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Abstract An effective adaptive learning system would

theoretically maintain learners in a permanent state of

flow. In this state, learners are completely focused on

activities. To attain this state, the difficulty of learn-

ing activities must match learners’ skills. To perform

this matching, it is essential to define, measure and

deeply analyze difficulty. However, very few previous

works deal with difficulty in depth. Most commonly,

difficulty is defined as a one-dimensional value. This

permits ordering activities, but limits the possibilities

of deep analysis of activities and learners’ performance.

This work proposes a new definition of difficulty and a

way to measure it. The proposed definition depends on

learners’ progress on activities over time. This expands

the concept of difficulty over a two-dimensional space,

also making it drawable. The difficulty graphs provide

a rich interpretation with insights into the learning pro-

cess. A practical case is presented: the PLMan Learning

System. This system is formed by a web application and

a game to teach Computational Logic. The proposed

definition is applied in this context. Measures are taken

and analyzed using difficulty graphs. Some examples of

these analyses are shown to illustrate the benefits of this

proposal. Singularities and interesting spots are easily

identified in graphs, providing insights in the activities.

This new information lets experts adapt the learning
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system by improving activity classification and assign-

ment. This first step lays solid foundations for automa-

tion, making the PLMan Learning System fully adap-

tive.

Keywords difficulty estimation, difficulty measure,

learning activity, adaptive learning

1 Introduction

Adaptive learning is a set of strategies to improve the

learning process by adapting it to learners’ progression.

It is usually based on a technological platform that

presents activities to learners in an adapted way, col-

lects their responses and allows them to track their own

learning progress. Present research in adaptive learning

is focused on sequencing the curriculum in a progressive

way, adjusting pace to learners’ progression and learn-

ing style, taking prior knowledge into account and cus-

tomizing presentation of lessons to learners’ features.

Most works base their adaptation on students’ learning

styles only. These learning styles are measured through

standard tests that learners fill in advance. In some

cases, learning styles are reconsidered during interac-

tion with the system, though adaptation of pace to

learners’ progression is still a secondary feature in many

systems.

An important aspect to consider when adapting pace

is the concept of flow. Flow can be defined as a feel-

ing of complete focus in an activity. Learners achieve

a state of flow when their skills match the difficulty of

the activity. In other words, difficulty is not too high

to generate anxiety nor too low to produce boredom.

The key research challenge here is properly measuring

difficulty and learners’ skills.
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Some previous works propose measures of difficulty,

many of them in the field of video games. Difficulty is

usually understood as the effort required to successfully

complete an activity. Although difficulty is considered

a key factor to foster learners’ motivation, existing def-

initions remain subjective. A formal definition and an

agreed way to measure difficulty is yet to be proposed.

This work proposes a new mathematical definition

for difficulty and a way to measure it. The definition

arises from considering learning activities, learners’ pro-

gress and the concept of flow. The measure is defined

bi-dimensionally, in contrast to most previous works.

It considers learners’ progress over activity time, yield-

ing much more expressiveness. When this measure is

graphed, appearing features allow a richer interpreta-

tion of difficulty and learners’ progress. Cost, hurdles,

interest points and other singularities in learners’ pro-

gression become self-evident in the graphs. This infor-

mation expands new possibilities for adapting difficulty

to learners’ pace. Besides the formal definition, a prac-

tical case is presented to illustrate all these concepts.

Measures and adaptation are shown using a custom

learning system and PLMan [28], a game designed to

learn computational logic.

A brief background about the research context is

presented in Section 2. Then, Section 3 states the hy-

pothesis and research objectives. Section 4 identifies

information sources for measuring difficulty, states de-

sired properties and limitations, proposes a mathemat-

ical definition and analyzes its advantages. Section 5

shows how to use proposed definition in an actual learn-

ing system. Finally, conclusions and future work are

presented in Section 6.

2 Background

To understand the relation between difficulty, skills and

learning, let us focus on the notion of Flow Channel

(Figure 1) [8, 26]. The Flow Channel represents the way

difficulty and skills of the learner relate to each other,

as follows:

– When difficulty is much higher than learners’ skills,

anxiety appears. This is psychologically explained

by learners perceiving their skills as insufficient, thus

getting demotivated. They normally feel that the

activity requires too much effort compared to their

perceived capabilities. This often leads to early aban-

don;

– On the contrary, if learners’ skills already include

what the activity provides as learning outcome, bore-

dom shows up. Having to invest time and / or re-

sources to get an already possessed outcome is in-

terpreted as lost time. Interest vanishes, motivation

decreases and boredom appears;

– When skills and difficulty are balanced, learners en-

ter a state of Flow. In Schell words [26], Flow is

sometimes defined as a feeling of complete and en-

ergized focus in an activity, with a high level of en-

joyment and fulfillment.

Fig. 1 The Flow Channel (Cśıkszentmihályi [3])

This research assumes The Flow Channel theory as

key for designing an Adaptive Learning system. Dif-

ficulty of the activities is adapted to match students’

skills. The following sections present some relevant works

on adaptive learning and its relation to difficulty and

students’ skills.

2.1 Adaptive learning

Adaptive Learning is a research area whose aim is to im-

prove learning by adapting contents to learners’ needs.

Adaptation is usually automatically performed by com-

puters. This way, results may be scaled up to a virtually

infinite number of students. This is becoming increas-

ingly important as E-learning is growing and Massively

Online Open Courses require improved ways of address-

ing heterogenous students’ needs.

Most systems are based on the premise that there

are different learning styles. They first take measures

to infer students’ learning styles, then they adapt to

each student. For instance, Yang et al. [29] propose a

system that adapts user interface and content based on

students’ learning and cognitive styles. Cognitive styles

are measured through standard tests that students fill

in advance. Yang et al. defined Mental Load as a result

of interactions between learning tasks, learning content

and content characteristics. Mental Load could be con-

sidered another way to measure difficulty. They mea-

sured students’ Mental Load and concluded that it was
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significantly decreased, while students’ belief of learn-

ing gains was increased.

Another interesting work is the one of Sangineto et

al. [25], The Diogene Platform. The platform performs

automatic generation and personalization of courses.

Diogene gathers statistical information from users and

constructs student models that include their skills and

preferences. Diogene also takes into account current

pedagogical knowledge on the didactic domain. These

models are matched against learning objects that also

have pedagogical descriptions. The match is performed

using the pedagogical approach proposed by Felder and

Silverman [5].

UZWEBMAT is an intelligent e-learning environ-

ment to teach probability [18]. UZWEBMAT uses an

integrated expert system to determine learning styles

and present most appropriate content. The system also

takes into account performance and knowledge levels:

different students with the same learning style may

be subjected to different instructions. Learning styles

are constantly reevaluated as learners interact. Initially,

learning styles are determined using standard tests. The

system considers three categories associated to the learn-

ing styles: visual, auditory and kinesthetic.

Protus [13] is a programming tutoring system that

adapts to the interests and knowledge levels of learners.

Protus identifies patterns of learning style and habits by

mining learners’ interaction logs. First, it assigns learn-

ers to clusters based on their learning styles. Next, it

analyzes habits and interests of learners by mining fre-

quent sequences. Finally, it completes personalized rec-

ommendation of learning content according to the rat-

ings of frequent sequences. It also introduces a collab-
orative filtering system that predicts usefullness rating

for a learner using other learners’ ratings. Prediction is

generated as a weighted average of other learners’ rat-

ings. The recommender system uses these predictions

to select sequences for learners.

Computer Games is an important field regarding

adaptation. In [27], Solano et al. analyze learning styles

in Game-Based Learning, particularly the fluctuation

of the learning style during the learning process. Before

the experiment, participants were asked to answer a

standard learning style questionnaire. During the game,

interaction between participants and the game was re-

corded automatically to identify the participant’s learn-

ing style. Results showed that learning styles detected

by the questionnaire were not always consistent with

those detected during gameplay. It was also shown that

learning styles varied during gameplay.

Finally, Sampayo-Vargas et al. [24] use adaptive ed-

ucational games to study the behavior of learners. They

use an adaptive version of a previously developed game.

Actions to be performed in the game are classified by

difficulty and curriculum category. When the student

provides three consecutive correct responses for the same

curriculum category, it is considered as learnt. The game

increases difficulty level when all the curriculum cate-

gories are learnt. Conversely, three incorrect responses

decrease the difficulty level. This way, the difficulty is

adapted. They state that difficulty refers to the effort

required to overcome challenges presented by learning

activities. That relation between difficulty and effort

is a key point of this work, even though difficulty of

the activities is manually assigned by game designers

instead of induced from data.

Most works center their efforts on adapting learner

paths to learning styles. They focus on delivering con-

tent depending on learning styles, habits and/or pref-

erences. However, there are few examples that consider

the difficulty of the activities as a key element of the

adaptation process. This may be due to the inherent

complexity of measuring difficulty. The following sec-

tion presents selected works that deal with this com-

plexity.

2.2 Difficulty

Difficulty is quite a diffuse concept referring to some-

thing that is laborious, not easy to do or understand,

which requires an effort to be accomplished [17]. Some

research work has been carried out on difficulty calibra-

tion by analyzing student historical data [21], or using

linear regression to estimate difficulty based on user

data [2] or even on generating exercises automatically

with a given established difficulty [22, 20]. However,

these studies are spread, discontinued and seem to be

disconnected from each other. In general, the concept

of difficulty within the academic world does not seem

to capture too much attention.

More studies related to difficulty can be found chang-

ing the focus to the field of Computer Games. The

parallelism with academic learning is quite straightfor-

ward: if a level of a game is too difficult or too easy,

players tend to stop playing the game. Therefore, it is

vital for a game to have a well designed progression of

difficulty, if willing to catch the attention of the play-

ers. Most studies in this field try to develop methods

to dynamically adjust difficulty to match the player’s

skills [11, 10, 15, 14]. All these studies use existent lev-

els of difficulty proposed in present Computer Games

and focus on selecting the most appropriate for each

player and game being played. Hunicke and Chapman

[11, 10] take measures of performance of the player and

try to predict if the player is going to fail to anticipate
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and adjust the level of difficulty. The proposal is com-

pletely specific to First Person Shooter (FPS) games

[23], as measures are defined for this specific type of

gameplay. Mladenov and Missura [15] use data collected

from previously played games to analyse a set of game-

play characteristics and input this data to a supervised

Machine Learning algorithm. The goal is to have an of-

fline prediction of the level of difficulty players are go-

ing to select in their next game. Missura and Gartner

[14] take a different approach for automatically select-

ing difficulty for a given player among a finite set of

difficulty levels. They divide the game into play-review

cycles. They measure the performance of the player in

the play cycles, and change difficulty level on review

cycles accordingly to their estimations.

Herbrich et al. [9] present a very interesting work on

measuring players’ skills comparatively. Their system,

called TrueSkill, is based on chess’ Elo rating system

[4]. Just like the Elo rating system, players have a one-

dimensional value ranking that predicts their probabil-

ity of winning against other players by logistic com-

parison. Although this work is not directly based on

difficulty, it is indirectly valuing players’ skill with sim-

ilar intention: match players against those with similar

abilities to foster balanced games.

Another interesting work is that proposed by Mou-

rato and dos Santos [16]. Their goal is to procedurally

generate content for Platform Games similar to Super

Mario Bros [19]. The problem with this kind of content

is how to classify the generated content with respect to

difficulty. They propose a way to measure difficulty in

Platform Games by measuring players’ probability of

failing after each individual obstacle in the game. The

concepts are interesting though lack a practical result

with actual players and ready-to-be-played generated

content.

Finally, Aponte et al. [1] present one of the most in-

teresting reviewed works. In their work they state that

their goal is “to evaluate a parameter or a set of pa-

rameters that can be considered as a measure of a game

difficulty”. They start by measuring the difficulty of a

reduced Pacman game with one ghost. In their Pacman

game, speed of the ghost is a configurable parameter to

make the game more difficult at will. They measure

the score of a synthetic player as the number of eaten

pellets and then show a graph with the evolution of

this value depending on the speed of the ghost. This

approach lets them show the progression of difficulty

depending on the selected level (speed of the ghost).

Based on that result, they define a set of properties

that a general definition of difficulty should have, and

propose a general theoretic definition of difficulty as the

probability of losing at a given time t. They only pro-

pose this definition, however do not perform any kind

of test or mathematical proof. It ends up as a simple

proposition based on their arguments.

All these previous works demonstrate the incipient

interest of the research community for measuring dif-

ficulty. This trend is confirmed by the growing focus

on measuring learning in general. The NMC Horizon

Report: 2016 Higher Education Edition [12] states that

there is a renewed interest in assessment and the wide

variety of methods and tools to evaluate and measure

the elements related to the learning process.

3 Hypothesis and research objectives

A review of previous research yields several interesting

conclusions:

– There have been attempts to measure the difficulty

of learning activities and learners’ skills;

– Difficulty is related to effort demanded from learners

to complete an activity;

– Balancing difficulty and learners’ skills greatly im-

proves the probability of learners staying within the

flow channel;

– This research field is in its preliminary stages.

Potential improvements shall be expected when learn-

ers are kept inside the flow channel. To prove it, objec-

tive measures for difficulty and learners’ abilities are re-

quired. Only proper measures can guarantee that their

matching is meaninful. In order to get an accurate match,

the more expressive the measures are, the better. More-

over, more expressive measures may give new insights

into the learning process. Present measures for difficulty

are limited in their expressiveness, mainly due to being

one-dimensional. That raises some questions: could dif-

ficulty be redefined in a multidimensional space? And

then, in which ways would it improve present defini-

tions? Which limitations would it have? Could it be

applied in practice?

To answer these research questions, the first step is

to state a hypothesis that could be tested:

Difficulty can be measured in a multidimen-

sional space, improving its expressiveness

and accuracy.

Although there are several measures to consider, this

work is focused on difficulty, and so does the hypothesis.

To validate this hypothesis, an empirical methodology

will be followed. This methodology will proceed through

three objectives:

1. Propose a new definition of difficulty;

2. Provide an objective way to measure it;

3. Test the proposal with a practical case.
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Section 4 will cover the first two objectives. It will

start by selecting an appropriate souce for measuring

difficulty. Then it will proceed to analyzed desired prop-

erties of the difficulty measure. This analytical process

should establish a solid link between desired definition

and the actual phenomena of difficulty. Intrinsic limi-

tations derived from source and properties will be con-

sidered. This will thoroughly describe the framework

for the new definition. Finally, the definition will be

proposed mathematically. The proposal will be theo-

retically analyzed to set solid understanding.

This new two-dimensional definition of difficulty will

also be shown graphically. Graphs will improve under-

standing of the proposed definition. Then bases for deep

and accurate analysis of graphs will be considered. There

are many technicallities to take into account for proper

understanding and comparison between graphs. This

will also illustrate the potential gain of using a two-

dimensional definition.

Section 5 will introduce the PLMan learning system

[28]. This will be used to empirically test the proposed

definition, addressing the third objective. After intro-

ducing and throughly explaining the PLMan learning

system, the definition will be adapted to measure dif-

ficulty in the PLMan game. This will also provide in-

sight on how to connect the theoretical definition with

a practical situation. Finally, some real outcomes from

the PLMan learning system will be analyzed graphi-

cally. This will give empirical evidence on how the new

definition improves previously existing ones.

4 Defining and measuring difficulty

4.1 Sources for measuring difficulty

Let us consider difficulty as a cost: in order to success-

fully finish an activity, any learner has to pay a cost in

time and effort. Measuring time is trivial from a concep-

tual point of view. The problem comes from measuring

effort. How can we measure effort? Do we have an ob-

jective definition of what effort is?

It will be considered that effort is indirectly related

to progress. The more progress is achieved, the less ef-

fort is required to finish. Although this logic consider-

ation is not a concrete definition of effort, it has many

advantages:

– For many kinds of activity, progress is relatively easy

to define and measure objectively;

– A measure for progress is also closely related to

learning outcomes: most activities yield learning out-

comes even when not fully completed. In fact, these

learning outcomes become clear when success ratio

increases out of repeating the activity;

– As progress to success is one of the key factors in

motivation, measures taking progress into account

also foster motivation.

Therefore, this research will consider an activity “more

difficult” when less progress is done. In the sake of

rigour, progress will be considered with respect to time:

progress percentage per unit of time will be an inverse

measure for difficulty. So, an activity being “more dif-

ficult” will imply that less progress is made per time

unit. This will let us measure difficulty in an intuitive,

understandable and objectively measurable way.

4.2 Desired properties for difficulty

There are several ways of defining difficulty as a re-

lationship between time and progress. It is important

to have guidance for selecting an appropriate measure

from such a huge set of potential definitions. So, estab-

lishing a set of desired properties will ensure that the

selected definition is useful under defined criteria. These

desired properties will act as restrictions, reducing the

search space.

Let us consider the next set of properties, having

present that measuring and comparing learning activi-

ties is the final goal:

– Difficulty should always be positive. Progress and

time are always positive or 0 values when measuring

a learning activity. A negative difficulty coming out

of these two values is impossible and would have no

meaning;

– Difficulty should have a minimum value. A difficulty

value of 0 would mean that no time / effort is re-

quired to finish a given activity. That would corre-

spond to an activity that is already done;

– Difficulty should also have a maximum value. Mak-

ing difficulty unbound would imply that any value

could be “not so difficult” compared to infinite. Hav-

ing a maximum value lets us fix impossible activ-

ities, which is desirable. An unbound upper limit

that should be labelled as infinity makes formulation

more complicated and has no advantage on compar-

isons;

– Fixing 1 as the maximum value for difficulty has

advantageous properties. That bounds difficulty in

the range [0, 1], which lets us consider it as a prob-

ability. That makes sense and is compatible with

previous considerations. Moreover, that enables the

probability theory as a valid set of tools for working

with difficulty, which is very desirable;

– Difficulty should not be a unique value but a func-

tion over time. While an activity is being done, dif-

ficulty keeps changing as progress is being made;
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– Difficulty must be a continuous function over time.

It makes no sense for a moment in time not to have

a difficulty associated;

– Difficulty must be a non-strictly decreasing func-

tion. Every time a learner makes progress on a given

learning activity, difficulty decreases by definition as

less progress is required to meet success.

Let us consider an example of activity: “scoring five

3-point shots in a basketball court, in less than 5 min-

utes”. This is a training activity whose expected learn-

ing outcome is an improvement in shooting precision

to basket1. This activity will take at most 5 minutes,

and at least the time required to shot 5 times: time

cost is straightforward. Regarding effort, it will depend

on previous conditions. A trained, muscular player may

complete the activity fast, without much effort, whereas

a weak novice could require many attempts to finish it

successfully. Moreover, novice players may waste much

more energy because they lack adequate technique. This

could also be considered more effort.

The activity could be analysed many times and from

different perspectives, and many definitions for “effort”

could be found. Before entering an endless debate on

what “effort” is or should be, let us consider a useful

point of view with respect to our goal of measuring diffi-

culty. An indirect measure for “effort” could be derived

from the intrinsic failure / success measures of the ac-

tivity. When 5 minutes are over, a player that scored 4

baskets is closer to success than other who only scored

1. It can be considered that having scored 4 baskets

leaves out less progress to be done for succeeding than

scoring just 1. Under this consideration, there is less

effort pending to succeed when more percentage of the

activity has been completed.

Let us compose a function with this properties, for

the basketball example. Let us imagine a player that

scores 5 baskets at times ti ∈ {15, 40, 62, 128, 175}, i ∈
{1, 2, 3, 4, 5} in seconds. Difficulty could be represented

as shown in Figure 2: whenever the player scores bas-

kets, difficulty decreases. Decreasing difficulty can be

considered as a step function, maintaining its value ex-

cept on scoring events. It can also be considered as a lin-

ear function, resulting on a much smooth shape. More-

over, a linear function seems to inform better about the

pace of the player.

As it can be deduced from Figure 2, these properties

configure a very powerful definition of difficulty: it goes

far beyond a simple scalar quantity, defining a repre-

sentative function. This function represents progress of

1 Although other learning outcomes can be considered from
this activity, let us consider it just as a precision improvement
exercise.
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Fig. 2 Manually constructed difficulty function for basket ex-
ample. Difficulty decreases as player progresses, scoring bas-
kets in this example.

the player over time which gives much more informa-

tion about the process. This new information will also

be useful for visual comparison of activity profiles as

well as individual or group profiles.

4.3 Intrinsic limitations

The selected properties limit the way activities should

be defined. Not every possible activity will fit for this

model. This is both a limitation and a design guide.

Activities designed for this model of difficulty will have

the following set of properties:

– Activities require progress to be measurable (i.e.

they should have a score). For instance, an activity

defined as “selecting the proper answer from a set of
4” has no way of measuring progress. Although time

to answer and success can be measured, there is no

progress towards success. Resulting functions would

represent either a full square or a line, depending on

model selected;

– Score (i.e. progress) has to be non-strictly increasing

function over time. As score is measuring progress to

an end it does not make sense for it to decrease. Gen-

eral score measures having punishments or negative

score events would not be appropriate. However, al-

most any score measure could be transformed in an

equivalent non-strictly increasing measure for this

purpose;

– Activities must have a measurable success status or,

at least, a maximum score. This is required to define

difficulty within its limits. Progress can be measured

in unbounded activities, but cannot be scaled to a

[0, 1] range;

– Activities must be considered over time. For instance,

an activity about creating a program cannot be con-
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sidered just as its final result. Having a single point

of evaluation is similar to not being able to measure

progress. It is also very important to measure the

time required to do the activity. If all learners hand

the result of an activity at the same time and no

measures have been taken previously, no data will

be available for the model.

These intrinsic limitations are part of the selected

set of properties and ought to be assumed. They may

represent a drawback for traditional activities such as

questionnaires or written problems. These activities are

not considered over time, nor is there a measure of

their progress. However, these limitations may be also

thought of as an opportunity to redesign and improve

activities. Potential learning gains may be achieved.

Having a progress measure informs learners and can im-

prove their engagement. Moreover, a porcentual score

yields more insight on the status of the learning pro-

cess than a pass-or-fail measure. Therefore, adapting

traditional activities to the limitations may represent

an improvement in their learning potential.

While new designs for traditional activities are de-

vised, some simple adaptations may be of help. For in-

stance, a traditional questionnaire may be computer-

ized and the score would easily be related to the number

of right answers. Then, the exact evolution of the score

over time may be considered. It should be considered

that negative marks should not affect the percentual

measure score: the one to be considered for difficulty.

With this simple adaptation, it would be possible to use

the proposed difficulty definition for a questionnaire.

Other traditional activities may be adapted in sim-

ilar ways. For instance, a written problem may also be

computerized and split into individually-assessed sec-

tions. Progress then would also be measurable by the

evolution of marks over time. However, it would be bet-

ter if problems could be redefined to have some sort of

precission outcome.

For instance, let us suppose the problem of cal-

culating the trajectory of a satellite to be launched

into orbit. The problem could be translated into a sim-

ulation of the launch. The activity would consist in

solving incidents during the launch process. Let us say

that precision of the final orbit is affected by response

from learners. They would have to calculate quick solu-

tions for maintaining the optimal trajectory. The score

would depend on the perfection of the trajectory. In

a five-minutes launch, a three-seconds trajectory sam-

pling would give a hundred samples. Awarding [0 − 1]

points for trajectory perfection at every sample would

give a final score in [0− 100] points. As this score def-

inition is cumulative, it is also non-strictly increasing.

This final simulated problem would fit in the limitations

and produce a continuous score. This example gives an

idea on the improvements that may be achieved when

fitting for the limitations.

4.4 Mathematically defining difficulty

With all desired properties and limitations clarified,

a working mathematical definition of difficulty can be

constructed. Let A be the set of all possible activities,

and L the set of all possible learners. Let α ∈ A be

a concrete learning activity. As an activity, α can be

performed by any learner l ∈ L. Each l performs α a

number of times Nl ∈ N. So let αi
l , l ∈ L, i ∈ N, i ≤ Nl

represent the i-th realization of the activity α by the

learner l.

Each αi
l takes an amount of time til ∈ R, measured

in seconds. Let us consider, for simplicity, that each αi
l

starts at time 0 and ends at til. Then, let St(α
i
l) ∈ R

be a function that measures the score got by learner l,

at time t on its i-th realization of α. So, St(α
i
l) is the

function that measures the progress towards success of

a learner that performs an activity.

The score function is expected to be explicitly de-

fined for each activity. In fact, many different score

functions can be defined for each activity. Therefore,

let us assume that activities and their score functions

are defined by activity designers. Also, for clarity rea-

sons, let us assume that activities and score functions

meet the desired properties and limitations exposed on

sections 4.2 and 4.3.

In previous sections, difficulty has been defined as

the inverse of progress. However, this cannot be de-

fined exactly this way. Difficulty must be defined in a

[0, 1] range, and the score function could have a much

broader range. However, the score function should be

non-strictly increasing, and should have an upper limit.

Therefore, the score function could be safely assumed

to start at 0, because the actual range of the function

can always be moved to start at 0. Let S?(α) be the

maximum score value for the activity α,

S?(α) ∈ R, S?(α) ≥ St(α
i
l) ∀l ∈ L, i ∈ Nl (1)

This lets us define the “easiness function” as a scaled

version of the score function over time in the [0, 1] range:

Et(α
i
l) =

St(α
i
l)

S?(α)
(2)

The function defined in Equation 2 is called “easi-

ness function” as it is exactly the inverse of the initial

definition of difficulty. Therefore, the definition of diffi-

culty follows:

Dt(α
i
l) = 1− Et(α

i
l) (3)
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This definition of difficulty is tied to the concept

of progress. It represents an advantage over estimating

difficulty with just a single scalar value: the resulting

graph shows an evolution over time which informs of the

whole realization of the activity. It also yields instant

values for difficulty at any time of the realization. This

values intrinsically represent the percentage of progress

remaining to finish the activity. They could also be in-

terpreted as the probability of failing the activity2.

However, these values are quite plain: they are in-

stant values that do not capture information on the

progress by themselves. The result is similar to con-

sidering any instant t to be independent from the oth-

ers that compose the timeframe of the activity. For in-

stance, this is like considering in the basketball example

that scoring at first shot is equally probable to scoring

after 4 baskets, or at a last attempt, when time is fin-

ishing. Nevertheless, a more accurate definition should

consider that events occurring at time t are influenced

by all events happened in the range [0, t[.

Experience shows that influence of a timeframe over

next time steps is strong on humans. It is convenient

to consider how human factors relate over time, i.e.

psychological status, strength, fatigue, motivation, etc.

Time steps in the timeframe of any learning activity,

performed by a human learner, are best considered to

be strongly interdependent. Therefore, they can be im-

proved by making Dt depend on a function of all t′ ∈
[0, t[, to make final values express this interdependency.

There are many approaches to make Dt dependent

on the set of all past values of difficulty {Dt′/t
′ ∈ [0, t[}.

Moreover, there is no theoretical way to determine the

appropriate way to weight all the possible factors. What

is more, different activities and learners will have differ-

ent influence factors. This makes extremely difficulty, if

at all possible, to design a theoretical relation covering

such a chaotic landscape. This suggests using an ex-

perimental approach instead. Therefore, this research

starts modelling influence in a very simple way. This

first model can be used as a benchmark to test other

different approaches and experimentally determine bet-

ter ways of defining difficulty.

Assuming that Dt,∀t should depend on {Dt′/t
′ ∈

[0, t[} and 0 ≤ Dt ≤ 1, let us define Dt as the area of

the curve above Et related to the maximum possible

area up to the instant t,

Dt(α
i
l) = 1− 1

t

∫ t

0

Et(α
i
l)dt (4)

Equation 4 defines difficulty Dt as a value depend-

ing on all previous history of the i-th realization of an

2 This interpretation is bound to discussion about its real
meaning as a probability.

activity α by a learner l. The dependency is made indi-

rect, using the easiness function as a proxy for difficulty.

This makes definition easier, eliminating recursive ref-

erences and associated problems.

Using the new definition stated at Equation 4 the

graphical layout of Dt varies greatly, as Figure 3 shows.

Compared to Figure 2, the new definition for Dt results

in a function that responds much smoothly to score

events. This new behaviour shows an interesting fea-

ture. Let us assume that t ∈ [0, t?]. Using Equation 4,

Dt? will directly depend on the performance shown by

the learner during the realization of the activity (being

Dt? > 03). In the basketball example, the faster baskets

get scored, the lower Dt? will be, and vice-versa. There-

fore, after completing an activity, the lower the residual

difficulty value Dt? , the greater the performance shown

by the learner.

The interesting property shown by Dt? is a direct

consequence of its cumulative definition. So, this prop-

erty will be shown by Dt′ ,∀t′ ∈ [0, t?]. Therefore, Dt

can now be used as a performance measure with more

information than Et, as it integrates information about

score and time / frequency in one single value. Careful

analysis of Dt for different learners and realizations of

the same activity could lead to establishing correlations

with abilities learnt and degree of mastery.

4.5 Understanding easiness-difficulty graphs

Defining easiness and difficulty as a function of time

yields a powerful analysing tool. Resulting graphs (for

example Figures 3 and 4) show learners’ progress over

time. Progress can show many different layouts, and a

careful analysis gives insight into intrinsic characteris-

tics of the activity.

For instance, activities could present singularities

like Activity X from Figure 4. Et captures the progress

of a single learner that completes 30% of the activity in

50 seconds. Then the learner requires almost 200 sec-

onds for completing another 10%. Finally, around 60

seconds are enough to complete the final 60% of the ac-

tivity. This layout shows that the learner has struggled

with some obstacle in the middle of the activity, while

the rest of the activity has been straight forward. The

graph shows the singularity and gives an insight into a

potential hurdle in the middle of the activity.

Et - Dt graphs are a powerful tool for analysing ac-

tivities. The information yielded can be used to design,

classify or re-design activities to better adapt them to

3 Unless D0 = 0, which would only happen on activities
completed at start time. That is a degenerate case with no
interest in practice. Thus, it can be safely ignored.
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Fig. 3 Behaviour of Dt using Equation 4 with data from the basketball example from section 4.2. Left, exact definition for Et

with step value changes. Right, linear interpolation for Et.

learners. It can also be used as evidence of learners’

progression, degree of activity adaptation and hurdle

detection. For these uses, the most important details to

take into account are:

– Data sources: data can come from one single learner

(Activity X in Figure 4), or from an average of

learners (Activity Y). Graphs show this difference:

learner from Activity X achieved 100% at t = 300,
while the group of learners from Activity Y had not

passed 78% at t = 200. However, some of the learn-

ers from Activity Y could have achieved 100% at

t = 200; their 78% result is the average and some-

times could be confused with them all having the

same value;

– Time scale: it is important to notice that Activity X

and Activity Y have a different time scale. In order

to properly compare difficulty and progress, similar

time scales should be used. This is not always possi-

ble, since activities often have different completion

times. Therefore, the time scale should be consid-

ered when analysing graphs;

– Singularities and interesting spots: as already anal-

ysed from Activity X, graphs show changes in their

slope that may be taken into consideration. Pro-

nounced changes will usually be due to characteris-

tics of the activity or particulars of the execution.

Also, the duration over time of this changes gives

additional information on their relative relevance;

– Cumulative nature of Dt: Dt is useful for single-

point comparison in time. As Dt accumulates all

past events in its instant value, it gives better in-

stant estimation of difficulty. Comparing activities

X and Y, their Dt values for t = 200 are 0.68 and

0.46 respectively. These instant values inform that

progress up to t = 200 shows much resistance for

Activity X than for Activity Y. In other words, Ac-

tivity X has been more difficult up to t = 200.

Taking all these details into account, the analysis of

Et - Dt graphs yields a great amount of information

highly valuable for adaptation purposes.

More details and uses of this definition of difficulty

are explained in our previous works [6, 7].

5 PLMan: a practical adaptive learning system

The PLMan Learning System [28] is a custom-made au-

tomated adaptive learning system, which gives support

to the first-year subject of Computational Logic. This

work shows how the definition of difficulty can be used

to make learning systems adaptive, using The PLMan

Learning System as example.

The PLMan Learning System has two major com-

ponents: a web application and a game. The web ap-

plication implements the learning system itself and lets

students and teachers interact. Students access their

progress status, select difficulty levels, get new activi-

ties assigned, upload their solutions, are automatically
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assessed and obtain their marks. Teachers can monitor

students’ progress, manage activities, analyze results

and enhance students’ assessments whenever required.

Activities in The PLMan Learning System are based

on a game called PLMan. PLMan is a custom-developed

game aimed at teaching Logic Programming and Rea-

soning. PLMan is the core of the activities, and also the

center of difficulty measures and adaptation. The fol-

lowing section briefly introduces the main details of PL-

Man. A more comprehensive description can be found

in [28].

5.1 Learning activities: PLMan game

PLMan is a game that challenges students to solve some

Pac-Man-like mazes by means of logic programming in

Prolog language. Students control Mr. PLMan, a Pac-

Man-like character whose aim is to eat all the dots in

the maze. To control Mr. PLMan, students develop au-

tomated controllers (i.e. Prolog programs).

The automated controllers select the actions Mr.

PLMan does during gameplay (see Figure 5). These de-

cisions have to dodge many different perils in order to

eat all dots and succeed. Controllers are made of rules

to reason about Mr. PLMan surroundings. These rules

formalize students’ reasonings, encoding patterns in the

form conditions→action. Final rules that solve a maze

come at the end of a process by which students learn

logic programming and reasoning.

The process is as follows: students write a minimum

set of rules, try them executing the game, observe and

analyse results, understand how rules produce results,

modify their rules and start over again. This iterative

process guides them into constructing the knowledge

and abilities required to solve the mazes and advance

to new stages. Figure 5 shows a maze along with a set

of rules that guide Mr. PLMan to eat all the dots (i.e.

solves the maze).

PLMan is turn-based. During each turn, Mr. PL-

Man is only allowed to perform one single action, which

can be one of the following:

– move(Direction): move one cell towards the direc-

tion.

– get(Direction): get the object placed at the con-

tiguous cell.

– drop(Direction): drop the current object (reverse

of get).

– use(Direction): use the object towards one the di-

rection.

For each selected action, an orthogonal Direction (up,

down, left, right) must be specified. The game ends

when Mr. PLMan succeeds (eats all the dots) or fails

(it comes across an enemy or bomb, the limit of turns

is reached or there is a time-out during execution).
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Fig. 5 Example maze and rules that control Mr. PLMan (@) to eat all the dots (.) dodging the enemy (E). # represent walls.

5.2 Automated assessment with PLMan

PLMan is automatically assessed throughout its score.

The score is defined as the percentage of dots that a

controller eats, minus some punishments for incorrectly

performed actions. This definition reflects the progress

that students perceive as they develop their controllers.

Score punishments are required to highlight incorrect

actions like trying to move into a wall, trying to use an

object not having one, trying to get an object where

there is none or failing to select an action for a given

situation (rule failure).

Each time students test a new controller by run-

ning PLMan, they get an automated assessment at the

end of the execution. A detailed report is shown includ-

ing final status, dots eaten (as percentage) and incor-

rectly performed actions. When students are satisfied

with their present results, they submit the controller to

the web application. The web application executes their

controller internally and uses results to update student

progress and marks. Each given maze has a value: when

students achieve a 100% score in the maze, the value is

added to their global marks. Also, when their score is

less than 100%, they get the corresponding proportion

of the value.

Students can send as many controllers for a given

maze as they wish. Whenever students submit a con-

troller that achieves more than 75% of the total score

for a given maze, the next level is unlocked. Each level

has a set of mazes, classified internally by difficulty.

Initially, students select the difficulty they want for the

new level, and the web application selects one maze

among those available. The maze that gets assigned to

a student cannot be assigned to another student in the

same classroom. Therefore, in the same classroom, stu-

dents have different mazes, even within the same level

and difficulty.

In this progress scheme, difficulty is the key. If diffi-

culty is well measured and matches students’ abilities,

students are placed in the channel of flow. Letting stu-

dents select difficulty levels during the process is a step

in this direction, that let students inform the system.

However, any clever adaptation requires difficulty to be

measured accurately. The following section shows how

our definition of difficulty is applied to PLMan.

5.3 Difficulty measurement in PLMan

Initially, teachers design mazes and classify them in in-

creasing levels of estimated difficulty. In the first mazes,

simple rules in the form ”If you see an enemy to your

left, move right” are enough to construct successful con-

trollers. As students progress and get more difficult

mazes, higher-level programming constructs and rea-

sonings are required. Teachers estimate the difficulty of

newly added mazes by weighting the kind of program-

ming constructs required and the projected cost in time

for students to solve mazes. Although this may sound

reasonable, actual difficulty for students may be very

different.

When students develop controllers, the system logs

all development progress. This progress includes all de-

veloped versions of the controller, their execution re-

sults, and the time required to develop them. All this

information lets us construct a progression graph over

time, using partial scores as main measure. If we only

consider the maximum score achieved at every time, it

is a valid easiness function (Et). Therefore, applying

definitions of easiness and difficulty from section 4.4

yields accurate difficulty measures.

After adding progress logged from different students

for each maze, results show average difficulty. Figure

6 shows added results for maze 1-31. This maze was

classified by teachers as level 1, difficulty 1 (out of 4

levels and 5 difficulties). Students solve mazes like 1-

31 at the start of the course. Figure 6 shows that all

students solved 100% of this maze, taking 0.6 hours

at most. Their progress was more or less linear, as Et

shows. This means that there are no apparent hidden

problems while solving the maze.

A little bit more complex example is shown in Figure

7. This second example was classified as level 1, diffi-

culty 5 by teachers: they needed 0.40 hours on average

to achieve 100% and estimated that students would take

4 times that. Again, all students achieve 100% score for
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Fig. 6 Maze 1-31, estimated as level 1, difficulty 1 by teachers. 16 students were assigned this maze and all achieved 100%
marks after 0.6 hours.

this maze, but taking up to 5.63 hours of work. Interest-

ingly, students develop controllers that eat up to 76% of

the dots rapidly (0.45 hours) though after that, hours

of work are required to find improvements to that.

If we look at the structure of the maze, there are 3

enemies that move up-to-down. With many sets of sim-

ple rules to follow the dots, eating exterior and some in-

terior dots is easy and fast. However, more interior dots

are much more difficult to eat without coming across

an enemy. Much more developed strategies and rules

are required for that. Sometimes, even redesigning so-

lutions from scratch to try following a different path

are required. This explains the short period required

for the initial 76% score, and the long period for the

additional 14%. Explanations like this are not possible

out of a standard unidimensional difficulty value.

Figure 8 shows measures taken for maze 2-48, classi-

fied as level 2, difficulty 2. In this case, teachers needed

0.33 hours to achieve 100% and estimated that students

would take between 4 and 5 times that. Real measures

of difficulty show that not all the students achieved

100% score in this maze, and some of them took up

to 4.44 hours for their final controller. In this case, the

failure of some students to achieve 100% is explained

by the wall that blocks some dots, that has to be de-

stroyed getting and using the white ball. Some students

did not managed to get the ball, so they ate as much

dots as possible, though not all.

It is also interesting to note the curve described by

student progress. Students face a level 2 maze like this

after solving three level-1 mazes. Therefore, they have

experience and code from previous mazes when they

start solving this one. That explains the ultra-fast 50-

60% achievement. They use code from previous con-

trollers for this maze and, without having to develop

anything new, their code gets all that dots. However,

solving the rest of the maze is much harder, as the Et

progress clearly shows.

5.4 Making The PLMan Learning System adaptable

The PLMan Learning System includes more than 400

different mazes. From all these mazes, around 200 have

enough data to add and generate representative graphs

like those from Section 5.3. All these mazes have been

graphed. These graphs have been and are being anal-

ysed by teachers to better understand what the main

problems and difficulties are. This first step has led to

most of these mazes to be re-classified.

This manual adaptation is also used as a first step

for future automatic adaptation. Careful analysis yields

better characterization of the features that describe the

maps. This expert information will be matched against

difficulty graphs to tag them and to train Machine Learn-

ing algorithms. Trained algorithms will be able to auto-

matically tag mazes for potential problems directly out

of graph information.

As a final step in the process, mazes will be clustered

using difficulty graphs and generated tag information.

These clusters will then be sorted into levels. Finally,

whenever students choose their desired difficulty for a

level, Machine Learning algorithms will learn to assign

them the most promising mazes in that cluster, using
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Fig. 7 Maze 1-59, estimated as level 1, difficulty 5 by teachers. 17 students were assigned this maze and all achieved 100%
marks after 5.63 hours.

students’ progress information, clusters, difficulty graph

information and generated tags.

6 Conclusions and further work

This paper stated as its hypothesis (Section 3) that

there are better ways to define and measure the diffi-

culty of learning activities. To prove this hypothesis we

proposed a new definition, and a way to measure dif-

ficulty. We also used a practical case to illustrate the

value of the proposal.

The proposed definition has been designed mathe-

matically with a list of desired properties in mind. The

definition relates difficulty to progress over time. Effort

is modeled as the required time to achieve a specific

score value. Difficulty can then be measured, graphed,

analyzed and compared visually, yielding much new in-

sights in the process. The proposed definition takes into

account progress towards solving a learning activity,

based on the score a learner achieves when performing

the activity.

The proposed definition has intrinsic limitations: ac-

tivities have to meet some requirements to be measur-

able. Activities must be performed and measured over

time and a score function is required to measure pro-

gress. The score function must have upper and lower

boundaries and be non-strictly increasing: achieved score

cannot be lost.

The proposed definition has also many interesting

advantages. Being drawable, it can show progress over

time. Graphs let teachers quickly and easily detect sin-

gularities and hurdles of learning activities, and also

skills, problems and features of learners. Different parts

of learning activities can be identified: most difficult

parts produce valleys and easy parts produce pronounced

slopes, all of them becoming measurable. Activities can

be compared using their graphs, yielding a much accu-

rate knowledge about which ones require more effort,

and differences in the distribution of effort over time.

These advantages make the proposed definition of diffi-

culty a powerful tool for analyzing and comparing learn-

ing activities.

Although formal, the definition is also practical. PL-
Man Learning System has been used as a practical case

to illustrate the use of the definition. The main element

of the system is PLMan: an educational game to learn

Computational Logic. PLMan is a Pac-Man-like game

in which learners use Prolog programs to control the

main character. The score depends mainly on the num-

ber of eaten dots. So, more difficult mazes are those

that require a higher effort from learners to construct a

Prolog program that eats the maximum number of dots.

This score fulfills the required properties to apply the

proposed definition of difficulty. After measuring diffi-

culty, resulting graphs yield predicted rich interpreta-

tion of hurdles, singularities and features of the mazes.

Some examples have been shown to illustrate how easy

and clearly graphs yield these and other insights into

activities and learners’ progress.

The final aim of the definition is the construction

of an adaptive learning system that adjusts difficulty

to the learners’ skills. Present adaptations in the con-

text of the PLMan Learning System are made manu-
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Fig. 8 Maze 2-48, estimated as level 2, difficulty 2 by teachers. 18 students were assigned this maze and all achieved 94.5%
marks after 4.44 hours.

ally, however show their value. Further work is required

to automate these adaptations and to develop proposed

and new ones. Next steps will aim to automate all these

proposals inside the PLMan Learning System.
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