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Abstract
In some clinical trials and epidemiologic studies, investigators are interested in knowing whether
the variability of a biomarker is independently predictive of clinical outcomes. This question is
often addressed via a naïve approach where a sample-based estimate (e.g., standard deviation) is
calculated as a surrogate for the “true” variability and then used in regression models as a
covariate assumed to be free of measurement error. However, it is well known that the
measurement error in covariates causes underestimation of the true association. The issue of
underestimation can be substantial when the precision is low because of limited number of
measures per subject. The joint analysis of survival data and longitudinal data enables one to
account for the measurement error in longitudinal data and has received substantial attention in
recent years. In this paper we propose a joint model to assess the predictive effect of biomarker
variability. The joint model consists of two linked sub-models, a linear mixed model with patient-
specific variance for longitudinal data and a full parametric Weibull distribution for survival data,
and the association between two models is induced by a latent Gaussian process. Parameters in the
joint model are estimated under Bayesian framework and implemented using Markov chain Monte
Carlo (MCMC) methods with WinBUGS software. The method is illustrated in the Ocular
Hypertension Treatment Study to assess whether the variability of intraocular pressure is an
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independent risk of primary open-angle glaucoma. The performance of the method is also assessed
by simulation studies.
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1 Introduction
In many clinical trials and epidemiologic studies, information is gathered on both time to
event (survival data) and repeated measures of biomarkers (longitudinal data). One primary
goal is to see the prognostic effect of a biomarker on survival outcome. This is often
modeled in the framework of Cox proportional hazards model where the biomarker is
treated as a time-dependent covariate (Cox 1972). In some studies, the variability of a
biomarker, in addition to its mean level and/or systematic trend over time, is also predictive
of clinical outcomes. In the Honolulu Heart Program, for example, Iribarren et al. (1995)
found that the subjects whose weight fluctuated most had a significantly higher risk of death
from cardiovascular causes, non-cardiovascular and non-cancerous causes, and death from
all causes. Grove et al. (1997) found that the variability of systolic blood pressure is an
independent risk factor for the coronary heart disease. In many applications, the effect of
biomarker variability is analyzed via a two-step approach where simple descriptive statistics
such as standard deviation are first calculated for each individual and then used in regression
models as covariates assumed to be free of measurement error. Such a naïve approach
possesses some practical advantages. By using the sample-based estimates as time-
independent covariates, for instance, one can take advantage of the wealth of theory that
have been developed and software that have been written for the conventional Cox model. In
addition, the method can produce tangible descriptive statistics that have a natural
interpretation for each individual. However, this approach does not use the information in
longitudinal data efficiently as it converts the repeated measures into a few summary
statistics. More seriously, the method ignores the inherent measurement error in sample-
based estimates. It is well known that the error in covariates can bias parameter estimates
downward to null values and thus may mislead one into believing that an actually useful
biomarker is not related to the outcome (Prentice 1982;Hughes 1993). Given the relatively
small number of visits in many longitudinal studies, the influence of measurement error can
be substantial, especially in assessing the effect of biomarker variability.

Many methods have been proposed to model longitudinal covariates measured with error
and the joint analysis of survival and longitudinal data has received substantial attention in
recent years (Hogan and Laird 1997). In general, a joint model consists of two sub-models, a
measurement model for longitudinal data and an intensity model describing the time to
event, and the two models are linked via shared parameters. There are broadly two classes of
joint models, namely selection models and pattern-mixture models, depending on how the
joint distribution is factorized (Little 1995). The selection model, though computationally
intensive, is more prevalent in practice because of its intuitive construction and easy
interpretation. Many of the selection models (Faucett and Thomas 1996; Wulfsohn and
Tsiatis 1997; Vonesh et al. 2006) use the conventional linear mixed model (Laird and Ware
1982) to characterize the longitudinal data by a few time-invariant random effects, so that
the subject-specific evolution follows a “smooth” trajectory over time. Henderson et al.
(2000) extend the above models by introducing a serial correlation into the measurement
error and thus allow the trend to vary over time. Guo and Carlin (2004) develop a fully
Bayesian version of Henderson et al. (2000). Xu and Zeger (2001) and Lin et al. (2002)
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propose joint models for survival data and multiple longitudinal data. Tsiatis and Davidian
(2004) have provided an excellent overview of recent work on joint analysis. In most
models, however, the longitudinal process is linked to the survival process only via random
intercept and slope, while assuming all subjects sharing a common variance–covariance
structure.

In this paper, we propose a random-effect-dependent selection model to assess the impact of
biomarker variability on survival outcome. Our study is motivated by the Ocular
Hypertension Treatment Study (OHTS) (Gordon et al. 1999) which is a multicenter
randomized trial to evaluate the safety and efficacy of topical ocular hypotensive medication
in delaying the onset of primary open-angle glaucoma (POAG). POAG is among the leading
causes of blindness in US and worldwide and, as of today, intraocular pressure (IOP) is the
only factor that can be modified by current treatment. Although more and more studies
including OHTS have confirmed that a decrease in mean IOP level can reduce the risk of
developing POAG, the findings from major prospective clinical trials about the impact of
IOP fluctuation on POAG remain controversial (Bengtsson et al. 2006; Caprioli and
Coleman 2008; Miglior et al. 2007). In this paper, we propose a joint model for this
question. Specifically, the time to POAG is described by a full parametric Weibull
distribution, the trajectory of IOP is fit using a linear mixed model that incorporates patient-
specific variance (Lyles et al. 1999), and the two sub-models are linked via the shared
patient-specific random effects. This paper is organized as follows. Section 2 describes
model construction and parameter estimation. In Sect. 3, we illustrate the method in the
Ocular Hypertension Treatment Study (OHTS). Section 4 assesses the method by a few
simulation studies. Finally, Sect. 5 concludes with a discussion.

2 Methods
Suppose there are N subjects. Let Ti = min(Di, Ci) be the observed survival time for the ith
subject, where Di is the potential failure time and Ci is the potential censoring time
independent of Di. Let Δi be the corresponding survival indicator, with Δi = 1 if Ti = Di and
Δi = 0 otherwise. Let Yij denote the longitudinal data for ith individual at time tij. In this
paper, we assume that all subjects share a common follow-up schedule, with {tij} = {t1, t2,
…, tJ} and tij ≤ Ti. Finally, we denote the baseline covariates predictive of longitudinal and
survival processes as Xi(t) and Zi(t) respectively, which may or may not be the same.

2.1 Joint model of longitudinal and survival data
The proposed joint distribution is a random-effect-dependent selection model which consists
of two associated sub-models, a measurement model for longitudinal data and an intensity
model for survival data. The two sub-models will be conditionally independent given the
shared latent random effects and covariates. For the measurement model, the trajectory of
longitudinal data is described by a linear mixed model that incorporates patient-specific
variance (Lyles et al. 1999),

(1)

where β is a vector of parameters for fixed effects and Xi(t) is the corresponding covariates.
Ii and Si are the patient-specific random intercept and slope as in the conventional linear
mixed model (Laird and Ware 1982). Vi represents the “true” within-subject variability

which follows a log-normal distribution with mean μV and variance . That is, unlike the
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conventional linear mixed models, model (1) explicitly allows patient-specific variance.
Each of the patient-specific random effects is an independent and identically distributed
variable. The term β′Xi(t) reflects the mean response, while W1i = Ii + Sitij + eij can be
viewed as the “true” individual-level trajectory after adjusting the overall mean response.

When the parameter  becomes 0, model (1) reduces to a linear mixed model with a
homogenous variance (Lyles et al. 1999).

Turning to the intensity model, the hazard of event at time t is specified as a proportional
hazards form,

(2)

where λ0(t) is the baseline hazard when all the covariates are 0, α′Zi(t) represents the effects
of (possibly time-dependent) explanatory variables, and the term W2i = γ1Ii + γ2Si + γ3 log
(Vi) induces association between survival and longitudinal processes. Because our previous
analysis (unpublished data) with a full parametric Weibull model showed an adequate fit to
the OHTS data, we choose λ0(t) = ρt(ρ−1), where ρ is the shape parameter of Weibull
distribution (with ρ > 1 for a monotone increasing hazard and ρ < 1 for a monotone
decreasing hazard).

2.2 Parameter estimation
The unknown parameters in the proposed model are estimated under a Bayesian framework
using Markov chain Monte Carlo (MCMC) methods (Gelman et al. 2003). When the
conditional distribution of each parameter given others is relatively easy to specify, the
MCMC method allows one to work on even very complex models. The full joint distribution
is specified in the form of,

with , the unknown parameters as given in models (1) and (2).
Prior distributions must be specified for all unknown parameters when data are analyzed
from a Bayesian perspective. A thorough sensitivity analysis with the OHTS data has been
performed in this regard.

Specifically, we use a proper prior for each set of unknown parameters (e.g., a Gaussian
distribution for the fixed effects, an Inverse Gamma distribution for the random effects, and
a Gamma distribution for the Weibull shape parameter), but try out different levels of
variability (with variances of 1,000, 100, 10, and 1 for each distribution). The results
indicate that estimates of the fixed effects (β, α, γ, and μV) are very robust and hence a rather

vague prior is chosen. For the random effects , especially , a prior of
Inverse Gamma (0.001, 0.001) sometime causes numerical difficulties in sampling. The

reason may be that  has a relatively small point estimate in the OHTS data . We
therefore choose a less vague prior for the random effects. Among all the parameters, ρ is
very sensitive and has to take a rather informative prior. However, our choice is reassured by
the fact that similar results are obtained when an exponential distribution (ρ = 1) is fit
instead. In short, following prior distributions are specified and all the parameters are
assumed to be mutually independent,
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2.3 Marginal models
To compare with joint analysis, models (1) and (2) are also fit to longitudinal and survival
data separately. The marginal longitudinal model is estimated using the MCMC methods as
outlined above. For the marginal survival model, we take a two-step approach and use the
variance of residuals from a simple linear regression as a surrogate for the “true” patient-
specific variability.

Since the use of two-step approach is so prevalent in medical applications, a simple
simulation study is also conducted in Sect. 4 to compare the performance of different
estimates for biomarker variability. One of the estimates is the posterior mean of patient-
specific variance from model (1). However, this empirical Bayes predictor is known for its
unattractive property of over-shrinking the estimates toward population mean. Hence, we
also calculate a constrained Bayes estimate that is designed to combat against over-
shrinkage and produce estimates whose distribution more closely matches the true underline
parameters (Ghosh 1992). Let V̂EBi denote the empirical estimate of the patient-specific
variance for ith individual, and let var(V̂EBi) be the corresponding variance of V̂EBi, then the
constrained Bayes estimate (V̂CBi) can be calculated as,

2.4 Computational implementation
Parameters in the joint model and the marginal longitudinal model are estimated using the
Gibbs sampling built into the noncommercial statistical software WinBUGS
(http://www.mrc-bsu.cam.ac.uk/bugs/). The estimation procedure is implemented with the
R2WinBUGS library in the statistical package R (Sturtz et al. 2005). We use three parallel
MCMC sampling chains with difference starting values. The convergence of each chain is
monitored by the trace plots and the diagnostic statistics of Gelman et al. (2003). The
posterior mean of the parameters are based on 15,000 iterations following a 15,000-iteration
of burn-in period. The marginal survival model is fit using the Design library in R (Harrell
2001). Because WinBUGS and R have different parameterizations for Weibull distribution,
the estimates from marginal survival models have been re-parameterized to facilitate a fair
comparison.

3 Motivating example: ocular hypertension treatment study (OHTS)
3.1 Description of follow-up IOP

In OHTS, 1636 participants who had ocular hypertension were randomized to either an
observation group or treatment using commercially available topical ocular hypotensive
medication. Follow-up visits were scheduled every 6 months from the date of
randomization, and the primary outcome was the time to the development of POAG as
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evidenced by reproducible visual field abnormality or clinically significant reproducible
optic disc deterioration. At the end of study, 104 (12.7%) out of 819 participants in the
observation group developed POAG while the incidence rate was 5.4% (44 of 817) among
those in the treatment group. Detailed results of OHTS have been described elsewhere (Kass
et al. 2002). In this paper, we focus on the relationship between follow-up IOP and time to
POAG, especially on the question whether the long-term fluctuation of IOP is predictive of
POAG. These 1618 participants who had at least 1 follow-up visit comprise our study
cohort. Follow-up IOP (in mmHg) at each visit is the average of two eyes. Only pre-POAG
IOP values are included in this study and the follow-up for each patient is ended at the date
of POAG onset or last visit, whichever occurs first. The median follow-up time is 6.6 years
(with a range of 0.5–8.1 years), the median number of post-randomization IOP measures per
subject is 12 (with a range of 1–16), and more than 97% subjects have at least 3 visits (Table
1).

A simple linear regression of IOP against time is fit to each subject who has at least 3 IOP
values. Figure 1 presents the estimated intercept, slope, and (logarithm transformed)
variance of residuals from these regression models. In each plot, smoothed cubic splines are
also imposed for participants with and without POAG respectively. The plots show that,
comparing to those who have developed POAG, the POAG-free participants tend to have
lower initial IOP levels, smaller slopes, and less variability. Because high IOP is an
eligibility criterion in OHTS, the initial values (intercepts) are more likely to suffer from
“regression to the mean”. As such, 1-year after randomization is actually used as the time 0
for all the regression models on IOP in this paper.

3.2 Joint analysis of follow-up IOP and time to POAG
For illustration, treatment group (GRP=0 for observation group and GRP=1 for medication
group) and follow-up IOP are included as the only covariates in our analysis. Table 2 shows
7 alternative joint models for the OHTS data and a full description of model selection is
given in Sect. 3.4. Based on the fit statistics, Model V and Model VII have similar
performance and provide the best fit to OHTS data. The parameter estimates (posterior
means) and their 95% posterior intervals from both models are presented in Table 3, where
γ1, γ2 and γ3 represent the effects of patient-specific intercept, slope and variance
respectively. Because γ3 (which is absent in Model V) is significantly different from 0 and
the two models produce almost identical estimates in all other parameters, Model VII is
chosen as the final model,

(3)

(4)

where  and  are treatment-modified random intercept and slope
respectively.

The estimates of β0 and β1 show that the 1-year IOP level in the treatment group
(19.7mmHg) is significantly lower than that in the observational group (24.1mmHg). The
estimates of β2 and β3 reveal that, in average, follow-up IOP decreases over time in both
groups but the between-group difference (−0.25mmHg/year in the medication group versus

−0.20 mmHg/year in the observation group) is not significant. The estimated  (0.53 with a
95% interval of 0.48–0.59) supports the assumption of heterogeneous variance in follow-up
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IOP. There is also a strong evidence for the effects of random intercept, slope, and variance
on POAG. For every 1-SD (σI, σS, and σV) increase in intercept, slope, and log(variance), for
example, there will be 51, 42, and 48% increase in the risk of developing POAG
respectively. The WinBUGS model specification of Model VII is given in the Appendix.

3.3 Comparison between joint models and marginal models
To compare with the joint analysis, the follow-up IOP and time to POAG are also analyzed
separately using the two sub-models in Model VII. Two sets of marginal models are fit, one
for subjects with 3 or more visits and the other for subjects with 5 or more visits. The joint
models are also fit in the corresponding subsets of data (Table 3). We see that joint models
give consistent estimates across different datasets and the estimates from marginal
longitudinal models are almost identical to their counterparts in the joint models. However,
the estimates from marginal survival models, especially γ3, are very sensitive to data
selection. In the model including subjects with ≥3 visits, for example, γ3 shows a trend
toward a significant negative effect (γ3 = −0.16, with 95% interval of −0.35 to 0.02). The
other model only excludes less than 5% of subjects from previous data, but γ3 becomes
significantly greater than 0 (γ3 = 0.25, with 95% interval of 0.01–0.48). Two issues may
jointly contribute to such a dramatic change in γ3. One is the inherent measurement error in
the sample-based estimates. Since measurement error in covariates is known to bias
estimates toward null values, this may partially explain the underestimation in γ2. The other
problem is the informative dropout. That is, these subjects with the highest risk are more
likely to fall out of study earlier and thus are deprived the chance to show fluctuation. This
problem will be further explored in the simulation studies.

3.4 Model selection
In the analysis of OHTS data, 7 alternative models are constructed (Table 2),

• I : W1i = Ii + eij,

W2i = 0, and ;

• II : W1i = Ii + Sitij + eij,

W2i = 0, and ;

• III : W1i = Ii + Sitij + eij, W2i = 0;

• IV : W1i = Ii + Sitij + eij, W2i = γ1Ii;

• V : W1i = Ii + Sitij + eij, W2i = γ1Ii + γ2Si;

• VI : W1i = Ii + Sitij + eij, W2i = γ1Ii + γ3 log(Vi);

• VII : W1i = Ii + Sitij + eij, W2i = γ1Ii + γ2Si + γ3 log(Vi);

where W1i and W2i are the latent Gaussian processes in the longitudinal and survival sub-

models respectively, with .

Specifically, for the longitudinal sub-model we start with simple models that include only
random intercept (Model I) or random intercept and slope (Model II). After adding patient-
specific variance (Model III), we observe a dramatic improvement in model fit. As such,
patient-specific variance is included in all the subsequent joint models. Regarding the
survival sub-model, in the first 3 models we assume that the survival process is associated
with longitudinal process only via common baseline covariates (with W2i = 0), but all 3
models show a very poor fit. Starting from Model IV, we therefore assume that the
association is induced by patient-specific random effects as well. To facilitate an easy
prediction of future subjects (whose treatment information may be absent), we also assume
that treatment itself has no direct effect on time to POAG. Rather, we assume that treatment
will modify IOP trajectory which in turn influences the risk of developing POAG.
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Consequently, treatment-modified intercept and slope are actually used in the survival sub-
models.

The best model is selected using Deviance Information Criterion (DIC), a Bayesian
generalization of Akaike’s Information Criterion (Spiegelhalter et al. 2002). DIC consists of
two components, DIC = D ̅ + ρD. D ̅ represents the posterior mean of deviance and measures
the goodness-of-fit. ρD is the expected effective number of parameters and hence measures
model complexity. Since a smaller D ̅ indicates a better fit and a smaller ρD indicates a
parsimonious model, the model with smallest DIC is preferred. Similar to AIC, however,
there are no hard and simple criteria on what would constitute a significant difference in
DIC. Following rule of thumb is often used for model selection in practice (Spiegelhalter et
al. 2002). A difference larger than 10 is an overwhelming evidence to rule out the model
with higher DIC. While a difference between 5 and 10 can be regarded as substantial
evidence favoring the model with smaller DIC, a difference less than 5 usually requires
judgment calls with other information. Based on DIC alone, therefore, Models V and VII
have similar performance and provide the best fit to the OHTS data (Table 2).

4 Simulation studies
Two sets of simulation studies are conducted to assess the performance of the proposed
method. The first simulation is designed to compare joint analysis with marginal models.
The second simulation compares different estimates of biomarker variability. Each
simulation has 100 random samples and each sample includes 300 subjects.

4.1 Simulations comparing joint models and marginal models
For each individual, the survival time Ti and longitudinal data Yij are generated from
following two models respectively,

where . Most
of the parameters are chosen after OHTS data except a few modifications listed below.

• To make simulation feasible, each dataset will only include 300 individuals with a
maximum of 7 longitudinal measurements per subject.

• Follow-up visits are scheduled at times t = {0, 0.25, 0.5, 1, 3, 5, 7}, so that roughly
10% subjects are excluded in the marginal survival analysis because of inadequate
follow-up visits.

• Censoring is introduced from a uniform distribution U [0, 8] that is independent of
survival time.

• The mean slope (β1) and variance of random slope  are now β1 = −0.5 and

 (rather than −0.20 and 0.11 as in OHTS), so that the current sample size
could differentiate them from 0.

• The intercept in the survival model (α0) is chosen to give approximately 50% event
rate to ensure similar power for survival analysis as in OHTS.

• We also add a new covariate (X) which has direct effect on both survival time (α1 =
0.5) and longitudinal data (β2 = 1.0).
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Data are generated under two scenarios: (A) biomarker variability not associated with
survival (γ3 = 0); (B) biomarker variability associated with survival (γ3 = 0.5). Each dataset
is then analyzed using the joint model and two sub-models respectively. The parameter
estimates and their 95% posterior intervals are presented in Table 4 and summarized below.

• The joint models perform very well in both scenarios. All the parameters are
accurately estimated except that the shape parameter (ρ) is slightly overestimated
and γ2 has a relatively wide 95% posterior interval.

• The marginal longitudinal models produce consistent estimates as their counter-
parts in the joint models except that β1 is significantly underestimated. This finding
is consistent with Henderson et al. (2000), who found that informative drop-out can
attenuate the observed trend over time. That is, subjects with higher risk are more
likely to fall out of study earlier, and the lower risk subjects (who tend to have
smaller β1) will gradually dominate the data as time goes by.

• The marginal survival models have a very poor performance. A totally opposite
conclusion is reached for γ3 and a severe downward bias is observed in the other
parameters, especially γ2. Figure 2 is a graphical presentation of the estimated γ3
from the first 25 simulated data under scenarios A (γ3 = 0) and B (γ3 = 0.5)
respectively, with the effects represented as restricted cubic splines (Harrell 2001).
The result shows that the estimates using sample-based log(Vi) (dotted lines) are
apparently deviated from those based on true log(Vi) (solid lines).

4.2 Simulations comparing different estimates of biomarker variability
In the second simulation, only longitudinal data are generated from a simple model,

where . Data are generated

under three scenarios: (A) homogeneous variance and fixed length of follow-up (  and

Ti = 5); (B) heterogeneous variance and fixed length of follow-up (  and Ti = 5); (C)

heterogeneous variance and varied length of follow-up (  and varied Ti). Scenario C
mimics a study with informative dropout in that these subjects with larger random effects
are more likely to have a shorter follow-up. Specifically, Ti follows a binomial distribution
with a size of 5 and a success rate of Pi = exp{−0.15 · (Ii + Si + log(Vi)}(with Ti = 5 if Pi >
1.0), which results in roughly 3% subjects with 1 visit and 10% subjects with 6 visits.

Four estimates of variability are calculated for each individual: the usual sample-based
standard deviation (SDsample), the SD of residuals from simple linear regression fit to each
subject (SDresidual), the model-based empirical Bayes estimate (SDEB), and the constrained
Bayes estimate (SDCB) as described in Sect. 2.3. The performance is summarized as the

average bias of the estimated over the true values, with .

• SDsample severely overestimates the true variability under all scenarios, with an
average bias of −71, −89, and −45% for scenarios A, B, and C respectively. This is
as expected because the sample-based SD does not remove the systematic trend
over time.
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• SDresidual tends to underestimate the true variability (with an average bias of 16, 16,
and 28% for scenarios A, B, and C respectively), especially in subjects with less
follow-up visits.

• SDEB (an average bias of <1%, −5%, and −3%) and SDCB (an average bias of
<1%, −5% and −4%) have similar performance under all scenarios. An interesting
observation is that, for subjects whose simple estimates cannot be reliably obtained
(i.e., with only 1 or 2 visits), the model-based estimates can still provide a
reasonable approximation.

5 Discussion
In this paper, we propose a general method for joint analysis of longitudinal data and
survival data, specifically focusing on whether the variability of longitudinal data is
predictive of survival outcome. Our method has some similarity with the joint modeling
approach by Henderson et al. (2000) and Guo and Carlin (2004), who developed a flexible
joint model that adds a frailty into survival sub-model to accommodate any effect that
cannot be explained by the shared random effects. In contrast, our joint model directly
relates the variability of longitudinal data to the survival outcome by incorporating a patient-
specific variance. This model possesses some attractive features on modeling biomarker
variability. Comparing to the frailty-model framework, the proposed regression approach for
variability is relatively straightforward to interpret. When the proportional hazards
assumption is holding, for example, the effect of biomarker variability on clinical outcome
can be readily quantified as hazard ratio (e.g., HR = exp(γ3)) which is familiar to clinical
investigators. The model also provides the possibility of an individualized prediction by
incorporating patient-specific random effects (Lyles et al. 2007).

The method is illustrated with the OHTS data and also evaluated by a few simulation
studies. The result shows that the joint model can produce more accurate estimation under
various scenarios. In contrast, the widely used two-step approach is very sensitive to the data
selection. The discrepancy between joint analysis and naïve approach could be reduced
when the analysis is confined to subjects with longer follow-up times. However, this may
result in considerable loss of information and even biased estimates. In the OHTS data, for
example, the joint model and naïve approach will reach consistent conclusion when the
models are fit to subjects with ≥5 visits, but this will exclude nearly 27% of the subjects
who have developed POAG. Substantively, our results show that IOP variability is
independently predictive of POAG. This finding is consistent with the recent report by
Caprioli and Coleman (2008) whose analysis is based on subjects with at least 3-year
follow-up. However, the primary purpose of current analysis is for illustration of the method
and we include treatment and IOP as the only covariates. A more complete analysis is in
progression which will adjust all relevant baseline covariates and also include an
independent dataset as an external validation.

Our method is implemented using the Markov chain Monte Carlo (MCMC) methods built in
the free-download software WinBUGS. This enables very complex models to be fit rather
straightforwardly. The availability of the full posterior estimates for the random effects not
only provides a useful tool to gain insight into the model construction, but also permits the
possibility of a patient-specific prediction for future cases (Lyles et al. 2007). The Deviance
Information Criterion (DIC) facilitates an easy comparison among various complex but
realistic models that do not need to be nested. However, all these benefits are not gained for
free. One limitation of the proposed method is the intensive computation. In the analysis of
OHTS data (N=1,618), each model takes approximately 4 h when using 3 parallel chains
with 30,000 iterations each. To make a simulation study feasible, we use a moderate sample
size (N=300) and it still takes about 30 min for each replicate. Therefore, each simulation
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only includes 100 replicates. The other limitation of our method is the potential influence of
the prior distributions for unknown parameters. In this study, a sensitivity analysis has been
performed to ensure that the data, rather than priors, dominate the posterior estimates.
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Appendix

winBUGS specification of the final model to the OHTS data

model {

   for  (i in 1:N)  {
       
        ## For longitudinal sub-model
        ## with 4 fixed effects on Y(t): mu.b0, med, t, med*t
        
        for (j in 1:M) {  
           mu.yy[i,j] <- (beta.y[1] +beta.y[2]*med[i] +b0.i[i]) +
                     (beta.y[3] +beta.y[4]*med[i]+b1.i[i]) *tt[j]
           yy[i,j] ~ dnorm(mu.yy[i,j], tau.vi[i])
        }
        tau.vi[i] <- 1/exp(log.vi[i])

       ## For survival sub-model
       ## 4 effects on S(t): r0, b0i, b1i, log.vi
        
       log(mu.surv[i]) <- r0 + r1 * (beta.y[2]*med[i] + b0.i[i]) +
                               r2 * (beta.y[4]*med[i] + b1.i[i]) +
                               r3 * log.vi[i]
        
       survt[i] ~ dweib(p, mu.surv[i]) I(cent[i],)

         b0.i[i] ~ dnorm(0, tau.b0)
         b1.i[i] ~ dnorm(0, tau.b1)       
       log.vi[i] ~ dnorm(var.alpha, tau.phi)
    }

    ## Use this for Exponential model
    ## p <- 1
    ## Use this for full Weibull model
    p ~ dgamma(1,1)

    var.b0<-1/tau.b0
    var.b1<-1/tau.b1
    var.phi<-/tau.phi

    ## priors
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    ## N(0, 1000) for fixed effects
    ## IG(0.01, 0.01) fir random efffects
    beta. y[1:n.para.y] ~ dmnorm ( beta.y.mu[], Sigma.y[,])
          r0 ~ dnorm(0, 0.001)
          r1 ~ dnorm(0, 0.001)
          r2 ~ dnorm(0, 0.001)
          r3 ~ dnorm(0, 0.001)
   var.alpha ~ dnorm(0, 0.001)
      tau.b0 ~ dgamma(0.01, 0.01)
      tau.b1 ~ dgamma(0.01, 0.01)
     tau.phi ~ dgamma(0.01, 0.01)
  }
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Fig. 1.
Descriptive statistics for follow-up IOP in the OHTS data, where the intercept, slope, and
variance of residuals are estimated from the simple linear regression model fit to each
patient. Smoothed cubic-splines are imposed to those who have developed POAG (broken
line) and those who are free of POAG (solid line) respectively
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Fig. 2.
Estimated effect of biomarker variability on survival (γ3) in the first 50 simulated data,
where the solid lines and dotted lines represent restricted cubic splines of γ3 using the true
log(variance) and sample-based log(variance) respectively. Scenario A γ3 = 0, Scenario B γ3
= 0.5
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Table 1

Number of follow-up visits in the OHTS data

Number of
follow-up visits

Number of
non-POAG (%)

Number of
POAG (%)

Total
(%)

1 16 (1.1%) 2 (1.4%) 18 (1.1%)

2 17 (1.2%) 9 (6.1%) 26 (1.6%)

3 21 (1.4%) 13 (8.8%) 34 (2.1%)

4 16 (1.1%) 15 (10.1%) 31 (1.9%)

≥5 1,400 (95.2%) 109 (73.6%) 1,509 (93.3%)

Total 1,470 (100%) 148 (100%) 1,618 (100%)
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Table 3

Parameter estimates and 95% posterior intervals in the joint models and separate analyses of the OHTS data

Parameters Model V
(with #visit≥1)

Model VII
(with #visit≥1)

Model VII
(with #visit≥3)

Model VII
(with #visit≥5)

Joint models

Longitudinal

  Intercept (β0) 24.14(23.96, 24.32) 24.13(23.96, 24.30) 24.11(23.94, 24.29) 24.06(23.89, 24.24)

  GRP (β1) −4.49(−4.74, −4.24) −4.48(−4.72, −4.23) −4.51(−4.76, −4.25) −4.46(−4.71, −4.22)

  Time (β2) −0.20(−0.23, −0.16) −0.20(−0.24, −0.17) −0.20(−0.24, −0.17) −0.20(−0.23, −0.17)

GRP • Time(β3) −0.05(−0.09, 0.002) −0.05(−0.09, 0.002) −0.04(−0.09, 0.006) −0.05(−0.09, 0.001)

  

5.32(4.90, 5.77) 5.29(4.87, 5.73) 5.20(4.78, 5.64) 5.07(4.66, 5.52)

  

0.11(0.10, 0.13) 0.11(0.10, 0.13) 0.11(0.10, 0.13) 0.11(0.10, 0.13)

  μV 1.43(1.39, 1.48) 1.44(1.40, 1.48) 1.43(1.39, 1.48) 1.43(1.39, 1.47)

  

0.53(0.48, 0.59) 0.53(0.48, 0.59) 0.53(0.48, 0.58) 0.53(0.47, 0.58)

Survival

  Shape (ρ) 1.76(1.51, 2.02) 1.73(1.40, 2.05) 1.96(1.64, 2.26) 2.82(2.35, 3.22)

  α0 −5.47(−5.98, −4.94) −6.32(−7.25, −5.38) −6.80(−7.65, −5.88) −8.83(−9.83, −7.69)

  γ1 0.21(0.15, 0.26) 0.18(0.12, 0.23) 0.17(0.11, 0.23) 0.16(0.10, 0.23)

  γ2 1.09(0.10, 2.13) 1.05(0.07, 2.07) 1.10(0.21, 2.03) 1.15(0.19, 2.16)

  γ3 – 0.54(0.20, 0.87) 0.52(0.23, 0.83) 0.61(0.29, 0.96)

Marginal models

Longitudinal

  Intercept (β0) 24.13(23.96, 24.31) 24.11(23.94, 24.28) 24.06(23.88, 24.23)

  GRP (β1) −4.49(−4.73, −4.24) −4.51(−4.76, −4.26) −4.46(−4.71, −4.22)

  Time (β2) −0.21(−0.25, −0.17) −0.21(−0.24, −0.18) −0.21(−0.24, −0.17)

GRP • Time(β3) −0.04(−0.09, 0.007) −0.04(−0.09, 0.009) −0.04(−0.09, 0.005)

  

5.27(4.85, 5.72) 5.20(4.78, 5.63) 5.07(4.66, 5.50)

  

0.11(0.10, 0.13) 0.11(0.10, 0.13) 0.11(0.10, 0.13)

  μV 1.44(1.39, 1.48) 1.43(1.39, 1.47) 1.43(1.39, 1.47)

  

0.53(0.48, 0.59) 0.53(0.48, 0.58) 0.53(0.47, 0.58)

Survival

  Shape (ρ) – 2.05(1.75, 2.39) 3.07(2.58, 3.65)

  α0 – −10.62(−12.13, −9.12) −12.76(−14.45, 11.07)

  γ1 – 0.20(0.15, 0.26) 0.18(0.12, 0.24)

  γ2 – 0.50(0.27, 0.73) 0.71(0.43, 1.00)

  γ3 – −0.16(−0.35, 0.02) 0.25(0.01, 0.48)
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Table 4

Parameter estimates and 95% posterior intervals for simulation studies comparing joint models and separate
analyses

Parameters True values Joint model Marginal modelsa

Scenario A: biomarker variability not associated with survival

Longitudinal

  Intercept(β0) 24.0 23.98 (23.68,24.28) 24.02 (23.72, 24.32)

  Time(β1) −0.5 −0.49 (−0.67, −0.30) −0.72 (−0.87, −0.56)

  Covariate X (β2)   1.0 0.97 (0.68, 1.27) 0.93 (0.64, 1.22)

  

  5.0 5.04 (4.03, 6.21) 4.85 (3.87, 5.99)

  

  0.25 0.29 (0.14, 0.51) 0.24 (0.12, 0.42)

  μV   1.5 1.51 (1.36, 1.64) 1.51 (1.37, 1.64)

  

  0.5 0.51 (0.33, 0.73) 0.53 (0.34, 0.75)

Survival

  Shape (ρ)   2.0 2.43 (1.71, 3.69) 1.84 (1.62, 2.109)

  α0 −1.5 −1.49 (−2.36, −0.93) −4.79 (−5.77, −3.90)

  Covariate X (α1)   0.5 0.50 (0.32, 0.79) 0.26 (0.16, 0.37)

  γ1   0.2 0.21 (0.13, 0.32) 0.14 (0.10, 0.18)

  γ2   1.0 1.14 (0.22, 2.44) 0.09 (0.05, 0.13)

  γ3   0 0.01 (−0.33, 0.33) −0.10(−0.16, −0.03)

Scenario B: biomarker variability associated with survival

Longitudinal

  Intercept(β0) 24.0 23.97 (23.67, 24.28) 24.00 (23.70, 24.30)

  Time(β1) −0.5 −0.48 (−0.68, −0.26) −0.72 (−0.88, −0.56)

  Covariate X (β2)   1.0 0.99 (0.70, 1.28) 0.95 (0.66, 1.24)

  

  5.0 4.93 (3.92, 6.11) 4.83 (3.84, 5.97)

  

  0.25 0.29 (0.13, 0.51) 0.23 (0.10, 0.42)

  μV   1.5 1.51 (1.37, 1.65) 1.47 (1.33, 1.61)

  

  0.5 0.52 (0.34, 0.74) 0.53 (0.34, 0.76)

Survival

  Shape (ρ)   2.0 2.50 (1.72, 3.82) 1.69 (1.49, 1.91)

  α0 −1.5 −2.02 (−3.14, −1.29) −4.66 (−5.68, −3.64)

  Covariate X (α1)   0.5 0.51 (0.32, 0.80) 0.26 (0.15, 0.37)

  γ1   0.2 0.21 (0.12, 0.33) 0.14 (0.10, 0.18)

  γ2   1.0 1.10 (0.20, 2.36) 0.08 (0.04, 0.11)

  γ3   0.5 0.53 (0.21, 0.99) −0.01 (−0.08, 0.07)
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a
Marginal survival models only based on subjects with ≥3 longitudinal measurements

Stat Methods Appt. Author manuscript; available in PMC 2012 March 1.


