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Abstract Wald-type tests are a common procedure for DIF detection among
the IRT-based methods. However, the empirical type I error rate of these tests
departs from the significance level. In this paper, two reasons that explain
this discrepancy will be discussed and a new procedure will be proposed. The
first reason is related to the equating coefficients used to convert the item pa-
rameters to a common scale, as they are treated as known constants whereas
they are estimated. The second reason is related to the parameterization used
to estimate the item parameters, which is different from the usual IRT pa-
rameterization. Since the item parameters in the usual IRT parameterization
are obtained in a second step, the corresponding covariance matrix is approx-
imated using the delta method. The proposal of this article is to account for
the estimation of the equating coefficients treating them as random variables
and to use the untransformed (i.e. not reparameterized) item parameters in
the computation of the test statistic. A simulation study is presented to com-
pare the performance of this new proposal with the currently used procedure.
Results show that the new proposal gives type I error rates closer to the sig-
nificance level.

Keywords Differential item functioning · False positive rate · Item response
theory · Lord test · Type I error rate · Wald test
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1 Introduction

Item Response Theory (IRT) provides a framework for the statistical analysis
of the responses given to the items of a test or questionnaire (Bartholomew
et al, 2011; van der Linden, 2016). In IRT models, the probability of observing
a certain response to an item is modelled as a function of a latent variable
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and some parameters related to the item. These models, originally developed
for the assessment of learning outcomes, now find application in many other
contexts, including medicine and psychology (Reise and Revicki, 2014). Dif-
ferential Item Functioning (DIF) is a violation of the invariance assumption of
IRT models, and occurs when the probability of a positive response for exami-
nees at the same ability level varies in different groups. Various methods have
been proposed in the literature for the detection of DIF (see for example Magis
et al, 2010). Among them, the Lord’s chi-square test (Lord, 1980) is a com-
mon procedure that presents the advantage of requiring the estimation of the
item parameters just ones for each group, as the selection of the anchor items
(which are the items free of DIF) is performed in a second step. The test was
originally developed for detecting DIF between two groups, and then extended
to the case of multiple groups by Kim et al (1995). However, simulation stud-
ies reported in the literature showed that the empirical type I error rates for
this test departs from the significance level (Kim et al, 1994). In particular,
they are largely greater than the significance level for the Three-Parameter
Logistic (3PL) model, while they are smaller for the Two-Parameter Logistic
(2PL) model. In this paper, the reasons of this discrepancy will be discussed,
and a new proposal will be presented. The new proposal applies to multiple
groups as well as to two groups.

This paper is structured as follows. Section 2 reviews IRT modeling, the
traditional procedure currently used for the Wald test and its extension to
multiple groups. Section 3 illustrates the new proposal, which is compared to
the traditional procedure by means of simulation studies in Section 4. Finally,
Section 5 contains some concluding remarks.

2 Preliminaries

2.1 IRT modeling

Let Yij be the dichotomous response given by subject i to item j, where 1
denotes a correct response and 0 denotes an incorrect one. In a 3PL model,
the probability of observing a response equal to 1 to item j, given the latent
variable θi, is given by

pij = p(Yij = 1|θi; aj , bj , cj) = cj + (1− cj)
exp {Daj(θi − bj)}

1 + exp {Daj(θi − bj)}
, (1)

where aj , bj and cj are the discrimination, difficulty and guessing parameters,
while D is a constant typically set to 1.7. The 2PL model is obtained when the
guessing parameters cj are set to 0, while the Rasch model requires also that
the discrimination parameters are equal to 1. The item parameters are gener-
ally estimated by means of the marginal maximum likelihood method (Bock
and Aitkin, 1981). This approach assumes that the latent variable follows a
standard normal distribution, and the marginal distribution of the responses
given by one subject is obtained by integrating the joint probability over θ.
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While IRT models are generally specified as in Equation (1), the parameteriza-
tion used for estimation is as follows (Bock and Aitkin, 1981; Patz and Junker,
1999; Rizopoulos, 2006)

pij = P (Yij = 1|θi;β1j , β2j , β3j) = cj + (1− cj)
exp(β1j + β2jθi)

1 + exp(β1j + β2jθi)
, (2)

with

cj =
exp(β3j)

1 + exp(β3j)
. (3)

The set of parameters for each item is then {β1j , β2j , β3j}, while the param-
eters of the usual IRT parameterization given in (1) are obtained after the
estimation, using these transformations:

aj =
β2j
D
, (4)

bj = −β1j
β2j

(5)

and Equation (3). The estimation of the parameters requires the maximization
of the marginal likelihood function, which is given by

L(β) =
∏
i

∫ ∏
j

p
yij

ij (1− pij)1−yijφ(θi)dθi, (6)

where β is the vector containing the parameters of all the items, and φ(·) de-
notes the density of the standard normal variable. Constraining the mean and
the standard deviation of the latent variable to be equal to 0 and 1 is neces-
sary to ensure identifiability of the parameters of the model (van der Linden,
2016, §2.2.3). A special case is given by the Rasch model, which requires only
one constrain (typically the mean of the latent variable equal to 0). This can
be accomplished in standard software that uses the standard normal for the
latent variable by constraining the discrimination parameters to be constant,
i.e. β2j = β2 in Equation (2). As a consequence of the constrains needed to
assure identifiability, when the item parameters are estimated separately for
different groups of subjects, they are not directly comparable, and require a
linear transformation in order to obtain values expressed on a common scale
(van der Linden, 2016, §2.2.4).

2.2 Wald tests for DIF

One of the fundamental assumptions of IRT models is the invariance of the
item parameters. DIF is a violation of this assumption, and occurs when the
item parameters have different values in different groups of subjects (Magis
et al, 2010). The Lord’s chi-square test is a Wald-type test based on the com-
parison of the item parameter estimates obtained from different groups. Let
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vjk = (ajk, bjk, cjk)> be the vector of item parameters for group k. The test
was originally formulated for the case of two groups under investigation. The
null hypothesis is the invariance of item parameters across groups

H0 :

aj1bj1
cj1

 =

aj2bj2
cj2

 .

Without loss of generality, throughout this paper it is assumed that the refer-
ence group is group 1.

Before comparing item parameter estimates deriving from different groups,
it is then necessary to transform them in order to obtain values expressed on
the same metric. The equating transformations that permit to transform the
item parameters estimates from the scale of group k to the scale of the reference
group are

â∗jk =
âjk
Ak

, (7)

and
b̂∗jk = Ak b̂jk +Bk, (8)

where Ak and Bk are two constants called equating coefficients (Kolen and
Brennan, 2014). The guessing parameters cj do not need to be transformed.
The test statistic is

χ2
j = (vj1 − v∗j2)>(Σj1 + Σ∗j2)−1(vj1 − v∗j2), (9)

where the vector of estimates of the parameters of item j in group k is

vjk = (âjk, b̂jk, ĉjk)>,

the vector of estimates transformed to the scale of the reference group is

v∗jk = (â∗jk, b̂
∗
jk, ĉjk)>,

Σjk is the estimated covariance matrix of vjk and Σ∗jk is the estimated co-
variance matrix of v∗jk.

Kim et al (1995) extended the test to the case of multiple groups, consid-
ering as null hypothesis

H0 :

aj1bj1
cj1

 = · · · =

ajkbjk
cjk

 = · · · =

ajKbjK
cjK

 (10)

and as test statistic

Qj = (Cvj)
>(CΣjC

>)−1(Cvj), (11)

where
vj = (v>j1,v

∗
j2
>, . . . ,v∗jK

>)>,

Σj = COV(vj) = blockdiag(Σj1,Σ
∗
j2, . . . ,Σ

∗
jK),

blockdiag(·) denotes a block diagonal matrix and C is a contrast matrix. When
K = 2, Equation (11) returns the test statistic (9). Under the null hypothesis,
the asymptotic distribution of the test statistic is a Chi-square distribution
with degrees of freedom equal to the number of rows of the matrix C.
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3 A new proposal

Simulation studies reported in the literature (Kim et al, 1994) showed that
the empirical type I error rate for this test diverges from the significance level.
In particular, it is largely greater for the 3PL model, while it is smaller for the
2PL model.

The proposal of this paper aims at narrowing the discrepancy between
the empirical type I error rate and the nominal value. Two issues will be
considered to this end. First, the equating coefficients in Equation (7) and (8)
are treated as known constants in the computation of Σ∗jk (see for example
Kim et al, 1994, 1995), while they are actually estimated. The literature on
test equating provides various methods for the estimation of the equating
coefficients (Kolen and Brennan, 2014), and the asymptotic standard errors are
derived in Ogasawara (2000) and Ogasawara (2001). The proposal of this paper
is to account for the estimation of the equating coefficients in the computation
of the covariance matrix of the item parameters.

A second issue regards the parameterization usually used for the estimation
of the parameters, which is given in Equation (2). The item parameters in
Equation (1) are obtained in a second step, and the covariance matrices Σjk

are obtained by applying the delta method (Casella and Berger, 2002, §5.5.4).
Of course, the item parameter estimates need to be converted to a common

metric. This task can be performed using the following equations:

β̂∗2jk =
β̂2jk

Âk

, (12)

and

β̂∗1jk = β̂1jk − β̂2jk
B̂k

Âk

. (13)

The derivation is given in Appendix A.
The proposal of this paper is to compute the test statistic using untrans-

formed item parameter estimates. The null hypothesis is then

H0 :

β1j1β2j1
β3j1

 = · · · =

β1jkβ2jk
β3jk

 = · · · =

β1jKβ2jK
β3jK

 , (14)

which is equivalent to (10). The test statistic is given by

Wj = (Cβj)
>(CΩjC

>)−1(Cβj), (15)

where

βj = (β>j1,β
∗
j2
>
, . . . ,β∗jK

>
)>,

βjk = (β̂1jk, β̂2jk, β̂3jk)>, β∗jk = (β̂∗1jk, β̂
∗
2jk, β̂3jk)>,

Ωj = COV(βj)
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and C is a contrast matrix. It is important to note that, accounting for the
estimation of the equating coefficients, not only the covariance matrix of β∗jk
needs to be property calculated, but also the covariance matrices between βj1

and β∗jk and between β∗jh and β∗jk are not zero. This is because the equating
coefficients are estimated using the item parameter estimates obtained from
group 1 and group k. For more details on the computation of the covariance
matrix Ωj see Appendix B.

The adaptation of the test for the Rasch and the 2PL model is straight-
forward.

4 Simulation studies

The performance of the new proposal was assessed by means of simulation
studies. Various settings were considered. The IRT models used to generate
the data and estimate the item parameters are the Rasch, the 2PL and the 3PL
models. The sample size for each group takes values n = {500, 1000, 2000, 4000, 8000},
while the number of items of each test is 20 and 40. Test responses of 3 groups
of examinees were simulated. For each group, the θ values were generated
from a normal distribution with mean {0, 0.5,−0.5} and standard deviation
{1, 1.2, 1.2} in the 3 groups. The discrimination parameters were generated
from a uniform distribution with range [0.7, 1.3], the difficulty parameters
were generated from a standard normal distribution, and the guessing param-
eters were taken equal to 0.2. The percentage of DIF items is 0%, 5% and
20%. In presence of DIF, the values added to the item parameters in the two
focus groups were 0.3 and 0.5 for the discrimination parameters, and 0.4 and
0.6 for the difficulty parameters. The method used to estimate the equating
coefficients is the mean-mean method (Kolen and Brennan, 2014). For each
setting, 500 simulated data sets were generated. The statistical tests were ap-
plied to 2 and 3 groups (the third group was excluded when just 2 groups were
considered). The traditional test was also performed for comparison. Since the
proposal of this paper involves two different modifications of the traditional
procedure, in order to better understand the effect of each of them, two further
procedures involving only one of the two modifications were implemented. The
purification procedure (Candell and Drasgow, 1988) was applied in presence of
DIF items. The new and the traditional procedures were implemented in R (R
Development Core Team, 2017), employing the equateIRT package (Battauz,
2015) for the computation of the equating coefficients. The R package ltm was
used to fit the IRT models (Rizopoulos, 2006). In particular, the Rasch model
was estimated using the function rasch with equal discrimination parameters,
to avoid overconstraining the model. The R functions that implement the test
proposed in this paper will be made publicly available in the R package [omiss].

The data sets simulated without DIF items are used to evaluate the type
I error rates. The empirical type I error rates are reported in Table 1, while
Figures 1, 2 and 3 give a graphical representation for the Rasch, 2PL and
the 3PL models respectively. Consistently with previous studies, using the
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traditional procedure, the type I error rate is lower than the significance level
for the 2PL model and larger for the 3PL model.

For the Rasch model, the traditional procedure gives type I error rates
lower than the significance level, while the new proposal yields type I error
rates very close to the nominal level. Treating the equating coefficients as es-
timates (and using parameterization (1)) gives results very similar to the new
proposal, while using parameterization (2) and treating the equating coeffi-
cients as known constants gives results similar to the traditional procedure.

In the case of the 2PL model (Figure 2), the type I error rates obtained
with the traditional procedure are smaller than the significance level. Not
reparameterizing the model improves the results obtained, but the error rates
are still too low. Instead, accounting for the fact that the equating coefficients
are estimates and not known constants provides error rates very close the
the significance level. The new proposal, which applies both modifications,
gives also very good results. For this case, the new proposal yields error rates
very similar to only considering the equating coefficients as random variables.
However, for small sample sizes it performs better.

In the case of the 3PL model (Figure 3), the type I error rate result-
ing from the traditional procedure is really huge, especially in the case of 3
groups. Considering 2 groups, avoiding reparameterization gives better results
than the traditional procedure. However, increasing the sample size the type
I error rate does not tend to the nominal level. In the case of 3 groups, not
reparameterizing improves the performance of the test for smaller sample sizes,
but gives even worse results for larger sample sizes. Considering the equating
coefficients as estimates yields type I error rates closer to the significance level
and the graphs show a clear trend toward the nominal level when increasing
the sample size. The new proposal, in most cases, gives the closest values to
the significance level. For large sample sizes and 3 groups, only considering the
equating coefficients as estimates (and keeping reparameterization) provides
better results, but the difference is rather small. Instead, for small sample sizes
the new proposal performs definitely better than only considering the equating
coefficients as estimates. Results for nominal significance levels of 0.01 and 0.10
are reported in the supplementary material, and show a very similar behavior.

[Table 1 about here.]

[Fig. 1 about here.]

[Fig. 2 about here.]

[Fig. 3 about here.]

When test responses are simulated in presence of DIF, it is also possible
to evaluate the power of the test. Figures 4, 5 and 6 represent the empirical
power of the tests with a percentage of 5% of DIF items. Figures 4 and 5 show
that for the Rasch and the 2PL model the power of all the procedures quickly
reaches 1 as the sample size increses. For the 3PL model (Figure 6), the power
of the traditional procedure is higher for smaller sample sizes, and it tends to
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1 as the sample size increases for all the procedures. However, it should be
noted that a comparison is not appropriate since the type I error rates differ,
and a greater power should be expected from a test that tends to reject the
null hypothesis too often.

Results for the case of a percentage of DIF items equal to 20% are not
shown because very similar to the case of a percentage of 5%.

[Fig. 4 about here.]

[Fig. 5 about here.]

[Fig. 6 about here.]

5 Discussion

In this article a new procedure to perform Wald-type tests for DIF detection
is presented. The new procedure recognizes two basic aspects. One is the ran-
dom nature of the estimated equating coefficients, which should be taken into
account for an accurate computation of the covariance matrix. Another issue
is the non-invariance to a non-linear reparametrization of the Wald test (Gre-
gory and Veall, 1985). The simulation studies presented in this paper showed
that the new proposal outperforms the traditional procedure. The results are
better for the 2PL model than the 3PL model, and a sensible explanation for
this difference can found in the difficulties of maximum likelihood fitting al-
gorithms for the 3PL model (Patz and Junker, 1999). Problems with the item
parameter estimation could at least partly explain the huge type I error rate,
especially in small samples. On the basis of the simulation studies, the more
important adjustment is given by recognizing that the equating coefficients
are estimated and not known constants. For the 3PL model, even in very large
sample sizes, considering the equating coefficients as constants gives very dif-
ferent results than considering them as estimates. This is due to the fact that
in the 3PL model the correlation between the estimates of the item parameters
of the same item are extremely large, and consequently the standard errors of
the item parameter estimates are quite large. As a consequence, the standard
errors of the equating coefficients are also large, and thus cannot be considered
as constant values even in very large samples. Bayesian approaches can be used
to obtain smaller standard errors (see for example Mislevy, 1986). However,
further research is needed to extend the method proposed in this paper to the
bayesian framework. Considering the estimates obtained from fitting the IRT
model without reparameterization improves also the performance of the test
for the 3PL model, especially for small sample sizes. One reason that could
explain the better performance of the test with this parameterization is that is
avoids the computation of the covariance matrix of the item parameters with
the delta method, which introduces an approximation that is larger in small
samples.
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Appendix A: Equating of untransformed item parameters

Equation (12) is obtained from Equations (7) and (4) as follows:

β̂∗2jk = Dâ∗jk =
Dâjk

Âk

=
β̂2jk

Âk

. (A1)

Equations (7), (8) and (5) lead to Equation (13):

β̂∗1jk = −Dâ∗jk b̂
∗
jk = −D

âjk

Âk

(Âk b̂jk+B̂k) = −Dâjk b̂jk−Dâjk
B̂k

Âk

= β̂1jk−β̂2jk
B̂k

Âk

. (A2)

Appendix B: Covariance matrix of item parameters

The covariance matrix Ωj entering in Equation (15) is a block matrix given by

Ωj =



COV(βj1) COV(βj1,β
∗
j2) COV(βj1,β

∗
j3) . . . COV(βj1,β

∗
jK)

COV(β∗j2,βj1) COV(β∗j2) COV(β∗j2,β
∗
j3) . . . COV(β∗j2,β

∗
jK)

COV(β∗j3,βj1) COV(β∗j3,β
∗
j2) COV(β∗j3) . . . COV(β∗j3,β

∗
jK)

...
...

...
. . .

...
COV(β∗jK ,βj1) COV(β∗jK ,β

∗
j2) COV(β∗jK ,β

∗
j3) . . . COV(β∗jK)

 .

Let β(k) = (β>1k, . . . ,β
>
Jk)> denote the item parameters estimates in group k, and Ω(k) =

COV(β(k)) denote the covariance matrix of the item parameter estimates in group k, which
is estimated along with the estimation of the item parameters. Using the delta method, it is
possible to compute the covariance matrix Ω = COV(β>(1),β

∗
(2)
>, . . . ,β∗(K)

>)>, from which

to extract Ωj :

Ω =
∂(β>(1),β

∗
(2)
>, . . . ,β∗(K)

>)>

∂(β>(1),β
>
(2), . . . ,β

>
(K))

COV((β>(1),β
>
(2), . . . ,β

>
(K))

>)
∂(β>(1),β

∗
(2)
>, . . . ,β∗(K)

>)

∂(β>(1),β
>
(2), . . . ,β

>
(K))

>

=



∂β(1)

∂β>
(1)

∂β(1)

∂β>
(2)

· · ·
∂β(1)

∂β>
(K)

∂β∗(2)
∂β>

(1)

∂β∗(2)
∂β>

(2)

· · ·
∂β∗(2)
∂β>

(K)

...
...

. . .
...

∂β∗(K)

∂β>
(1)

∂β∗(K)

∂β>
(2)

· · ·
∂β∗(K)

∂β>
(K)




Ω(1) 0 · · · 0

0 Ω(2) · · · 0

...
...

. . .
...

0 0 · · · Ω(K)





∂β>(1)
∂β(1)

∂β∗(2)
>

∂β(1)
· · ·

∂β∗(K)
>

∂β(1)

∂β>(1)
∂β(2)

∂β∗(2)
>

∂β(2)
· · ·

∂β∗(K)
>

∂β(2)

...
...

. . .
...

∂β>(1)
∂β(K)

∂β∗(2)
>

∂β(K)
· · ·

∂β∗(K)
>

∂β(K)



=



Ω(1) Ω(1)

∂β∗(2)
>

∂β(1)
· · · Ω(1)

∂β∗(K)
>

∂β(1)

∂β∗(2)
∂β>

(1)

Ω(1)

∂β∗(2)
∂β>

(1)

Ω(1)

∂β∗(2)
>

∂β(1)
+

∂β∗(2)
∂β>

(2)

Ω(2)

∂β∗(2)
>

∂β(2)
· · ·

∂β∗(2)
∂β>

(1)

Ω(1)

∂β∗(K)
>

∂β(1)

...
...

. . .
...

∂β∗(K)

∂β>
(1)

Ω(1)

∂β∗(K)

∂β>
(1)

Ω(1)

∂β∗(2)
>

∂β(1)
· · ·

∂β∗(K)

∂β>
(1)

Ω(1)

∂β∗(K)
>

∂β(1)
+

∂β∗(K)

∂β>
(K)

Ω(K)

∂β∗(K)
>

∂β(K)


,

since
∂β(1)

∂β>
(1)

is the identity matrix,
∂β(1)

∂β>
(k)

= 0 for all k 6= 1 and
∂β∗(k)

∂β>
(h)

= 0 for all h 6= k with

h 6= 1. The blocks on the main diagonal of Ω are then

COV(β∗(k)) =
∂β∗(k)

∂β>(1)
Ω(1)

∂β∗(k)
>

∂β(1)

+
∂β∗(k)

∂β>(k)
Ω(k)

∂β∗(k)
>

∂β(k)

,
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while the matrices outside the main diagonal are given by

COV(β(1),β
∗
(k)) = Ω(1)

∂β∗(k)
>

∂β(1)

,

and

COV(β∗(h),β
∗
(k)) =

∂β∗(h)

∂β>(1)
Ω(1)

∂β∗(k)
>

∂β(1)

.

The chain rule can be exploited to find the derivatives

∂β∗(k)

∂(β>(1),β
>
(k))

=
∂β∗(k)

∂(β>(k), Âk, B̂k)

∂(β>(k), Âk, B̂k)>

∂(β>(1),β
>
(k))

, (B1)

where

∂(Âk, B̂k)>

∂(β>(1),β
>
(k))

=
∂(Âk, B̂k)>

∂(v>
(1)
,v>

(k)
)

∂(v>
(1)
,v>

(k)
)>

∂(β>(1),β
>
(k))

, (B2)

where v(k) = (v>1k, . . . ,v
>
Jk)>. The non-zero derivatives entering in (B1) and (B2) are given

in the following (derivatives of a variable with respect to itself are not shown):

∂β̂∗1jk

∂β̂1jk
= 1,

∂β̂∗1jk

∂β̂2jk
= −

B̂k

Âk

,
∂β̂∗1jk

∂Âk

= β̂2jk
B̂k

Â2
k

,

∂β̂∗1jk

∂B̂k

= −
β̂2jk

Âk

,
∂β̂∗2jk

∂β̂2jk
=

1

Âk

,
∂β̂∗2jk

∂Âk

= −
β̂2jk

Â2
k

∂âjk

∂β̂2jk
=

1

D
,

∂b̂jk

∂β̂1jk
= −

1

β̂2j1
,

∂b̂jk

∂β̂2jk
=
β̂1jk

β̂2
2jk

.

The derivatives
∂(Âk,B̂k)

>

∂(v>
(1)

,v>
(k)

)
are given in Ogasawara (2000) and Ogasawara (2001).
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Fig. 1 Type I error rates (false positive rate) for the 1PL model.
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Fig. 2 Type I error rates (false positive rate) for the 2PL model.
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