add destroys the DIP or not.

• At line 17 we maximize |Ck+1 ∩Cl| so that it is less likely to pose problems with CIP and
DIP in the future iterations.

• The if loops at lines 9 and 20 are meant to minimize the correlative sparsity of the new
graph G = (V,E), since it is the limiting factor for the tractability of our algorithm.

Theorem 29. Any clique tree returned by Algorithm 1 satisfies the DIP and the CIP.

Proof. We are going to show by induction that at any step k, the graph Tk := (Pk, Ek) is a
tree that satisfies the CIP and the DIP. First, it is trivial that T1 = ({C1},∅) is a tree and
satisfies the CIP and the DIP. Next, we suppose that we have constructed a tree Tk satisfying
CIP and DIP through iterations of our algorithm, and that the next iteration leads us to define
a Tk+1 := (Pk ∪{Ck+1}, Ek ∪{(Cl, Ck+1}). Since the only edge we added connected Cl to a new
vertex that was not in Tk, it did not introduce any cycle, thus Tk+1 is still a tree. We are now
going to check the CIP and DIP.

• Let C,C ′′ ∈ Pk+1;C ∩ C ′′ 6= ∅. Let C ′ ∈ Pk be on the path between C and C ′′ in Tk+1

(C ′ 6= Ck+1 because Ck+1 is on no path in Tk+1).

– If C,C ′′ ∈ Pk then by our induction hypothesis C ∩ C ′′ ⊂ C ′.
– Else, without loss of generality we have C ′′ = Ck+1 and C ∈ Pk.
∗ Since we successfully passed through the if loop of line 8, we have C∩Ck+1 ⊂ Cl.
∗ By our induction assumption (Tk satisfies the CIP), we have C∩Cl ⊂ C ′ (because

either C ′ = Cl or C ′ is on the path between C and Cl, the parent of Ck+1).

This yields C ′ ⊃ C ∩ Cl ⊃ C ∩ (C ∩ Ck+1) = C ∩ Ck+1 = C ∩ C ′′.

Then, Tk+1 satisfies the CIP.

• Let C ∈ Pk, C ′, C ′′ ∈ Pk+1 such that (C,C ′), (C,C ′′) ∈ Ek+1.

– If C ′, C ′′ ∈ Pk then by our induction hypothesis C ′ ∩ C ′′ = ∅.

– Else, without loss of generality we have C ′′ = Ck+1, C = Cl, and since we successfully
passed through the if loop of line 19, we have C ′ ∩ C ′′ = C ′ ∩ Ck+1 = ∅.

Then, Tk+1 satisfies the DIP.

Finally, we conjecture that if Assumption 16 holds, then Algorithm 1 will directly return a
clique tree satisfying the CIP and the DIP without adding any edge to G.

38

B On Monte Carlo simulations

We describe the very basic Monte Carlo approach used in section 5.4. Let ξ1, . . . , ξN be i.i.d.
samples from some law µ. In our case µ is the uniform distribution on [0, 1]n. Further let f be
a function from the probability space into {0, 1}. Again, in our case, f would return 1 if the
sample ξi is in the set K, and 0 else. By the strong law of large numbers

XN :=
1

N

N∑
i=1

f(ξi)→
∫
fdµ for N →∞.

This makes XN a reasonable guess if N is large. However, XN is still a guess, and it might
happen that XN is actually far away from the approximated quantity.

As a consequence of the Central Limit Theorem, the difference XN−
∫
fdµ behaves (almost)

like a normal distributed random variable with zero mean and variance σ2/N where σ2 =∫
(f −

∫
fdµ)2dµ. Note that the variance σ2 can also be estimated based on the i.i.d. samples

ξ1, . . . , ξN :

S2
N :=

1

N − 1

N∑
i=1

(ξi −XN)2.

This allows to define a confidence interval for the approximated volume. Indeed, say we are
interested in a 99%-confidence interval. Then for G a standard normal distributed random
variable, we have P (|G| < 2.58) ≈ 0.99 and consequently,

P

(
XN −

2.58SN√
N
≤
∫
fdµ ≤ XN +

2.58SN√
N

)
≈ 0.99.

References

[1] B. Bollobás. Volume estimates and rapid mixing. Pages 151–180 in Flavors of geometry,
MSRI Publ. 31, Cambridge University Press, 1997.

[2] M. E. Dyer, A. M. Frieze. On the complexity of computing the volume of a polyhedron.
SIAM J. Comput. 17:967–974, 1988.

[3] G. Elekes. A geometric inequality and the complexity of measuring the volume. Discrete
Comput. Geom. 1:289–292, 1986.

[4] D. Henrion, J. B. Lasserre, C. Savorgnan. Approximate volume and integration for basic
semialgebraic sets. SIAM Review 51(4):722–743, 2009.

[5] B. Büeler, A. Enge, K. Fukuda. Exact volume computation for polytopes: a practical
study. Pages 131–154 in Polytopes: combinatorics and computation, G. Kalai and G. M.
Ziegler (Eds.), Birkhäuser, 2000.

[6] M. E. Dyer, A. M. Frieze, R. Kannan. A random polynomial-time algorithm for approxi-
mating the volume of convex bodies, J. ACM 38:1–17, 1991.

[7] C. Belisle. Slow hit-and-run sampling, Statist. Probab. Lett. 47:33–43, 2000.

[8] C. Belisle, E. Romeijn, R. L. Smith. Hit-and-run algorithms for generating multivariate
distributions. Math. Oper. Res. 18:255–266, 1993.

[9] R. L. Smith. Efficient Monte Carlo procedures for generating points uniformly distributed
over bounded regions. Oper. Res. 32:1296–1308, 1984.

39

[10] B. Cousins, S. Vempala. A practical volume algorithm. Math. Program. Comput. 8:133–
160, 2016.

[11] J. B. Lasserre. Moments, positive polynomials and their applications. Imperial College
Press, 2010.

[12] J. B. Lasserre. Computing Gaussian and exponential measures of semi-algebraic sets. Adv.
Appl. Math. 91:137–163, 2017.

[13] D. Henrion, M. Korda. Convex computation of the region of attraction of polynomial
control systems. IEEE Trans. Autom. Control 59(2):297-312, 2014.

[14] C. Josz, D.K. Molzahn, M. Tacchi, S. Sojoudi. Transient stability analysis of power systems
via occupation measures. Innovative Smart Grid Technologies, 2019.

[15] H. Waki, S. Kim, M. Kojima, M. Muramatsu. Sums of Squares and Semidefinite Program
Relaxations for Polynomial Optimization Problems with Structured Sparsity. SIAM J.
Optim. 17(1):218–242, 2006.

[16] D. Cifuentes, P. A. Parrilo. Exploiting Chordal Structure in Polynomial Ideals: A Gröbner
Bases Approach. SIAM J. Discrete Math. 30(3):1534–1570, 2016.

[17] J. B. Lasserre. Convergent SDP relaxations in polynomial optimization with sparsity. SIAM
J. Optim. 17:822–843, 2006.

[18] D. Henrion, J. B. Lasserre, J. Loefberg. GloptiPoly 3: moments, optimization and semidef-
inite programming. Optimization Methods and Software 24(4-5):761-779, 2009.

[19] J. R. S. Blair, B. Peyton. An introduction to chordal graphs and clique trees. Pages 1–29
in Graph Theory and Sparse Matrix Computation, Springer, 1993.

[20] J. B. Lasserre. Representation of chance-constraints with strong asymptotic guarantees.
IEEE Control Systems Letters 1(1):50–55, 2017.

[21] J. H. Hubbard, B. Burke Hubbard. Vector calculus, linear algebra, and differential forms
- A unified approach. 2nd Ed., Prentice Hall, 2002.

[22] R. Stanley, I. G. Macdonald, R. B. Nelsen. Solution of elementary problem E2701. The
American Mathematical Monthly 86(5):396, 1979.

[23] C. Josz, D. Henrion. Strong duality in Lasserre’s hierarchy for polynomial optimization.
Optim. Lett. 10:3-10, 2016.

40

	1 Introduction
	2 Preliminaries
	2.1 Notations and definitions
	2.2 The Moment-SOS hierarchy for volume computation
	2.3 The correlative sparsity pattern and its graph representation

	3 Linear sparse volume computation
	3.1 An illustrative example: the bicylinder
	3.2 Linear computation theorem
	3.3 Lower bounds for the volume

	4 Accelerating convergence
	4.1 Dense Stokes constraints
	4.2 Sparse Stokes constraints: the bicylinder
	4.3 General sparse Stokes constraints

	5 Numerical examples
	5.1 Bicylinder revisited
	5.2 A nonconvex set
	5.3 A high dimensional polytope
	5.4 A nonconvex high dimensional set

	6 General sparse volume computation
	6.1 General correlative sparsity pattern
	6.2 Distributed computation theorem
	6.3 Example: 6D polytope
	6.4 Example: 4D polytope
	6.5 Discussion on the DIP assumption

	A Disjoint Intersection Property
	B On Monte Carlo simulations

