Skip to main content
Log in

On the use of non-linear transformations in Stochastic Volatility models

  • Original Article
  • Published:
Statistical Methods and Applications Aims and scope Submit manuscript

Abstract

Stochastic Volatility models have been considered as a real alternative to conditional variance models, assuming that volatility follows a process different from the observed one. However, issues like the unobservable nature of volatility and the creation of “rich” dynamics give rise to the use of non-linear transformations for the volatility process. The Box–Cox transformation and its Yeo–Johnson variation, by nesting both the linear and the non-linear case, can be considered as natural functions to specify non-linear Stochastic Volatility models. In this framework, a fully Bayesian approach is used for parametric and log–volatility estimation. The new models are then investigated for their within-sample and out-of-sample performance against alternative Stochastic Volatility models using real financial data series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson T, Bollerslev T, Lange S (2003) Modeling and forecasting realized volatility. Econometrica 71: 579–625

    Article  MathSciNet  Google Scholar 

  • Atkinson AC (1985) Plots, transformations, and regression. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Berg A, Meyer R, Yu J (2004) The DIC as a model comparison criterion for stochastic volatility models. J Bus Econ Stat 22: 107–120

    Article  MathSciNet  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B 26: 1–78

    MathSciNet  Google Scholar 

  • Box GEP, Jenkins GM (1973) Some comments on a paper by Chatfield and Prothero and on a review by Kendall. J R Stat Soc Ser A 135: 1–78

    Google Scholar 

  • Brooks S, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7: 434–455

    Article  MathSciNet  Google Scholar 

  • Chib A, Nardari F, Shephard N (2002) Markov chain Monte Carlo methods for stochastic volatility models. J Econom 108: 181–316

    Article  MathSciNet  Google Scholar 

  • Clark PK (1973) A subordinate stochastic process model with fixed variance for speculative prices. Econometrica 45: 135–156

    Article  Google Scholar 

  • Davidson R, McKinnon JG (1993) Estimation and inference in econometrics. Oxford University Press, New York

    MATH  Google Scholar 

  • Draper NR, Cox DR (1969) On distributions and their transformations to normality. J R Stat Soc Ser B 31: 472–474

    MATH  MathSciNet  Google Scholar 

  • Fleming J, Ostdiek B, Whaley RE (1995) Predicting stock market volatility: a new measure. J Futures Markets 15: 265–302

    Article  Google Scholar 

  • Galbraith JW, Kisinbay T (2005) Content horizons for conditional variance forecasts. Int J Forecast 21: 249–260

    Article  Google Scholar 

  • Gallant AR, Hsieh D, Tauchen G (1997) Estimation of stochastic volatility models with diagnostics. J Econom 81: 159–192

    Article  MATH  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis. Chapman and Hall, London

    MATH  Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7: 457–511

    Article  Google Scholar 

  • Geweke J (1994) Comments on bayesian analysis of stochastic volatility. J Bus Econ Stat 12: 371–417

    Article  Google Scholar 

  • Giacomini R, White H (2006) Tests of conditional predictive ability. Econometrica 74: 1545–1578

    Article  MATH  MathSciNet  Google Scholar 

  • Harvey AC, Ruiz E, Shephard N (1993) Multivariate stochastic volatility models. Rev Econ Stud 61: 247–264

    Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using markov chains and their applications. Biometrika 57: 97–109

    Article  MATH  Google Scholar 

  • Higgins ML, Bera A (1992) A class of nonlinear ARCH models. Int Econ Rev 62: 137–158

    Article  Google Scholar 

  • Hinkley DV (1975) On power transformations to symmetry. Biometrika 62: 101–112

    Article  MATH  MathSciNet  Google Scholar 

  • Hol E, Koopman SJ (2002) Forecasting the variability of stock index returns with stochastic volatility models and implied volatility. Tinbergen Institute Discussion Papers 00-104/4, Tinbergen Institute

  • Hull J, White A (1987) Hedging the risk from writing foreign currency options. J Int Money Finance 6: 131–152

    Article  Google Scholar 

  • Jacquier E, Polson NG, Rossi PE (1994) Bayesian analysis of stochastic volatility models (with discussion). J Bus Econ Stat 12: 371–417

    Article  Google Scholar 

  • Jacquier E, Polson NG, Rossi PE (2004) Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. J Econom 122: 185–212

    Article  MathSciNet  Google Scholar 

  • Kass RE, Carlin BP, Gelman A, Neal R (1998) Markov chain monte carlo in practice: a roundtable discussion. Am Stat 52: 93–100

    Article  MathSciNet  Google Scholar 

  • Martens M (2002) Measuring and forecasting s&p 500 index-futures volatility using high-frequency data. J Futures Markets 22: 497–518

    Article  MathSciNet  Google Scholar 

  • Patton A (2006) Volatility forecasting comparison using imperfect volatility proxies. Research Paper Series 175, Quantitative Finance Research Center, University of Technology, Sydney

  • Poirier DJ (1978) The use of the box–cox transformation in limited dependent variable models. J Am Stat Assoc 73: 284–287

    Article  Google Scholar 

  • Shephard N (1994) Partial non-gaussian state space. Biometrika 81: 115–131

    Article  MATH  MathSciNet  Google Scholar 

  • Shephard N, Pitt MK (1997) Likelihood analysis of non-gaussian measurement time series. Biometrika 84: 653–667

    Article  MATH  MathSciNet  Google Scholar 

  • Spiegelhalter DJ, Best N, Carlin BP, var den Linde A (2002) Bayesian measurements of model flexibility and fit (with discussion). J R Stat Soc B 64: 583–639

    Article  MATH  Google Scholar 

  • Tsiotas G (2002) Nonlinearities in stochastic volatility models. Ph.D thesis, University of Essex, UK

  • Tsiotas G (2007) On the use of the Box–Cox transformation on conditional variance models. Finance Res Lett 4: 28–32

    Article  Google Scholar 

  • Van Zwet WR (1964) Convex transformations of random variables. Mathemetisch Centrum, Amsterdam

    MATH  Google Scholar 

  • Yeo IK, Johnson RA (2000) A new family of power transformations to improve normality or symmetry. Biometrika 87: 954–959

    Article  MATH  MathSciNet  Google Scholar 

  • Yu J, Yang Z, Zhang X (2006) A class of nonlinear stochastic volatility models and its implications for pricing currency options. Comput Stat Data Anal 51: 2218–2231

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang X, King ML (2007) Box–Cox stochastic volatility models with heavy-tails and correlated errors. J Empir Finance (forthcoming)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Tsiotas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsiotas, G. On the use of non-linear transformations in Stochastic Volatility models. Stat Methods Appl 18, 555–583 (2009). https://doi.org/10.1007/s10260-008-0113-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-008-0113-9

Keywords

Navigation