# 違 University of Connecticut 

Department of Economics Working Paper Series

Using Large Data Sets to Forecast Sectoral Employment<br>Rangan Gupta<br>University of Pretoria<br>Alain Kabundi<br>University of Johannesburg<br>Stephen M. Miller<br>University of Connecticut and University of Nevada, Las Vegas<br>Josine Uwilingiye<br>University of Johannesburg

Working Paper 2011-02
January 2011

341 Mansfield Road, Unit 1063
Storrs, CT 06269-1063
Phone: (860) 486-3022
Fax: (860) 486-4463
http://www.econ.uconn.edu/
This working paper is indexed on RePEc, http://repec.org/


#### Abstract

We implement several Bayesian and classical models to forecast employment for eight sectors of the US economy. In addition to standard vector-autoregressive and Bayesian vector autoregressive models, we also include the information content of 143 additional monthly series in some models. Several approaches exist for incorporating information from a large number of series. We consider two approaches - extracting common factors (principle components) in a factoraugmented vector autoregressive or vector error-correction, Bayesian factor-augmented vector autoregressive or vector error-correction models, or Bayesian shrinkage in a large-scale Bayesian vector autoregressive models. Using the period of January 1972 to December 1999 as the in-sample period and January 2000 to March 2009 as the out-of-sample horizon, we compare the forecast performance of the alternative models. Finally, we forecast out-of sample from April 2009 through March 2010, using the best forecasting model for each employment series. We find that factor augmented models, especially error-correction versions, generally prove the best in out-of-sample forecast performance, implying that in addition to macroeconomic variables, incorporating long-run relationships along with shortrun dynamics play an important role in forecasting employment.


Journal of Economic Literature Classification: C32, R31
Keywords:Sectoral Employment, Forecasting, Factor Augmented Models, LargeScale BVAR models

## 1. Introduction

Unlike the standard post-WWII recession, analysts called the recoveries from recession in the early 1990s and 2000s "jobless" recoveries. Most analysts also predict a jobless recovery from the recent Great Recession. Pundits argue that the midterm election results of 2010 depended in great measure on the state of the national and local economies, the lack of employment growth, and the stubbornly high unemployment rate. Macroeconomists debate whether the Great Recession largely reflects insufficient aggregate demand or structural issues. As such, forecasting employment should receive more attention in the literature. Rapach and Strauss (2008) state "forecasting employment growth has received little attention ... relative to such macroeconomic stalwarts as inflation, GDP growth, and the unemployment rate." (p. 75).

This paper considers the dynamics of employment and the ability of different pure timeseries models to forecast sectoral employment. ${ }^{1}$ The main focus considers how the researcher can incorporate large data sets into forecasting equations, using dynamic factor analysis or shrinking large-scale BVAR models. We illustrate the process using employment from 8 subsectors -- mining and logging; construction; manufacturing; trade, transportation, and utilities; financial activities; professional and business services; leisure and hospitality; and other services.

More specifically, we compare the out-of-sample forecasting performance of various time-series models - vector autoregressive (VAR) vector error-correction (VEC), factor augmented VAR (FAVAR), factor augmented VEC (FAVEC), and various Bayesian time-series models. For the Bayesian models, we estimate Bayesian VAR (BVAR), Bayesian VEC (BVEC), Bayesian factor augmented (BFAVAR), Bayesian factor augmented VEC (BFAVEC), and large-

[^0]scale BVAR (LBVAR) models. A factor-augmented model generally performs the best across the 8 employment series, using the average root-mean-squared-error (RMSE) criteria. The LBVAR models come in a close second to the factor-augmented models on several occasions, and actually outperform the factor-augmented models for an extremely small number of forecast horizons. Finally, the models that exclude the information from the large set of data generally come in a distant third in forecast performance and only prove the best forecasting models on a few occasions, implying that the macroeconomic fundamentals partly drive employment.

We organize the rest of the paper as follows. Section 2 provides a brief review of the literature on using large data sets in forecasting models. Section 3 discusses the literature on forecasting employment. Section 4 specifies the various time-series models estimated and used for forecasting. Section 5 discusses the data and the results. Section 6 concludes.

## 2. Forecasting with Large Data Sets

Zellner and Palm (1974) theoretically rationalize why time-series models generally perform as well as or better than dynamic structural econometric specifications. ${ }^{2}$ An important issue involves determining how additional information can or cannot improve the forecasting performance over a simple univariate autoregressive or autoregressive-moving-average representation.

A simple approach uses an autoregressive distributed lag (ARDL) model (Stock and Watson 1999, 2003, 2004), a transfer function model (Enders 2004, Ch. 5). That is, the researcher runs a transfer function model, where the variable to forecast enters as an

[^1]autoregressive process and one driver variable enters as a distributed lag. The researcher compares the baseline model, the pure autoregressive specification forecasts with the forecasts for the transfer function or ARDL specification. Researchers extend this further and repeat the process for a whole series of potential driver variables. Now, one can aggregate across the individual forecasts to generate a combined forecast. Combination forecasts range from simple means or medians to more complicated principal-components- or mean-square-forecast-errorweighted forecasts.

Another method adopts "atheoretical" VAR or VEC models to generate forecasts. These models do not impose exogeneity assumptions on the included variables. Unlike the singleequation ARDL or transfer function model, the VAR or VEC approaches assume that lagged values of each variable may provide valuable information in forecasting each endogenous variable. VAR and VEC models, however, come with their own issues such as overparameterization, since the estimated number of parameters increases dramatically with additional variables or additional lags in the system. One solution to the over-parameterization problem extracts common factors from a large data set, which then get added to the VAR or VEC specifications (Bernanke, Boivin, and Eliazs 2005, Stock and Watson 2002a, 2005). Adding a few common factors from the large dataset to VAR and VEC systems economizes on the number of new parameters to estimate.

Bayesian VAR (BVAR) or VEC (BVEC) models overcome the over-parameterization problem by estimating a small number of hyper-parameters in the specification that defines all parameters in the system. Since the Bayesian approach already addresses the overparameterization problem through Bayesian shrinkage, researchers can estimate BVAR or BVEC systems that include a large number of additional explanatory variables, obviating the need to
extract common factors. Nothing prevents, however, the extraction of common factors from the large set of macroeconomic variables to include in factor-augmented VAR (FAVAR) or VEC (FAVEC) systems, which we also do.

The ADRL method, in contrast to the VAR, BVAR, VEC, or BVEC modeling approaches, uses information from a large dataset one variable at a time and then aggregates across all forecasts. As a result, this approach does not differentiate between common factors and non-common factors in the large dataset. Each exhibits the same effect on the forecast, over and above the autoregressive part of the model. In the factor-augmented approach, the researcher potentially leaves information on the table by only extracting the common factor information and leaving the remaining information out of the analysis. On the other hand, the Bayesian approach, includes all the information from the large set of data, but restricts the estimation by imposing conditions on the parameters of the estimating equation. In sum, all methods introduce restrictions on the way information from the large dataset affects the estimation process. Thus, any of the individual approaches may lead to better forecasts a priori.

In this paper, we consider the factor-augmented and large-scale Bayesian methods for incorporating the information from a large dataset. These methods provide the natural extension of the VAR, VEC, BVAR, and BVEC models. The ARDL model involves a single-equation, whereas the VAR, VEC, BVAR, and BVEC models involve multiple equations. Thus, we exclude the ARDL approach from our analysis.

## 3. Forecasting Employment

As noted in the introduction, little work exists on forecasting national employment trends. Much forecasting of employment does exist, however, at the regional level. Regional economists use employment, since other macroeconomic indicators such as GDP or industrial production either
do not exist at the regional level, do not provide sufficient disaggregation, or appear too infrequently. As a result, regional economists use employment trends by sector to help understand the growth of the regional economy.

Regional economists developed the ideas of economic base and shift-share analysis to track and predict regional growth, using employment data. The popularity of these analyses comes from the simplicity of execution and the easily accessible data to execute the analysis. Lane (1966) and Williamson (1975) provide some history and background on economic base analysis; whereas Stevens and Moore (1980) provide a critical review of shift-share analysis as a forecasting tool. Since these analyses do not consider structural issues, but instead rely on simple constructs from the employment data itself, we can consider the approaches as a rudimentary time-series forecasting technique.

In another related line of research, regional economists consider the relative advantages and disadvantages of forecasting regional economic activity, including employment, using timeseries and structural models. Early efforts compare the forecasting performance of structural and autoregressive integrated moving average (ARIMA) models (Taylor 1982, Glennon, Lane and Johnson 1987).

More recently, a few economists consider the performance of different models in forecasting employment at the national level. For example, Stock and Watson (2002b) forecast eight monthly macroeconomic time-series variables, including nonagricultural employment, from 1970 through 1998. They use a larger data set of 215 additional potential predictors, extracting principle components using dynamic factor modeling, to see if forecasting accuracy improves over simpler time-series models. They conclude that these new forecasts outperform univariate ARs, small VARs, and leading indicator models.

Rapach and Strauss (2008) forecast employment growth, using a large data set of economic variables. They use the monthly seasonally adjusted civilian employment from the Conference Board data set and employ an autoregressive distributed lag (ARDL) model framework, containing 30 determinants, to forecast national employment growth. Given the difficulty in determining a priori the particular variables that prove the most important in forecasting employment growth, the authors also use various methods to combine the individual ARDL model forecasts, which result in better forecasts of employment growth. The combining method based on principle components does the best, while those methods that rely on simple averaging, clusters, and discounted mean square forecast error also produce forecasts better than the individual ARDL without combining. In an earlier paper, Rapach and Strauss (2005) obtain similar results when forecasting the employment growth in Missouri, using an ARDL approach based on 22 regional and national predictors. They observe that combining methods based on Bayesian shrinkage techniques produce substantially more accurate out-of-sample forecasts than those from a benchmark AR model.

Rapach and Strauss (2010a) forecast national employment growth, using the same data set in Rapach and Strauss (2008), by applying bootstrap aggregating (bagging) to a general-tospecific procedure based on a general dynamic linear regression model. When they compared bagging to the forecast combination approaches, the authors find bagging forecasts often deliver the lowest forecast errors. Further, the authors note that incorporating information from both bagging and combination forecasts (based on principal components) often leads to further gains in forecast accuracy.

More recently, Rapach and Strauss (2010b) forecast state employment growth using several distinct econometric approaches, such as combinations of individual ARDL models,
general-to-specific modeling coupled with bagging, and factor models. As in their earlier studies, the results show that these forecasting approaches consistently deliver sizable reductions in forecast errors relative to the benchmark AR model across states. Further, they observe forecasting improvements on amalgamating these approaches, especially during national business-cycle recessions.

Banbura et al., (2010) show that a VAR model with Bayesian shrinkage, incorporating a large number of explanatory variables, often produces better forecasts for non-farm employment than those from small-scale VAR and FAVAR models.

Against this backdrop, our paper extends the above mentioned studies, in the sense that we use a variety of large-scale models that facilitate the role of a wider possible set of fundamentals to affect the dynamic movement of employment.

## 4. VAR, VEC, BVAR, BVEC, FAVAR, FAVEC, BFAVAR, BFAVEC, and LBVAR Specifications and Estimation ${ }^{3}$

4.1 VAR, VEC, BVAR, BVEC, and LBVAR:

Following Sims (1980), we can write an unrestricted VAR model as follows:

$$
\begin{equation*}
y_{t}=A_{0}+A(L) y_{t}+\varepsilon_{t}, \tag{1}
\end{equation*}
$$

where $y$ equals a ( $n \times 1$ ) vector of variables to forecast; $A_{0}$ equals an $(n \times 1)$ vector of constant terms; $A(L)$ equals an $(n \times n)$ polynomial matrix in the backshift operator $L$ with lag length $p,{ }^{4}$ and $\varepsilon$ equals an $(n \times 1)$ vector of error terms. In our case, we assume that $\varepsilon \sim N\left(0, \sigma^{2} I_{n}\right)$, where $I_{n}$ equals an $(n \times n)$ identity matrix.

The VAR method typically use equal lag lengths for all variables, which implies that the

[^2]researcher must estimate many parameters, including many that prove statistically insignificant. This over-parameterization problem can create multicollinearity and a loss of degrees of freedom, leading to inefficient estimates, and possibly large out-of-sample forecasting errors. Some researchers exclude lags with statistically insignificant coefficients. Alternatively, researchers use near VAR models, which specify unequal lag lengths for the variables and equations.

Imposing additional restrictions on a standard VAR model generates a VEC model that uses cointegrated non-stationary series. While including short-run dynamic adjustment, the VEC model also incorporates the cointegration relationship so that it restricts the movement of endogenous variables to converge to their long-run relationships. The cointegration term, called the error correction term, gradually corrects through a series of partial short-run adjustments.

More explicitly, assume that $y_{t}$ includes $n$ time-series variables integrated of order one, (i.e., $I(1)) .{ }^{5}$ The error-correction counterpart of the VAR model in equation (1) converts into a VEC model as follows: ${ }^{6}$

$$
\begin{equation*}
\Delta y_{t}=\pi y_{t-1}+\sum_{i=1}^{p-1} \Gamma_{i} \Delta y_{t-1}+\varepsilon_{t} \tag{2}
\end{equation*}
$$

where $\pi=-\left[I-\sum_{i=1}^{p} A_{i}\right]$ and $\Gamma_{i}=-\sum_{j=i+1}^{p} A_{j}$.
Litterman (1981), Doan et al., (1984), Todd (1984), Litterman (1986), and Spencer (1993) use the BVAR model to overcome the over-parameterization problem. Rather than eliminating lags, the Bayesian method imposes restrictions on the coefficients across different lag lengths, assuming that the coefficients of longer lags may more closely approach zero than

[^3]the coefficients on shorter lags. If, however, stronger effects come from longer lags, the data can override this initial restriction. Researchers impose the constraints by specifying normal prior distributions with zero means and small standard deviations for most coefficients, where the standard deviation decreases as the lag length increases and implies that the zero-mean prior holds with more certainty. The first own-lag coefficient in each equation proves the exception with a unitary mean. Finally, Litterman (1981) imposes a diffuse prior for the constant. We employ this "Minnesota prior" in our analysis, where we implement Bayesian variants of the classical VAR models.

Formally, the means of the Minnesota prior take the following form:

$$
\begin{equation*}
\beta_{i} \sim N\left(1, \sigma_{\beta_{i}}^{2}\right) \text { and } \beta_{j} \sim N\left(0, \sigma_{\beta_{j}}^{2}\right) \tag{3}
\end{equation*}
$$

where $\beta_{i}$ equals the coefficients associated with the lagged dependent variables in each equation of the VAR model (i.e., the first own-lag coefficient), while $\beta_{j}$ equals any other coefficient. In sum, the prior specification reduces to a random-walk with drift model for each variable, if we set all variances to zero. The prior variances, $\sigma_{\beta_{i}}^{2}$ and $\sigma_{\beta_{j}}^{2}$, specify uncertainty about the prior means, $\bar{\beta}_{i}=1$, and $\bar{\beta}_{j}=0$.

Doan et al., (1984) propose a formula to generate standard deviations that depend on a small numbers of hyper-parameters: $w, d$, and a weighting matrix $f(i, j)$ to reduce the overparameterization in the VAR models. This approach specifies individual prior variances for a large number of coefficients, using only a few hyper-parameters. The specification of the standard deviation of the distribution of the prior imposed on variable $j$ in equation $i$ at lag $m$, for all $i, j$ and $m$, equals $S_{1}(i, j, m)$, defined as follows:

$$
\begin{equation*}
S_{1}(i, j, m)=[w \times g(m) \times f(i, j)] \frac{\hat{\sigma}_{i}}{\hat{\sigma}_{j}}, \tag{4}
\end{equation*}
$$

where $f(i, j)=1$, if $i=j$ and $k_{i j}$ otherwise, with $\left(0 \leq k_{i j} \leq 1\right)$, and $g(m)=m^{-d}$, with $d>0$. The estimated standard error of the univariate autoregression for variable $i$ equals $\hat{\sigma}_{i}$. The ratio $\hat{\sigma}_{i} / \hat{\sigma}_{j}$ scales the variables to account for differences in the units of measurement and, hence, causes the specification of the prior without consideration of the magnitudes of the variables. The term $w$ indicates the overall tightness, with the prior getting tighter as the value falls. The parameter $g(m)$ measures the tightness on lag $m$ with respect to lag 1 , and equals a harmonic shape with decay factor $d$, which tightens the prior at longer lags. The parameter $f(i, j)$ equals the tightness of variable $j$ in equation $i$ relative to variable $i$, and by increasing the interaction (i.e., the value of $k_{i j}$ ), we loosen the prior. ${ }^{7}$ The overall tightness ( $w$ ) and the lag decay (d) hyper-parameters equal 0.1 and 1.0, respectively, in the standard Minnesota prior, while $k_{i j}=0.5$.

Since researchers believe that the lagged dependant variable in each equation proves most important, $F$ imposes $\bar{\beta}_{i}=1$ loosely. The $\beta_{j}$ coefficients, however, that associate with lessimportant variables receive a coefficient in the weighting matrix $(F)$ that imposes the prior means of zero more tightly. Since the Minnesota prior treats all variables in the VAR, except for the first own-lag of the dependent variable, in an identical manner, several researchers attempt to alter this fact. Usually, this means increasing the value for the overall tightness (w) hyperparameter from 0.10 to 0.20 , so that more influence comes from other variables in the model. In addition, Dua and Ray (1995) introduce a prior that imposes fewer restrictions on the other variables in the VAR model (i.e., $w=0.30$ and $d=0.50$ ).

We also follow Banbura, Giannone, and Reichlin (2010) and set the value of the overall tightness parameter as an alternative to obtain a desired average fit for the eight employment

[^4]variables of interest in the in-sample period (1972:1 to 1989:12). The optimal value of $w$ (Fit) (= 0.0627 ), with $d=2.0$, obtained in this fashion is then retained for the entire evaluation period. Specifically, for a desired Fit, we choose $w$ as follows:
\[

$$
\begin{equation*}
w(\text { Fit })=\arg \min _{w} \mid \text { Fit } \left.-\frac{1}{8} \sum_{i=1}^{8} \frac{M S E_{i}^{w}}{M S E_{i}^{0}} \right\rvert\,, \tag{5}
\end{equation*}
$$

\]

where $M S E_{i}^{w}=\sqrt{\left.\frac{1}{T_{0}-p-1} \sum_{t=p}^{T_{0}-2} y_{i, t+\mid t}^{w}-y_{i, t+1}\right)^{2}}$. That is, we evaluate the one-step-ahead mean squared error (MSE) using the training sample $t=1, \ldots . . T_{0}-1$, where $T_{0}$ is the beginning of the sample period and $p$ is the order of the VAR. The value $M S E_{i}^{0}$ is the MSE of variable $i$ with the prior restriction imposed exactly $(w=0)$, while we define the baseline Fit as the average relative MSE from an OLS-estimated VAR containing the eight sectoral employment variables. That is,

$$
\begin{equation*}
\text { Fit }=\frac{1}{8} \sum_{i=1}^{8} \frac{M S E_{i}^{\infty}}{M S E_{i}^{0}} . \tag{6}
\end{equation*}
$$

We estimate the alternative BVARs using Theil's (1971) mixed estimation technique. Essentially then, the method involves supplementing the data with prior information on the distribution of the coefficients. The number of observations and degrees of freedom increase artificially by one for each restriction imposed on the parameter estimates. Thus, the loss of degrees of freedom from over-parameterization in the classical VAR models does not emerge as a concern in the alternative BVAR specifications.

### 4.2 FAVAR and BFAVAR:

We use the dynamic factor (DF) model to extract common components between macroeconomic series and then use these common components to forecast employment, adding three extracted factors to the 8 -variable VAR model to create a factor-augmented VAR (FAVAR) model in the
process. ${ }^{8}$ We choose the three factors by the cumulative variance share, under which, the fourth eigenvalue fell below the threshold of 5 percent. Furthermore, we estimate idiosyncratic component (see below) with $\operatorname{AR}(p)$ processes as suggested by Boivin and Ng (2005).

The DF model expresses individual times series as the sum of two unobserved components: a common component driven by a small number of common factors and an idiosyncratic component for each variable. The DF model extracts the few factors that explain the co-movement of the US economy. Forni et al. (2005) demonstrate that for a small number of factors relative to the number of variables and a heterogeneous panel, we can recover the factors from present and past observations.

Consider a $n \times 1$ covariance stationary process $Y_{t}=\left(y_{1 t}, \ldots ., y_{n t}\right)^{\prime}$. Suppose that $X_{t}$ equals the standardized version of $Y_{t}$ (i.e., $X_{t}$ possesses a mean zero and a variance equal to one). Under DF models, we write $X_{t}$ as the sum of two orthogonal components as follows:

$$
\begin{equation*}
X_{t}=\lambda F_{t}+\xi_{t} \tag{7}
\end{equation*}
$$

where $F_{t}$ equals a $r \times 1$ vector of static factors, $\lambda$ equals an $n \times r$ matrix of factor loadings, and $\xi_{t}$ equals a $n \times 1$ vector of idiosyncratic components. In a DF model, $F_{t}$ and $\xi_{t}$ are mutually orthogonal stationary process, while, $\chi_{t}=\lambda F_{t}$ equals the common component.

Since dynamic common factors are latent, we must estimate them. We note that the estimation technique used matters for factor forecasts. This paper adopts the Stock and Watson (2002b) method, which employs the static principal component (PC) approach on $X_{t}$. The factor estimates, therefore, equal the first principal components of $X_{t}$, (i.e., $\hat{F}_{t}=\hat{\Lambda}^{\prime} X_{t}$, where $\hat{\Lambda}$ equals

[^5]the $n \times r$ matrix of the eigenvectors corresponding to the $r$ largest eigenvalues of the sample covariance matrix $\hat{\Sigma}$ ).

For forecasting purposes, we use an 8 -variable VAR augmented by extracted common factors using the Stock and Watson (2002a) approach. This approach is similar to the univariate Static and Unrestricted (SU) approach of Bovin and Ng (2005). Therefore, the forecasting equation to predict $Y_{t}$ is given by

$$
\left[\begin{array}{l}
\hat{Y}_{t+h}  \tag{8}\\
\hat{F}_{t+h}
\end{array}\right]=\hat{\Phi}(L)\left[\begin{array}{l}
Y_{t} \\
F_{t}
\end{array}\right]
$$

where $h$ equals the forecasting horizon, $\hat{\Phi}(L)$ equal lag polynomials, which we estimate with and without restrictions. As Boivin and Ng (2005) clearly note, VAR models are special cases of equation (8). With known factors and the parameters, the FAVAR approach should produce smaller mean squared errors. In practice, however, one does not observe the factors and we must estimate them. Moreover, the forecasting equation should reflect a correct specification. We consider the following DF model specifications:

- FAVAR: includes the employment in 8 sectors and the three common static factors; and
- BFAVAR: the FAVAR specification with Bayesian restrictions on lags of the employment in 8 sectors and the three factors, based on the priors outlined above.


### 4.3 FAVEC and BFAVEC:

For the FAVEC models, we follow the procedure proposed by Banerjee and Marcellino (2009)
and Banerjee, Marcellino, and Masten (2010). ${ }^{9}$ We begin with a common trend representation for a set of $N I(1)$ cointegrated variables $X_{t}$ as shown in equation (7) above. Rewriting equation (7) in first differences gives the following: ${ }^{10}$

$$
\begin{equation*}
\Delta X_{t}=\lambda \Delta F_{t}+\Delta \xi_{t} \tag{9}
\end{equation*}
$$

Equation (9) represents the well-known DF models proposed by Stock and Watson (2002a, b) and Forni, Hallin, Lippi, and Reichlin (2005), but in first-differenced form. Bai and Ng (2004) and Bai (2004), however, allow for the possibility that $\xi_{t}$ or some elements of $\xi_{t}$ do not converge or are $I(1)$.

We can rewrite equation (8) as follows:

$$
\begin{equation*}
\Delta X_{t}=\alpha \beta^{\prime} \Delta F_{t}+\varepsilon_{t} \tag{10}
\end{equation*}
$$

where $\beta^{\prime}=\Lambda_{\perp}^{\prime}$ and hence $\beta^{\prime} x_{t}$ is $I(0)$ and an over-time correlation can exist between the errors $\Delta \xi_{t}$ and $\varepsilon_{t}$.

The literature on cointegration focuses mainly on equation (10), also known as the VEC model, while Banerjee and Marcellino (2009) reconcile the factor analysis in equation (9) and the cointegration concept in equation (10). The new hybrid model addresses, on the one hand, the problem associated with large number of data sets that the simple VEC model (equation 2) does not consider. Hence, if important information does not enter the VEC model, then the model results in biased coefficients caused by omitted variables. In this case, the FAVEC model improves on the standard VEC model. Banerjee, Marcellino, and Masten (2010) demonstrate that

[^6]the information set in the FAVEC model improves the forecasting performance of models, especially at the longer horizon. On the other hand, the FAVEC model studies the relationship between the common-trend representation for $x_{t}$ and DF model for $\Delta x_{t}$.

By including the error-correction terms in the DF model, the FAVEC model enhances the former model, especially in presence of cointegration. Thus, the factors extracted from a large panel of economic variables in levels jointly associate with the limited set of economic variables of main interest while allowing for cointegration. The FAVEC model naturally generalizes the FAVAR model developed by Bernanke, Boivin, and Eliaz (2005) and Stock and Watson (2005).

Assume that we only want to forecast a few variables in the entire economy. We, therefore, divide our panel into two parts, $N^{A}$ including the variables of interest, $X_{t}^{A}$ and $N^{B}=N-N^{A}$ containing the remaining variables, $X_{t}^{B}$. Equation (7) becomes:

$$
\begin{equation*}
\binom{X_{t}^{A}}{X_{t}^{B}}=\binom{\Lambda^{A}}{\Lambda^{B}} F_{t}+\binom{\xi_{t}^{A}}{\xi_{t}^{B}} \tag{11}
\end{equation*}
$$

where $\Lambda^{A}$ is $N^{A} \times r$ matrix and $\Lambda^{B}$ is $N^{B} \times r$. The dimension of $\Lambda^{A}$ does not change as $N$ increases while the dimension of $\Lambda^{B}$ increases with $N$. The theory requires that the rank of $\Lambda^{B}$, $r^{B}=r$, whereas the rank of $\Lambda^{A}, r^{A} \leq r$. That is, a smaller number of trends drives $X_{t}^{A}$. From equation (11), we see that $X_{t}^{A}$ and $F_{t}$ are cointegrated, while $F_{t}$ are uncorrelated random walks.

From the Granger representation theorem, there exists an error correction specification as follows:

$$
\begin{equation*}
\binom{\Delta X_{t}^{A}}{\Delta F_{t}}=\binom{\gamma^{A}}{\gamma^{B}} \delta^{\prime}\binom{X_{t-1}^{A}}{F_{t-1}} F_{t}+\binom{v_{t}^{A}}{v_{t}} \tag{12}
\end{equation*}
$$

We can extend equation (12) by adding additional lags to account for correlation in the errors as follows:

$$
\begin{equation*}
\binom{\Delta X_{t A t}^{A}}{\Delta F_{t}}=\binom{\gamma^{A}}{\gamma^{B}} \delta^{\prime}\binom{X_{t-1}^{A}}{F_{t-1}} F_{t}+A_{1}\binom{\Delta X_{t-1}^{A}}{\Delta F_{t-1}}+\cdots+A_{q}\binom{\Delta X_{t-q}^{A}}{\Delta F_{t-q}}+\binom{u_{t}^{A}}{u_{t}} \tag{13}
\end{equation*}
$$

where the errors $\left(u_{t}^{A}, u_{t}^{\prime}\right)^{\prime}$ are i.i.d. Equation (13) is known as a FAVEC model.

Banerjee and Marcellino (2009) show that there must be $N^{A}$ cointegrating relationships in equation (13), given that equation (13) includes $N^{A}+r$ dependent variables and that $X_{t}^{A}$ is driven by $F_{t}$ or a subset of $F_{t}$, and that elements of $F_{t}$ are uncorrelated random walks.

Since $\Lambda^{A}$ is $N^{A} \times r$, but can have a reduced rank of $r^{A}, N^{A}-r^{A}$ cointegrating relationships exist, including $X_{t}^{A}$ variables only. Banerjee and Marcellino (2009) demonstrate that this emerges from a standard VEC model. The remaining $r^{A}$ cointegrating relationships involve $X_{t}^{A}$ and $F_{t}$. Therefore, potentially $N-N^{A}$ omitted cointegrating relationships exist in the standard VEC model.

Similarly, equation (13) improves on DF model and FAVAR models, given that the error-correction terms do not appear. That is, the FAVAR does not account for the long-run information and, hence, $\gamma^{A}=\gamma^{B}=0$. Like the DF model, the FAVAR model does not account for cointegration and, therefore, it is misspecified in the presence of long-run relationships. It follows that the FAVEC model nests the VEC, FAVAR, and VAR models and, hence, it should outperform these models in forecasting.

- FAVEC: includes the employment in 8 sectors, the four common static factors, extracted based on the Bai (2004) approach, and the error-correction terms; and
- BFAVEC: the FAVEC specification with Bayesian restrictions on lags of the FAVEC model based on the priors outlined above.


### 4.4 Comparing Forecasts:

For each of one- to twelve-months-ahead forecasts, we test whether the gain (loss) in the RMSE from the alternative "optimal" models relative to the random walk model is significant. The optimal models minimize the average RMSE across all twelve forecast horizons. We use the ENC-T test of Clark and McCracken (2001). This test applies to nested models, given that the "optimal" models nest the random-walk model.

The test statistic is defined as follows:

$$
\begin{equation*}
E N C-T=(P-1)^{1 / 2} \frac{c}{\left(P^{-1} \sum_{t=R}^{T-1}\left(c_{t+h}-\bar{c}\right)\right)^{1 / 2}}, \tag{14}
\end{equation*}
$$

where, $c_{t+h}=\hat{v}_{0, t+h}\left(\hat{v}_{0, t+h}-\hat{v}_{1, t+h}\right)$ and $\bar{c}=\sum_{t=R}^{T-1} c_{t+1}, R$ denotes the estimation period, $P$ is the prediction period, $f$ is some generic loss function $\left(f\left(v_{0, t+h}\right)=v_{0, t+h}^{2}\right.$, in our case $), h \geq 1$ is the forecast horizon, $\hat{v}_{0, t+h}$ and $\hat{v}_{1, t+h}$ are $h$-step ahead prediction errors for models 0 and 1 (where model 0 is the "optimal" model), constructed using Newey and West (1987) type consistent estimators.

The hypotheses of interest are:

$$
\begin{gather*}
H_{0}: E\left(f\left(v_{0, t+h}\right)-f\left(v_{1, t+h}\right)\right)=0, \text { and }  \tag{15}\\
H_{A}: E\left(f\left(v_{0, t+h}\right)-f\left(v_{1, t+h}\right)\right)>0 . \tag{16}
\end{gather*}
$$

The limiting distribution is $N(0,1)$ for $h=1$. The limiting distribution for $h>1$ is non-standard, as discussed in Clark and McCraken (2001). As long as a Newey and West (1987) type estimator is used when $h>1$, however, then the tabulated critical values closely approximate the $N(0,1)$ values (Bhardwaj and Swanson, 2006).

## 5. Data Description, Model Estimation, and Results

### 5.1 Data

While the small-scale VARs, both the classical and Bayesian variants, include data of only the employment in 8 sectors, the large-scale BVARs and the DF model also include the 143 monthly national and regional series. Seasonally adjusted employment data come from the Bureau of Labor Statistics. For the remaining 143 seasonally adjusted national and regional variables, we collected the data series from various sources such as the Conference Board, the Global Insight database, the FREDII database of the St. Louis Federal Reserve Bank, the US Census Bureau, and the National Association of Realtors.

We transformed all data to induce stationarity for the FAVAR-type models before extracting the three factors. We can use non-stationary data, however, with the BVAR. Sims et al. (1990) indicate that with the Bayesian approach entirely based on the likelihood function, the associated inferences do not require special treatment for non-stationarity, since the likelihood function exhibits the same Gaussian shape regardless of the presence of non-stationarity. Following Banbura, Giannone, and Reichlin (2010) for the variables in the panel that are characterized by mean-reversion, however, we set a white-noise prior (i.e., $\bar{\beta}_{i}=0$ ); otherwise, we impose the random walk prior (i.e., $\bar{\beta}_{i}=1$ ). As for the FAEC models, we begin with $115 \mathrm{I}(1)$ variables and we then cumulate the remaining $35 \mathrm{I}(0)$ variables to transform them into nonstationary variables, before extracting the four factors. Appendix A lists these variables as well as the transformations used prior to analyzing the data.

The real activity group consists of variables such as industrial production, capacity utilization, retail sales, real personal consumption, real personal income, new orders, inventories, new housing starts (national and regional), housing sales (national and regional), employment,
average working hours, and so on. The price and inflation group consists of variables such as the consumer price index, the producer price index, real housing prices (national and regional), the personal consumption expenditure deflator, average hourly earnings, exchange rates, and so on. The monetary sector group consists of variables such as monetary aggregates, various interest rates, credit outstanding, and so on.

### 5.2 Estimation and Results

In this section, we first, , select the optimal model for forecasting each sector's employment, using the minimum average root mean squared error (RMSE) across the one-, two-, ... , and twelve-month-ahead out-of-sample forecasts. Then second, we consider ex ante out-of-sample forecasts.

The data sample for all 8 employment series runs from January 1972 (1972:1) through March 2009 (2009:3). First, the cointegration tests amongst the eight employment series and the eight employment series and the four common static factors, extracted based on the Bai (2004) approach, for the (B)FAVEC models, use data from 1972:1 through 1989:12. Further, this sample provides the base for estimating all of the various specifications considered for possible out-of-sample forecasting experiments. Second, the out-of-sample forecasting experiments cover 1990:1 through 2009:3. Third, we keep the number of factors extracted for the FAVAR and FAVEC models fixed over the forecasting period, but recursively update their estimates. Fourth, as each forecasting recursion also includes model selection, we choose the number of cointegrating vectors for the (B)VEC and (B)FAVEC models by using the trace test proposed by Johansen (1991). Fifth, we base the leg-length for the various models at each recursive estimation on the unanimity of at least two of the following five lag length selection criteria, namely, the sequential modified likelihood ratio (LR) test statistic (each test at the 5-percent
level), the final prediction error (FPE), the Akaike information criterion (AIC), the Schwarz information criterion (SIC), and the Hannan-Quinn information criterion (HQIC). ${ }^{11}$ Finally, for the large-scale BVAR, we use the lag-length chosen for the eight variable small-scale VAR containing only the eight sectoral employment series.

### 5.2.1 One- to Twelve-Month-Ahead Forecast Accuracy

Given the different forecasting models specified in Section 4, we estimate these alternative small- and large-scale models for the 8 employment series in our sample over the period 1972:1 to 1989:12 using monthly data. We then compute out-of-sample one-, two-, ..., and twelve-month-ahead forecasts for the period of 1990:1 to 2009:3, and compare the forecast accuracy relative to the forecasts generated by the random-walk (RW) benchmark. Note that the choice of the in-sample period, especially the starting date, depends on data availability. The starting point of the out-of-sample period precedes by a few months the recession in the 1990 and the jobless recovery that followed that recession as well as the recession in the 2001.

We estimate the multivariate versions of the classical AR, VAR, and VEC, the smallscale BVARs and BVECs, the large-scale BVARs, and the classical and Bayesian FAVARs and FAVECs over the period 1972:1 to 1989:12, and then forecast from 1990:1 through 2009:3. Depending on the number of lags selected, specific initial months feed the lags. We re-estimate the models each month over the out-of-sample forecast horizon in order to update the estimate of the coefficients, before producing the on-, two-, ..., and twelve-month-ahead forecasts. We implemented this iterative estimation and the forecast procedure for 219 months, with the first forecast beginning in 1990:1. This produced a total of 219 one-, 219 two-, ..., and 219 twelve-

[^7]month-ahead forecasts. We calculate the root mean squared errors (RMSE) ${ }^{12}$ for the 219 one-, two-, ..., and twelve-month-ahead forecasts for the 8 employment series across all of the different specifications. We then examine the average of the RMSE statistic for one-, two-, ..., and twelve-month-ahead forecasts over 1990:1 to 2009:3. We select the model that produces the lowest average RMSE values as the 'optimal' specification for a specific state.

Tables 1 to 8 report the average of the one-, two-, ..., and twelve-month-ahead RMSEs across the 8 employment series, respectively. The benchmark for all forecast evaluations is the random-walk (RW) model forecast RMSEs. Thus, the 0.307 entry for the BFAVEC model in Table 1 means that the BFAVEC model experienced a forecast RMSE of only 30.7 percent of the forecast RMSE for the RW model. First, we consider the best performing model based on the average RMSE across the one-, two-, ..., and twelve-month-ahead forecasts. Two different specifications prove optimal across the 8 employment series. One, the BFAVEC models with different value for $w$ and $d$ prove optimal for mining and logging; manufacturing; financial activities; leisure and hospitality; and other service employment. Two, the BFAAR models with different values for $w$ and $d$ prove optimal for construction; trade, transportation, and utilities; and professional and business services. These results appear as the bold numbers in the Average column in Tables 1 to 8 .

Table 9 also tests whether the difference in forecasting performance proves significant relative to the RW forecasts, using the ENC-t test statistic. The BFAVEC models all provide significantly better forecasts at the 1-percent level. The BFAAR models provide significantly better forecasts at only the 10-percent level.

[^8]The forecasting results for the one-, two-, ..., and twelve-month-ahead forecasts generally follow a similar pattern. In most cases, a VEC (i.e., VEC, BVEC, FAVEC, or BFAVEC) model provides the best forecasting performance. This conclusion holds no matter whether the optimal model based on the Average of the one-, two-, ..., and twelve-month-ahead forecasts yields a BFAVEC or a BFAAR model. That is, even when the optimal models for the Average across all forecast horizons is a BFAAR model, the VEC (i.e., VEC, BVEWC, FAVEC, and BFAVEC) models frequently still provide the best forecasts in many instances. But in this latter case, the BFAAR sometimes provides the best forecast performance.

In sum, different specifications yield the best forecast performance based on RMSEs for different employment series and at different forecast horizons. One common pattern does emerge, nevertheless. No matter the forecast horizon, the VEC (i.e., VEC, BVEC, FAVEC, and BFAVEC) models generally provide the best forecast performance, albeit for differing values for $w$ and $d$.

### 5.2.2 Comparing One- to Twelve-Month-Ahead Forecasts with the Actual Series

Figures 1 to 8 plot the out-of-sample forecasts and actual values from April 2009 through March 2010, using the best forecasting model for each employment series (see Table 9 for models). We used the average RMSEs reported in Tables 1 to 8 to select the best models.

The forecast period captures the preliminary turn around in employment for all series except financial activities. Of course, whether the employment series actually bottom during this period or continue to fall with future releases remains an unanswered question. The worst forecast performance occurs in mining and logging employment, where the actual employment series bottomed in October 2009 while the forecast series continues on a downward trend throughout the forecast period.

The best forecast performance occurs for construction employment, where the actual and forecast series track each other closely. But, construction employment appears to bottom only in February 2010. The forecast series for manufacturing, financial activities,, and leisure and hospitality employment each show a turnaround in employment over this period. But the forecast values recover too rapidly as compared to the actual series. For the remaining series - trade, transportation, and utilities; business services; and other services employment, the actual series show a more rapid turnaround over this period than the forecast values.

## 6. Conclusion

We forecast employment in 8 sectors, using the AR, VAR, VEC, and their Bayesian counterparts, both with and without the information content of 143 additional monthly economic series. Two approaches exist for incorporating information from a large number of data series extracting common factors (principle components) in a FAVAR, FAVEC, and their Bayesian counterparts or Bayesian shrinkage in a LBVAR models.

Using the period of 1972:1 to 1989:12 as the in-sample period and 1990:1 to 2009:3 as the out-of-sample horizon, we compare the forecast performance of the alternative models for one- to twelve-month-ahead forecasts. Based on the average root mean squared error (RMSE) for the one-, two-, ..., and twelve-month-ahead forecasts, we find that the factor-augmented models, albeit with different values for $w$ and $d$, generally outperform the large-scale models for the 8 employment series examined. A LBVAR model only provides the best forecasting performance for two employment series - construction employment at one-step ahead forecast horizon and professional and business services employment at one-, two-, and three-step ahead forecast horizons. In addition, amongst the factor augmented models, generally the VEC (i.e., FAVEC and BFAVEC) generally perform the best, highlighting the importance of modeling the long-run
equilibrium relationship over and above the short-run dynamics.
We also compare the forecast and actual values of the employment series over April 2009 through March 2010 when all employment series, save one, show preliminary evidence of bottoming and starting to increase. The worst performing model forecasts mining and logging employment while the best performing model forecasts construction employment.

In sum, the utilization of a large dataset of economic variables, as well as long-run relationship with the short-run dynamics, improve the forecasting performance over models that do not use this data. In other words, macroeconomic fundamentals do matter when forecasting the 8 employment series.

## References:

Bai, J. (2004). Estimating Cross-Section Common Stochastic Trends in Nonstationary Panel Data, Journal of Econometrics 122(1), 137-183.

Bai, J., and Ng, S., 2004. A PANIC Attack on Unit Roots and Cointegration. Econometrica 72(4), 1127-1177.

Bańbura, M., Giannone, D., and Reichlin, L., 2010. Large Bayesian Vector Auto Regressions. Journal of Applied Econometrics 25(1), 71-92.

Banerjee, A., and Marcellino, M. G., 2009. Factor-Augmented Error Correction Models. In Castle, J. L., and Shephard, N. (eds.), The Methodology and Practice of Econometrics A Festschrift for David Hendry. Oxford: Oxford University Press, 227-254.

Banerjee, A., Marcellino, M. G., and Maston, I., 2010. Forecasting with Factor-Augmented Error Correction Models. CEPR Discussion Paper No. DP7677.

Bhardwaj, G., and Swanson, N. R., 2006. An Empirical Investigation of the Usefulness of ARFIMA Models for Predicting Macroeconomic and Financial Time Series. Journal of Econometrics 131(1-2), 539-578.

Bernanke, B. S., Boivin, J., and Eliazs, P. (2005) Measuring the Effects of Monetary Policy: A Factor-Augmented Vector autoregressive (FAVAR) Approach, The Quarterly Journal of Economics, 120, 387-422.

Boivin, J., and Ng, S. (2005). Understanding and comparing factor based forecasts. International Journal of Central Banking, 1(3), 117-152.

Clark, T. E., and McCracken, M. W., 2001. Tests of Equal Forecast Accuracy and Encompassing for Nested Models. Journal of Econometrics 105(1), 85-110.

Das, S., Gupta, R., and Kabundi, A. (2009). Could We Have Forecasted the Recent Downturn in the South African Housing Market? Journal of Housing Economics 18(4), 325-335..

Doan, T. A., Litterman, R. B., and Sims, C. A. (1984). Forecasting and Conditional Projections Using Realistic Prior Distributions. Econometric Reviews, 3(1), 1-100.

Dua, P., and Ray, S. C. (1995). A BVAR Model for the Connecticut Economy. Journal of Forecasting, 14(3), 167-180.

Enders, W., 2004. Applied Econometric Time Series, $2^{\text {nd }}$ Ed. John Wiley \& Sons.
Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2005). The Generalized Dynamic Factor Model, One Sided Estimation and Forecasting. Journal of the American Statistical Association, 100(471), 830-840.

Glennon, D., Lane, J., and Johnson, S., 1987. Regional Econometric Models that Reflect Labor Market Relations. International Journal of Forecasting 3(2), 299-312.

Gupta, R., and Miller, S. M. (forthcoming a) "Ripple Effects" and Forecasting Home Prices in Los Angeles, Las Vegas, and Phoenix." Annals of Regional Science.

Gupta, R., and Miller, S. M. (forthcoming b) "The Time-Series Properties on Housing Prices: A Case Study of the Southern California Market." Journal of Real Estate Finance and Economics.

Johansen, S. (1991). Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models. Econometrica 59, 1551-1580.

Lane, T., 1966. The Urban Base Multiplier: An Evaluation of the State of the Art. Land Economics 42(3), 339-347.

LeSage, J. P. (1999). Applied Econometrics Using MATLAB, www.spatial-econometrics.com.
Litterman, R. B. (1981). A Bayesian Procedure for Forecasting with Vector Autoregressions. Working Paper, Federal Reserve Bank of Minneapolis.

Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions - Five Years of Experience. Journal of Business and Economic Statistics, 4(1), 25-38.

Newey, W. K., and West, K. D., 1987. A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Econometrica 55(3), 703-708.

Rapach, D. E., and Strauss, J. K. (2005). Forecasting Employment Growth in Missouri with Many Potentially Relevant Predictors: An Analysis of Forecast Combining Methods. Federal Reserve Bank of Saint Louis Regional Economic Development 1(1), 97-112.

Rapach, D. E., and Strauss, J. K. (2008). Forecasting US Employment Growth using Forecast Combining Methods. Journal of Forecasting 27(1), 75-93.

Rapach, D. E., and Strauss, J. K. (2010a). Bagging or Combining (or Both)? An Analysis Based on Forecasting U.S. Employment Growth. Econometric Reviews 29(5-6), 511-533.

Rapach, D. E., and Strauss, J. K. (2010b). Forecasting U.S. State-Level Employment Growth: An Amalgamation Approach. Saint Louis University, Mimeo.

Sims, C. A. (1980). Macroeconomics and Reality. Econometrica, 48(1), 1-48.
Sims, C. A., Stock, J. H., and Watson, M. W., 1990. Inference in Linear Time Series Models with Some Unit Roots. Econometrica 58(1), 113-144.

Spencer, D. E. (1993). Developing a Bayesian Vector Autoregression Model. International Journal of Forecasting, 9(3), 407-421.

Stevens, B. H., and Moore, C. L., 1980. A Critical Review of the Literature on Shift-Share as a Forecasting Technique. Journal of Regional Science 20(4), 419-437.

Stock, James H., and Watson, M. W., (1999). Forecasting Inflation. Journal of Monetary Economics, 44(2), 293-335.

Stock, J. H., and Watson, M.W. (2002a) Forecasting Using Principal Components from a Large Number of Predictors. Journal of the American Statistical Association, 97(460), 147-162.

Stock, J. H., and Watson, M. W., (2002b) Macroeconomics forecasting using diffusion indexes, Journal of Business and Economic Statistics, 20(2), 147-162.

Stock, J. H., and Watson, M.W., (2003). Forecasting Output and Inflation: The Role of Asset Prices. Journal of Economic Literature, 41(3), 788-829.

Stock, J. H., and Watson, M. W., (2004). Combination Forecasts of Output Growth in a SevenCountry Data Set. Journal of Forecasting, 23(6), 405-430.

Stock, J. H., and Watson, M. W., (2005). Implications of dynamic factor models for VAR analysis. NBER Working Paper No. 11467.

Taylor, C. A., 1982. Econometric Modeling of Urban and Other Substate Areas: An Analysis of Alternative Methodologies. Regional Science and Urban Economics 12(3), 425-448.

Theil, H. (1971). Principles of Econometrics. New York: John Wiley.
Todd, R. M. (1984). Improving Economic Forecasting with Bayesian Vector Autoregression. Quarterly Review, Federal Reserve Bank of Minneapolis, Fall, 18-29.

Williamson, R. B., 2006. Predictive Power of the Export Base Theory. Growth and Change 6(1), 3-10.

Zellner, A., and Palm, F. (1974). Time Series Analysis and Simultaneous Equation Econometric Models. Journal of Econometrics, 2(1), 17-54.

## Appendix A:

## Table A1: Variables

| Data Code | Variable Name | Format |
| :---: | :---: | :---: |
| a0m052 | Personal income (AR, bill. chain 2000 \$) | 5 |
| A0M051 | Personal income less transfer payments (AR, bill. chain 2000 \$) | 5 |
| A0M224_R | Real Consumption (AC) A0m224/gmdc | 5 |
| A0M057 | Manufacturing and trade sales (mil. Chain 1996 \$) | 5 |
| A0M059 | Sales of retail stores (mil. Chain 2000 \$) | 5 |
| IPS10 | INDUSTRIAL PRODUCTION INDEX - TOTAL INDEX | 5 |
| IPS11 | INDUSTRIAL PRODUCTION INDEX - PRODUCTS, TOTAL | 5 |
| IPS299 | INDUSTRIAL PRODUCTION INDEX - FINAL PRODUCTS | 5 |
| IPS12 | INDUSTRIAL PRODUCTION INDEX - CONSUMER GOODS | 5 |
| IPS13 | INDUSTRIAL PRODUCTION INDEX - DURABLE CONSUMER GOODS | 5 |
| IPS18 | INDUSTRIAL PRODUCTION INDEX - NONDURABLE CONSUMER GOODS | 5 |
| IPS25 | INDUSTRIAL PRODUCTION INDEX - BUSINESS EQUIPMENT | 5 |
| IPS32 | INDUSTRIAL PRODUCTION INDEX - MATERIALS | 5 |
| IPS34 | INDUSTRIAL PRODUCTION INDEX - DURABLE GOODS MATERIALS | 5 |
| IPS38 | INDUSTRIAL PRODUCTION INDEX - NONDURABLE GOODS MATERIALS | 5 |
| IPS43 | INDUSTRIAL PRODUCTION INDEX - MANUFACTURING (SIC) | 5 |
| IPS307 | INDUSTRIAL PRODUCTION INDEX - RESIDENTIAL UTILITIES | 5 |
| IPS306 | INDUSTRIAL PRODUCTION INDEX - FUELS | 5 |
| IPDM | Industrial Production: Durable Manufacturing (NAICS) | 5 |
| IPNDM | Industrial Production: Nondurable Manufacturing (NAICS) | 5 |
| IPM | Industrial Production: Mining | 5 |
| IPGEU | Industrial Production: Electric and Gas Utilities | 5 |
| PMP | NAPM PRODUCTION INDEX (PERCENT) | 1 |
| A0m082 | Capacity Utilization (Mfg) | 2 |
| LHEL | INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;SA) | 2 |
| LHELX | EMPLOYMENT: RATIO; HELP-WANTED ADS: NO. UNEMPLOYED CLF | 2 |
| LHEM | CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA) | 5 |
| LHNAG | CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS.,SA) | 5 |
| LHUR | UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS \& OVER (\%,SA) | 2 |
| LHU680 | UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA) | 2 |
| LHU5 | UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA) | 5 |
| LHU14 | UNEMPLOY.BY DURATION: PERSONS UNEMPL. 5 TO 14 WKS (THOUS.,SA) | 5 |
| LHU15 | UNEMPLOY.BY DURATION: PERSONS UNEMPL. 15 WKS + (THOUS., SA) | 5 |
| LHU26 | UNEMPLOY.BY DURATION: PERSONS UNEMPL. 15 TO 26 WKS (THOUS.,SA) | 5 |
| LHU27 | UNEMPLOY.BY DURATION: PERSONS UNEMPL. 27 WKS + (THOUS, SA) | 5 |
| A0M005 | Average weekly initial claims, unemployment insurance (thous.) | 5 |
| CES002 | EMPLOYEES ON NONFARM PAYROLLS - TOTAL PRIVATE | 5 |
| CES003 | EMPLOYEES ON NONFARM PAYROLLS - GOODS-PRODUCING | 5 |
| CES006 | EMPLOYEES ON NONFARM PAYROLLS - MINING | 5 |
| CES017 | EMPLOYEES ON NONFARM PAYROLLS - DURABLE GOODS | 5 |
| CES033 | EMPLOYEES ON NONFARM PAYROLLS - NONDURABLE GOODS | 5 |
| CES046 | EMPLOYEES ON NONFARM PAYROLLS - SERVICE-PROVIDING | 5 |


| Data Code | Variable Name | Format |
| :---: | :---: | :---: |
| CES049 | EMPLOYEES ON NONFARM PAYROLLS - WHOLESALE TRADE | 5 |
| CES053 | EMPLOYEES ON NONFARM PAYROLLS - RETAIL TRADE | 5 |
| CES140 | EMPLOYEES ON NONFARM PAYROLLS - GOVERNMENT | 5 |
| CESNRM | All Employees: Natural Resources \& Mining | 5 |
| CEML | Mining \& Logging Employment | 5 |
| CEC | Construction Employment | 5 |
| CEM | Manufacturing Employment | 5 |
| CETTU | Trade, Trans. \& Util. Employment | 5 |
| CEFA | Financial Activities Employment | 5 |
| CEPBS | Prof \& Bus. Serv. Employment | 5 |
| CELH | Leisure \& Hospitality Employment | 5 |
| CEOS | Other Services Employment | 5 |
| CES151 | Average Weekly Hours: Manufacturing | 1 |
| CES155 | Average Weekly Hours: Overtime: Manufacturing | 2 |
| PMEMP | NAPM EMPLOYMENT INDEX (PERCENT) | 1 |
| HSFR | HOUSING STARTS:TOTAL (THOUS.U)S.A. | 4 |
| HSNE | HOUSING STARTS: NORTHEAST (THOUS.U.)S.A. | 4 |
| HSMW | HOUSING STARTS: MIDWEST (THOUS.U.)S.A. | 4 |
| HSSOU | HOUSING STARTS: SOUTH (THOUS.U.)S.A. | 4 |
| HSWST | HOUSING STARTS: WEST (THOUS.U.)S.A. | 4 |
| HSBR | HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS.,SAAR) | 4 |
| HSBNE | HOUSES AUTHORIZED BY BUILD. PERMITS: NORTHEAST (THOU.U.)S.A | 4 |
| HSBMW | HOUSES AUTHORIZED BY BUILD. PERMITS: MIDWEST (THOU.U.)S.A. | 4 |
| HSBSOU | HOUSES AUTHORIZED BY BUILD. PERMITS: SOUTH (THOU.U.)S.A. | 4 |
| HSBWST | HOUSES AUTHORIZED BY BUILD. PERMITS: WEST (THOU.U.)S.A. | 4 |
| HPNE | Real House Price Northeast | 6 |
| HPMW | Real House Price Midwest | 6 |
| HPS | Real House Price South | 6 |
| HPW | Real House Price West | 6 |
| HPUS | Real House Price US | 6 |
| SNE | Home Sales Northeast | 6 |
| SMW | Home Sales Midwest | 6 |
| SS | Home Sales South | 6 |
| SW | Home Sales West | 6 |
| SUS | Home Sales US | 6 |
| HMOB | MOBILE HOMES: MANUFACTURERS' SHIPMENTS (THOUS.OF UNITS,SAAR) | 4 |
| PMI | PURCHASING MANAGERS' INDEX (SA) | 1 |
| PMNO | NAPM NEW ORDERS INDEX (PERCENT) | 1 |
| PMDEL | NAPM VENDOR DELIVERIES INDEX (PERCENT) | 1 |
| PMNV | NAPM INVENTORIES INDEX (PERCENT) | 1 |
| A0M008 | Mfrs' new orders, consumer goods and materials (bill. chain 1982 \$) | 5 |
| A0M007 | Mfrs' new orders, durable goods industries (bill. chain 2000 \$) | 5 |
| A0M027 | Mfrs' new orders, nondefense capital goods (mil. chain 1982 \$) | 5 |
| A1M092 | Mfrs' unfilled orders, durable goods indus. (bill. chain 2000 \$) | 5 |
| A0M070 | Manufacturing and trade inventories (bill. chain 2000 \$) | 5 |
| A0M077 | Ratio, mfg. and trade inventories to sales (based on chain 2000 \$) | 2 |
| FM1 | MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK'ABLE DEP)(BIL\$,SA) | 6 |


| Data Code | Variable Name | Format |
| :---: | :---: | :---: |
| FM2 | MONEY STOCK:M2(M1+O'NITE RPS,EURO\$,G/P\&B/D MMMFS\&SAV\&SM TIME DEP(BIL\$, | 6 |
| FM3 | MONEY STOCK: MZM(BIL\$,SA) | 6 |
| FM2DQ | MONEY SUPPLY - M2 IN 2005 DOLLARS (BCI) | 5 |
| FMFBA | MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL\$,SA) | 6 |
| FMRRA | DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL\$,SA) | 6 |
| FMRNBA | DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MIL\$,SA) | 6 |
| FCLNQ | COMMERCIAL \& INDUSTRIAL LOANS OUSTANDING IN 1996 DOLLARS (BCI) | 6 |
| FCLBMC | Net Change in Business Loans | 1 |
| CCINRV | CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19) | 6 |
| A0M095 | Ratio, consumer installment credit to personal income (pct.) | 2 |
| FSPCOM | S\&P'S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10) | 5 |
| FSPIN | S\&P'S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10) | 5 |
| FSDXP | S\&P'S COMPOSITE COMMON STOCK: Price-DIVIDEND Ratio (\%NSA) | 5 |
| FSPXE | S\&P'S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (\%,NSA) | 5 |
| FYFF | INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (\% PER ANNUM,NSA) | 2 |
| CP90 | Commercial Paper Rate (AC) | 2 |
| FYGM3 | INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(\% PER ANN,NSA) | 2 |
| FYGM6 | INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(\% PER ANN,NSA) | 2 |
| FYGT1 | INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(\% PER ANN,NSA) | 2 |
| FYGT5 | INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(\% PER ANN,NSA) | 2 |
| FYGT10 | INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(\% PER ANN,NSA) | 2 |
| FYAAAC | BOND YIELD: MOODY'S AAA CORPORATE (\% PER ANNUM) | 2 |
| FYBAAC | BOND YIELD: MOODY'S BAA CORPORATE (\% PER ANNUM) | 2 |
| scp90 | cp90-fyff | 1 |
| sfygm3 | fygm3-fyff | 1 |
| sFYGM6 | fygm6-fyff | 1 |
| sFYGT1 | fygt1-fyff | 1 |
| sFYGT5 | fygt5-fyff | 1 |
| sFYGT10 | fygt10-fyff | 1 |
| sFYAAAC | fyaaac-fyff | 1 |
| sFYBAAC | fybaac-fyff | 1 |
| EXRUS | UNITED STATES; EFFECTIVE EXCHANGE RATE (MERM) (INDEX NO.) | 5 |
| EXRSW | FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.\$) | 5 |
| EXRJAN | FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.\$) | 5 |
| EXRUK | FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND) | 5 |
| EXRCAN | FOREIGN EXCHANGE RATE: CANADA (CANADIAN \$ PER U.S.\$) | 5 |
| PWFSA | PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA) | 6 |
| PWFCSA | PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82=100,SA) | 6 |
| PWIMSA | PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES \& COMPONENTS(82=100,SA) | 6 |
| PWCMSA | PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) | 6 |
| PSCCOM | SPOT MARKET PRICE INDEX:BLS \& CRB: ALL COMMODITIES(1967=100) | 6 |
| NFS | Non-Ferrous Scrap (1982=100) | 6 |


| Data Code | Variable Name | Format |
| :--- | :--- | :---: |
| PMCP | NAPM COMMODITY PRICES INDEX (PERCENT) | 1 |
| PUNEW | CPI-U: ALL ITEMS (82-84 $=100$, SA $)$ | 6 |
| PU83 | CPI-U: APPAREL \& UPKEEP $(82-84=100$, SA $)$ | 6 |
| PU84 | CPI-U: TRANSPORTATION $(82-84=100$, SA $)$ | 6 |
| PU85 | CPI-U: MEDICAL CARE $(82-84=100$, SA) | 6 |
| PUC | CPI-U: COMMODITIES $(82-84=100, S A)$ | 6 |
| PUCD | CPI-U: DURABLES (82-84=100,SA) | 6 |
| PUS | CPI-U: SERVICES (82-84=100,SA) | 6 |
| PUXF | CPI-U: ALL ITEMS LESS FOOD (82-84=100,SA) | 6 |
| PUXHS | CPI-U: ALL ITEMS LESS SHELTER (82-84=100,SA) | 6 |
| PUXM | CPI-U: ALL ITEMS LESS MIDICAL CARE (82-84=100,SA) | 6 |
| PUE | CPI-U: ALL ITEMS LESS ENERGY (82-84=100,SA) | 6 |
| GMDC | PCE, IMPL PR DEFL:PCE (1987=100) | 6 |
| GMDCD | PCE, IMPL PR DEFL:PCE; DURABLES (1987=100) | 6 |
| GMDCN | PCE, IMPL PR DEFL:PCE; NONDURABLES (1996=100) | 6 |
| GMDCS | PCE, IMPL PR DEFL:PCE; SERVICES (1987=100) | 6 |
| CES275 | AVERAGE HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY | 6 |
| CES277 | WORKERS ON PRIVATE NO | 6 |
| CES278 | AVERAGE HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY | 6 |
| HHSNTN | WORKERS ON PRIVATE NO | 6 |

Note: For BVAR models: $1,2=$ No transformation; 4, 5 and $6=\log (d a t a) \times 100$; For FAVAR models: $1=$ No transformation; $2=$ First-difference of data; $4=\log ($ data $) \times 100 ; 5$. 6: Growth rate of data in percentage.

Table 1: One- to Twelve-Months-Ahead Forecast for Mining \& Logging Employment: 1990:1-2009:3

|  | Models | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AR | 0.985 | 1.009 | 1.014 | 1.012 | 1.001 | 0.997 | 0.998 | 1.002 | 1.007 | 1.012 | 1.016 | 1.019 | 1.006 |
|  | VAR | 3.700 | 4.038 | 3.987 | 4.111 | 4.141 | 4.256 | 4.387 | 4.510 | 4.641 | 4.820 | 4.983 | 5.130 | 4.392 |
|  | FAAR | 4.275 | 4.255 | 4.204 | 4.272 | 4.206 | 4.166 | 4.115 | 4.081 | 4.017 | 4.064 | 4.056 | 4.040 | 4.146 |
|  | FAVAR | 1.442 | 1.354 | 1.205 | 1.111 | 1.010 | 0.950 | 0.892 | 0.861 | 0.830 | 0.794 | 0.768 | 0.745 | 0.997 |
|  | VEC | 2.757 | 0.184 | 0.263 | 3.676 | 3.761 | 1.832 | 1.959 | 0.614 | 5.315 | 9.559 | 21.455 | 22.825 | 6.183 |
|  | FAVEC | 0.404 | 1.719 | 1.595 | 2.253 | 2.268 | 2.375 | 2.365 | 2.544 | 2.252 | 2.107 | 1.847 | 1.634 | 1.947 |
| $\mathrm{w}=0.3, \mathrm{~d}=0.5$ | BAR | 0.973 | 0.988 | 0.990 | 0.988 | 0.973 | 0.969 | 0.972 | 0.981 | 0.989 | 0.998 | 1.004 | 1.007 | 0.986 |
|  | BVAR | 1.833 | 2.150 | 2.292 | 2.377 | 2.395 | 2.432 | 2.481 | 2.531 | 2.571 | 2.607 | 2.640 | 2.672 | 2.415 |
|  | BFAAR | 1.251 | 1.240 | 1.180 | 1.097 | 1.010 | 0.965 | 0.934 | 0.919 | 0.904 | 0.885 | 0.868 | 0.853 | 1.009 |
|  | BFAVAR | 1.598 | 1.794 | 1.888 | 1.946 | 1.967 | 2.000 | 2.033 | 2.063 | 2.079 | 2.094 | 2.112 | 2.138 | 1.976 |
|  | BVEC | 2.904 | 4.217 | 4.877 | 2.291 | 1.534 | 3.057 | 3.551 | 3.596 | 5.612 | 7.135 | 13.173 | 11.971 | 5.326 |
|  | BFAVEC | 0.348 | 1.498 | 1.389 | 2.098 | 2.159 | 2.262 | 2.263 | 2.445 | 2.202 | 2.116 | 1.917 | 1.723 | 1.868 |
|  | LBVAR | 2.525 | 2.773 | 2.742 | 2.436 | 2.820 | 3.207 | 3.719 | 4.246 | 4.875 | 5.474 | 6.092 | 6.742 | 3.971 |
| $\mathrm{w}=0.2, \mathrm{~d}=1$ | BAR | 0.971 | 0.984 | 0.989 | 0.990 | 0.987 | 0.988 | 0.992 | 0.997 | 1.002 | 1.007 | 1.010 | 1.013 | 0.994 |
|  | BVAR | 1.512 | 1.710 | 1.803 | 1.846 | 1.860 | 1.870 | 1.884 | 1.900 | 1.912 | 1.924 | 1.937 | 1.951 | 1.843 |
|  | BFAAR | 1.022 | 1.005 | 0.978 | 0.919 | 0.881 | 0.864 | 0.853 | 0.843 | 0.833 | 0.823 | 0.815 | 0.810 | 0.888 |
|  | BFAVAR | 1.403 | 1.545 | 1.626 | 1.679 | 1.715 | 1.737 | 1.761 | 1.781 | 1.793 | 1.807 | 1.822 | 1.840 | 1.709 |
|  | BVEC | 2.213 | 7.371 | 7.182 | 5.774 | 4.864 | 6.175 | 7.999 | 9.625 | 10.223 | 12.217 | 13.744 | 12.149 | 8.295 |
|  | BFAVEC | 0.035 | 0.693 | 0.780 | 1.434 | 1.485 | 1.540 | 1.543 | 1.641 | 1.584 | 1.667 | 1.658 | 1.605 | 1.305 |
|  | LBVAR | 1.911 | 2.154 | 2.204 | 2.100 | 2.520 | 2.816 | 3.225 | 3.638 | 4.162 | 4.672 | 5.173 | 5.694 | 3.356 |
| w=0.1,d=1 | BAR | 0.992 | 1.005 | 1.013 | 1.018 | 1.021 | 1.026 | 1.031 | 1.036 | 1.039 | 1.043 | 1.045 | 1.046 | 1.026 |
|  | BVAR | 1.364 | 1.507 | 1.584 | 1.628 | 1.655 | 1.675 | 1.694 | 1.709 | 1.720 | 1.730 | 1.739 | 1.749 | 1.646 |
|  | BFAAR | 0.972 | 0.938 | 0.911 | 0.871 | 0.853 | 0.845 | 0.836 | 0.827 | 0.819 | 0.811 | 0.804 | 0.802 | 0.857 |
|  | BFAVAR | 1.316 | 1.433 | 1.506 | 1.562 | 1.603 | 1.629 | 1.654 | 1.673 | 1.685 | 1.697 | 1.709 | 1.722 | 1.599 |
|  | BVEC | 1.648 | 6.532 | 6.614 | 5.483 | 4.560 | 5.070 | 6.144 | 7.358 | 7.607 | 8.691 | 9.204 | 8.155 | 6.422 |
|  | BFAVEC | 0.317 | 0.479 | 0.525 | 0.916 | 0.939 | 0.923 | 0.853 | 0.800 | 0.778 | 0.727 | 0.652 | 0.657 | 0.714 |
|  | LBVAR | 1.392 | 1.576 | 1.658 | 1.660 | 2.053 | 2.384 | 2.761 | 3.142 | 3.611 | 4.058 | 4.482 | 4.918 | 2.808 |

Table 1: One- to Twelve-Months-Ahead Forecast for Mining \& Logging Employment: 1990:1-2009:3 (continued)

|  | Models | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | Average |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BAR | 1.009 | 1.029 | 1.041 | 1.048 | 1.053 | 1.058 | 1.061 | 1.063 | 1.062 | 1.061 | 1.058 | 1.055 | 1.050 |
|  | BVAR | 1.461 | 1.612 | 1.685 | 1.726 | 1.753 | 1.774 | 1.795 | 1.813 | 1.826 | 1.839 | 1.853 | 1.866 | 1.750 |
|  | BFAAR | 1.028 | 0.985 | 0.951 | 0.918 | 0.911 | 0.913 | 0.912 | 0.910 | 0.908 | 0.906 | 0.905 | 0.906 | 0.929 |
| $\mathbf{w = 0 . 2 , \mathbf { d = 2 }}$ | BFAVAR | 1.439 | 1.543 | 1.601 | 1.650 | 1.695 | 1.722 | 1.751 | 1.774 | 1.791 | 1.807 | 1.825 | 1.844 | 1.704 |
|  | BVEC | 0.648 | 3.581 | 3.802 | 3.128 | 2.580 | 2.452 | 2.429 | 2.431 | 2.190 | 2.103 | 1.911 | 1.573 | 2.402 |
|  | BFAVEC | 0.309 | 0.273 | 0.340 | 0.505 | 0.588 | 0.570 | 0.510 | 0.420 | 0.416 | 0.312 | 0.227 | 0.271 | 0.395 |
|  | LBVAR | 1.823 | 1.935 | 1.938 | 1.938 | 2.380 | 2.681 | 3.104 | 3.549 | 4.063 | 4.540 | 4.969 | 5.434 | 3.196 |
|  | BAR | 1.029 | 1.046 | 1.054 | 1.059 | 1.063 | 1.066 | 1.069 | 1.071 | 1.070 | 1.069 | 1.067 | 1.065 | 1.061 |
|  | BVAR | 1.344 | 1.463 | 1.530 | 1.574 | 1.609 | 1.639 | 1.668 | 1.693 | 1.714 | 1.735 | 1.755 | 1.774 | 1.625 |
|  | BFAAR | 1.033 | 0.983 | 0.948 | 0.925 | 1.122 | 1.316 | 1.500 | 1.681 | 1.865 | 2.049 | 2.235 | 2.429 | 1.507 |
| $\mathbf{w = 0 . 1 , d = 2}$ | BFAVAR | 1.323 | 1.415 | 1.475 | 1.527 | 1.571 | 1.602 | 1.634 | 1.659 | 1.679 | 1.700 | 1.719 | 1.739 | 1.587 |
|  | BVEC | 1.209 | 3.236 | 3.233 | 2.603 | 2.090 | 1.886 | 1.742 | 1.601 | 1.359 | 1.162 | 0.920 | 0.708 | 1.812 |
|  | BFAVEC | 0.509 | 0.333 | 0.340 | $\mathbf{0 . 4 4 4}$ | $\mathbf{0 . 5 1 8}$ | $\mathbf{0 . 4 8 0}$ | $\mathbf{0 . 3 9 7}$ | $\mathbf{0 . 2 7 0}$ | $\mathbf{0 . 2 4 8}$ | $\mathbf{0 . 0 9 8}$ | $\mathbf{0 . 0 2 9}$ | $\mathbf{0 . 0 1 5}$ | $\mathbf{0 . 3 0 7}$ |
|  | LBVAR | 1.349 | 1.446 | 1.495 | 1.535 | 1.928 | 2.247 | 2.634 | 3.036 | 3.484 | 3.899 | 4.266 | 4.656 | 2.665 |
| $\mathbf{w = 0 . 0 6 2 7 , d = 2}$ | LBVAR(FIT) | 1.109 | 1.171 | 1.223 | 1.272 | 1.611 | 1.912 | 2.260 | 2.620 | 3.015 | 3.381 | 3.699 | 4.032 | 2.275 |

Note: AR, VAR, FAAR, FAVAR, VEC, and FAVEC refer to autoregressive, vector autoregressive, factor-augmented vector autoregressive, factoraugmented vector autoregressive, vector error-correction, and factor-augmented error-correction models. BAR, BVAR, BFAAR, BFAVAR, BVEC, BFAVEC, and LBVAR refer to Bayesian AR, VAR, FAAR, FAVAR, VEC, and FAVEC models. The text identifies various priors and parameterizations. RMSE means root mean square error. The entries measure the average RMSE across all forecasts at each horizon - one-, two-, ..., and twelve-month-ahead forecasts as well as the average RMSE across the individual forecasts. Bold numbers represent the minimum value in each column.

Table 2: One- to Twelve-Months-Ahead Forecast for Construction Employment: 1990:1-2009:3

|  | Models | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AR | 0.766 | 0.677 | 0.662 | 0.669 | 0.693 | 0.713 | 0.733 | 0.754 | 0.775 | 0.796 | 0.815 | 0.834 | 0.741 |
|  | VAR | 1.226 | 1.185 | 1.204 | 1.282 | 1.399 | 1.532 | 1.649 | 1.758 | 1.868 | 1.959 | 2.025 | 2.077 | 1.597 |
|  | FAAR | 1.379 | 1.409 | 1.425 | 1.506 | 1.591 | 1.683 | 1.757 | 1.835 | 1.915 | 1.987 | 2.028 | 2.062 | 1.715 |
|  | FAVAR | 0.827 | 0.722 | 0.668 | 0.664 | 0.682 | 0.703 | 0.730 | 0.750 | 0.775 | 0.798 | 0.813 | 0.828 | 0.747 |
|  | VEC | 2.494 | 3.957 | 6.568 | 46.533 | 3.734 | 2.280 | 2.307 | 0.957 | 1.035 | 0.486 | 0.805 | 0.903 | 6.005 |
|  | FAVEC | 1.052 | 1.583 | 2.819 | 19.200 | 1.396 | 0.583 | 0.401 | 0.039 | 0.102 | 0.230 | 0.290 | 0.319 | 2.335 |
| $\mathrm{w}=0.3, \mathrm{~d}=0.5$ | BAR | 0.756 | 0.661 | 0.641 | 0.645 | 0.666 | 0.685 | 0.704 | 0.723 | 0.744 | 0.764 | 0.783 | 0.803 | 0.715 |
|  | BVAR | 0.827 | 0.775 | 0.775 | 0.805 | 0.850 | 0.900 | 0.945 | 0.981 | 1.015 | 1.047 | 1.069 | 1.090 | 0.923 |
|  | BFAAR | 0.762 | 0.664 | 0.633 | 0.634 | 0.650 | 0.667 | 0.690 | 0.713 | 0.738 | 0.762 | 0.780 | 0.796 | 0.707 |
|  | BFAVAR | 0.806 | 0.729 | 0.692 | 0.703 | 0.741 | 0.793 | 0.845 | 0.887 | 0.927 | 0.961 | 0.986 | 1.005 | 0.840 |
|  | BVEC | 2.430 | 3.669 | 5.942 | 20.933 | 1.235 | 0.055 | 0.546 | 0.155 | 0.080 | 0.271 | 0.139 | 0.234 | 2.974 |
|  | BFAVEC | 1.056 | 1.576 | 2.802 | 19.100 | 1.392 | 0.600 | 0.404 | 0.048 | 0.094 | 0.225 | 0.283 | 0.314 | 2.325 |
|  | LBVAR | 1.180 | 1.129 | 1.068 | 1.038 | 1.085 | 1.130 | 1.106 | 1.125 | 1.169 | 1.222 | 1.255 | 1.294 | 1.150 |
| $\mathrm{w}=0.2, \mathrm{~d}=1$ | BAR | 0.753 | 0.660 | 0.639 | 0.641 | 0.660 | 0.677 | 0.695 | 0.713 | 0.733 | 0.752 | 0.771 | 0.790 | 0.707 |
|  | BVAR | 0.768 | 0.694 | 0.685 | 0.701 | 0.733 | 0.767 | 0.801 | 0.831 | 0.859 | 0.891 | 0.917 | 0.940 | 0.799 |
|  | BFAAR | 0.732 | 0.635 | 0.611 | 0.614 | 0.631 | 0.646 | 0.670 | 0.690 | 0.713 | 0.735 | 0.754 | 0.769 | 0.683 |
|  | BFAVAR | 0.744 | 0.660 | 0.639 | 0.654 | 0.689 | 0.726 | 0.764 | 0.796 | 0.825 | 0.856 | 0.882 | 0.906 | 0.762 |
|  | BVEC | 1.959 | 3.052 | 4.531 | 14.567 | 0.024 | 0.665 | 0.449 | 0.585 | 0.453 | 0.566 | 0.435 | 0.418 | 2.309 |
|  | BFAVEC | 1.076 | 1.510 | 2.654 | 18.067 | 1.372 | 0.697 | 0.404 | 0.094 | 0.051 | 0.196 | 0.248 | 0.292 | 2.222 |
|  | LBVAR | 0.980 | 0.980 | 0.972 | 0.926 | 0.956 | 1.003 | 0.998 | 1.033 | 1.086 | 1.139 | 1.176 | 1.213 | 1.038 |
| $\mathrm{w}=0.1, \mathrm{~d}=1$ | BAR | 0.765 | 0.681 | 0.665 | 0.669 | 0.688 | 0.704 | 0.722 | 0.739 | 0.759 | 0.777 | 0.794 | 0.813 | 0.731 |
|  | BVAR | 0.746 | 0.659 | 0.642 | 0.651 | 0.677 | 0.706 | 0.735 | 0.762 | 0.789 | 0.818 | 0.844 | 0.867 | 0.741 |
|  | BFAAR | 0.731 | 0.636 | 0.615 | 0.620 | 0.637 | 0.649 | 0.673 | 0.691 | 0.713 | 0.733 | 0.751 | 0.766 | 0.685 |
|  | BFAVAR | 0.733 | 0.643 | 0.622 | 0.633 | 0.662 | 0.691 | 0.722 | 0.750 | 0.777 | 0.805 | 0.831 | 0.854 | 0.727 |
|  | BVEC | 1.643 | 2.580 | 3.914 | 18.767 | 0.853 | 0.124 | 0.061 | 0.243 | 0.235 | 0.331 | 0.312 | 0.335 | 2.450 |
|  | BFAVEC | 1.098 | 1.456 | 2.498 | 16.700 | $1.239$ | $0.653$ | 0.333 | 0.065 | 0.071 | 0.215 | 0.261 | 0.310 | 2.075 |
|  | LBVAR | 0.827 | 0.795 | 0.804 | 0.772 | 0.802 | 0.848 | 0.868 | 0.905 | 0.956 | 1.006 | 1.043 | 1.075 | 0.892 |

Table 2: One- to Twelve-Months-Ahead Forecast for Construction Employment: 1990:1-2009:3 (continued)

|  | Models | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{w}=0.2, \mathrm{~d}=2$ | BAR | 0.838 | 0.800 | 0.807 | 0.821 | 0.840 | 0.853 | 0.865 | 0.875 | 0.885 | 0.893 | 0.900 | 0.907 | 0.857 |
|  | BVAR | 0.776 | 0.713 | 0.711 | 0.728 | 0.760 | 0.792 | 0.824 | 0.854 | 0.884 | 0.916 | 0.948 | 0.976 | 0.824 |
|  | BFAAR | 0.740 | 0.659 | 0.649 | 0.664 | 0.687 | 0.702 | 0.728 | 0.746 | 0.765 | 0.783 | 0.798 | 0.811 | 0.728 |
|  | BFAVAR | 0.743 | 0.667 | 0.655 | 0.676 | 0.715 | 0.752 | 0.790 | 0.823 | 0.854 | 0.887 | 0.922 | 0.954 | 0.787 |
|  | BVEC | 1.374 | 2.168 | 3.654 | 23.167 | 1.710 | 0.855 | 0.376 | 0.086 | 0.044 | 0.192 | 0.230 | 0.270 | 2.844 |
|  | BFAVEC | 1.161 | 1.458 | 2.366 | 14.600 | 1.044 | 0.549 | 0.221 | 0.007 | 0.120 | 0.259 | 0.300 | 0.345 | 1.869 |
|  | LBVAR | 0.933 | 0.921 | 0.926 | 0.845 | 0.867 | 0.900 | 0.947 | 0.997 | 1.055 | 1.112 | 1.155 | 1.194 | 0.988 |
| $\mathrm{w}=0.1, \mathrm{~d}=2$ | BAR | 0.921 | 0.913 | 0.922 | 0.932 | 0.941 | 0.948 | 0.953 | 0.957 | 0.961 | 0.965 | 0.967 | 0.970 | 0.946 |
|  | BVAR | 0.828 | 0.804 | 0.823 | 0.853 | 0.890 | 0.926 | 0.960 | 0.991 | 1.022 | 1.052 | 1.083 | 1.112 | 0.945 |
|  | BFAAR | 0.761 | 0.693 | 0.688 | 0.709 | 0.736 | 0.749 | 0.776 | 0.792 | 0.807 | 0.822 | 0.835 | 0.846 | 0.768 |
|  | BFAVAR | 0.778 | 0.732 | 0.745 | 0.781 | 0.826 | 0.865 | 0.906 | 0.941 | 0.974 | 1.007 | 1.040 | 1.072 | 0.889 |
|  | BVEC | 1.289 | 2.000 | 3.519 | 23.900 | 1.993 | 1.149 | 0.638 | 0.312 | 0.159 | 0.021 | 0.071 | 0.125 | 2.931 |
|  | BFAVEC | 1.176 | 1.506 | 2.469 | 15.467 | 1.154 | 0.625 | 0.271 | 0.028 | 0.092 | 0.238 | 0.283 | 0.331 | 1.970 |
|  | LBVAR | 0.800 | 0.754 | 0.757 | 0.724 | 0.754 | 0.791 | 0.836 | 0.886 | 0.939 | 0.991 | 1.031 | 1.067 | 0.861 |
| w=0.0627, $\mathrm{d}=2$ | LBVAR(FIT) | 0.730 | 0.650 | 0.643 | 0.635 | 0.668 | 0.709 | 0.751 | 0.798 | 0.847 | 0.892 | 0.925 | 0.960 | 0.767 |

Note: See Table 4. Bold numbers represent the minimum value in each column.

Table 3: One- to Twelve-Months-Ahead Forecast for Manufacturing Employment: 1990:1-2009:3

|  | Models | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AR | 0.695 | 0.666 | 0.711 | 0.777 | 0.842 | 0.908 | 0.961 | 1.012 | 1.056 | 1.092 | 1.125 | 1.158 | 0.917 |
|  | VAR | 1.024 | 1.153 | 1.353 | 1.592 | 1.818 | 2.032 | 2.220 | 2.398 | 2.556 | 2.687 | 2.797 | 2.889 | 2.043 |
|  | FAAR | 1.158 | 1.312 | 1.567 | 1.882 | 2.166 | 2.423 | 2.631 | 2.804 | 2.932 | 3.027 | 3.107 | 3.177 | 2.349 |
|  | FAVAR | 0.703 | 0.630 | 0.630 | 0.648 | 0.660 | 0.691 | 0.730 | 0.767 | 0.800 | 0.826 | 0.843 | 0.856 | 0.732 |
|  | VEC | 0.680 | 2.106 | 1.936 | 1.439 | 1.472 | 0.968 | 0.460 | 0.781 | 1.597 | 1.980 | 1.878 | 1.749 | 1.420 |
|  | FAVEC | 0.840 | 0.697 | 0.269 | 0.074 | 0.069 | 0.006 | 0.155 | 0.198 | 0.221 | 0.238 | 0.346 | 0.342 | 0.288 |
| $\mathrm{w}=0.3, \mathrm{~d}=0.5$ | BAR | 0.686 | 0.658 | 0.704 | 0.771 | 0.838 | 0.905 | 0.958 | 1.009 | 1.052 | 1.087 | 1.121 | 1.156 | 0.912 |
|  | BVAR | 0.689 | 0.685 | 0.744 | 0.838 | 0.936 | 1.023 | 1.092 | 1.154 | 1.205 | 1.246 | 1.285 | 1.322 | 1.018 |
|  | BFAAR | 0.637 | 0.579 | 0.594 | 0.627 | 0.656 | 0.695 | 0.739 | 0.780 | 0.819 | 0.853 | 0.877 | 0.899 | 0.730 |
|  | BFAVAR | 0.658 | 0.638 | 0.693 | 0.783 | 0.879 | 0.970 | 1.051 | 1.122 | 1.183 | 1.232 | 1.276 | 1.318 | 0.983 |
|  | BVEC | 0.674 | 2.682 | 1.891 | 1.238 | 1.150 | 0.582 | 0.009 | 0.218 | 0.785 | 1.053 | 0.970 | 0.849 | 1.009 |
|  | BFAVEC | 0.840 | 0.652 | 0.231 | 0.082 | 0.084 | 0.011 | 0.168 | 0.207 | 0.228 | 0.240 | 0.347 | 0.343 | 0.286 |
|  | LBVAR | 0.854 | 0.778 | 0.839 | 0.954 | 1.074 | 1.155 | 1.170 | 1.203 | 1.288 | 1.368 | 1.434 | 1.507 | 1.135 |
| $\mathrm{w}=0.2, \mathrm{~d}=1$ | BAR | 0.687 | 0.667 | 0.717 | 0.786 | 0.854 | 0.922 | 0.978 | 1.032 | 1.078 | 1.118 | 1.154 | 1.189 | 0.932 |
|  | BVAR | 0.631 | 0.580 | 0.601 | 0.651 | 0.710 | 0.763 | 0.803 | 0.841 | 0.874 | 0.901 | 0.926 | 0.950 | 0.769 |
|  | BFAAR | 0.619 | 0.570 | 0.590 | 0.628 | 0.667 | 0.706 | 0.751 | 0.791 | 0.829 | 0.861 | 0.888 | 0.911 | 0.734 |
|  | BFAVAR | 0.604 | 0.545 | 0.561 | 0.606 | 0.661 | 0.710 | 0.759 | 0.802 | 0.838 | 0.868 | 0.896 | 0.921 | 0.731 |
|  | BVEC | 0.400 | 4.394 | 2.513 | 1.963 | 1.456 | 1.141 | 0.705 | 0.649 | 0.785 | 0.839 | 0.608 | 0.552 | 1.334 |
|  | BFAVEC | 0.794 | 0.652 | 0.154 | 0.025 | 0.135 | 0.104 | 0.228 | 0.264 | 0.277 | 0.279 | 0.377 | 0.369 | 0.305 |
|  | LBVAR | 0.683 | 0.632 | 0.694 | 0.802 | 0.912 | 0.993 | 1.048 | 1.108 | 1.195 | 1.270 | 1.330 | 1.393 | 1.005 |
| $\mathrm{w}=0.1, \mathrm{~d}=1$ | BAR | 0.706 | 0.698 | 0.753 | 0.819 | 0.883 | 0.947 | 1.001 | 1.052 | 1.097 | 1.136 | 1.172 | 1.206 | 0.956 |
|  | BVAR | 0.616 | 0.562 | 0.582 | 0.626 | 0.676 | 0.722 | 0.759 | 0.793 | 0.823 | 0.848 | 0.872 | 0.894 | 0.731 |
|  | BFAAR | 0.628 | 0.590 | 0.617 | 0.662 | 0.708 | 0.749 | 0.796 | 0.834 | 0.868 | 0.898 | 0.923 | 0.945 | 0.768 |
|  | BFAVAR | 0.598 | 0.542 | 0.561 | 0.603 | 0.649 | 0.689 | 0.730 | 0.765 | 0.796 | 0.822 | 0.846 | 0.868 | 0.706 |
|  | BVEC | 0.109 | 4.000 | 2.083 | 1.570 | 1.050 | 0.891 | 0.585 | 0.499 | 0.514 | 0.510 | 0.289 | 0.271 | 1.031 |
|  | BFAVEC | 0.771 | 0.606 | 0.083 | 0.066 | 0.203 | 0.192 | 0.298 | 0.334 | 0.341 | 0.341 | 0.430 | 0.422 | 0.341 |
|  | LBVAR | 0.609 | 0.540 | 0.572 | 0.660 | 0.758 | 0.841 | 0.910 | 0.971 | 1.051 | 1.112 | 1.160 | 1.208 | 0.866 |

Table 3: One- to Twelve-Months-Ahead Forecast for Manufacturing Employment: 1990:1-2009:3 (continued)

|  | Models | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{w}=0.2, \mathrm{~d}=2$ | BAR | 0.717 | 0.716 | 0.773 | 0.833 | 0.888 | 0.939 | 0.980 | 1.017 | 1.049 | 1.075 | 1.098 | 1.120 | 0.934 |
|  | BVAR | 0.628 | 0.586 | 0.617 | 0.667 | 0.721 | 0.772 | 0.815 | 0.854 | 0.890 | 0.923 | 0.953 | 0.983 | 0.784 |
|  | BFAAR | 0.650 | 0.620 | 0.643 | 0.682 | 0.720 | 0.751 | 0.790 | 0.819 | 0.845 | 0.868 | 0.887 | 0.905 | 0.765 |
|  | BFAVAR | 0.597 | 0.538 | 0.559 | 0.607 | 0.666 | 0.716 | 0.769 | 0.813 | 0.851 | 0.886 | 0.921 | 0.956 | 0.740 |
|  | BVEC | 0.251 | 2.879 | 1.474 | 1.139 | 0.736 | 0.689 | 0.439 | 0.336 | 0.298 | 0.272 | 0.079 | 0.075 | 0.722 |
|  | BFAVEC | 0.754 | 0.545 | 0.026 | 0.090 | 0.248 | 0.249 | 0.346 | 0.380 | 0.387 | 0.387 | 0.470 | 0.462 | 0.362 |
|  | LBVAR | 0.662 | 0.617 | 0.659 | 0.747 | 0.844 | 0.892 | 0.976 | 1.051 | 1.138 | 1.204 | 1.256 | 1.310 | 0.946 |
| $\mathrm{w}=0.1, \mathrm{~d}=2$ | BAR | 0.783 | 0.799 | 0.846 | 0.886 | 0.918 | 0.946 | 0.967 | 0.984 | 0.997 | 1.007 | 1.015 | 1.022 | 0.931 |
|  | BVAR | 0.698 | 0.695 | 0.743 | 0.792 | 0.840 | 0.884 | 0.920 | 0.953 | 0.981 | 1.006 | 1.030 | 1.053 | 0.883 |
|  | BFAAR | 0.663 | 0.637 | 0.661 | 0.700 | 0.743 | 0.775 | 0.814 | 0.841 | 0.862 | 0.881 | 0.897 | 0.912 | 0.782 |
|  | BFAVAR | 0.633 | 0.603 | 0.644 | 0.699 | 0.755 | 0.801 | 0.849 | 0.887 | 0.920 | 0.949 | 0.978 | 1.006 | 0.810 |
|  | BVEC | 0.343 | 2.636 | 1.372 | 1.053 | 0.668 | 0.625 | 0.385 | 0.285 | 0.249 | 0.226 | 0.041 | 0.039 | 0.660 |
|  | BFAVEC | 0.777 | 0.394 | 0.058 | 0.164 | 0.303 | 0.305 | 0.393 | 0.423 | 0.427 | 0.426 | 0.502 | 0.494 | 0.389 |
|  | LBVAR | 0.592 | 0.523 | 0.543 | 0.617 | 0.700 | 0.757 | 0.828 | 0.886 | 0.954 | 1.000 | 1.034 | 1.071 | 0.792 |
| $\mathrm{w}=0.0627, \mathrm{~d}=2$ | LBVAR(FIT) | 0.569 | 0.488 | 0.496 | 0.560 | 0.633 | 0.691 | 0.750 | 0.796 | 0.847 | 0.876 | 0.892 | 0.915 | 0.709 |

Note: See Table 4. Bold numbers represent the minimum value in each column.

Table 4: One- to Twelve-Months-Ahead Forecast for Trade, Transport, \& Utilities Employment: 1990:1-2009:3

|  | Models | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AR | 0.712 | 0.615 | 0.603 | 0.617 | 0.636 | 0.651 | 0.667 | 0.678 | 0.694 | 0.710 | 0.726 | 0.740 | 0.671 |
|  | VAR | 1.034 | 0.982 | 0.991 | 1.042 | 1.123 | 1.229 | 1.333 | 1.426 | 1.517 | 1.598 | 1.659 | 1.707 | 1.303 |
|  | FAAR | 1.184 | 1.096 | 1.090 | 1.136 | 1.216 | 1.303 | 1.375 | 1.435 | 1.498 | 1.540 | 1.555 | 1.561 | 1.332 |
|  | FAVAR | 0.713 | 0.582 | 0.551 | 0.560 | 0.572 | 0.587 | 0.610 | 0.629 | 0.656 | 0.678 | 0.695 | 0.711 | 0.629 |
|  | VEC | 2.541 | 8.974 | 12.692 | 5.818 | 4.616 | 4.009 | 3.118 | 2.452 | 2.343 | 2.092 | 1.849 | 1.774 | 4.357 |
|  | FAVEC | 1.399 | 4.256 | 3.821 | 1.509 | 0.612 | 0.313 | 0.175 | 0.021 | 0.085 | 0.158 | 0.190 | 0.229 | 1.064 |
| $\mathrm{w}=0.3, \mathrm{~d}=0.5$ | BAR | 0.712 | 0.620 | 0.611 | 0.627 | 0.649 | 0.666 | 0.683 | 0.697 | 0.714 | 0.731 | 0.749 | 0.765 | 0.685 |
|  | BVAR | 0.743 | 0.670 | 0.671 | 0.699 | 0.735 | 0.774 | 0.810 | 0.840 | 0.872 | 0.902 | 0.930 | 0.955 | 0.800 |
|  | BFAAR | 0.672 | 0.561 | 0.542 | 0.559 | 0.574 | 0.591 | 0.618 | 0.640 | 0.668 | 0.692 | 0.711 | 0.727 | 0.630 |
|  | BFAVAR | 0.727 | 0.635 | 0.623 | 0.647 | 0.680 | 0.717 | 0.755 | 0.787 | 0.821 | 0.852 | 0.877 | 0.900 | 0.752 |
|  | BVEC | 2.426 | 7.667 | 9.821 | 3.836 | 3.073 | 2.453 | 1.635 | 1.170 | 1.131 | 1.018 | 0.884 | 0.842 | 2.996 |
|  | BFAVEC | 1.399 | 4.231 | 3.769 | 1.491 | 0.589 | 0.297 | 0.164 | 0.027 | 0.093 | 0.163 | 0.196 | 0.233 | 1.054 |
|  | LBVAR | 0.916 | 0.873 | 0.908 | 0.793 | 0.847 | 0.908 | 0.924 | 0.964 | 1.032 | 1.101 | 1.154 | 1.207 | 0.969 |
| $\mathrm{w}=0.2, \mathrm{~d}=1$ | BAR | 0.711 | 0.621 | 0.612 | 0.628 | 0.649 | 0.666 | 0.684 | 0.698 | 0.716 | 0.734 | 0.752 | 0.768 | 0.687 |
|  | BVAR | 0.703 | 0.625 | 0.620 | 0.639 | 0.663 | 0.687 | 0.711 | 0.733 | 0.757 | 0.782 | 0.806 | 0.827 | 0.713 |
|  | BFAAR | 0.660 | 0.555 | 0.539 | 0.557 | 0.574 | 0.589 | 0.616 | 0.637 | 0.662 | 0.685 | 0.703 | 0.720 | 0.625 |
|  | BFAVAR | 0.684 | 0.595 | 0.581 | 0.600 | 0.625 | 0.648 | 0.676 | 0.700 | 0.727 | 0.754 | 0.778 | 0.799 | 0.681 |
|  | BVEC | 2.007 | 6.872 | 9.077 | 3.773 | 2.342 | 1.575 | 0.986 | 0.648 | 0.601 | 0.544 | 0.509 | 0.449 | 2.449 |
|  | BFAVEC | 1.466 | 4.359 | 3.846 | 1.473 | 0.539 | 0.256 | 0.123 | 0.038 | 0.110 | 0.171 | 0.212 | 0.236 | 1.069 |
|  | LBVAR | 0.777 | 0.742 | 0.798 | 0.721 | 0.774 | 0.833 | 0.863 | 0.918 | 0.985 | 1.053 | 1.206 | 1.365 | 0.920 |
| $\mathrm{w}=0.1, \mathrm{~d}=1$ | BAR | 0.714 | 0.630 | 0.623 | 0.638 | 0.658 | 0.675 | 0.693 | 0.707 | 0.725 | 0.742 | 0.758 | 0.773 | 0.695 |
|  | BVAR | 0.701 | 0.621 | 0.616 | 0.633 | 0.656 | 0.679 | 0.703 | 0.724 | 0.747 | 0.770 | 0.791 | 0.809 | 0.704 |
|  | BFAAR | 0.667 | 0.568 | 0.554 | 0.572 | 0.590 | 0.603 | 0.629 | 0.647 | 0.669 | 0.689 | 0.705 | 0.720 | 0.635 |
|  | BFAVAR | 0.687 | 0.602 | 0.592 | 0.611 | 0.635 | 0.656 | 0.682 | 0.703 | 0.727 | 0.751 | 0.772 | 0.790 | 0.684 |
|  | BVEC | 1.811 | 5.718 | 6.821 | 2.727 | 1.507 | 0.938 | 0.573 | 0.336 | 0.275 | 0.211 | 0.167 | 0.131 | 1.768 |
|  | BFAVEC | 1.480 | 4.410 | 3.923 | 1.445 | $0.525$ | 0.244 | $0.107$ | $0.048$ | $0.115$ | $0.171$ | 0.211 | 0.231 | 1.076 |
|  | LBVAR | 0.707 | 0.648 | 0.687 | 0.644 | 0.687 | 0.740 | 0.782 | 0.832 | 0.894 | 0.954 | 1.092 | 1.231 | 0.825 |

Table 4: One- to Twelve-Months-Ahead Forecast for Trade, Transport, \& Utilities Employment: 1990:1-2009:3 (continued)

|  | Models | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{w}=0.2, \mathrm{~d}=2$ | BAR | 0.752 | 0.695 | 0.704 | 0.729 | 0.754 | 0.773 | 0.791 | 0.805 | 0.818 | 0.831 | 0.843 | 0.853 | 0.779 |
|  | BVAR | 0.736 | 0.687 | 0.700 | 0.730 | 0.762 | 0.793 | 0.824 | 0.851 | 0.879 | 0.906 | 0.934 | 0.960 | 0.813 |
|  | BFAAR | 0.680 | 0.600 | 0.599 | 0.628 | 0.656 | 0.675 | 0.704 | 0.722 | 0.742 | 0.760 | 0.774 | 0.787 | 0.694 |
|  | BFAVAR | 0.700 | 0.636 | 0.641 | 0.674 | 0.712 | 0.745 | 0.784 | 0.814 | 0.846 | 0.878 | 0.909 | 0.941 | 0.773 |
|  | BVEC | 1.534 | 3.923 | 3.667 | 1.382 | 0.589 | 0.338 | 0.206 | 0.055 | 0.004 | 0.046 | 0.083 | 0.096 | 0.994 |
|  | BFAVEC | 1.419 | 2.949 | 2.615 | 1.036 | 0.429 | 0.266 | 0.190 | 0.073 | 0.051 | 0.025 | 0.008 | 0.016 | 0.756 |
|  | LBVAR | 0.752 | 0.694 | 0.725 | 0.688 | 0.724 | 0.776 | 0.825 | 0.887 | 0.950 | 1.017 | 1.170 | 1.326 | 0.878 |
| $w=0.1, d=2$ | BAR | 0.841 | 0.828 | 0.847 | 0.868 | 0.886 | 0.898 | 0.907 | 0.914 | 0.920 | 0.924 | 0.928 | 0.931 | 0.891 |
|  | BVAR | 0.784 | 0.767 | 0.793 | 0.828 | 0.863 | 0.896 | 0.927 | 0.953 | 0.978 | 1.003 | 1.028 | 1.052 | 0.906 |
|  | BFAAR | 0.703 | 0.642 | 0.647 | 0.677 | 0.708 | 0.727 | 0.753 | 0.768 | 0.783 | 0.795 | 0.806 | 0.815 | 0.735 |
|  | BFAVAR | 0.731 | 0.694 | 0.715 | 0.756 | 0.798 | 0.834 | 0.872 | 0.903 | 0.932 | 0.961 | 0.990 | 1.018 | 0.850 |
|  | BVEC | 1.405 | 3.615 | 3.256 | 1.182 | 0.466 | 0.253 | 0.142 | 0.007 | 0.036 | 0.078 | 0.112 | 0.120 | 0.889 |
|  | BFAVEC | 1.257 | 2.564 | 1.872 | 0.582 | 0.100 | 0.034 | 0.100 | 0.193 | 0.215 | 0.237 | 0.252 | 0.250 | 0.638 |
|  | LBVAR | 0.692 | 0.613 | 0.626 | 0.617 | 0.649 | 0.691 | 0.733 | 0.781 | 0.835 | 0.888 | 1.014 | 1.141 | 0.773 |
| $\mathrm{w}=0.0627, \mathrm{~d}=2$ | LBVAR(FIT) | 0.671 | 0.575 | 0.574 | 0.575 | 0.604 | 0.641 | 0.678 | 0.716 | 0.762 | 0.804 | 0.910 | 1.018 | 0.711 |

Note: See Table 4. Bold numbers represent the minimum value in each column.

Table 5: One- to Twelve-Months-Ahead Forecast for Financial Activities Employment: 1990:1-2009:3

|  | Models | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AR | 0.594 | 0.556 | 0.560 | 0.588 | 0.620 | 0.655 | 0.686 | 0.713 | 0.740 | 0.764 | 0.785 | 0.802 | 0.672 |
|  | VAR | 0.762 | 0.736 | 0.762 | 0.821 | 0.883 | 0.963 | 1.035 | 1.112 | 1.194 | 1.278 | 1.358 | 1.441 | 1.029 |
|  | FAAR | 0.814 | 0.767 | 0.801 | 0.862 | 0.915 | 0.986 | 1.047 | 1.109 | 1.169 | 1.233 | 1.295 | 1.360 | 1.030 |
|  | FAVAR | 0.627 | 0.577 | 0.578 | 0.606 | 0.640 | 0.687 | 0.729 | 0.769 | 0.809 | 0.851 | 0.888 | 0.922 | 0.724 |
|  | VEC | 0.870 | 3.762 | 2.714 | 3.649 | 2.746 | 5.781 | 6.923 | 4.840 | 2.247 | 1.187 | 0.951 | 1.275 | 3.079 |
|  | FAVEC | 0.826 | 1.238 | 0.214 | 1.108 | 0.763 | 0.969 | 0.923 | 0.651 | 0.169 | 0.044 | 0.212 | 0.345 | 0.622 |
| $\mathrm{w}=0.3, \mathrm{~d}=0.5$ | BAR | 0.595 | 0.557 | 0.561 | 0.588 | 0.618 | 0.651 | 0.680 | 0.704 | 0.726 | 0.746 | 0.762 | 0.775 | 0.664 |
|  | BVAR | 0.655 | 0.641 | 0.671 | 0.725 | 0.782 | 0.848 | 0.914 | 0.980 | 1.048 | 1.116 | 1.183 | 1.250 | 0.901 |
|  | BFAAR | 0.607 | 0.564 | 0.564 | 0.587 | 0.614 | 0.649 | 0.679 | 0.705 | 0.732 | 0.759 | 0.781 | 0.798 | 0.670 |
|  | BFAVAR | 0.649 | 0.629 | 0.653 | 0.704 | 0.760 | 0.828 | 0.894 | 0.959 | 1.027 | 1.096 | 1.162 | 1.228 | 0.882 |
|  | BVEC | 0.957 | 3.571 | 2.595 | 3.595 | 2.458 | 4.953 | 6.179 | 4.755 | 2.675 | 1.716 | 1.443 | 1.591 | 3.041 |
|  | BFAVEC | 0.783 | 1.238 | 0.262 | 1.162 | 0.797 | 1.000 | 0.949 | 0.689 | 0.193 | 0.022 | 0.192 | 0.328 | 0.634 |
|  | LBVAR | 0.776 | 0.764 | 0.775 | 0.815 | 0.882 | 0.940 | 1.024 | 1.109 | 1.194 | 1.276 | 1.339 | 1.398 | 1.024 |
| $\mathrm{w}=0.2, \mathrm{~d}=1$ | BAR | 0.595 | 0.556 | 0.561 | 0.586 | 0.616 | 0.649 | 0.678 | 0.702 | 0.725 | 0.745 | 0.761 | 0.775 | 0.662 |
|  | BVAR | 0.634 | 0.616 | 0.643 | 0.694 | 0.751 | 0.812 | 0.873 | 0.933 | 0.993 | 1.053 | 1.109 | 1.164 | 0.856 |
|  | BFAAR | 0.602 | 0.564 | 0.568 | 0.589 | 0.615 | 0.646 | 0.674 | 0.696 | 0.720 | 0.742 | 0.761 | 0.776 | 0.663 |
|  | BFAVAR | 0.633 | 0.611 | 0.636 | 0.684 | 0.739 | 0.801 | 0.861 | 0.920 | 0.980 | 1.039 | 1.095 | 1.149 | 0.846 |
|  | BVEC | 1.217 | 2.571 | 2.143 | 2.676 | 1.898 | 2.750 | 3.205 | 2.858 | 2.175 | 1.844 | 1.717 | 1.655 | 2.226 |
|  | BFAVEC | 0.391 | 1.333 | 0.452 | 1.378 | 0.915 | 1.172 | 1.103 | 0.811 | 0.301 | 0.076 | 0.124 | 0.268 | 0.694 |
|  | LBVAR | 0.684 | 0.684 | 0.724 | 0.734 | 0.804 | 0.844 | 0.916 | 0.991 | 1.060 | 1.123 | 1.178 | 1.231 | 0.914 |
| $\mathrm{w}=0.1, \mathrm{~d}=1$ | BAR | 0.606 | 0.571 | 0.578 | 0.603 | 0.633 | 0.664 | 0.691 | 0.714 | 0.736 | 0.756 | 0.773 | 0.789 | 0.676 |
|  | BVAR | 0.635 | 0.617 | 0.643 | 0.690 | 0.743 | 0.799 | 0.853 | 0.906 | 0.959 | 1.011 | 1.060 | 1.106 | 0.835 |
|  | BFAAR | 0.612 | 0.576 | 0.584 | 0.605 | 0.629 | 0.656 | 0.681 | 0.700 | 0.721 | 0.741 | 0.759 | 0.774 | 0.670 |
|  | BFAVAR | 0.635 | 0.616 | 0.642 | 0.688 | 0.739 | 0.794 | 0.849 | 0.900 | 0.953 | 1.004 | 1.053 | 1.100 | 0.831 |
|  | BVEC | 1.261 | 2.190 | 1.762 | 2.135 | 1.576 | 1.844 | 1.923 | 1.764 | 1.512 | 1.391 | 1.316 | 1.263 | 1.661 |
|  | BFAVEC | 1.130 | 1.952 | 1.524 | 1.324 | 0.780 | 0.281 | 0.115 | 0.274 | 0.151 | 0.120 | 0.039 | 0.032 | 0.644 |
|  | LBVAR | 0.642 | 0.642 | 0.688 | 0.682 | 0.744 | 0.799 | 0.870 | 0.937 | 0.998 | 1.052 | 1.104 | 1.152 | 0.859 |

Table 5: One- to Twelve-Months-Ahead Forecast for Financial Activities Employment: 1990:1-2009:3 (continued)

|  | Models | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | Average |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BAR | 0.610 | 0.584 | 0.597 | 0.623 | 0.652 | 0.681 | 0.705 | 0.723 | 0.741 | 0.757 | 0.770 | 0.782 | 0.686 |
|  | BVAR | 0.661 | 0.665 | 0.707 | 0.767 | 0.828 | 0.891 | 0.949 | 1.004 | 1.057 | 1.107 | 1.155 | 1.199 | 0.916 |
|  | BFAAR | 0.609 | 0.581 | 0.594 | 0.616 | 0.639 | 0.664 | 0.687 | 0.703 | 0.720 | 0.735 | 0.749 | 0.760 | 0.672 |
| $\mathbf{w = 0 . 2 ,} \mathbf{d = 2}$ | BFAVAR | 0.663 | 0.666 | 0.708 | 0.767 | 0.828 | 0.890 | 0.950 | 1.004 | 1.058 | 1.109 | 1.158 | 1.203 | 0.917 |
|  | BVEC | 1.348 | 1.762 | 1.286 | 1.162 | 0.915 | 0.797 | 0.731 | 0.717 | 0.771 | 0.800 | 0.827 | 0.851 | 0.997 |
|  | BFAVEC | 1.261 | 1.429 | 1.071 | 0.703 | $\mathbf{0 . 4 7 5}$ | $\mathbf{0 . 1 0 9}$ | $\mathbf{0 . 1 0 3}$ | 0.132 | $\mathbf{0 . 0 4 2}$ | 0.120 | 0.215 | 0.288 | $\mathbf{0 . 4 9 6}$ |
|  | LBVAR | 0.680 | 0.682 | 0.728 | 0.705 | 0.768 | 0.820 | 0.894 | 0.962 | 1.018 | 1.060 | 1.101 | 1.136 | 0.879 |
|  | BAR | 0.679 | 0.680 | 0.705 | 0.733 | 0.760 | 0.784 | 0.803 | 0.816 | 0.828 | 0.838 | 0.845 | 0.851 | 0.777 |
|  | BVAR | 0.745 | 0.778 | 0.833 | 0.895 | 0.955 | 1.012 | 1.066 | 1.117 | 1.164 | 1.209 | 1.252 | 1.292 | 1.026 |
|  | BFAAR | 0.664 | 0.656 | 0.679 | 0.706 | 0.729 | 0.750 | 0.771 | 0.783 | 0.795 | 0.805 | 0.813 | 0.820 | 0.747 |
|  | BFAVAR | 0.738 | 0.767 | 0.823 | 0.885 | 0.945 | 1.003 | 1.059 | 1.110 | 1.158 | 1.204 | 1.248 | 1.289 | 1.019 |
|  | BVEC | 1.217 | 1.476 | 1.095 | 0.865 | 0.695 | 0.516 | 0.449 | 0.472 | 0.578 | 0.636 | 0.691 | 0.730 | 0.785 |
|  | BFAVEC | 1.435 | 1.476 | 1.071 | 0.757 | 0.559 | 0.281 | 0.103 | $\mathbf{0 . 0 9 4}$ | 0.247 | 0.316 | 0.394 | 0.457 | 0.599 |
|  | LBVAR | 0.659 | 0.664 | 0.707 | 0.696 | 0.753 | 0.812 | 0.883 | 0.946 | 0.996 | 1.037 | 1.075 | 1.114 | 0.862 |
| $\mathbf{w = \mathbf { 0 . 0 } , \mathbf { d = 2 }}$ | LBVAR(FIT) | 0.656 | 0.656 | 0.690 | 0.701 | 0.755 | 0.816 | 0.883 | 0.940 | 0.987 | 1.026 | 1.064 | 1.108 | 0.857 |

Note: See Table 4. Bold numbers represent the minimum value in each column.

Table 6: One- to Twelve-Months-Ahead Forecast for Professional \& Business Services Employment: 1990:1-2009:3

|  | Models | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AR | 0.650 | 0.588 | 0.582 | 0.595 | 0.610 | 0.634 | 0.658 | 0.678 | 0.699 | 0.719 | 0.737 | 0.754 | 0.659 |
|  | VAR | 0.787 | 0.740 | 0.766 | 0.818 | 0.866 | 0.927 | 0.990 | 1.048 | 1.098 | 1.140 | 1.170 | 1.188 | 0.961 |
|  | FAAR | 0.832 | 0.766 | 0.779 | 0.830 | 0.873 | 0.929 | 0.982 | 1.028 | 1.062 | 1.087 | 1.103 | 1.111 | 0.949 |
|  | FAVAR | 0.673 | 0.599 | 0.585 | 0.599 | 0.613 | 0.641 | 0.672 | 0.699 | 0.728 | 0.756 | 0.778 | 0.798 | 0.679 |
|  | VEC | 6.235 | 1.926 | 3.642 | 14.939 | 3.601 | 1.381 | 0.611 | 0.321 | 0.786 | 0.765 | 0.902 | 0.593 | 2.975 |
|  | FAVEC | 3.529 | 1.895 | 2.074 | 3.788 | 0.143 | 0.004 | 0.047 | 0.308 | 0.384 | 0.476 | 0.495 | 0.529 | 1.139 |
| $\mathrm{w}=0.3, \mathrm{~d}=0.5$ | BAR | 0.650 | 0.589 | 0.581 | 0.592 | 0.607 | 0.631 | 0.656 | 0.676 | 0.696 | 0.716 | 0.732 | 0.748 | 0.656 |
|  | BVAR | 0.678 | 0.632 | 0.639 | 0.666 | 0.695 | 0.734 | 0.773 | 0.807 | 0.841 | 0.873 | 0.902 | 0.926 | 0.764 |
|  | BFAAR | 0.649 | 0.578 | 0.567 | 0.580 | 0.593 | 0.615 | 0.642 | 0.664 | 0.688 | 0.710 | 0.727 | 0.742 | 0.646 |
|  | BFAVAR | 0.672 | 0.615 | 0.613 | 0.637 | 0.665 | 0.706 | 0.749 | 0.786 | 0.825 | 0.861 | 0.892 | 0.920 | 0.745 |
|  | BVEC | 6.353 | 1.905 | 3.484 | 11.788 | 2.780 | 0.812 | 0.003 | 0.289 | 0.043 | 0.058 | 0.188 | 0.048 | 2.313 |
|  | BFAVEC | 3.588 | 1.916 | 2.116 | 3.909 | 0.173 | 0.021 | 0.030 | 0.294 | 0.372 | 0.467 | 0.488 | 0.523 | 1.158 |
|  | LBVAR | 0.772 | 0.690 | 0.683 | 0.715 | 0.757 | 0.815 | 0.871 | 0.910 | 0.969 | 1.026 | 1.078 | 1.136 | 0.869 |
| $\mathrm{w}=0.2, \mathrm{~d}=1$ | BAR | 0.648 | 0.587 | 0.581 | 0.595 | 0.611 | 0.634 | 0.658 | 0.678 | 0.698 | 0.717 | 0.733 | 0.748 | 0.657 |
|  | BVAR | 0.660 | 0.609 | 0.611 | 0.631 | 0.653 | 0.683 | 0.713 | 0.738 | 0.765 | 0.792 | 0.817 | 0.840 | 0.709 |
|  | BFAAR | 0.641 | 0.574 | 0.565 | 0.578 | 0.591 | 0.611 | 0.636 | 0.656 | 0.677 | 0.697 | 0.713 | 0.726 | 0.639 |
|  | BFAVAR | 0.655 | 0.596 | 0.593 | 0.613 | 0.636 | 0.666 | 0.699 | 0.726 | 0.755 | 0.783 | 0.809 | 0.834 | 0.697 |
|  | BVEC | 5.118 | 1.853 | 2.842 | 7.152 | 1.298 | 0.611 | 0.116 | 0.201 | 0.176 | 0.269 | 0.270 | 0.395 | 1.692 |
|  | BFAVEC | 3.941 | 1.958 | 2.263 | 4.273 | 0.298 | 0.126 | 0.015 | 0.249 | 0.331 | 0.437 | 0.462 | 0.502 | 1.238 |
|  | LBVAR | 0.681 | 0.615 | 0.621 | 0.645 | 0.691 | 0.744 | 0.801 | 0.851 | 0.912 | 0.966 | 1.016 | 1.070 | 0.801 |
| $\mathrm{w}=0.1, \mathrm{~d}=1$ | BAR | 0.654 | 0.595 | 0.589 | 0.604 | 0.621 | 0.643 | 0.667 | 0.686 | 0.705 | 0.723 | 0.739 | 0.754 | 0.665 |
|  | BVAR | 0.661 | 0.610 | 0.610 | 0.628 | 0.649 | 0.676 | 0.702 | 0.725 | 0.747 | 0.768 | 0.788 | 0.806 | 0.698 |
|  | BFAAR | 0.649 | 0.585 | 0.579 | 0.593 | 0.607 | 0.625 | 0.649 | 0.667 | 0.687 | 0.706 | 0.720 | 0.733 | 0.650 |
|  | BFAVAR | 0.659 | 0.604 | 0.602 | 0.621 | 0.642 | 0.669 | 0.696 | 0.719 | 0.742 | 0.764 | 0.784 | 0.802 | 0.692 |
|  | BVEC | $4.000$ | $1.779$ | $2.411$ | $4.818$ | $0.548$ | $0.243$ | 0.027 | 0.273 | 0.315 | 0.416 | 0.436 | 0.498 | 1.314 |
|  | BFAVEC | 3.235 | 1.158 | 1.505 | 2.576 | 0.190 | 0.192 | 0.122 | 0.080 | 0.126 | 0.229 | 0.228 | 0.264 | 0.825 |
|  | LBVAR | 0.647 | 0.578 | 0.581 | 0.595 | 0.630 | 0.674 | 0.725 | 0.770 | 0.822 | 0.868 | 0.914 | 0.959 | 0.730 |

Table 6: One- to Twelve-Months-Ahead Forecast for Professional \& Business Services Employment: 1990:1-2009:3

|  | Models | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{w}=0.2, \mathrm{~d}=2$ | BAR | 0.678 | 0.635 | 0.641 | 0.664 | 0.686 | 0.710 | 0.734 | 0.752 | 0.769 | 0.785 | 0.798 | 0.809 | 0.722 |
|  | BVAR | 0.690 | 0.659 | 0.672 | 0.698 | 0.724 | 0.753 | 0.780 | 0.802 | 0.823 | 0.843 | 0.862 | 0.878 | 0.765 |
|  | BFAAR | 0.678 | 0.633 | 0.641 | 0.666 | 0.687 | 0.709 | 0.735 | 0.753 | 0.772 | 0.789 | 0.803 | 0.814 | 0.723 |
|  | BFAVAR | 0.683 | 0.643 | 0.652 | 0.680 | 0.709 | 0.739 | 0.769 | 0.793 | 0.815 | 0.836 | 0.856 | 0.874 | 0.754 |
|  | BVEC | 2.588 | 1.621 | 2.147 | 4.061 | 0.363 | 0.226 | 0.059 | 0.193 | 0.276 | 0.393 | 0.419 | 0.465 | 1.068 |
|  | BFAVEC | 1.294 | 0.916 | 1.095 | 0.182 | 0.554 | 0.515 | 0.525 | 0.602 | 0.614 | 0.654 | 0.648 | 0.659 | 0.688 |
|  | LBVAR | 0.676 | 0.611 | 0.624 | 0.632 | 0.667 | 0.695 | 0.746 | 0.794 | 0.849 | 0.894 | 0.934 | 0.978 | 0.758 |
| w=0.1,d=2 | BAR | 0.756 | 0.747 | 0.767 | 0.792 | 0.815 | 0.835 | 0.852 | 0.866 | 0.876 | 0.885 | 0.892 | 0.898 | 0.832 |
|  | BVAR | 0.739 | 0.728 | 0.748 | 0.777 | 0.805 | 0.833 | 0.858 | 0.880 | 0.899 | 0.917 | 0.934 | 0.950 | 0.839 |
|  | BFAAR | 0.726 | 0.700 | 0.717 | 0.746 | 0.771 | 0.791 | 0.814 | 0.829 | 0.842 | 0.854 | 0.863 | 0.871 | 0.794 |
|  | BFAVAR | 0.719 | 0.698 | 0.717 | 0.750 | 0.781 | 0.810 | 0.839 | 0.861 | 0.882 | 0.901 | 0.919 | 0.937 | 0.818 |
|  | BVEC | 2.353 | 1.674 | 2.232 | 4.333 | 0.423 | 0.268 | 0.092 | 0.170 | 0.258 | 0.380 | 0.407 | 0.455 | 1.087 |
|  | BFAVEC | 0.765 | 0.989 | 1.168 | 0.182 | 0.607 | 0.607 | 0.632 | 0.700 | 0.715 | 0.749 | 0.748 | 0.758 | 0.718 |
|  | LBVAR | 0.643 | 0.567 | 0.565 | 0.571 | 0.595 | 0.627 | 0.671 | 0.710 | 0.756 | 0.794 | 0.830 | 0.868 | 0.683 |
| w=0.0627, $\mathrm{d}=2$ | LBVAR(FIT) | 0.630 | 0.550 | 0.542 | 0.545 | 0.564 | 0.597 | 0.638 | 0.672 | 0.712 | 0.745 | 0.778 | 0.813 | 0.649 |

Note: $\quad$ See Table 4. Bold numbers represent the minimum value in each column.

Table 7: One- to Twelve-Months-Ahead Forecast for Leisure \& Hospitality Employment: 1990:1-2009:3

|  | Models | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AR | 0.953 | 0.924 | 0.902 | 0.908 | 0.927 | 0.939 | 0.942 | 0.942 | 0.943 | 0.946 | 0.948 | 0.951 | 0.936 |
|  | VAR | 1.584 | 1.732 | 1.734 | 1.666 | 1.618 | 1.631 | 1.662 | 1.726 | 1.796 | 1.849 | 1.885 | 1.901 | 1.732 |
|  | FAAR | 1.826 | 2.012 | 1.989 | 1.860 | 1.781 | 1.755 | 1.696 | 1.644 | 1.587 | 1.539 | 1.506 | 1.469 | 1.722 |
|  | FAVAR | 1.183 | 1.180 | 1.148 | 1.108 | 1.056 | 1.023 | 0.983 | 0.945 | 0.923 | 0.921 | 0.926 | 0.925 | 1.027 |
|  | VEC | 0.114 | 4.202 | 4.643 | 2.758 | 1.264 | 1.138 | 1.193 | 1.186 | 1.109 | 1.320 | 1.057 | 1.137 | 1.760 |
|  | FAVEC | 2.343 | 0.769 | 1.944 | 0.802 | 0.117 | 0.084 | 0.402 | 0.521 | 0.390 | 0.442 | 0.163 | 0.106 | 0.674 |
| $\mathrm{w}=0.3, \mathrm{~d}=0.5$ | BAR | 0.998 | 0.992 | 0.982 | 0.988 | 0.995 | 0.997 | 0.984 | 0.968 | 0.956 | 0.949 | 0.947 | 0.945 | 0.975 |
|  | BVAR | 1.083 | 1.111 | 1.116 | 1.091 | 1.057 | 1.030 | 1.000 | 0.968 | 0.953 | 0.947 | 0.954 | 0.958 | 1.022 |
|  | BFAAR | 1.013 | 0.997 | 0.974 | 0.956 | 0.925 | 0.906 | 0.885 | 0.868 | 0.865 | 0.867 | 0.868 | 0.866 | 0.916 |
|  | BFAVAR | 1.099 | 1.128 | 1.130 | 1.105 | 1.071 | 1.042 | 1.008 | 0.972 | 0.950 | 0.937 | 0.939 | 0.942 | 1.027 |
|  | BVEC | 0.200 | 3.780 | 4.141 | 2.344 | 2.750 | 0.568 | 0.505 | 0.585 | 0.552 | 0.856 | 0.632 | 0.702 | 1.468 |
|  | BFAVEC | 2.314 | 0.769 | 1.958 | 0.798 | 0.988 | 0.084 | 0.394 | 0.511 | 0.383 | 0.437 | 0.164 | 0.105 | 0.742 |
|  | LBVAR | 1.458 | 1.599 | 1.690 | 1.764 | 1.784 | 1.742 | 1.734 | 1.715 | 1.737 | 1.766 | 1.801 | 1.836 | 1.719 |
| $\mathrm{w}=0.2, \mathrm{~d}=1$ | BAR | 0.950 | 0.924 | 0.909 | 0.916 | 0.933 | 0.943 | 0.946 | 0.945 | 0.945 | 0.945 | 0.946 | 0.948 | 0.937 |
|  | BVAR | 0.965 | 0.941 | 0.924 | 0.904 | 0.881 | 0.864 | 0.852 | 0.837 | 0.841 | 0.846 | 0.860 | 0.872 | 0.882 |
|  | BFAAR | 0.923 | 0.879 | 0.851 | 0.843 | 0.838 | 0.836 | 0.836 | 0.834 | 0.839 | 0.848 | 0.854 | 0.858 | 0.853 |
|  | BFAVAR | $0.973$ | 0.949 | 0.928 | 0.907 | 0.885 | 0.863 | 0.848 | 0.830 | 0.831 | 0.835 | 0.849 | 0.859 | 0.880 |
|  | BVEC | $0.843$ | 2.543 | 3.005 | 1.547 | 0.348 | 0.113 | 0.152 | 0.233 | 0.201 | 0.316 | 0.290 | 0.285 | 0.823 |
|  | BFAVEC | 1.986 | 0.757 | 1.906 | 0.671 | 0.740 | 0.121 | 0.348 | 0.450 | 0.330 | 0.386 | 0.161 | 0.105 | 0.663 |
|  | LBVAR | 1.221 | 1.321 | 1.381 | 1.431 | 1.461 | 1.442 | 1.455 | 1.486 | 1.536 | 1.596 | 1.658 | 1.707 | 1.474 |
| $\mathrm{w}=0.1, \mathrm{~d}=1$ | BAR | 0.951 | 0.929 | 0.921 | 0.929 | 0.943 | 0.951 | 0.955 | 0.957 | 0.960 | 0.962 | 0.964 | 0.966 | 0.949 |
|  | BVAR | 0.933 | 0.894 | 0.868 | 0.851 | 0.841 | 0.839 | 0.842 | 0.845 | 0.859 | 0.870 | 0.888 | 0.902 | 0.869 |
|  | BFAAR | 0.915 | 0.868 | 0.839 | 0.829 | 0.828 | 0.825 | 0.829 | 0.828 | 0.835 | 0.846 | 0.852 | 0.855 | 0.846 |
|  | BFAVAR | 0.938 | 0.899 | 0.870 | 0.852 | 0.841 | 0.836 | 0.838 | 0.838 | 0.852 | 0.864 | 0.881 | 0.895 | 0.867 |
|  | BVEC | 0.629 | 1.838 | 2.272 | 1.018 | 0.296 | 0.005 | 0.075 | 0.116 | 0.094 | 0.085 | 0.127 | 0.107 | 0.555 |
|  | BFAVEC | $1.571$ | $0.711$ | $1.681$ | $0.493$ | $0.494$ | $0.164$ | 0.298 | 0.382 | 0.285 | 0.336 | 0.163 | $0.129$ | 0.559 |
|  | LBVAR | 1.081 | 1.144 | 1.176 | 1.208 | 1.241 | 1.245 | 1.271 | 1.305 | 1.354 | 1.412 | 1.471 | 1.515 | 1.285 |

Table 7: One- to Twelve-Months-Ahead Forecast for Leisure \& Hospitality Employment: 1990:1-2009:3 (continued)

|  | Models | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | 12 | Average |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BAR | 0.964 | 0.953 | 0.950 | 0.957 | 0.967 | 0.973 | 0.976 | 0.978 | 0.980 | 0.983 | 0.984 | 0.985 | 0.971 |
|  | BVAR | 0.993 | 1.007 | 1.021 | 1.033 | 1.042 | 1.057 | 1.078 | 1.095 | 1.118 | 1.137 | 1.163 | 1.184 | 1.077 |
|  | BFAAR | 0.916 | 0.866 | 0.831 | 0.818 | 0.816 | 0.811 | 0.814 | 0.814 | 0.823 | 0.835 | 0.843 | 0.847 | 0.836 |
| $\mathbf{w = 0 . 2 ,} \mathbf{d = 2}$ | BFAVAR | 1.000 | 1.008 | 1.010 | 1.014 | 1.021 | 1.032 | 1.054 | 1.071 | 1.096 | 1.120 | 1.152 | 1.178 | 1.063 |
|  | BVEC | 0.800 | 1.139 | 1.540 | 0.516 | 1.305 | 0.187 | 0.281 | 0.226 | 0.200 | 0.057 | 0.134 | 0.111 | 0.541 |
|  | BFAVEC | 0.171 | 0.734 | 1.117 | 0.224 | 0.506 | 0.082 | $\mathbf{0 . 0 2 4}$ | $\mathbf{0 . 0 7 2}$ | $\mathbf{0 . 0 9 1}$ | 0.196 | 0.128 | 0.135 | $\mathbf{0 . 2 9 0}$ |
|  | LBVAR | 1.179 | 1.243 | 1.257 | 1.264 | 1.284 | 1.295 | 1.324 | 1.372 | 1.430 | 1.503 | 1.578 | 1.636 | 1.364 |
|  | BAR | 0.982 | 0.980 | 0.981 | 0.986 | 0.991 | 0.993 | 0.995 | 0.996 | 0.997 | 0.998 | 0.998 | 0.999 | 0.991 |
|  | BVAR | 0.967 | 0.970 | 0.985 | 1.010 | 1.035 | 1.062 | 1.093 | 1.123 | 1.155 | 1.183 | 1.214 | 1.243 | 1.087 |
|  | BFAAR | 0.921 | 0.877 | 0.845 | 0.831 | 0.828 | 0.821 | 0.825 | 0.822 | 0.828 | 0.838 | 0.844 | 0.847 | 0.844 |
|  | BFAVAR | 0.962 | 0.951 | 0.953 | 0.969 | 0.991 | 1.014 | 1.046 | 1.076 | 1.109 | 1.141 | 1.176 | 1.207 | 1.050 |
|  | BVEC | 1.514 | 1.179 | 1.554 | 0.540 | 1.325 | 0.219 | 0.304 | 0.237 | 0.203 | $\mathbf{0 . 0 5 4}$ | 0.128 | $\mathbf{0 . 1 0 3}$ | 0.613 |
|  | BFAVEC | 0.157 | $\mathbf{0 . 2 7 2}$ | $\mathbf{0 . 5 4 0}$ | $\mathbf{0 . 0 6 7}$ | 1.143 | 0.226 | 0.148 | 0.168 | 0.165 | 0.249 | 0.174 | 0.172 | 0.290 |
|  | LBVAR | 1.065 | 1.100 | 1.106 | 1.112 | 1.134 | 1.148 | 1.176 | 1.217 | 1.268 | 1.330 | 1.390 | 1.436 | 1.207 |
| $\mathbf{w = 1 , d = \mathbf { 0 . 0 6 2 7 , d } = \mathbf { 2 }}$ | LBVAR(FIT) | 1.007 | 1.016 | 1.013 | 1.018 | 1.041 | 1.053 | 1.078 | 1.112 | 1.156 | 1.207 | 1.256 | 1.295 | 1.104 |

Note: See Table 4. Bold numbers represent the minimum value in each column.

Table 8: One- to Twelve-Months-Ahead Forecast for Other Services Employment: 1990:1-2009:3

|  | Models | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AR | 0.767 | 0.728 | 0.725 | 0.744 | 0.760 | 0.770 | 0.786 | 0.802 | 0.818 | 0.836 | 0.850 | 0.860 | 0.787 |
|  | VAR | 1.104 | 1.020 | 1.037 | 1.111 | 1.188 | 1.273 | 1.364 | 1.438 | 1.503 | 1.564 | 1.618 | 1.652 | 1.323 |
|  | FAAR | 1.298 | 1.170 | 1.170 | 1.241 | 1.301 | 1.356 | 1.414 | 1.456 | 1.489 | 1.526 | 1.554 | 1.564 | 1.378 |
|  | FAVAR | 0.816 | 0.757 | 0.748 | 0.765 | 0.781 | 0.803 | 0.830 | 0.851 | 0.876 | 0.903 | 0.927 | 0.947 | 0.834 |
|  | VEC | 2.205 | 2.519 | 6.855 | 18.286 | 7.355 | 1.320 | 0.549 | 0.508 | 1.149 | 1.409 | 1.535 | 1.127 | 3.735 |
|  | FAVEC | 1.542 | 1.662 | 2.217 | 2.400 | 0.785 | 0.037 | 0.281 | 0.405 | 0.458 | 0.440 | 0.474 | 0.467 | 0.931 |
| $\mathrm{w}=0.3, \mathrm{~d}=0.5$ | BAR | 0.770 | 0.731 | 0.730 | 0.750 | 0.768 | 0.779 | 0.796 | 0.811 | 0.826 | 0.842 | 0.856 | 0.865 | 0.794 |
|  | BVAR | 0.809 | 0.788 | 0.802 | 0.837 | 0.873 | 0.905 | 0.942 | 0.970 | 0.996 | 1.023 | 1.044 | 1.059 | 0.921 |
|  | BFAAR | 0.803 | 0.764 | 0.763 | 0.783 | 0.796 | 0.805 | 0.825 | 0.841 | 0.859 | 0.878 | 0.892 | 0.902 | 0.826 |
|  | BFAVAR | 0.828 | 0.806 | 0.818 | 0.849 | 0.886 | 0.919 | 0.955 | 0.982 | 1.008 | 1.034 | 1.055 | 1.069 | 0.934 |
|  | BVEC | 2.217 | 2.623 | 6.797 | 15.314 | 6.054 | 0.758 | 0.084 | 0.289 | 0.209 | 0.376 | 0.529 | 0.167 | 2.951 |
|  | BFAVEC | 1.578 | 1.714 | 2.261 | 2.543 | 0.860 | 0.068 | 0.259 | 0.386 | 0.443 | 0.427 | 0.463 | 0.459 | 0.955 |
|  | LBVAR | 1.068 | 1.116 | 1.163 | 1.181 | 1.209 | 1.209 | 1.224 | 1.259 | 1.305 | 1.358 | 1.405 | 1.450 | 1.246 |
| $\mathrm{w}=0.2, \mathrm{~d}=1$ | BAR | 0.774 | 0.738 | 0.737 | 0.755 | 0.770 | 0.779 | 0.794 | 0.810 | 0.824 | 0.840 | 0.852 | 0.861 | 0.795 |
|  | BVAR | 0.783 | 0.753 | 0.758 | 0.778 | 0.798 | 0.813 | 0.831 | 0.845 | 0.857 | 0.869 | 0.879 | 0.885 | 0.821 |
|  | BFAAR | 0.790 | 0.753 | 0.753 | 0.768 | 0.777 | 0.778 | 0.795 | 0.810 | 0.826 | 0.843 | 0.855 | 0.864 | 0.801 |
|  | BFAVAR | 0.789 | 0.756 | 0.758 | 0.776 | 0.795 | 0.807 | 0.826 | 0.840 | 0.852 | 0.865 | 0.876 | 0.882 | 0.818 |
|  | BVEC | 1.916 | 2.636 | 5.246 | 10.057 | 3.882 | 0.858 | 0.084 | 0.165 | 0.081 | 0.097 | 0.143 | 0.313 | 2.123 |
|  | BFAVEC | 1.771 | 2.013 | 2.507 | 3.143 | 1.140 | 0.151 | 0.178 | 0.314 | 0.388 | 0.387 | 0.424 | 0.428 | 1.070 |
|  | LBVAR | 0.928 | 0.996 | 1.075 | 1.050 | 1.079 | 1.092 | 1.104 | 1.147 | 1.202 | 1.261 | 1.314 | 1.367 | 1.135 |
| $\mathrm{w}=0.1, \mathrm{~d}=1$ | BAR | 0.786 | 0.754 | 0.753 | 0.769 | 0.784 | 0.793 | 0.808 | 0.822 | 0.836 | 0.851 | 0.861 | 0.868 | 0.807 |
|  | BVAR | 0.780 | 0.748 | 0.751 | 0.767 | 0.785 | 0.800 | 0.817 | 0.832 | 0.845 | 0.858 | 0.871 | 0.880 | 0.811 |
|  | BFAAR | 0.793 | 0.759 | 0.760 | 0.775 | 0.784 | 0.785 | 0.801 | 0.816 | 0.831 | 0.846 | 0.857 | 0.865 | 0.806 |
|  | BFAVAR | 0.784 | 0.750 | 0.751 | 0.767 | 0.783 | 0.794 | 0.811 | 0.825 | 0.838 | 0.851 | 0.863 | 0.871 | 0.807 |
|  | BVEC | 1.747 | 2.442 | 3.986 | 6.171 | 2.108 | 0.342 | 0.136 | 0.287 | 0.312 | 0.343 | 0.397 | 0.461 | 1.561 |
|  | BFAVEC | 1.530 | 1.442 | 1.580 | 1.057 | 0.323 | 0.155 | 0.287 | 0.293 | 0.300 | 0.264 | 0.261 | 0.239 | 0.644 |
|  | LBVAR | 0.847 | 0.886 | 0.944 | 0.897 | 0.917 | 0.935 | 0.966 | 1.009 | 1.060 | 1.115 | 1.170 | 1.222 | 0.997 |

Table 8: One- to Twelve-Months-Ahead Forecast for Other Services Employment: 1990:1-2009:3 (continued)

|  | Models | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | Average |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BAR | 0.840 | 0.837 | 0.854 | 0.879 | 0.899 | 0.911 | 0.926 | 0.939 | 0.950 | 0.961 | 0.969 | 0.975 | 0.912 |
|  | BVAR | 0.807 | 0.790 | 0.799 | 0.816 | 0.833 | 0.846 | 0.860 | 0.870 | 0.878 | 0.887 | 0.897 | 0.905 | 0.849 |
|  | BFAAR | 0.845 | 0.835 | 0.851 | 0.875 | 0.891 | 0.898 | 0.916 | 0.929 | 0.943 | 0.955 | 0.965 | 0.973 | 0.906 |
| $\mathbf{w = 0 . 2 , ~ d = 2 ~}$ | BFAVAR | 0.815 | 0.791 | 0.797 | 0.813 | 0.827 | 0.834 | 0.847 | 0.856 | 0.864 | 0.872 | 0.881 | 0.888 | 0.840 |
|  | BVEC | 1.398 | 2.065 | 2.913 | 4.171 | 1.473 | 0.265 | 0.097 | 0.211 | 0.297 | 0.323 | 0.369 | 0.390 | 1.164 |
|  | BFAVEC | 1.072 | 0.922 | 0.826 | 1.229 | 0.957 | 0.895 | 0.872 | 0.842 | 0.823 | 0.794 | 0.778 | 0.757 | 0.897 |
|  | LBVAR | 0.902 | 0.929 | 0.982 | 0.951 | 0.973 | 1.001 | 1.035 | 1.081 | 1.134 | 1.190 | 1.240 | 1.296 | 1.059 |
|  | BAR | 0.935 | 0.948 | 0.965 | 0.983 | 0.995 | 1.002 | 1.010 | 1.016 | 1.022 | 1.026 | 1.030 | 1.032 | 0.997 |
|  | BVAR | 0.839 | 0.827 | 0.837 | 0.852 | 0.867 | 0.880 | 0.892 | 0.902 | 0.909 | 0.916 | 0.924 | 0.931 | 0.881 |
|  | BFAAR | 0.905 | 0.904 | 0.922 | 0.945 | 0.961 | 0.968 | 0.982 | 0.991 | 1.000 | 1.008 | 1.015 | 1.020 | 0.968 |
| $\mathbf{w = 0 . 1 , d = 2}$ | BFAVAR | 0.836 | 0.817 | 0.825 | 0.840 | 0.855 | 0.865 | 0.879 | 0.888 | 0.896 | 0.904 | 0.912 | 0.920 | 0.870 |
|  | BVEC | 1.386 | 2.013 | 2.797 | 3.857 | 1.323 | 0.196 | 0.139 | 0.247 | 0.327 | 0.349 | 0.389 | 0.408 | 1.119 |
|  | BFAVEC | 0.940 | 0.935 | 0.899 | 1.143 | 1.000 | 0.959 | 0.944 | 0.926 | 0.914 | 0.897 | 0.886 | 0.873 | 0.943 |
|  | LBVAR | 0.838 | 0.842 | 0.874 | 0.845 | 0.868 | 0.892 | 0.927 | 0.968 | 1.016 | 1.066 | 1.112 | 1.159 | 0.951 |
| $\mathbf{w = 0 . 0 6 2 7 , d = 2}$ | LBVAR(FIT) | 0.811 | 0.805 | 0.826 | 0.800 | 0.827 | 0.849 | 0.885 | 0.924 | 0.969 | 1.015 | 1.055 | 1.094 | 0.905 |

Note: See Table 4. Bold numbers represent the minimum value in each column.

Table 9: ENC-T Test of Differences between Optimal and Random-Wlak Models

|  |  | QA |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Employment Series | Optimal Model | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| Mining \& Logging | $\begin{aligned} & \text { BFAECM } \\ & (w=0.1, d=2) \end{aligned}$ | -49.13* | -66.67* | -65.95* | -55.56* | -48.22* | -51.98* | -60.33* | -73.01* | -75.17* | -90.19* | -97.12* | -98.54* |
| Construction | BFAAR $(w=0.2, d=1)$ | $-26.80 \dagger$ | -36.48** | -38.85** | -38.61** | -36.88** | -35.42** | -33.04† | -30.97† | -28.66† | -26.47† | -24.64† | $-23.12 \dagger$ |
| Manufacturing | BFAECM $(\mathrm{w}=0.3, \mathrm{~d}=0.5)$ | -16.00 | -34.85 $\dagger$ | -76.92* | -91.80* | -91.56* | -98.93* | -83.23* | -79.35* | -77.23* | -75.96* | -65.28* | -65.72* |
| Trade, Transport. \& Utilities | BFAAR $(w=0.2, d=1)$ | $-34.02 \dagger$ | -44.55** | -46.14* | -44.34** | -42.61** | -41.11** | -38.39** | -36.27** | -33.76† | -31.51† | -29.66† | -28.03† |
| Financial Activities | BFAECM $(w=0.2, d=2)$ | $26.09 \dagger$ | 42.86** | 7.14 | $-29.73 \dagger$ | -52.54* | -89.06* | -89.74* | -86.79* | -95.78* | -88.00* | -78.50* | -71.22* |
| Profession \& Business Services | BFAAR $(w=0.2, d=1)$ | -35.87** | -42.61** | -43.48** | -42.16** | -40.87** | -38.89** | -36.45** | $-34.44 \dagger$ | -32.29 $\dagger$ | -30.26† | -28.71 $\dagger$ | -27.36† |
| Leisure \& Hospitality | BFAECM $(w=0.2, d=2)$ | -82.86* | $-26.59 \dagger$ | 11.74 | -77.56* | -49.43* | -91.82* | -97.57* | -92.82* | -90.94* | -80.45* | -87.22* | -86.54* |
| Other Services | BFAECM $(w=0.1, d=1)$ | 53.01* | 44.16** | 57.97* | 5.71 | -67.74* | -84.47* | -71.31* | -70.68* | -69.98* | -73.57* | -73.92* | -76.06* |

Note: The ENC-T statistics test the difference in RMSEs betweenthe optimal model relative to the random-walk model. Negative signs mean that the optimal model forecasts better than the random-walk model.

* means significant at the 1 -percent level.
** means significant at the 5 -percent level.
$\dagger$ means significant at the 10 -percent level.

Figure 1: Mining and Logging Employment: Ex Ante Forecasts, 2009:3 to 2010:3 (SA, thousands)


Figure 2: Construction Employment: Ex Ante Forecasts, 2009:3 to 2010:3 (SA, thousands)


Figure 3: Manufacturing Employment: Ex Ante Forecasts, 2009:3 to 2010:3 (SA, thousands)


Figure 4: Trade, Transportation, and Utilities Employment: Ex Ante Forecasts, 2009:3 to 2010:3 (SA, thousands)


Figure 5: Financial Activities Employment: Ex Ante Forecasts, 2009:3 to 2010:3 (SA, thousands)


Figure 6: Professional and Business Services Employment: Ex Ante Forecasts, 2009:3 to 2010:3 (SA, thousands)


Figure 7: Leisure and Hospitality Employment: Ex Ante Forecasts, 2009:3 to 2010:3 (SA, thousands)


Figure 8: Other Services Employment: Ex Ante Forecasts, 2009:3 to 2010:3 (SA, thousands)



[^0]:    ${ }^{1}$ Focusing on the employment numbers, however, obscures a large part of employment dynamics. That is, much job churning occurs in the labor markets. New businesses open and hire thousands of workers each month, while other businesses close and thousands of other workers find themselves without employment.

[^1]:    ${ }^{2}$ Any dynamic structural model implicitly generates a series of univariate time-series models for each endogenous variable. The dynamic structural model, however, imposes restrictions on the parameters in the reduced-form timeseries specification. Dynamic structural models prove most effective in performing policy analysis, albeit subject to the Lucas critique. Time-series models prove most effective at forecasting. That is, in both cases errors creep in whenever the researcher makes a decision about the specification. Clearly, more researcher decisions relate to a dynamic structural model than a univariate time-series model, suggesting that fewer errors enter the time-series model and allowing the model to produce better forecasts.

[^2]:    ${ }^{3}$ The discussion in this section relies heavily on LeSage (1999), Gupta and Miller (forthcoming a, forthcoming b), and Das et al., (2009).
    ${ }^{4}$ That is, $A(L)=A_{1} L+A_{2} L^{2}+\ldots+A_{p} L^{p}$;

[^3]:    ${ }^{5}$ See Lesage (1999) and references cited therein for further details regarding the non-stationary of most macroeconomic time series.
    ${ }^{6}$ See, Dickey et al. (1991) and Johansen (1995) for further technical details.

[^4]:    ${ }^{7}$ For an illustration, see Dua and Ray (1995).

[^5]:    ${ }^{8}$ We first transform all data to induce stationarity. Then, using the transformed data, we extract the common components.

[^6]:    ${ }^{9}$ See these papers for more details on the model and the estimation.
    ${ }^{10}$ When we extracted the common factors for the FAVAR and BFAVAR models, we transformed all variables to induce stationarity. Now, we transform all variables to induce non-stationarity. That is, for stationary variables, we accumulated to make them $\mathrm{I}(1)$. The two approaches produce different numbers of common factors - three versus four, respectively. We also extracted four common factors from the non-stationary variables, excluding the stationary variables. The findings proved similar to the four factors extracted when we accumulated the $I(0)$ variables to make them I(1).

[^7]:    ${ }^{11}$ After determining the in-sample lag length for the VEC- and FAVEC-type models, we apply the trace test of cointegration to the eight employment series, and the eight employment series and the four factors for the FAVEC models, The tests suggest 5 and 11 cointegrating vectors, respectively, implying that the system contains 3 and 1 common trends, respectively. These results are available upon request rom the authors.

[^8]:    ${ }^{12}$ Note that if $A_{t+n}$ denotes the actual value of a specific variable in period $t+n$ and ${ }_{t} F_{t+n}$ equals the forecast made in period $t$ for $t+n$, the RMSE statistic equals the following: $\sqrt{\left[\sum_{1}^{N}\left({ }_{t} F_{t+n}-A_{t+n}\right)^{2} / N\right]}$ where $N$ equals the number of forecasts.

