Skip to main content
Log in

Spatio-temporal statistical analysis of the carbon budget of the terrestrial ecosystem

  • Original Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

The Net Ecosystem Exchange describes the net carbon dioxide flux between an ecosystem and the atmosphere and is a key quantity in climate change studies and in political negotiations. This paper provides a spatio-temporal statistical framework, which is able to infer the Net Ecosystem Exchange from remotely-sensed carbon dioxide ground concentrations together with data on the Normalized Difference Vegetation Index, the Gross Primary Production and the land cover classification. The model is based on spatial and temporal latent random effects, that act as space–time varying coefficients, which allows for a flexible modeling of the spatio-temporal auto- and cross-correlation structure. The intra- and inter-annual variations of the Net Ecosystem Exchange are evaluated and dynamic maps are provided on a nearly global grid and in intervals of 16 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Downloaded at http://glcf.umd.edu/data/lc/.

  2. The coefficients for PW and NDVI have been pruned in the final model due to their insignificance.

  3. Grid cells with missing data in the covariates have been removed.

  4. The global average cross-validation RMSE was 0.67 and the prediction error computed as in Eq. (11) amounted to 0.38.

  5. A map containing the locations of the measurement locations can be obtained at http://fluxnet.ornl.gov/maps-graphics.

References

  • Cressie N, Wikle CK (2002) Space-time Kalman filter. Encycl Environ 4:2045–2049

    Google Scholar 

  • Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, New York

    MATH  Google Scholar 

  • Cressie N, Shi T, Kang E (2010) Fixed rank filtering for spatio-temporal data. J Comput Graph Stat 19:724–745

    Article  MathSciNet  Google Scholar 

  • Farrell BF, Ioannou PJ (2001) State estimation using a reduced-order Kalman filter. J Atmos Sci 58(23):3666–3680

    Article  MathSciNet  Google Scholar 

  • Fassò A, Finazzi F (eds) (2010) Statistical mapping of air quality by remote sensing. In: Proceedings of the accuracy 2010 conference

  • Fassò A, Finazzi F (2011) Maximum likelihood estimation of the dynamic coregionalization model with heterotopic data. Environmetrics 22(6):735–748

    Article  MathSciNet  Google Scholar 

  • Fassò A, Finazzi F (2013) A varying coefficients space–time model for ground and satellite air quality data over Europe. Statistica & Applicazioni Spec Issue 2013:45–56

    Google Scholar 

  • Finazzi F, Fassò A (2014) D-STEM: a software for the analysis and mapping of environmental space-time variables. J Stat Softw 62(6):1–29

    Article  Google Scholar 

  • Frankenberg C, O’Dell C, Guanter L, McDuffie J (2012) Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: implications for its retrieval and interferences with atmospheric \({\rm CO}_{2}\) retrievals. Atmos Meas Tech 5(8):2081–2094

    Article  Google Scholar 

  • Furrer R, Genton MG, Nychka D (2006) Covariance tapering for interpolation of large spatial datasets. J Comput Graph Stat 15(3):502–523

    Article  MathSciNet  Google Scholar 

  • González-Manteiga W, Crujeiras RM, Katzfuss M, Cressie N (2012) Bayesian hierarchical spatio-temporal smoothing for very large datasets. Environmetrics 23(1):94–107

    Article  MathSciNet  Google Scholar 

  • Huete A, Justice C, van Leeuwen W (1999) MODIS vegetation index (MOD13) algorithm theoretical basis document. Tech. rep., NASA Goddard Space Flight Center

  • Ito A, Oikawa T (2004) Global mapping of terrestrial primary productivity and light-use efficiency with a process-based model. In: Shiyomi M, Kawahata H, Koizumi H, Tsuda A, Awaya Y (eds) Global environmental change in the ocean and on land. Terrapub, Tokyo, pp 343–358

    Google Scholar 

  • Katzfuss M, Cressie N (2011) Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets. J Time Ser Anal 32:430–446

    Article  MathSciNet  MATH  Google Scholar 

  • Mardia KV, Goodall C, Redfern EJ, Alonso FJ (1998) The kriged Kalman filter. Test 7(2):217–282

    Article  MathSciNet  MATH  Google Scholar 

  • O’Dell CW, Connor B, Bösch H, O’Brien D, Frankenberg C, Castano R, Christi M, Eldering D, Fisher B, Gunson M, McDuffie J, Miller CE, Natraj V, Oyafuso F, Polonsky I, Smyth M, Taylor T, Toon GC, Wennberg PO, Wunch D (2012) The ACOS \(CO_2\) retrieval algorithm part 1: description and validation against synthetic observations. Atmos Measur Technique 5(1):99–121

    Article  Google Scholar 

  • Osterman G, Eldering A, Avis C, O’Dell C, Martinez E, Crisp D, Frankenberg C, Fisher B, Wunch D (2013) ACOS Level 2 standard product data user’s guide, v.3.3. Tech. rep., Goddard Earth Science Data Information and Services Center (GES DISC)

  • Pan S, Tian H, Dangal SRS, Ouyang Z, Tao B, Ren W, Lu C, Running S (2014) Modeling and monitoring terrestrial primary production in a changing global environment: toward a multiscale synthesis of observation and simulation. Adv Meteorol 2014:965936. doi:10.1155/2014/965936

    Article  Google Scholar 

  • Peters W, Jacobson A, Sweeny C, Andrews A, Conway TJ, Masarie K, Miller JB, Bruhwiler LMP, Pétron G, Hirsch AI, Worthy D, van der Werd G, Randerson JT, Wennberg PO, Krol MC, Tans PP (2007) An atmospheric perspective on North American carbon dioxide exchange: carbon tracker. Proc Natl Acad Sci 104(48):18925–18930

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránkova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival M, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11(9):1424–1439

    Article  Google Scholar 

  • Running SW, Nemani R, Glassy JM, Thornton PE (1999) MODIS daily photosynthesis (PSN) and annual net primary production (NPP) product (MOD17) algorithm theoretical basis document. SCF At-Launch Algorithm ATBD documents

  • Saigusa N, Yamamoto S, Murayama S, Kondo H, Nishimura N (2002) Gross primary production and net ecosystem exchange of a cool-temperate deciduous forest estimated by the eddy covariance method. Agric For Meteorol 112(3):203–215

    Article  Google Scholar 

  • Steffen W, Noble I, Canadell J, Apps M, Schulze ED, Jarvis P, Baldocchi D, Ciais P, Cramer W, Ehleringer J, Farquhar G, Field CB, Ghazi A, Gifford R, Heimann M, Houghton R, Kabat P, Körner C, Lambin E, Linder S, Mooney HA, Murdiyarso D, Post WM, Prentice C, Raupach MR, Schimel DS, Shvidenko A, Valentini R (1998) The terrestrial carbon cycle: implications for the Kyoto protocol. Science 280(5368):1393–1394

    Article  Google Scholar 

  • Stoy PC, Katul GG, Siqueira M, Juang J, Novick KA, Uebelherr JM, Oren R (2006) An evaluation of models for partitioning eddy covariance-measured net ecosystem exchange into photosynthesis and respiration. Agric For Meteorol 141(1):2–18

    Article  Google Scholar 

  • Strahler A, Muchoney D, Lambin E, Moody A, Borak J, Friedl M, Gopa S (1999) MODIS land cover product: algorithm theoretical basis document version 5.0. Tech. rep., Center for Remote Sensing Department of Geography, Boston University

  • Suyker AE, Verma SB (2001) Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie. Glob Change Biol 7(3):279–289

    Article  Google Scholar 

  • Veroustraete F, Patyn J, Myneni RB (1996) Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model. Remote Sens Environ 58(1):115–130

    Article  Google Scholar 

  • Vetter P, Schmid W, Schwarze R (2014) Efficient approximation of the spatial covariance function for large datasets—analysis of atmospheric \(CO_2\) concentrations. J Environ Stat 6(3):1–36

    Google Scholar 

  • Voutilainen A, Pyhälahti T, Kallio KY, Pulliainen J, Haario H, Kaipio JP (2007) A filtering approach for estimating lake water quality from remote sensing data. Int J Appl Earth Obs Geoinform 9(1):50–64

    Article  Google Scholar 

  • Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (2000) Land use, land-use change and forestry, IPCC—Special report of the Intergovernmental Panel on climate change

  • Wikle CK, Cressie N (1999) A dimension-reduced approach to space–time Kalman filtering. Biometrika 86(4):815–829

    Article  MathSciNet  MATH  Google Scholar 

  • Wikle CK, Hooten MB (2006) Hierarchical Bayesian spatio-temporal models for population spread. In: Clark JS, Gelfand A (eds) Applications of computational statistics in the environmental sciences: hierarchical Bayes and MCMC methods. Oxford University Press, Oxford, pp 145–169

    Google Scholar 

  • Wunch D, Wennberg PO, Toon GC, Connor BJ, Fisher B, Osterman GB, Frankenberg C, Mandrake L, O’Dell C, Ahonen P, Biraud SC, Castano R, Cressie N, Crisp D, Deutscher NM, Eldering A, Fisher ML, Griffith DWT, Gunson M, Heikkinen P, Keppel-Aleks G, Kyrö E, Lindenmaier R, Macatangay R, Mendonca J, Messerschmidt J, Miller CE, Morino I, Notholt J, Oyafuso FA, Rettinger M, Robinson J, Roehl CM, Salawitch RJ, Sherlock V, Strong K, Sussmann R, Tanaka T, Thompson DR, Uchino O, Warneke T, Wofsy SC (2011) A method for evaluating bias in global measurements of \({\rm CO}_{2}\) total columns from space. Atmos Chem Phys 11(23):12317–12337

    Article  Google Scholar 

  • Yokota T, Yoshida Y, Eguchi N, Ota Y, Tanaka T, Watanabe H, Maksyutov S (2009) Global concentrations of \(CO_2\) and CH4 retrieved from GOSAT: first preliminary results. Sola 5:160–163

    Article  Google Scholar 

  • Zhang B, Sang H, Huang JZ (2015) Full-scale approximations of spatio-temporal covariance models for large datasets. Statistica Sinica 25(1):99–114

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Vetter.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vetter, P., Schmid, W. & Schwarze, R. Spatio-temporal statistical analysis of the carbon budget of the terrestrial ecosystem. Stat Methods Appl 25, 143–161 (2016). https://doi.org/10.1007/s10260-015-0342-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-015-0342-7

Keywords

Navigation