Skip to main content
Log in

The smallest target size for a comfortable pointing in freehand space: human pointing precision of freehand interaction

  • Long paper
  • Published:
Universal Access in the Information Society Aims and scope Submit manuscript

Abstract

Designing interfaces that suit human pointing precision in freehand space can improve the smoothness and naturalness of gestural interaction. However, only few studies focus on the proper pointing precision for a comfortable target acquisition to provide suggestions for user-centered interface design for such kind of techniques. This paper presents work on studying and estimating human pointing precision in three separate dimensions in different motion ranges when performing precision movement in freehand space. Human pointing precision was estimated to be about 1.67–3.0 cm within a motion range about 40 cm. Participants’ performances for small target acquisition were close in horizontal and vertical dimensions, but worst in depth dimension. The effects of task amplitude on the pointing precision became prominent in depth dimension, and minimal in vertical dimension. The work also indicated that precise movement of freehand induced side effect to make hand stiff and gesture like “putting forward” physically exhausting, especially to reach small targets. This work provides a deeper insight into freehand interaction and contributes to the user-centered design of freehand-like interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Freeman, W.T., Weissman, C.: Television control by hand gestures. In: International Workshop IEEE FG’95, pp. 179–183 (1995)

  2. Vogel, D., Balakrishnan, R.: Distant freehand pointing and clicking on very large, high resolution displays. In: Proceedings of UIST, pp. 33–42 (2005)

  3. Bailly, G., Vo, D.B., Lecolinet, E., Guiard, Y.: Gesture-aware remote controls: guidelines and interaction technique. In: Proceedings of ICMI’11, pp. 263–270. ACM, New York, NY (2011)

  4. Kühnel, C., Westermann, T., Hemmert, F., Kratz, S., Müller, A., Möller, S.: I’m home: defining and evaluating a gesture set for smart-home control. Int. J. Hum. Comput. Stud. 69(11), 693–704 (2011)

    Article  Google Scholar 

  5. Vatavu, R.D., Pentiuc, S.G.: Interactive coffee tables: interfacing TV within an intuitive, fun and shared experience. In: Proceedings of EUROITV’08, pp. 183–187. Springer, Berlin, Heidelberg (2008)

  6. Vatavu, R.D.: Point and click mediated interactions for large home entertainment displays. Multimed. Tools Appl. (2011). doi:10.1007/s11042-010-0698-5

    Google Scholar 

  7. Campbell, B.A., O’Brien, K.R., Byrne, M.D. Bachman, B.J.: Fitts’ Law predictions with an alternative pointing device (Wiimote®). In: Proceedings of the Human Factors and Ergonomics 52nd Annual Meeting, pp. 1321–1325 (2008)

  8. Wu, H., Wang, J., Zhang, X.: User-centered gesture development in TV viewing environment. Multimed. Tools Appl. (2014). doi:10.1007/s11042-014-2323-5

    Google Scholar 

  9. Argelaguet, F., Andujar, C.: A survey of 3D object selection techniques for virtual environments. Comput. Graph. 37, 121–136 (2013)

    Article  Google Scholar 

  10. Berard, F., Rochet-Capellan, A.: Measuring the Linear and Rotational User Precision in Touch Pointing, TS’12, November 11–14, 2012, Cambridge, MA

  11. Berard, F., Wang, G., Cooperstock, J.R.: On the Limits of the Human Motor Control Precision: the Search for a Device’s Human Resolution, INTERACT 2011, Part II, LNCS 6947, pp. 107–122 (2011)

  12. Casiez, G., Vogel, D., Balakrishnan, R., Cockburn, A.: The impact of control-display gain on user performance in pointing tasks. Hum. Comput. Interact. 23(3), 215–250 (2008)

    Article  Google Scholar 

  13. Bernhaupt, R., Obrist, M., Weiss, A., Beck, E., Tscheligi, M.: Trends in the living room and beyond: results from ethnographic studies using creative and playful probing. Comput. Entertain. 6(1), 5 (2008)

    Article  Google Scholar 

  14. Norman, D.A.: Natural user interfaces are not natural. Interactions 17(3), 6–10 (2010)

    Article  Google Scholar 

  15. Barclay, K., Wei, D., Lutteroth, C., Sheehan, R.: A quantitative quality model for gesture based user interfaces. OZCHI’11, Nov 28–Dec 2, 2011, Canberra (2011)

  16. Baudel, T., Lafton, M.B.: CHARADE: remote control of objects using free-hand gestures. Commun. ACM 36, 28–35 (1993)

    Article  Google Scholar 

  17. Fukumoto, M., Mase, K., Suenaga, Y.: Finger-Pointer: A Glove Free Interface, CHI’92 Conference Proceedings, Poster and Short Talks Booklet, 62 (1992)

  18. Jenkins, D.B.: Functional Anatomy of the Limbs and Back, pp. 91–99. Saunders Elsevier, Philadelphia, PA (2009)

    Google Scholar 

  19. König, W.A., Gerken, J., Dierdorf, S., Reiterer, H.: Adaptive pointing—design and evaluation of a precision enhancing technique for absolute pointing devices. In: INTERACT’09: Proceedings of the 12th IFIP TC 13 International Conference on Human–Computer Interaction, pp. 658–671. Springer, Berlin, Heidelberg (2009)

  20. Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. Gen. 121(3), 262–269 (1992)

    Article  Google Scholar 

  21. Campos, F.M.M.O., Calado, J.M.F.: Approaches to human arm movement control: a review. Ann. Rev. Control 33, 69–77 (2009)

    Article  Google Scholar 

  22. Saunders, J.A., Knill, D.C.: Visual feedback control of hand movements. J. Neurosci. 24(13), 3223–3234 (2004)

    Article  Google Scholar 

  23. MacKenzie, I.S.: Fitts’ law as a research and design tool in human–computer interaction. Hum. Comput. Interact. 7, 91–139 (1992)

    Article  Google Scholar 

  24. Chapuis, O., Dragicevic. P.: Effects of motor scale, visual scale and quantization on small target acquisition difficulty. ACM Trans. Comput. Hum. Interact. 18(3) (2011). Art ID 13

  25. Apostolico, A., Cappetti, N., D’Oria, C., Naddeo, A., Sestri, M.: Postural comfort evaluation: experimental identification of Range of Rest Posture for human articular joints. Int. J. Interact. Des. Manuf. 8, 109–120 (2014)

    Article  Google Scholar 

  26. Zhai, S., Milgram, P., Rastogi, A.: Anisotropic human performance in six degree-of-freedom tracking: an evaluation of three-dimensional display and control interfaces. IEEE Trans. Syst. Man Cybern. A 27(4), 518–528 (1997)

    Article  Google Scholar 

  27. Aerospace medical research laboratory, Investigation of inertial properties of human body. Technical report (March 1975)

  28. Bernmark, E., Wiktorin, C.: A triaxial accelerometer for measuring arm movements. Appl. Ergon. 33, 541–547 (2002)

    Article  Google Scholar 

  29. Remmel, R.S.: Use of an electromagnetic eye movement monitor for easy measurement of arm movements. IEEE Trans. Biomed. Eng. 53(11), 2356–2361 (2006)

    Article  Google Scholar 

  30. Srinivasan, D., Samani, A., Mathiassen, S.E., Madeleine, P.: The size and structure of arm movement variability decreased with work pace in a standardised repetitive precision task. Ergonomics 58, 1 (2015)

    Article  Google Scholar 

  31. Kaufman, L.: Sight and Mind: An Introduction to Visual Perception. Oxford University Press, London (1974)

    Google Scholar 

  32. Haber, R.N., Hershenson, M.: The Psychology of Visual Perception. Holt, Rinehart, & Winston, New York (1973)

    Google Scholar 

  33. Sollenberger, R.L., Milgram, P.: Effects of stereoscopic and rotational displays in a three-dimensional path-tracing task. Hum. Factors 35(3), 483–499 (1993)

    Google Scholar 

  34. Arthur, K., Booth, K., Ware, C.: Evaluating 3-D task performance for fish tank virtual worlds. ACM Trans. Inf. Syst. 11(3), 239–265 (1993)

    Article  Google Scholar 

  35. Tachi, S., Yasuda, K.: Evaluation experiments of a tele-existence manipulation system. Presence Teleoperators Virtual Environ. 3(1), 35–44 (1994)

    Article  Google Scholar 

  36. Massimino, M.J., Sheridan, T.B., Roseborough, J.B.: One hand tracking in six degrees of freedom. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 498–503 (1989)

  37. Rice, J.R., Yorchak, J.P., Hartley, C.S.: Capture of satellites having rotational motion. In: Proceedings of the Human Factors Society 32nd Annual Meeting, pp. 870–874. Dayton, OH (1986)

  38. O’Hara. J.: Telerobotic control of a dexterous manipulator using master and six-DOF hand controllers for space assembly and servicing tasks. In: Proceedings of the Human Factors Society 32nd Annual Meeting, pp. 791–795. New York (1987)

  39. Cabral, M.C., Morimoto, C.H., Zuffo, M.K. (2005) In the usability of gesture interfaces in virtual reality environments. CLIHC’05, October 23-26, 2005, Cuernavaca, México. Copyright is held by the author(s). ACM 1-59593-224-0

  40. Masataka, N., Yuto, N., Masao, S., Yewguan, S., Jun, O., Tamio, A.: Design of Gesture Interface for Deskwork Support System. ICROS-SICE International Joint Conference, August 18–21, 2009. Fukuoka International Congress Center, Japan (2009)

    Google Scholar 

  41. Kim, H., Kim, Y., Ko, D., Kim, J., Lee, E.C.: Pointing Gesture Interface for Large Display Environments Based on the Kinect Skeleton Model. Lecture Notes in Electrical Engineering, vol. 309. Springer, Berlin Heidelberg (2014)

    Google Scholar 

  42. Pajares, M., Ayala, P., Fajardo, I., Vicente, D., Gdaña, M.: Usability Analysis of a Pointing Gesture Interface, 2004 IEEE International Conference on Systems, Man and Cybernetics

  43. Accot, J., Zhai, S.: Refining Fitts’ law models for bivariate pointing. In: Proceedings of the ACM CHI 2003 Conference on Human Factors in Computing Systems, April 2003, pp. 193–200. ACM, Ft. Lauderdale, FL (2003)

  44. Grossman, T, Balakrishnan, R.: Pointing at trivariate targets in 3D environments. In: Proceedings of the ACM Conference on Human–Computer Interaction—CHI 2004, April 2004, Vienna, Austria, vol. 6, no. 1, pp. 447–454. ACM, New York, NY

  45. Grossman, T., Balakrishnan. R.: Pointing at Trivariate Targets in 3D Environments. CHI 2004, April 24–29, 2004, Vienna, Austria

  46. Murata, A., Iwase, H.: Extending Fitts’ law to a three-dimensional pointing task. Hum. Mov. Sci. 20, 291–805 (2001)

    Article  Google Scholar 

  47. Du J, Shi H, and Yuan X. Modeling of human’s pointing movement on the effect of target position. In: Digital Human Modeling, HCII 2007, LNCS 4561, pp. 48–55. Springer, Berlin, Heidelberg (2007)

  48. Kopper, R., Bowman, D.A., Silva, M.G., McMahan, R.P.: A human motor behavior model for distal pointing tasks. Int. J. Hum. Comput. Stud. 68(10), 603–615 (2010)

    Article  Google Scholar 

  49. Kondraske, G.V.: An angular motion Fitts’ law for human performance modeling and prediction. In: Proceedings of Engineering in Medicine and Biology Society, vol. 307 (1994)

  50. MacKenzie, I.S.: Movement time prediction in human–computer interfaces. In: Proceedings of Graphics Interface—GI’92. Canadian Information Processing Society, Toronto, pp. 140–150 (1992)

  51. Zeng, X., Hedge, A., Guimbretiere, F.: Fitts’ Law in 3D space with coordinated hand movements. In: Proceedings of the Human Factors and Ergonomics Society 56th Annual Meeting (2012)

  52. Berard, F., Rochet-Capellan, A.: Measuring the Linear and Rotational User Precision in Touch Pointing, TS’12, November 11–14, 2012, Cambridge, Massachusetts, USA (2012)

  53. Li, Z., Kim, H., Milutinović, D., Rosen, J.: Synthesizing redundancy resolution criteria of the human arm posture in reaching movements. In: Redundancy in Robot Manipulators, LNEE 57, pp. 201–240. Springer, Berlin Heidelberg (2013)

  54. Berman, P.W., Cunningham, J.G., Harkulich, J.: Construction of the horizontal, vertical and oblique by young children: failure to find the ‘oblique effect’. Child Dev 45, 474–478 (1974)

    Article  Google Scholar 

  55. Lindeman, R.W., Sibert, J.L., Hahn, J.K.: Hand-held windows: towards effective 2D interaction in immersive virtual environments. In: IEEE Virtual Reality, pp. 205–212 (1999)

  56. Herndon, K.P., van Dam, A., Gleicher, M.: The challenges of 3D interaction: a CHI’94 workshop. SIGCHI Bull 26(4), 36–43 (1994)

    Article  Google Scholar 

  57. Bowman, D.A., Wingrave, C.A., Campbell, J.: Using pinch gloves for both natural and abstract interaction techniques in virtual environments. In: HCI International, pp. 629–633 (2001)

Download references

Acknowledgments

This work is supported by Science and Technology Planning Projects of Guangdong Province of China (Nos. 2011A010801005, 2010A080402015, 2012B061700102, and 2014A010104005) and the Central Universities of South China University of Technology under Grant (No. 2015 ZZ030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangmin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Xu, X. & Zhou, S. The smallest target size for a comfortable pointing in freehand space: human pointing precision of freehand interaction. Univ Access Inf Soc 16, 381–393 (2017). https://doi.org/10.1007/s10209-016-0464-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10209-016-0464-1

Keywords

Navigation