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Abstract

We discuss the reconstruction of piecewise smooth data from its (pseudo-) spectral informa-
tion. Spectral projections enjoy superior resolution provided the data is globally smooth, while
the presence of jump discontinuities is responsible for spurious O(1) Gibbs oscillations in the
neighborhood of edges and an overall deterioration to the unacceptable first-order convergence
rate. The purpose is to regain the superior accuracy in the piecewise smooth case, and this is
achieved by mollification.

Here we utilize a modified version of the two-parameter family of spectral mollifiers intro-
duced by Gottlieb & Tadmor [GoTa85]. The ubiquitous one-parameter, finite-order mollifiers
are based on dilation. In contrast, our mollifiers achieve their high resolution by an intricate
process of high-order cancelation. To this end, we first implement a localization step using edge
detection procedure, [GeTa00a, GeTa00b]. The accurate recovery of piecewise smooth data is
then carried out in the direction of smoothness away from the edges, and adaptivity is responsible
for the high resolution. The resulting adaptive mollifier greatly accelerates the convergence rate,
recovering piecewise analytic data within exponential accuracy while removing spurious oscilla-
tions that remained in [GoTa85]. Thus, these adaptive mollifiers offer a robust, general-purpose
“black box” procedure for accurate post processing of piecewise smooth data.

Contents

1 Introduction 2

2 Spectral Mollifiers 3

2.1 The two-parameter spectral mollifier ψp,θ . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Error analysis for spectral mollifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Fourier interpolant - error analysis for pseudospectral mollifier . . . . . . . . . . . . 7
2.4 On the choice of the (θ, p) parameters – spectral accuracy. . . . . . . . . . . . . . . . 8

3 Adaptive Mollifiers – Exponential Accuracy 10

3.1 The (θ, p) parameters revisited – exponential accuracy. . . . . . . . . . . . . . . . . . 11
3.2 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Adaptive Mollifiers – Normalization 21

4.1 Spectral normalization - adaptive mollifiers in the vicinity of jumps . . . . . . . . . . 22
4.2 Pseudospectral normalization – adaptive mollifiers in the vicinity of jumps . . . . . . 24
4.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Summary 29

1

http://arxiv.org/abs/math/0112017v1


2 E. Tadmor and J. Tanner

1 Introduction

We study a new procedure for high resolution recovery of piecewise smooth data from its (pseudo-
)spectral information. The purpose is to overcome the low-order accuracy and spurious oscillations
associated with Gibbs phenomena, and to regain the superior accuracy encoded in the global
spectral coefficients.

A standard approach for removing spurious oscillations is based on mollification over a local region
of smoothness. To this end one employs a one-parameter family of dilated unit mass mollifiers of
form ϕθ = ϕ(x/θ)/θ. In general, such compactly supported mollifiers are restricted to finite-order
accuracy, |ϕθ ⋆ f(x) − f(x)| ≤ Crθ

r, depending on the number r of vanishing moments ϕ has.
Convergence is guaranteed by letting the dilation parameter, θ ↓ 0.
In [GoTa85] we introduced a two-parameter family of spectral mollifiers of the form

ψp,θ(x) =
1

θ
ρ(
x

θ
)Dp(

x

θ
).

Here ρ(·) is an arbitrary C∞
0 (−π, π) function which localizes the p-degree Dirichlet kernel Dp(y) :=

sin(p+1/2)y
2π sin(y/2) . The first parameter — the dilation parameter θ need not be small in this case, in fact

θ = θ(x) is made as large as possible while maintaining the smoothness of ρ(x− θ·)f(·). Instead, it
is the second parameter – the degree p, which allows the high accuracy recovery of piecewise smooth
data from its (pseudo-)spectral projection, PNf(x). The high accuracy recovery is achieved here
by choosing large p’s, enforcing an intricate process of cancelation as an alternative to the usual
finite-order accurate process of localization.

In §2 we begin by revisiting the convergence analysis of [GoTa85]. Spectral accuracy is achieved
by choosing an increasing p ∼

√
N , so that ψp,θ has essentially vanishing moments all orders,∫

ysψp,θ(y)dy = δs0 + Cs · N−s/2, ∀s, yielding the ’infinite-order’ accuracy bound in the sense of
|ψp,θ ⋆ PNf(x)− f(x)| ≤ Cs ·N−s/2, ∀s.
Although the last estimate yields the desired spectral convergence rate sought for in [GoTa85], it
suffers as an over-pessimistic restriction since its derivation ignores the possible dependence of p on
the degree of local smoothness, s, and the support of local smoothness, ∼ θ = θ(x). In §3 we begin
a detailed study on the optimal choice of the (p, θ) parameters of the spectral mollifiers, ψp,θ:

• Letting d(x) denote the distance to the nearest edge, we first set θ = θ(x) ∼ d(x) so that
ψp,θ ⋆ PNf(x) incorporates the largest smooth neighborhood around x. To find the distance
to the nearest discontinuity we utilize a general edge detection procedure, [GeTa99, GeTa00a,
GeTa00b], where the location (and amplitudes) of all edges are found in one global sweep.
Once the edges are located it is a straightforward matter to evaluate, at every x, the appro-
priate spectral parameter, θ(x) = d(x)/π.

• Next, we turn to examine the degree p, which is responsible for the overall high accuracy by
enforcing an intricate cancelation. A careful analysis carried out in §3.1 leads to an optimal
choice of an adaptive degree of order p = p(x) ∼ d(x)N . Indeed, numerical experiments
reported back in the original [GoTa85] and additional tests carried out in §3.2 below and
which motivate the present study, clearly indicate a superior convergence up to the immediate
vicinity of the interior edges with an adaptive degree of the optimal order p = p(x) ∼ d(x)N .

Given the spectral projection of a piecewise analytic function, SNf(·), our 2-parameter family of
adaptive mollifiers, equipped with the optimal parameterization outlined above yields – consult
Theorem 3.1 below,
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|ψp,θ ⋆ SNf(x)− f(x)| ≤ Const · d(x)N · e−η
√

d(x)N .

The last error bound shows that the adaptive mollifier is exponentially accurate at all x’s except for
the immediate O(1/N)-neighborhood of the jumps of f(·) where d(x) ∼ 1/N . We note in passing
the rather remarkable dependence of this error estimate on the C∞

0 regularity of ρ(·). Specifically,
the exponential convergence rate of a fractional power is related to the Gevrey regularity of the
localizer ρ(·); in this paper we use the G2-regular cut-off ρc(x) = exp(cx2/(x2 − π2)) which led to
the fractional power 1/2.
Similar results holds in the discrete case. Indeed, in this case, one can bypass the discrete Fourier co-
efficients: expressed in terms of the given equidistant discrete values, {f(yν)}, of piecewise analytic
f , we have – consult Theorem 3.2 below,

| π
N

2N−1∑

ν=0

ψp,θ(x− yν)f(yν)− f(x)| ≤ Const · (d(x)N)2 · e−η
√

d(x)N .

Thus, the discrete convolution
∑

ν ψp,θ(x− yν)f(yν) forms an exponentially accurate near-by inter-
polant1, which serves as an effective tool to reconstruct the intermediate values of piecewise smooth
data. These near-by “expolants” are reminicient of quasi-interpolants, e.g., [BL93], with the em-
phasize given here to nonlinear adaptive recovery which is based on global regions of smoothness.

What happens in the immediate, O(1/N)-neighborhood of the jumps? in §4 we complete our
study of the adaptive mollifiers by introducing a novel procedure of normalization. Here we enforce
the first few moments of the spectral mollifier, ψp = ρDp to vanish, so that we regain polynomial
accuracy in the immediate neighborhood of the jump. Taking advantage of the freedom in choosing
the localizer ρ(·), we show how to modify ρ to regain the local accuracy by enforcing finitely
many vanishing moments of ψp = ρDp, while retaining the same overall exponential outside the
immediate vicinity of the jumps. By appropriate normalization, the localized Dirichlet kernel we
introduce maintains at least second order convergence up to the discontinuity. Increasingly higher
orders of accuracy can be worked out as we move further away from these jumps and eventually
turning into the exponentially accurate regime indicate earlier. In summary, the spectral mollifier
amounts to a variable order recovery procedure adapted to the number of cells from the jump
discontinuities, which is reminiscent of the variable order, Essentially Non Oscillatory piecewise
polynomial reconstruction in [HEOC85]. The currrent procedure is also reminicient of the h-p
methods of Babuška and his collabrators, with the emphasize given here to an increasing number
of global moments (p) without the “h”-refinement. The numerical experiments reported in §3.2 and
§4.3 confirm the superior high resolution of the spectral mollifier ψp,θ equipped with the proposed
optimal parameterization.

Acknowledgment. Research was supported in part by ONR Grant No. N00014-91-J-1076 and
NSF grant #DMS01-07428.

2 Spectral Mollifiers

2.1 The two-parameter spectral mollifier ψp,θ

The Fourier projection of a 2π-periodic function f(·),
1Called expolant for short
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SNf(x) :=
∑

|k|≤N

f̂ke
ikx, f̂k :=

1

2π

∫ π

−π
f(x)e−ikxdx (2.1)

enjoys the well known spectral convergence rate, that is, the convergence rate is as rapid as the
global smoothness of f(·) permits in the sense that for any s we have2

|SNf(x)− f(x)| ≤ Const‖f‖Cs · 1

N s−1
∀s. (2.2)

Equivalently, this can be expressed in terms of the usual Dirichlet Kernel

DN (x) :=
1

2π

N∑

k=−N

eikx ≡ sin(N + 1/2)x

2π sin(x/2)
, (2.3)

where SNf ≡ DN ⋆ f , and the spectral convergence statement in (2.2) recast into the form

|DN ⋆ f(x)− f(x)| ≤ Const‖f‖Cs · 1

N s−1
∀s. (2.4)

Furthermore, if f(·) is analytic with analyticity strip of width 2η, then SNf(x) is characterized by
an exponential convergence rate, e.g., [Ch, Ta94]

|SNf(x)− f(x)| ≤ Constη ·Ne−Nη. (2.5)

If, on the other hand, f(·) experiences a simple jump discontinuity, say at x0, then SNf(x) suffers
from the well known Gibbs’ phenomena, where the uniform convergence of SNf(x) is lost in the
neighborhood of x0, and moreover, the global convergence rate of SNf(x) deteriorates to first order.

To accelerate the slow convergence rate, we focus our attention on the classical process of mollifi-
cation. Standard mollifiers are based on a one-parameter family of dilated unit mass functions of
the form

ϕθ(x) :=
1

θ
ϕ
(x
θ

)
(2.6)

which induce convergence by letting θ to zero. In general, |ϕθ ⋆ f(x)− f(x)| ≤ Crθ
r describes the

convergence rate of finite order r, where ϕ possesses r vanishing moments

∫
ysϕ(y)dy = δs0 s = 0, 1, 2, . . . , r − 1. (2.7)

In the present context of recovering spectral convergence, however, we follow Gottlieb and Tadmor,
[GoTa85], using a two-parameter family of mollifiers, ψp,θ(x), where θ is a dilation parameter,
ψp,θ(x) = ψp(x/θ)/θ, and p stipulates how closely ψp,θ(x) possesses near vanishing moments. To
form ψp(x), we let ρ(x) be an arbitrary C∞

0 function supported in (−π, π) and we consider the
localized Dirichlet kernel

ψp(x) := ρ(x)Dp(x). (2.8)

Our two-parameter mollifier is then given by the dilated family of such localized Dirichlet kernels

ψp,θ(x) :=
1

θ
ψp

(x
θ

)
≡ 1

θ
ρ
(x
θ

)
Dp

(x
θ

)
. (2.9)

2Here and below we denote the usual ‖f‖Cs := ‖f (s)‖L∞ .



Adaptive Mollifiers for Accurate Recovery of Piecewise Smooth Data 5

According to (2.9), ψp,θ consists of two ingredients, ρ(x) and Dp(x), each has essentially separate
role associated with the two independent parameters θ and p. The role of ρ

(
x
θ

)
is, through its θ-

dependence, to localize the support of ψp,θ(x) to (−θπ, θπ). The Dirichlet kernel Dp(x) is charged,
by varying p, with controlling the increasing number of near vanishing moments of ψp,θ, and hence
the overall superior accuracy of our mollifier. Indeed, by imposing the normalization of

ρ(0) = 1, (2.10)

we find that an increasing number of moments of ψp,θ are of the vanishing order O(p−(s−1)),

∫ πθ

−πθ
ysψp,θ(y)dy =

∫ π

−π
(yθ)sρ(y)Dp(y)dy = Dp ⋆ (yθ)

sρ(y)|y=0
= δs0 + Cs · p−(s−1) ∀s, (2.11)

where according to (2.4), Cs = Const‖(yθ)sρ(y)‖Cs . We shall get into a detailed convergence
analysis in the discussion below.

We conclude this section by highlighting the contrast between the standard, polynomially accurate
mollifier, (2.7) and the spectral mollifiers (2.9). The former depends on one dilation parameter,
θ, which is charged of inducing a fixed order of accuracy by letting θ ↓ 0. Thus, in this case
convergence is enforced by localization, which is inherently limited to a fixed polynomial order.
The spectral mollifier, however, has the advantage of employing two free parameters: the dilation
parameter θ which need not be small - in fact, θ is made as large as possible while maintaining
ρ(x−θy)f(y) free of discontinuities; the need for this desired smoothness will be made more evident
in the next section. It is the second parameter, p, which is in charge of enforcing the high accuracy
by letting p ↑ ∞. Here, convergence is enforced by a delicate process of cancelation which will
enable us to derive, in §3, exponential convergence.

2.2 Error analysis for spectral mollifier

We now turn to consider the error of our mollification procedure, E(N, p, θ; f(x)), at an arbitrary
fixed point x ∈ [0, 2π)

E(N, p, θ; f(x)) = E(N, p, θ) := ψp,θ ⋆ SNf(x)− f(x), (2.12)

where we highlight the dependence on three free parameters at our disposal – the degree of the
projection, N, the support of our mollifier, θ, and the degree with which we approximate an arbitrary
number of vanishing moments, p. The dependence on the degree of piecewise smoothness of f(·)
will play a secondary role in the choice of these parameters.

We begin by decomposing the error into the three terms

E(N, p, θ) = (f ⋆ ψp,θ − f) + (SNf − f) ⋆ (ψp,θ − SNψp,θ) + (SNf − f) ⋆ SNψp,θ. (2.13)

The last term, (SNf − f) ⋆ SNψp,θ, vanishes by orthogonality, and hence we are left with the first
and second terms, which we refer to as the Regularization and Truncation errors, respectively

E(N, p, θ) ≡ (f ⋆ ψp,θ − f) + (SNf − f) ⋆ (ψp,θ − SNψp,θ) =: R(N, p, θ) + T (N, p, θ). (2.14)

Sharp error bounds for the regularization and truncation errors were originally derived in [GoTa85],
and a short re-derivation now follows.

For the regularization error we consider the function
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gx(y) := f(x− θy)ρ(y)− f(x) (2.15)

where f(x) is the fixed point value to be recovered through mollification. Applying (2.4) to gx(·)
while noting that gx(0) = 0, then the regularization error does not exceed

|R(N, p, θ)| := |f ⋆ ψp,θ − f | =
∣∣∣∣
∫ π

−π
[f(x− θy)ρ(y)− f(x)]Dp(y)dy

∣∣∣∣

= |Dp ⋆ gx(y)|y=0| = |(Spgx(y)− gx(y))|y=0| ≤ Const.‖gx(y)‖Cs · 1

ps−1
. (2.16)

Applying Leibnitz rule to gx(y),

|g(s)x (y)| ≤
s∑

k=0

(
s
k

)
θk|f (k)(x− θy)| · |ρ(s−k)(y)| ≤ ‖ρ‖Cs‖f (s)‖L∞

loc
(1 + θ)s, (2.17)

gives the desired upper bound

|R(N, p, θ)| ≤ Const.‖ρ‖Cs‖f (s)‖L∞
loc

· p
(
2

p

)s

. (2.18)

Here and below Const represents (possibly different) generic constants; also, ‖ · ‖L∞
loc

indicates the

L∞ norm to be taken over the local support of ψp,θ. Note that ‖f (s)‖L∞
loc
<∞ as long as θ is chosen

so that f(·) is free of discontinuities in (x− θπ, x+ θπ).
To upperbound the truncation error we use Young’s inequality followed by (2.4),

|T (N, p, θ)| ≤ ‖(SNf − f) ⋆ (ψp,θ − SNψp,θ)‖L∞

≤ ‖SNf − f‖L1 · ‖ψp,θ − SNψp,θ‖L∞ ≤M‖SNf − f‖L1 · ‖ψp,θ‖Cs
1

N s−1
. (2.19)

Leibnitz rule yields,

|ψ(s)
p,θ| ≤ θ−(s+1)

s∑

k=0

(
s
k

)
|ρ(s−k)| · |D(k)

p | ≤ ‖ρ‖Cs

(
1 + p

θ

)s+1

, (2.20)

and together with (2.19) we arrive at the upper bound

|T (N, p, θ; f)| ≤ Const‖SNf − f‖L1 · ‖ρ‖Cs · (1 + p)N

θ

(
1 + p

Nθ

)s

. (2.21)

A slightly tighter estimate is obtained by replacing the L1 − L∞ bounds with L2 bounds for f ’s
with bounded variation,

|T (N, p, θ)| ≤ ‖SNf − f‖L2 × ‖SNψp,θ − ψp,θ‖L2 ≤
≤ Const.‖f‖BV ·N−1/2 × ‖ψ(s)

p,θ‖L2 ·N−(s−1/2), (2.22)

and (2.20) then yields

|T (N, p, θ)| ≤ Const.‖ρ‖Cs ·N
(
1 + p

Nθ

)s+1

. (2.23)



Adaptive Mollifiers for Accurate Recovery of Piecewise Smooth Data 7

Using this together with (2.18), we conclude with an error bound of E(N, p, θ; f(x)),

|ψp,θ ⋆ SNf(x)− f(x)| ≤ Const‖ρ‖Cs

[
N

(
1 + p

Nθ

)s+1

+ p

(
2

p

)s

‖f (s)‖L∞
loc(x)

]
, ∀s, (2.24)

where ‖f (s)‖L∞
loc

= supy∈(x−θπ,x+θπ) |f (s)| measures the local regularity of f . It should be noted
that one can use different orders of degrees of smoothness, say an r order of smoothness for the
truncation and s order of smoothness for the regularization, yielding

|E(N, p, θ; f(x))| ≤ Const.

[
‖ρ‖Cr ·N

(
1 + p

Nθ

)r+1

+ ‖ρ‖Cs · p
(
2

p

)s

‖f (s)‖L∞
loc

]
, ∀r, s.

(2.25)

2.3 Fourier interpolant - error analysis for pseudospectral mollifier

The Fourier interpolant of a 2π-periodic function, f(·), is given by

INf(y) :=
∑

|k|≤N

f̃ke
iky, f̃k :=

1

2N

2N−1∑

ν=0

f(yν)e
−ikyν . (2.26)

We observe that the moments computed in the spectral projection (2.1) are replaced here by the
corresponding trapezoidal rule evaluated at the equidistant nodes yν = π

N ν, ν = 0, 1, . . . , 2N − 1.
It should be noted that this approximation by the trapezoidal rule converts the Fourier-Galerkin
projection to a Pseudo Spectral Fourier collocation (interpolation) representation. It is well known
that the Fourier Interpolant also enjoys spectral convergence, i.e.

|INf(x)− f(x)| ≤ Const‖f‖Cs · 1

N s−1
, ∀s. (2.27)

Furthermore, if f(·) is analytic with analyticity strip of width 2η, then SNf(x) is characterized by
an exponential convergence rate [Ta94]

|SNf(x)− f(x)| ≤ Constη ·Ne−Nη. (2.28)

If, however, f(·) experiences a simple jump discontinuity, then the Fourier Interpolant suffers from
the reduced convergence rate similar to the Fourier projection. To accelerate the slowed convergence
rate we again make use of our two-parameter mollifier (2.9). When convolving INf(x) by our two
parameter mollifier we approximate the convolution by the Trapezoidal summation

ψp,θ ⋆ INf(x) ∼
π

N

2N−1∑

ν=0

f(yν)ψp,θ(x− yν). (2.29)

We note that the summation in (2.29) bypasses the need to compute the pseudo spectral coefficients
f̃k. Thus, in contrast to the spectral mollifiers carried out in the Fourier Space [MMO78], we are
able to work directly in the physical space through using the sampling of f(·) at the equidistant
points, f(yν).

The resulting error of our discrete mollification at the fixed point x is given by
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E(N, p, θ) :=
π

N

2N−1∑

ν=0

f(yν)ψp,θ(x− yν)− f(x). (2.30)

As before, we decompose the error into two components

E(N, p, θ) =

(
π

N

2N−1∑

ν=0

f(yν)ψp,θ(x− yν)− f ⋆ ψp,θ

)
+ (f ⋆ ψp,θ − f)

=: A(N, p, θ) +R(N, p, θ), (2.31)

where R(N, p, θ) is the familiar regularization error, and A(N, p, θ) is the so-called aliasing error
committed by approximating the convolution integral by a Trapezoidal sum. It can be shown that,
for any m > 1/2, the aliasing error does not exceed the truncation error, e.g., [Ta94, (2.2.16)],

‖A(N, p, θ)‖L∞ ≤Mm‖T (N, p, θ; f (m))‖L∞ ·N (1/2−m), m > 1/2. (2.32)

We choose m = 1: inserting this into (2.21) with f replaced by f
′

, and noting that ‖SNf
′−f ′‖L1 ≤

Const‖f‖BV

√
N , we recover the same truncation error bound we had in (2.21),

‖A(N, p, θ)‖L∞ ≤ Const.|T (N, p, θ; f ′

)| 1√
N

≤ Const.‖ρ‖Cs ·N2

(
1 + p

Nθ

)s+1

. (2.33)

Consequently, the error after discrete mollification of the Fourier Interpolant satisfies the same
bound as the mollified Fourier projection

|E(N, p, θ; f(x))| ≤ Const‖ρ‖Cs

[
N2

(
1 + p

Nθ

)s+1

+ p

(
2

p

)s

‖f (s)‖L∞
loc

]
, ∀s ≥ 1/2. (2.34)

We close by noting that the spectral and pseudospectral error bounds, (2.24) and (2.34), are of
the exact same order. And as before, one can use different orders of degrees of smoothness for the
regularization and aliasing errors.

2.4 On the choice of the (θ, p) parameters – spectral accuracy.

We now turn to asses the role of the parameters, θ and p, based on the spectral and pseudospectral
error bounds (2.24) and (2.34). We first address the localization parameter θ. According to the first
term on the right of (2.24), and respectively – (2.34), the truncation, and respectively – aliasing
error bounds decrease for increasing θ’s. Thus we are motivated to choose θ as large as possible.
However, the silent dependence on θ of the regularization error term in (2.24) and (2.34) appears
through the requirement of localized regularity, i.e. ‖f (s)‖L∞

loc
= supy∈(x−θπ,x+θπ) |f (s)(y)| < ∞.

Hence, if d(x) denotes the distance from x to the nearest jump discontinuity of f ,

d(x) := dist(x, sing supp f), (2.35)

we then set

θ :=
d(x)

π
≤ 1. (2.36)
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This choice of θ provides us with the largest admissible support of the mollifier ψp,θ, so that
ψp,θ ∗ f(x) incorporates only the (largest) smooth neighborhood around x. This results in an adap-
tive mollifier which amounts to a symmetric windowed filter of maximal width, 2d(x), to be carried
out in the physical space. We highlight the fact that this choice of an x-dependent, θ(x) = d(x)/π,
results in a spectral mollifier that is not translation invariant. Consequently, utilizing such an
adaptive mollifier is quite natural in the physical space, and although possible, it is not well suited
for convolution in the frequency space.
How can we find the nearest discontinuity? we refer the reader to [GeTa99, GeTa00a, GeTa00b],
where a general procedure to detect the edges in piecewise smooth data from its (pseudo-)spectral
content. The procedure – carried in the physical space, is based on appropriate choice of concentra-
tion factors which lead to (generalized) conjugate sums which tend to concentrate in the vicinity of
edges and are vanishing elsewhere. The locations (and amplitudes) of all the discontinuous jumps
are found in one global sweep. Equipped with these locations, it is a straightforward matter to
evaluate, at every x, the appropriate spectral parameter, θ(x) = d(x)/π.

Next we address the all important choice of p which controls how closely ψp,θ possesses near vanish-
ing moments of increasing order, (2.11). Before determining an optimal choice of p let us revisit the
original approach taken by Gottlieb and Tadmor [GoTa85]. To this end, we first fix an arbitrary
degree of smoothness s, and focus our attention on the optimal dependence of p solely on N . With
this in mind, the dominant terms of the error bounds (2.24) and (2.34), are of order (p/N)s and
p−s, respectively. Equilibrating these competing terms gives p =

√
N , which results in the spectral

convergence rate sought for in [GoTa85], namely, for an arbitrary s

|E(N, p, θ)|p=√
N ≤ Consts,θN

−s/2. (2.37)

Although this estimate yields the desired spectral convergence rate sought for in [GoTa85], it
suffers as an over-pessimistic restriction since the possible dependence of p on s and θ were not
fully exploited. In fact, while the above approach of equilibration with p-depending solely on N
yields p = N0.5, numerical experiments reported back in the original [GoTa85] have shown that
when treating p as a fixed power of N , p = Nβ, superior results are obtained for 0.7 < β < 0.9.
Indeed, the numerical experiments reported in §3.2 below and which motivate the present study,
clearly indicate that the contributions of the truncation and regularization terms are equilibrated
when p ∼ N . Moreover, the truncation and aliasing error contributions to the error bounds (2.24)
and (2.34) predict convergence only for x’s which are bounded away from the jump discontinuities
of f , where θ(x) > p/N . Consequently, with θ(x) := d(x)/π and f(·) having a discontinuity, say at
x0, convergence can not be guaranteed in the region

(x0 −
p

N
π, x0 +

p

N
π). (2.38)

Thus, a non-adaptive choice of p – chosen as a fixed fractional power of N independent of θ(x),
say p ∼

√
N , can lead to a loss of convergence in a large zones of size O(N−1/2), around the

discontinuity. The loss of convergence was confirmed in the numerical experiments reported in
S3.2. This should be contrasted with the adaptive mollifiers introduced in the next §3, which
will enable us to achieve exponential accuracy up to the immediate, O(1/N) vicinity of these
discontinuities. We now turn to determine an optimal choice of p by incorporating both – the
distance to the nearest discontinuity, d(x), and by exploiting the fact that the error bounds (2.24)
and (2.34) allow us to use a variable degree of smoothness, s.
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3 Adaptive Mollifiers – Exponential Accuracy

Epilogue - Gevrey regularity. The spectral decay estimates (2.2) and (2.27) tell us that for
C∞
0 data, the (pseudo) spectral errors decay faster than any fixed polynomial order. To quantify

the actual error decay, we need to classify the specific order of C∞
0 regularity. The Gevrey class,

Gα, α ≥ 1, consists of ρ’s with constants η := ηρ and M := Mρ, such that the following estimate
holds,

sup
x∈ℜ

|ρ(s)(x)| ≤M
(s!)α

ηs
, s = 1, 2, . . . (3.1)

We have two prototypical examples in mind.

Example 1 A bounded analytic function ρ belongs to G1 with Mρ = supx∈ℜ |ρ(x)| and 2ηρ equals
the width of ρ’s analyticity strip.

Example 2 Consider a C∞
0 (−π, π) cut-off function depending on an arbitrary constant c > 0,

which takes the form

ρc(x) =





e


 cx2

x2 − π2




|x| < π

0 |x| ≥ π





=: e




cx2

x2 − π2





1[−π,π] (3.2)

In this particular case there exists a constant λ = λc such that the higher derivatives are
upper bounded by3

|ρsc(x)| ≤M
s!

(λc|x2 − π2|)s e




cx2

x2 − π2





, s = 1, 2, . . . (3.3)

The maximal value of the upper bound on the right hand side of (3.3) is obtained at x = xmax

where x2max − π2 ∼ −π2c/s; consult4. This implies that our cut-off function ρc admits G2

regularity, namely, there exists a constant ηc := λcπ
2c such that

sup
x∈ℜ

|ρ(s)c (x)| ≤ Constc · s!
(
s

ηc

)s

e−s ≤ Constc
(s!)2

ηsc
s = 1, 2, . . . (3.4)

We now turn to examine the actual decay rate of Fourier projections, |SNρ − ρ|, for arbitrary
Gα-functions. According to (2.2) combined with the growth of ‖ρ‖Cs dictated by (3.1), the L∞

error in spectral projection of a Gα function, ρ, is governed by

|SNρ(x)− ρ(x)| ≤ Const.N
(s!)α

(ηN)s
, s = 1, 2, . . . (3.5)

The expression of the type encountered on the right of (3.5), (s!)α(ηN)−s, attains its minimum at
smin = (ηN)1/α,

3To this end note that ρc(x) = e+(x)e−(x) with e±(x) := exp(cx/(x ± π) for x ∈ (−π, π). The functions e±(x)

upper bounded by |e
(s)
± (x)| ≤M±s!(λc|x± π|)−se±(x), with appropriate λ = λc, [Jo, p. 73]

4For large values of s, the function |a(x)|−s · exp(αa(x) + β/a(x)) with fixed α and β is maximized at x = xmax

such that a(xmax) ∼ −β/s. In our case, a(x) = x2 − π2 and β ∼ cπ2
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min
s

(s!)α

(ηN)s
∼ min

s

(
sα

ηeαN

)s

= e−α(ηN)1/α . (3.6)

Thus, minimizing the upper-bound in (3.5) at s = smin = (ηN)1/α, yields the exponential accuracy
of fractional order

|SNρ(x)− ρ(x)| ≤ Const ·Ne−α(ηN)1/α , ρ ∈ Gα. (3.7)

The case α = 1 recovers the exponential decay for analytic ρ’s, (2.5), whereas for α > 1 we have
exponential decay of fractional order. For example, our G2 cut-off function ρ = ρc in (3.2) satisfies
(3.7) with (η, α) = (ηc, 2), yielding

|Spρc(x)− ρc(x)| ≤ Const.p · e−2
√
ηcp. (3.8)

Equipped with these estimates we now revisit the error decay of spectral mollifiers based on Gα

cut-off functions ρ. Both contributions to the error in (2.14) — the regularization R(N, p, θ), and
the truncation T (N, p, θ) (as well as aliasing A(N, p, θ) in (2.31)), are controlled by the decay rate
of Fourier projections.

3.1 The (θ, p) parameters revisited – exponential accuracy.

We assume that f(·) is piecewise analytic. For each fixed x, our choice of θ = θ(x) = d(x)/π
guarantees that f(x−θy) is analytic in the range |y| ≤ π and hence its product with the Gα(−π, π)
function ρ(y) yields the Gα regularity of gx(y) = f(x − θy)ρ(y) − f(x). According to (2.16), the
regularization error, R(N, p, θ) is controlled by the Fourier projection of gx(·), and in view of its
Gα regularity, (3.7) yields

|R(N, p, θ)| = |(Spgx(y)− gx(y))|y=0| ≤ Constρ · p e−α(ηp)1/α . (3.9)

For example, if ρ = ρc we get

|Rρc(N, p, θ)| ≤ Constc · p · e−2
√
ηcp. (3.10)

Remark. It is here that we use the normalization, ρ(0) − 1 = gx(y = 0) = 0, and (3.9) shows that
one can slightly relax this normalization within the specified error bound

|ρ(0) − 1| ≤ Const. e−α(ηp)1/α . (3.11)

Next we turn to the truncation error, T (N, p, θ). According to (2.19), its decay is controlled by
the Fourier projection of the localized Dirichlet kernel ψp,θ(x) =

1
θψp

(
x
θ

)
. Here we shall need the

specific structure of the localizer ρ(x) = ρc(x) in (3.2). Leibnitz rule and (3.3) yield

|ψ(s)
p (x)| ≤

s∑

k=0

(
s
k

)
|ρ(k)c (x)| · |D(s−k)

p (x)|

≤ Const. s!

(
s∑

k=0

ps−k

(s− k)!
(ηc|x2 − π2|)−k

)
· e




cx2

x2 − π2




≤ Const.
s!

(λc|x2 − π2|)s e

(
pλc|x2 − π2|+ cx2

x2 − π2

)
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which after dilation satisfies

|ψ(s)
p,θ(x)| ≤ Const. s!

(
θ

λc|a(x)|

)s

· e

(
pλc|a(x)|

θ2
+

cx2

a(x)

)

, a(x) := x2 − π2θ2(x). (3.12)

Following a similar manipulation we used earlier, the upper bound on right hand side of the (3.12)
is maximized at x = xmax with x2max − π2θ2 ∼ −cπ2θ2/s, which leads to the G2-regularity bound
for ψp,θ (where as before, ηc := λcπ

2c)

sup
x∈ℜ

|ψ(s)
p,θ(x)| ≤ Const · s!

(
s

ηcθe

)s

epηc/s ≤ Cosnt.
(s!)2

(ηcθ)s
epηc/s s = 1, 2, . . . (3.13)

With (3.13) we utilize (2.22) to obtain the following precise bound of the truncation error

|T (N, p, θ)| ≤ Const.
(s!)2

(ηcθN)s
epηc/s (3.14)

To minimize the upperbound (3.14), we first seek the minimizer for the order of smoothness, s = sp,
and then optimize the free spectral parameter p ≤ N for both the truncation and regularizations
errors. We begin by noting that a general expression of the type encountered on the right of (3.14),

(s!)2

(ηcθN)s
epηc/s ∼

(
s2

ηcθe2N

)s

epηc/s =:M(s, p),

is minimized at the p-dependent index smin such that

∂s(logM(s, p))|s=smin
= log(

s2min

ηcθN
)− pηc

s2min

= 0 (3.15)

Though we cannot find its explicit solution, (3.15) yields a rather precise bound on smin which turns
out to be essentially independent of p. Indeed, for the first expression on the right of (3.15) to be
positive we need smin =

√
βηcθN with some β > 1. Plugging this expression, smin =

√
βηcθN ,

into (3.15), we find that for p ≤ N we must have, log β = log(s2min/ηcθN) = ηcp/s
2
min ≤ 1/βθ. We

therefore set s ∼ smin of the form

s =
√
βηcθN, 1 < β < 1.764,

so that the free β parameter satisfies the above constraint5 β log β ≤ 1 ≤ 1/θ. The corresponding
optimal parameter p is then given by

pmin =
s2

ηc
· (log s2

ηcθN
)|s=smin

= κ · θN, 0 < κ =: β log β < 1(≤ 1

θ
). (3.16)

We conclude with an optimal choice of p of order O(θN), replacing the previous choice, (2.37), of
order O(

√
N). The resulting exponentially small truncation error bound, (3.14), now reads

|T (N, p, θ)| ≤ Const.
(s!)2

(ηcθN)s
epηc/s|s=smin

∼
√
θN

(
β

e

)2
√
βηcθN

, 1 < β ≤ 1.764. (3.17)

With this choice of p = pmin in (3.16) we find essentially the same exponentially small bound on
the regularization error in (3.10),

5Recall that θ = θ(x) := d(x)/π < 1.
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|R(N, p, θ)| ≤ Const · θN
(
1

e

)2
√
β log β·ηcθN

. (3.18)

Figures 3.1(f) and 3.2(f) below confirm that the contributions of the truncation and regularization
parts of the error are of the same exponentially small order up to the vicinity of the discontinuous
jumps with this choice of optimal p ∼ Nd(x)/π, in contrast to previous choices of p = O(Nγ), γ < 1,
consult Figures 3.1(b)-(d) and 3.2(b)-(d).

We summarize what we have shown in the following theorem.

Theorem 3.1 Given the Fourier projection, SNf(·) of a piecewise analytic f(·), we consider the
2-parameter family of spectral mollifiers

ψp,θ(x) :=
1

θ
ρc(

x

θ
)Dp(

x

θ
), ρc := e


 cx2

x2 − π2




1[−π,π], c > 0,

and we set

θ = θ(x) :=
d(x)

π
, d(x) = dist(x, sing suppf) (3.19)

p = p(x) ∼ κ · θ(x)N, 0 < κ = β log β < 1. (3.20)

Then there exist constants, Constc and ηc, depending solely on the analytic behavior of f(·) in
the neighborhood of x, such that we can recover the intermediate values of f(x) with the following
exponential accuracy

|ψp,θ ⋆ SNf(x)− f(x)| ≤ Constc · θN
(
β

e

)2
√

κηcθ(x)N

, 1 < β ≤ 1.764. (3.21)

Remark. Theorem 3.1 indicates an optimal choice for the spectral mollifier, ψp,θ, based on an
adaptive degree of order p = κθ(x)N , with an arbitrary free parameter, 0 < κ = β log β < 1. We
could further optimize the error bound (3.21) over all possible choices of β, by equilibrating the
leading term in the truncation and regularization error bounds so that

(
β

e

)2
√

β·ηcθ(x)N
∼
(
1

e

)2
√

β log β·ηcθ(x)N
,

with the minimal value found at log β∗ = (3 −
√
5)/2, the corresponding κ∗ := β∗ log β∗ = 0.5596,

and 2
√
κ∗/π = 0.8445 leading to an error bound,

|ψp,θ ⋆ SNf(x)− f(x)| ≤ Constc · d(x)N
(
1

e

)0.845
√

ηcd(x)N

. (3.22)

Although the last estimate serves only as an upperbound for the error, it is still remarkable that the
(close to) optimal parameterization of the adaptive mollifier is found to be essentially independent
of the properties of f(·).
Similar result holds in the pseudospectral case. In this case, we are given the Fourier interpolant,
INf(x) and the corresponding discrete convolution is carried out in the physical space with overall
error, E(N, p, θ; f) = ψp,θ ⋆ INf(x) − f(x), which consists of aliasing and regularization errors,
(2.31). According to (2.32), the former is upper bounded by the truncation of f ′, which retains the
same analyticity properties as f does. We conclude
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Theorem 3.2 Given the equidistant gridvalues, {f(xν)}0≤ν≤2N−1 of a piecewise analytic f(·), we
consider the 2-parameter family of spectral mollifiers

ψp,θ(x) :=
1

θ
ρc(

x

θ
)Dp(

x

θ
), ρc := e


 cx2

x2 − π2




1[−π,π], c > 0,

and we set

θ = θ(x) :=
d(x)

π
, d(x) = dist(x, sing suppf) (3.23)

p = p(x) ∼ κ · θ(x)N, 0 < κ = β log β < 1. (3.24)

Then, there exist constants, Constc and ηc, depending solely on the analytic behavior of f(·) in
the neighborhood of x, such that we can recover the intermediate values of f(x) with the following
exponential accuracy

∣∣∣
π

N

2N−1∑

ν=0

ψp,θ(x− yν)f(yν)− f(x)
∣∣∣ ≤ Constc · (d(x)N)2

(
β

e

)2
√

βηcθ(x)N

, 1 < β < 1.764. (3.25)

3.2 Numerical experiments

The first set of numerical experiments compares our results with those of Gottlieb-Tadmor, [GoTa85],
involving the same choice of f(·) = f1(·)

f1(x) =

{
sin(x/2) x ∈ [0, π)
− sin(x/2) x ∈ [π, 2π)

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(3.26)

A second set of results is demonstrated with a second function, f2(x) given by

f2(x) =

{
(2e2x − 1− eπ)/(eπ − 1) x ∈ [0, π/2)
− sin(2x/3 − π/3) x ∈ [π/2, 2π).

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(3.27)

This is a considerable challenging test problem: f2 has a jump discontinuity at x = π/2 and due to
the periodic extention of the Fourier series two more discontinuities at the boundaries x = 0, 2π.
Moreover, a relatively large gradient is formed for x ∼ π/2−, and the sharp peak on the left of
x = π/2 is met by a jump discontinuity on the right.
For the computations below we utilize the same localizer ρ = ρc as in (3.2), with c = 10. In the
first case, f1 has a simple discontinuity at x = π so the θ parameter was chosen according to (2.36),
θ = θ(x) = min(|x|, |x − π|)/π. In the second case of f2(x) we set

θ(x) = [min(x, π/2− x)+ +min(x− π/2, 2π − x)+] /π.
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Since the error deteriorates in the immediate vicinity of the discontinuities where θ(x)N ∼ 1, a
window of minimum width of θmin = min{θ(x), 1/4N} was imposed around x0 = {0, π/2, π, 2π}.
More about the treatment in the immediate vicinity of the discontinuity is found in §4.1.
The different policies for choosing the parameter p are outlined below. In particular, for the near
optimal choice recommended in Theorems 3.1 and 3.2 we use a mollifier of an adaptive degree
p = κθ(x)N with κ = 1/

√
e = 0.6095 ∼ κ∗.

We begin with the results based on the spectral projections, SNf1 and SNf2. For comparison
purposes, the exact convolution integral, ψp,θ ⋆SNf was computed with composite Simpson method
using π

8000 points, and the mollified results are recorded at the left half points, π
150ν, ν = 0,

1, . . . , 149. Figure 3.1 shows the result of treating the spectral projection ψp,θ ⋆ SNf1 based on
N = 128 modes, for different choices of p’s. Figures 3.2 show the same results for f2(x). It is
evident from these figures, figure 3.1(e)-(f) and figure 3.2(e)-(f), that best results are obtained with
p = θ(x)N/

√
e, in agreement with our analysis for the optimal choice of exponentially accurate

mollifier in (3.22). We note that other choices for p ∼ Nγ , lead to large intervals where exponential
accuracy is lost due to the imbalance between the truncation and regularization errors, consult
cases (a)-(d) in figures 3.1-3.2. As we noted earlier in (2.38), a nonadaptive choice of p independent
of θ(x) leads to deterioration of the accuracy in an increasing region of size ∼ pπ/N around the
discontinuity, and the predicted locations of these values, given in table 3.1, could be observed in
figures 3.1(a)-(d) for the function f1(x).

p\N 32 64 128

N0.8 1.6 1.8 2.0

N0.5 2.6 2.7 2.9

N0.2 2.9 3.0 3.1

Table 3.1: Predicted location where spectral convergence is lost at |x− x0| ∼ pπ/N .

Figure 3.3 illustrates the spectral convergence as N doubles from 32 to 64, then to 1286. The
exponential convergence of the near optimal adaptive p = θ(x)N/

√
e can be seen in figure 3.3(e)-

(f), where the log-slopes are constants with respect to d(x) (for fixed N) and with respect to N
(for fixed x).
Next, the numerical experiments are repeated for the discrete case, using discrete mollification of
the Fourier interpolant. Given the gridvalues of f1(xν) and f2(xν) at the equidistant gridpoints
xν = νπ/N , we recover the pointvalues at the intermediate gridpoints f(xν+1/2). A minimal window
width of θmin = min(θ(x), 2π/N) was imposed in the immediate vicinity of the discontinuities to
maintain a minimum number of two sampling points to be used in the discrete mollification.
Compared with the previous mollified results of the spectral projections, there are two noticeable
changes, both involving the non-optimal choice of p ∼ Nγ with γ < 1: (i) The location where
spectral/exponential convergence is lost is noticeably closer to the discontinuities compared with
the mollified spectral projections, but at the same time (ii) Much larger oscillations are observed
in the regions where spectral convergence is lost. Comparing figures 3.1 vs. 3.4, and 3.2 vs. 3.5,
gives a visual comparison for both changes from spectral to pseudo spectral. The deterioration for
p = N0.8 and N0.5 are very noticeable.

6Machine truncation error is at −16.
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Figure 3.1: Recovery of f1(x) from its first N = 128 Fourier modes, on the left, and the cor-
responding regularization errors (dashed) and truncation errors (solid) on the right, using the
spectral mollifier ψp,θ based on various choices of p: (a)-(b) p = N0.5, (c)-(d) p = N0.8, (e)-(f)
p = Nd(x)/π

√
e.
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Figure 3.2: Recovery of f2(x) from its first N = 128 Fourier modes, on the left, and the cor-
responding regularization errors (dashed) and truncation errors (solid) on the right, using the
spectral mollifier ψp,θ based on various choices of p: (a)-(b) p = N0.5, (c)-(d) p = N0.8, (e)-(f)
p = Nd(x)/π

√
e.
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Figure 3.3: Log of the error with N = 32, 64, 128 modes for f1(x) on the left, and for f2(x) on the
right, using various choices of p: (a)-(b) p = N0.5, (c)-(d) p = N0.8, (e)-(f) p = Nd(x)/π

√
e.
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Figure 3.4: Recovery of f1(x) from its N = 128 equidistant gridvalues on the left, and the cor-
responding regularization errors (dashed) and truncation errors (solid) on the right, using the
spectral mollifier ψp,θ based on various choices of p: (a)-(b) p = N0.5, (c)-(d) p = N0.8, (e)-(f)
p = Nd(x)/π

√
e.
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Figure 3.5: Recovery of f2(x) from its N = 128 equidistant gridvalues on the left, and the cor-
responding regularization errors (dashed) and truncation errors (solid) on the right, using the
spectral mollifier ψp,θ based on various choices of p: (a)-(b) p = N0.5, (c)-(d) p = N0.8, (e)-(f)
p = Nd(x)/π
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4 Adaptive Mollifiers – Normalization

The essence of the 2-parameter spectral mollifier discussed in §3, ψp,θ(x), is adaptivity: it is based
on a Dirichlet kernel of a variable degree, p ∼ θ(x)N , which is adapted by taking into account the
location of x relative to its nearest singularity, θ(x) = d(x)/π. The resulting error estimate tells us
that there exist constants, Const, γ and α > 1 such that one can recover a piecewise analytic f(x)
from its spectral or pseudospectral projections, PNf(·),

|ψp,θ ⋆ PNf(x)− f(x)| ≤ Const.e−(γd(x))N)1/α .

The error bound on the right shows that the adaptive mollifier is exponentially accurate for all x’s,
except for what we refer to as the immediate vicinity of the jump discontinuities of f , namely, those
x’s where d(x) ∼ 1/N . This should be compared with previous, non-adaptive choices for choosing
the degree of ψp,θ: for example, with p ∼

√
N we found a loss of exponential accuracy in a zone

of size ∼ 1/
√
N around the discontinuities of f . Put differently, there are O(

√
N) ’cells’ which are

not accurately recovered in this case. In contrast, our adaptive mollifier is exponentially accurate
at all but finitely many cells near the jump discontinuities. According to the error estimates (3.21),
(3.22) and (3.25), convergence may fail in these cells inside the immediate vicinity of sing suppf ,
and indeed, spurious oscillations could be noticed in figures 3.1 and 3.2. In this section we address
the question of convergence up to the jump discontinuities.

One possible approach is to retain a uniform exponential accuracy up to the jump discontinuities.
Such an approach, developed by Gottlieb, Shu, Gelb and their co-workers is surveyed in [GoSh95,
GoSh98]. It is based on Gegenbauer expansions of degree λ ∼ N . Exponential accuracy is retained
uniformly throughout each interval of smoothness of the piecewise analytic f . The computational
of the high order Gegenbauer coefficients, however, is numerically sensitive and the parameters
involved need to be properly tuned in order to avoid triggering of instabilities, [Ge97, Ge00].
Here we proceed with another approach where we retain a variable order of accuracy near the jump
discontinuities, of order O((d(x))r+1). Comparing this polynomial error bound against the interior
exponential error bounds, say (3.22),

Const.d(x)N · e−0.845
√

ηcd(x)N ≥ (d(x))r+1,

we find that there are only finitely many cells in which the error – dictated by the smaller of the
two, is dominant by polynomial accuracy

d(x) ≤ Const.
r2(log d(x))2

ηcN
∼ r2

N
. (4.1)

In this approach, the variable order of accuracy suggested by (4.1), r ∼
√
d(x)N , is increasing

together with the increasing distance away from the jumps, or more precisely – together with the
number of cells away from the discontinuities, which is consistent with the adaptive nature of our
exponentially accurate mollifier away from the immediate vicinity of these jumps. The current
approach of variable order of accuracy which adapted to the distance from the jump discontinu-
ities, is reminiscent of the Essentially Non Oscillatory (ENO) piecewise polynomial reconstruction
employed in the context of nonlinear conservation laws [HEOC85, Sh97].
How to enforce that our adaptive mollifiers are polynomial accurate in the immediate vicinity of
jump discontinuities? as we argued earlier in (2.11), the adaptive mollifier ψp,θ admits spectrally
small moments of order p−s ∼ (d(x)N)−s. More precisely, using (3.7) we find for ρ ∈ Gα,

∫ πθ

−πθ
ysψp,θ(y)dy =

∫ π

−π
(yθ)sρ(y)Dp(y)dy = Dp ⋆

(
(yθ)sρ

)
(y)|y=0

=
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= δs0 + Const.θs · e−α(ηp)1/α , p ∼ d(x)N.

Consequently, ψp,θ possesses exponentially small moments at all x’s except for the immediate
vicinity of the jumps where p ∼ d(x)N ∼ 1, the same O(1/N) neighborhoods where the previous
exponential error bounds fail. This is illustrated in the numerical experiments exhibited in §3.2
which show the blurring in symmetric intervals with width ∼ 1/N around each discontinuity. To
remove this blurring, we will impose a novel normalization so that finitely many moments of (the
projection of) ψp,θ precisely vanish. As we shall see below, this will regain a polynomial convergence
rate of the corresponding finite order r. We have seen that the general adaptivity (4.1) requires
r ∼

√
d(x)N ; in practice, enforcing a fixed number of vanishing moments, r ∼ 2, 3 will suffice.

4.1 Spectral normalization - adaptive mollifiers in the vicinity of jumps

Rather than ψp,θ possessing a fixed number of vanishing moments as in standard mollification (2.7),
we require that its spectral projection, SNψp,θ, posses a unit mass and, say r vanishing moments,

∫ π

−π
ys(SNψp,θ)(y)dy = δs0 s = 0, 1, . . . , r. (4.2)

It then follows that adaptive mollification of the Fourier projection, ψp,θ ⋆ SNf , recovers the point-
values of f with the desired polynomial order O(d(x))r. Indeed, noting that for each x, the function
f(x− y) remains smooth in the neighborhood |y| ≤ πθ = d(x) we find, utilizing the symmetry of
the spectral projection,

∫
(SNf)g =

∫
f(SNg),

ψp,θ ⋆ SNf(x)− f(x) =

∫ πθ

−πθ
[f(x− y)− f(x)](SNψp,θ)(y)dy =

=

r∑

s=1

(−1)s

s!
f (s)(x)

∫ π

−π
ys(SNψp,θ)(y)dy +

(−1)r+1

(r + 1)!
f (r+1)(·)

∫ π

−π
yr+1(SNψp,θ)(y)dy

∼
∫ π

−π
(SNy

r+1)ψp,θ(y)dy ≤ Const.
(
d(x) +

1

N

)r+1
.

The last step follows from an upperbound for the spectral projection of monomials outlined at the
end of this subsection.
To enforce the vanishing moments condition (4.2) on the adaptive mollifier, ψp,θ(·) = (ρ(·)Dp(·/θ))/θ,
we take advantage of the freedom we have in choosing the localizer ρ(·). We begin by normalizing

ψ̃p,θ(y) =
ψp,θ(y)∫ π

−π ψp,θ(z)dz

so that ψ̃p,θ has a unit mass, and hence (4.2) holds for r = 0, for
∫
SN (ψp,θ)(y)dy =

∫
ψp,θ(y)dy = 1.

We note that the resulting mollifier takes the same form as before, namely

ψ̃p,θ(y) :=
1

θ
(ρ̃cDp)(

y

θ
), (4.3)

where the only difference is associated with the modified localizer,

ρ̃c(y) = q0 · ρc(y), q0 =
1∫ π

−π ψp,θ(z)dz
. (4.4)
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Observe that in fact, 1/q0 =
∫
ψp,θ(z)dz ≡

∫
ψp(z)dz = (Dp ⋆ ρc)(0), and that with our choice of

p = κ · θ(x)N , we have in view of (3.7),

ρ̃c(0) = q0 =
1

(Dp ⋆ ρc)(0)
= 1 +O(ε), ε ∼ d(x)N · e−2

√
ηcp, p = κ · θ(x)N

which is admissible within the same exponentially small error bound we had before, consult (3.11).
In other words, we are able to modify the localizer ρc(·) → ρ̃c(·) to satisfy the first-order normal-
ization, (4.2) with r = 0, while the corresponding mollifier, (ρxDp)θ → (ρ̃cDp)θ, retains the same
overall exponential accuracy. Moreover, using even ρ’s implies that ψ(·) is an even function and
hence its odd moments vanish. Consequently, (4.2) holds with r = 1, and we end up with the
following quadratic error bound in the vicinity of x (compared with (3.22))

|ψ̃p,θ(x) ⋆ SNf(x)− f(x)| ≤ Const.
(
d(x) +

1

N

)2
· e−0.845

√
ηcd(x)N .

In a similar manner, we can enforce higher vanishing moments by proper normalization of the
localizer ρ(·). There is clearly more than one way to proceed – here is one possibility. In order to
satisfy (4.2) with r = 2 we use a pre-factor of the form ρ̃c(x) ∼ (1 + q2x

2)ρc(x). Imposing a unit
mass and vanishing second moment we may take

ψ̃p,θ(y) =
1

θ
(ρ̃cDp)(

y

θ
), ρ̃c(y) ∼ (1 + q2y

2)ρc(y),

with the normalized localizer, ρ̃c(y), given by

ρ̃c(y) =
1 + q2y

2

∫ π
−π(1 + q2(

z
θ )

2)ψp,θ(z)dz
ρc(y), q2 =

−
∫ π
−π(SNz

2)ψp,θ(z)dz∫ π
−π(SNz

2)(zθ )
2ψp,θ(z)dz

. (4.5)

As before, the resulting mollifier ψ̃p,θ is admissible in the sense of satisfying the normalization (3.11)
within the exponentially small error term. Indeed, since

∫
y2ψp,θ(y)dy = (Dp⋆(y

2ρc(y)))(0) = O(ε)
we find

ρ̃c(0) =
1∫ π

−π(1 + q2(
y
θ )

2)ψp,θ(y)dy
=

=
1

1 + q2 · ε/θ2
= 1 + Const · (d(x)N)3 · e−2

√
ηcp, p = κ · θ(x)N.

A straightforward computation shows that the unit mass ψ̃p,θ has a second vanishing moment

∫ π

−π
y2(SN ψ̃p,θ)(y)dy =

∫ π

−π
(SNy

2)
(
a0 + a2(

y

θ
)2
)
ψp,θ(y)dy =

=

∫ π

−π
(SNy

2)ψp,θ(y)dy + q2

∫ π

−π
(SNy

2)(
y

θ
)2ψp,θ(y)dy = 0. (4.6)

Since ρ̃c(·) is even, so is the normalized mollifier ψ̃(·), and hence its third moment vanishes yielding
a 4th order convergence rate in the immediate vicinity of the jump discontinuities,

|(ψ̃p,θ(x) ⋆ SNf)(x)− f(x)| ≤ Const.
(
d(x) +

1

N

)4
· e−0.845

√
ηcd(x)N .

We close this section with the promised
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Lemma 4.1 ([Tao]). The following pointwise estimate holds

|SN (yr)| . (|y|+ 1

N
)r.

To prove this, we use a dyadic decomposition (similar to the Littlewood-Paley construction) to
split

yr =
∑

k≤0

2krψ(y/2k)

where ψ is a bump function adapted to the set {π/4 < |y| < π}.
For 2k . 1/N , the usual upperbounds of the Dirichlet kernel tell us that

|SN (ψ(·/2k))(y)| . 2kN/(1 +N |y|).

Now suppose 2k & 1/N . In this case we can use the rapid decay of the Fourier transform of ψ(·/2k)
for frequencies ≫ N to obtain the estimate

‖(1 − SN)(ψ(·/2k))‖∞ . (2kN)−100.

In particular, since supp ψ ∼ 1, we have |SN (ψ(·/2k))(x)| . 1 when |y| ∼ 2k, and |SN (ψ(·/2k))(y)| .
(2kN)−100 otherwise. The desired bound follows by adding together all these estimates over k.

4.2 Pseudospectral normalization – adaptive mollifiers in the vicinity of jumps

We now turn to the pseudospectral case which will only require evaluations of discrete sums and
consequently, can be implemented with little increase in computation time.

Let f ∗ g(x) := ∑
ν f(x − yν)g(yν)h denote the (non-commutative) discrete convolution based on

2N equidistant gridpoints, yν = νh, h = π/N . Noting that for each x, the function f(y) remains
smooth in the neighborhood |x− y| ≤ πθ = d(x), we find

|ψp,θ ∗ INf(x)− f(x)| =
∣∣∣
∑

ν

ψp,θ(x− yν)[f(yν)− f(x)]h
∣∣∣ =

=
∣∣∣

r∑

s=1

(−1)s

s!
f (s)(x)

∑

ν

(x− yν)
sψp,θ(x− yν)h+

(−1)r+1

(r + 1)!
f (r+1)(·)

∑

ν

(x− yν)
r+1ψp,θ(x− yν)h

∣∣∣

≤ Const.(d(x))r+1, Const ∼
‖f‖Cr+1

loc

(r + 1)!
,

provided ψp,θ has its first r discrete moments vanish,

2N−1∑

ν=0

(x− yν)
sψp,θ(x− yν)h = δs0, s = 0, 1, 2, . . . , r. (4.7)

Observe that unlike the continuous case associated with spectral projections, the discrete constraint
(4.7) is not translation invariant and hence it requires x-dependent normalizations. The additional
computational effort is minimal, however, due to the discrete summations which are localized in
the immediate vicinity of x. Indeed, as a first step we note the validity of (4.7) for x’s which are
away from the immediate vicinity of the jumps of f . To this end we apply the main exponential
error estimate (3.25) for f(·) = (x− ·)s (for arbitrary fixed x), to obtain



Adaptive Mollifiers for Accurate Recovery of Piecewise Smooth Data 25

2N−1∑

ν=0

(x− yν)
sψp,θ(x− yν)h = (x− y)s|y=x +O(ε) =

= δs0 +O(ε), ε ∼ (d(x)N)2 · e−
√

Const.d(x)·N . (4.8)

Thus, (4.7) holds modulo exponentially small error for those x’s which are away from the jumps
of f , where d(x) ≫ 1/N . The issue now is to enforce discrete vanishing moments on the adaptive
mollifier ψp(x) = ρ(x)Dp(x) in the vicinity of these jumps, and to this end we take advantage of
the freedom we have in choosing the localizer ρ(·). We begin by normalizing

ψ̃p,θ(y) =
ψp,θ(y)∑2N−1

ν=0 ψp,θ(x− yν)h
,

so that ψ̃p,θ(x−·) has a (discrete) unit mass, i.e., (4.7) holds with r = 0. We note that the resulting
mollifier takes the same form as before, namely

ψ̃p,θ(y) :=
1

θ
(ρ̃cDp)(

y

θ
), (4.9)

and that the only difference is associated with the modified localizer,

ρ̃c(y) = q0 · ρc(y), q0 =
1

∑2N−1
ν=0 ψp,θ(x− yν)h

. (4.10)

By (4.8), the x-dependent normalization factor, q0 = q0(x) is in fact an approximate identity,

1/q0 =

2N−1∑

ν=0

ψp,θ(x− yν)h = 1 +O(ε), ε ∼ (d(x)N)2 · e−
√

Const.d(x)·N ,

which shows that the normalized localizer is admissible, |ρ̃(0)−1| = |q0−1| ≤ O(ε), within the same
exponentially small error bound we had before – consult (3.11) with our choice of p ∼ d(x) ·N . In
other words, we are able to modify the localizer ρc(·) → ρ̃c(·) to satisfy the first-order normalization,
(4.7) with r = 0 required near jump discontinuities, while the corresponding mollifier, (ρxDp)θ →
(ρ̃cDp)θ, retains the same overall exponential accuracy required outside the immediate vicinity of
these jumps .
Next, we turn to enforce that first discrete moment vanishes,

∑
ν(x− yν)ψ̃p,θ(x− yν)h = 0, and to

this end we seek a modified mollifier of the form

ψ̃p,θ(y) =
q(y/θ)∑

ν q(
x−yν

θ )ψp,θ(x− yν)h
ψp,θ(y), q(y) := 1 + q1y,

with q1 is chosen so that the second constraint, (4.7) with r = 1, is satisfied7

q1 = −
∑

ν(x− yν)ψp,θ(x− yν)h
∑

ν
(x−yν)2

θ ψp,θ(x− yν)h
. (4.11)

7We note in passing that ρ̃c(·) being even implies that ψ̃p,θ(·) is an even function and hence its odd moments
vanish. It follows that the first discrete moment,

∑
ν(x − yν)ψp,θ(x − yν)h vanishes at the gridpoints x = yµ, and

therefore q1 = 0 there. But otherwise, unlike the similar situation with the spectral normalization, q1 6= 0. The
discrete summation in q1, however, involves only finitely many neighboring values in the θ-vicinity of x.



26 E. Tadmor and J. Tanner

Consequently, (4.7) holds with r = 1, and we end up with a quadratic error bound corresponding
to (3.22)

|ψ̃p,θ ∗ INf(x)− f(x)| ≤ Const.(d(x))2 · e−
√

Const.d(x)N .

Moreover, (4.8) implies that q1 = O(ε) and hence the new normalized localizer is admissible,
ρ̃c(0) = 1 + O(ε). In a similar manner we can treat higher moments, using normalized localizers,
ρ̃c(y) ∼ q(y)ρc(y) of the form

ψ̃p,θ(y) =
1

θ
(ρ̃cDp)(

y

θ
), ρ̃c(y) :=

1 + q1y + . . . qry
r

∑
ν q(

x−yν
θ )ψp,θ(x− yν)h

ρc(y). (4.12)

The r free coefficients of q(y) = 1 + q1y + . . . qry
r are chosen so as to enforce (4.7) with the

first r discrete moments of ψ̃ vanish. This leads to a simple r × r Vandermonde system ( –
outlined in at the end of this section)involving the r gridvalues, {f(yν)}, in the vicinity of x,
|yν −x| ≤ θ(x)π. With our choice of a symmetric support of size θ(x) = d(x)/π, there are precisely
r = 2θπ/h = 2Nd(x)/π such gridpoints in the immediate vicinity of x, which enable us to recover
the intermediate gridvalues, f(x) with an adaptive order (d(x))r+1, r ∼ Nd(x). As before, this
normalization does not affect the exponential accuracy away from the jump discontinuities, noting
that ρ̃(0)c = 1/q0 = 1 +O(ε) in agreement with (3.11). We summarize by stating

Theorem 4.1 Given the equidistant gridvalues, {f(xν)}0≤ν≤2N−1 of a piecewise analytic f(·), we
want to recover the intermediate values f(x). To this end, we use the 2-parameter family of pseu-
dospectral mollifiers

ψ̃p,θ(y) :=
1

θ
ρ̃c(

y

θ
)Dp(

y

θ
), p = 0.5596 · θN, c > 0,

where θ = θ(x) := d(x)/π is the (scaled) distance between x and its nearest jump discontinuity. We

set ρ̃c(y) := q(y)e

(
cy2

y2−π2

)

1[−π,π] as the normalizing factor, with

q(y) =
1 + q1y + . . . qry

r

∑
ν q(

x−yν
θ )ψp,θ(x− yν)h

so that the first r discrete moments of ψ̃p,θ(y) vanish, i.e., (4.7) holds with r ∼ Nd(x).
Then, there exist constants, Constc and ηc, depending solely on the analytic behavior of f(·) in
the neighborhood of x, such that we can recover the intermediate values of f(x) with the following
exponential accuracy

∣∣∣
π

N

2N−1∑

ν=0

ψp,θ(x− yν)f(yν)− f(x)
∣∣∣ ≤ Constc · (d(x))r+1

(
1

e

)0.845
√

ηcd(x)N

, r ∼ Nd(x). (4.13)

The error bound (4.13) confirms our statement in the introduction of §4, namely, the adaptivity
of the spectral mollifier in the sense of recovering the gridvalues in the vicinity of the jumps with
an increasing order, Nd(x), proportional to their distance from sing supp f . We have seen that
the general adaptivity (4.1) requires r ∼

√
d(x)N , so that in practice, enforcing a fixed number

of vanishing moments, r ∼ 2, 3 will suffice as a transition to the exponentially error decay in the
interior region of smoothness. We highlight the fact that the modified mollifier ψ̃p,θ normalized
by having finitely many (∼ 2, 3) vanishing moments can be constructed with little increase in
computation time and, as we will see in §4.3 below, it yields greatly improved results near the
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discontinuities.
We close this section with a brief outline on the construction of the r-order accurate normalization
factor q(·). To recover f(x), we seek a r-degree polynomial q(y) := 1+ q1y+ . . .+ qry

r so that (4.7)
holds. We emphasize that the qr’s depend on the specific point x in the following manner. Setting
zν := x− yν , then satisfying (4.7) for the higher moments of ψ̃p,θ requires

∑

ν

zsνψ̃p,θ(zν)h = 0, s = 1, 2, . . . , r,

and with ψ̃p,θ(·) ∼ q(·/θ)ψp,θ(·) we end up with

∑

ν

zsν [q(
zν
θ
)− 1]ψp,θ(zν)h = −

∑

ν

zsνψp,θ(zν), s = 1, 2, . . . , r.

Expressed in terms of the discrete moments of ψ,

aα(zν) :=
∑

ν

(
zν
θ
)1+αψp,θ(zν), α = 1, 2 . . . , 2r

this amounts to the r × r Vandermonde-like system for {q1, . . . , qr},



a1(zν) a2(zν) · · · ar(zν)
· · · · · ·
· · · · · ·
· · · · · ·

ar+1(zν) ar+2(zν) · · · a2r(zν)







q1
·
·
·
qr



= −




∑
ν zνψp,θ(zν)

·
·
·∑

ν z
r
νψp,θ(zν)




(4.14)

Finally we scale q(·) so that (4.7) holds with s = 0, which led us to the normalized localizer in
(4.12).

4.3 Numerical Experiments

Figure 3.1 (d) the blurring oscillations near the edges when using the non-normalized adaptive
mollifier. To reduce this blurring we will use the normalized ψ̃p,θ for x’s in the vicinity of the jumps
where d(x) ≤ 6π/N . The convolution is computed at the same locations as in section (3.2), and
a minimum window width of θ(x) = min(d(x)/π, 2π/N) was imposed. the Trapezoidal rule (with
spacing of π/8000) was used for the numerical integration of (SNy

2)ψp,θ(y) and (SNy
2)y2ψp,θ(y),

required for the computation of q0 and q2 in 4.1. Figure 4.1(a)-(d) shows the clear improvement
near the edges once we utilize the normalized ψ̃p,θ, while retaining the exponential convergence
away from these edges is illustrated in figure 4.1(e)-(f).
We conclude with the pseudospectral case. The O(1) error remains in figure 3.4 (d) for the non-
normalized mollifier. The normalization of the discrete mollifier in section 4.2 shows that by using
ψ̃p,θ given in (4.12), with a 4th degree normalization factor q(·), results in a minimum convergence
rate of d(x)4 in the vicinity of the jumps, and with exponentially increasing order as we move away
from the jumps. This modification of ψ̃p,θ leads to a considerable improvement in the resolution near
the discontinuity, which could be seen in figure 4.2. Here, normalization was implemented using
ψ̃p,θ in the vicinity of the jumps, for d(x) ≤ 4π/N , and the adaptive mollifier ψp,θ was used for x’s
’away’ from the jumps d(x) ≥ 4π/N . A minimum window of width θ(x) = min(d(x)/π, 2π/N) was
imposed.

*
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Figure 4.1: Recovery of f1(x) (on the left) and f2(x) (on the right) from their N = 128-modes
spectral projections, using the 4th order normalized mollifier (4.3),(4.5) of degree p = d(x)N/π

√
e.

Regularization errors (dashed) and truncation errors (solid) are shown on (c)-(d), and Log errors
based on N = 32, 64, and 128 modes are shown in (e)-(f).
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Figure 4.2: Recovery of f1(x) (a) and f2(x) (b) from their N = 128-modes spectral projections,
using the normalized mollifier. Log error for recovery of f1(x) (c)and f2(x) (d) from their spectral
projections based on N = 32, 64, and 128 modes. Here we use the normalized mollifier, ψp,θ of
degree p = d(x)N/π
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e.

5 Summary

In their original work [GoTa85], Gottlieb & Tadmor showed how to regain formal spectral con-
vergence in recovering piecewise smooth functions using the 2-parameter family of mollifiers ψp,θ.
Our analysis shows that with a proper choice of parameters – in particular, an adaptive choice for
the degree p ∼ d(x)N , hide the overall strength in the method. By incorporating the distance to
the discontinuities, θ = d(x)/π along with the optimal value of p, we end up with exponentially
accurate recovery procedure up to the immediate vicinity of the jump discontinuities. Moreover,
with a proper local normalization of the spectral mollifier, one can further reduce the error in the
vicinity of these jumps. For the pseudospectral case, the normalization adds little to the overall
computation time. Overall, this yields a high resolution yet very robust recovery procedure which
enables one to effectively manipulate pointwise values of piecewise smooth data.



30 E. Tadmor and J. Tanner

References

[BL93] R. K. Beatson and W. A. Light, Quasi-interpolation by thin-plate splines on the square,
Constr. Approx., 9 (1993) 343-372.

[Ch] E. W. Cheney, Approximation Theory, Chelsea, 1982.

[Ge97] A. Gelb, The resolution of the Gibbs phenomenon for spherical harmonics, Math. Comp.,
66 (1997), 699-717.

[Ge00] A. Gelb, A Hybrid Approach to Spectral Reconstruction of Piecewise Smooth Functions,
Journal of Scientific Computing, October 2000.

[GeTa99] A. Gelb and E. Tadmor, Detection of Edges in Spectral Data, Applied Computational
Harmonic Analysis 7, (1999) 101-135.

[GeTa00a] A. Gelb and E. Tadmor, Enhanced spectral viscosity approximations for conservation
laws, Applied Numerical Mathematics 33 (2000), 3-21.

[GeTa00b] A. Gelb and E. Tadmor, Detection of Edges in Spectral Data II. Nonlinear Enhance-
ment,SIAM Journal of Numerical Analysis, 38 (2000), 1389-1408.

[GoSh95] D. Gottlieb and C.-W. Shu, On The Gibbs Phenomenon IV: recovering exponential ac-
curacy in a sub-interval from a Gegenbauer partial sum of a piecewise analytic function, Math.
Comp., 64 (1995), pp. 1081-1095.

[GoSh98] D. Gottlieb and C.-W. Shu, On the Gibbs phenomenon and its resolution, SIAM Review
39 (1998), pp. 644-668.

[GoTa85] D. Gottlieb and E. Tadmor, Recovering pointwise values of discontinuous data within
spectral accuracy, in “Progress and Supercomputing in Computational Fluid Dynamics”, Pro-
ceedings of 1984 U.S.-Israel Workshop, Progress in Scientific Computing, Vol. 6 (E. M. Murman
and S. S. Abarbanel, eds.). Birkhauser, Boston, 1985, pp. 357-375.

[HEOC85] A. Harten, B. Engquist, S. Osher and S.R. Chakravarthy, Uniformly high order accurate
essentially non-oscillatory schemes. III, Jour. Comput. Phys. 71, 1982, 231–303.

[Jo] F. John, Partial Differential Equations,

[MMO78] A. Majda, J. McDonough and S. Osher, The Fourier method for nonsmooth initial data,
Math. Comput. 30 (1978), pp. 1041-1081.

[Sh97] C.-W. Shu, Essentially non oscillatory and weighted essentially non oscillatory schemes for
hyperbolic conservation laws, in “Advanced Numerical Approximation of Nonlinear Hyperbolic
Equations” (A. Quarteroni, ed), Lecture Notes in Mathematics #1697, Cetraro, Italy, 1997.

[Ta94] E. Tadmor, Spectral Methods for Hyperbolic Problems, from “Lecture
Notes Delivered at Ecole Des Ondes”, January 24-28, 1994.Available at
http://www.math.ucla.edu/˜tadmor/pub/spectral-approximations/Tadmor.INRIA-94.pdf

[Tao] Terence Tao, Private communication.

http://www.math.ucla.edu/~tadmor/pub/spectral-approximations/Tadmor.INRIA-94.pdf

