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Maŕıa Victoria Cengarle1,∗, Alexander Knapp2

1Fraunhofer Institut, Experimental Software Engineering
2Ludwig-Maximilians-Universität München, Germany; E-mail: knapp@informatik.uni-muenchen.de

                                                   

Abstract. A type inference system and a big-step op-
erational semantics for expressions of the “Object Con-
straint Language” (OCL), the declarative and naviga-
tional constraint language for the “UnifiedModeling Lan-
guage” (UML), are provided; the account is mainly based
on OCL 1.4/5, but also includes the main features of
OCL 2.0. The formal systems are parameterised in terms
of UML static structures and UML object models, which
are treated abstractly. It is proved that the operational
semantics satisfies a subject reduction property with re-
spect to the type inference system. Proceeding from the
operational semantics and providing a denotational se-
mantics, pure OCL 2.0 expressions are shown to exactly
represent the primitive recursive functions, whereas pure
OCL 1.4/5 expressions are Turing complete.

Keywords: OCL – UML – Formal semantics

1 Introduction

The “Object Constraint Language” (OCL [43]) provides
a specification language for the definition of constraints
and well-formedness requirements, like invariants and
pre- and post-conditions, for models of the “Unified Mod-
eling Language” (UML [7]). The OCL has been exten-
sively employed in the specification of the UML meta-
model itself throughout UML 1.1 and, moreover, has
gained considerable interest in its intended application
domain, precise and rigorous software modelling [2, 16].
The OCL, in particular, comprises a navigational ex-
pression language which can be used to compute object
values in a UML model. This navigational expression

∗ Current address: Technische Universität München, Dept. of
Computer Science, Boltzmannstraße 3, 95749 Garching, E-mail:
cengarle@in.tum.de

language forms the basic building blocks from which
the requirements on system states and executions may
be constructed. The practical use of the OCL thus de-
pends not to the least degree on a clear understanding of
the basic OCL expressions. Moreover, the expressiveness
of OCL expressions necessarily delimits the application
areas which may be specifiable in a natural way. A clear
semantic foundation of the OCL in general represents
a sine qua non if we want to put OCL on equal footing
with other well-established model specification languages
like Z or VDM (see e.g. [25]), which are not directly
geared to UML.
The original OCL 1.1 specification [29] showed several

weaknesses and vaguenesses, in particular with respect
to its expression type system and undefined results in
expressions, which were partly remedied and clarified in
OCL 1.3 [30]. The OCL 1.4 definition [31], moreover, ap-
parently increased the expressiveness of OCL by adding
the possibility of defining auxiliary object attributes and
operations via the let construct and the def: clause,
which facilitate the expression of well-formedness rules
at modelling time; the OCL 1.3 meaning of let ex-
pressions as local variable definitions was thereby re-
placed. The specification remained essentially unchanged
in OCL 1.5 [32]. The OCL 2.0 proposal [33], on the one
hand, provides a precise metamodel for OCL, partially
defines context conditions for parsing a concrete OCL
syntax, introduces tuple types, nested collections, and an
isUndef function, and strives to clarify the type system
and the semantics of OCL. On the other hand, however,
the OCL 2.0 proposal re-replaces the OCL 1.4/5 let
construct with its OCL 1.3 meaning, viz. local variable
definition, and removes the def: clause, suggesting to in-
corporate auxiliary definitions into the underlying UML
model itself by using a stereotype for these attributes
and operations. Most noteworthy, the OCL 2.0 proposal
for the first time tries to supersede the pragmatic, plain
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English text description of the meaning of OCL terms
by including a formal definition of the OCL semantics,
though the definition employed, being based on the deno-
tational semantics of Richters and Gogolla [39], still refers
to OCL 1.1/3.
Several formal semantics for OCL have already been

presented, in particular by Bickford and Guaspari [6],
Hamie, Howse, and Kent [20], and Richters and Gogol-
la [36] for OCL 1.1, by Clark [11], Richters and Gogol-
la [39], Schmitt [40], Beckert, Keller, and Schmitt [5],
and the authors [10] for OCL 1.3, and by the authors [9]
for OCL 1.4. With respect to OCL expressions, however,
these semantics show deficiencies in handling the OCL
types OclAny and OclType [20, 36], empty collections [11,
36], undefined values [5, 11, 20], non-determinism [6, 20,
36], overridden properties [6, 11, 20, 36], and the let con-
struct [6, 11, 20, 36, 39]; the authors’ semantics [9, 10] do
not cover the new OCL 2.0 features like undef, tuples,
and nested collections. Also, several implementations up
to OCL 1.3 have been provided, most noteworthy the
Bremen USE tool [38], the Dresden OCL tool [23], the
Karlsruhe KeY-tool [1], and the pUML “Meta-Modelling
Tool” (MMT [12]). The OCL constructs covered by these
tools vary to some extent and the implementations differ
e.g. in their handling of collections, oclAsType, undefined
values, and the let construct. Most importantly, none
of these semantics resp. tools considers the features pro-
posed by the OCL 2.0 draft.
In the following, we provide an improved and more

comprehensive formal semantics of OCL expressions as
well as a comparison of the expressive power of the OCL
proposals 1.4/5 and 2.0. The formal semantics is based
on [9, 10] and primarily addresses the OCL 2.0 proposal
while simultaneously retaining the OCL 1.4 auxiliary def-
initions for increased modelling expressivity. The seman-
tics is parameterised in UML static structures and object
models, which are only assumed to satisfy certain prop-
erties, and is thus directly adadptable to different UML
interpretations.We concentrate on OCL as a navigational
expression language for computing object values in UML
models. Relying on well-known terminology, tools, and re-
sults from the programming language literature we can
classifyOCLwithin the family of programming languages.
The abstract syntax of OCL terms is summarised in

Sect. 2. In Sect. 3 we introduce a type inference and an-
notation system for OCL terms and in Sect. 4 we de-
fine a big-step operational semantics that evaluates an-
notated OCL terms. The operational semantics satisfies
a subject reduction property with respect to the type
inference system, i.e., evaluation returns values of the ex-
pected type. Proceeding from the operational semantics,
in Sect. 5 we provide a denotational semantics for OCL
expressions and prove that the operational semantics and
the denotational semantics coincide on well-typed OCL
terms. This denotational semantics is used in Sect. 6 to
show that pure OCL expressions without auxiliary def-
initions (as in OCL 2.0) represent exactly the primitive

recursive functions and that auxiliary definitions (as in
OCL 1.4/5) increase the expressivity making OCLTuring
complete. We conclude with some remarks on using OCL
as a logic and future research.
We assume a working knowledge of the OCL syntax

and informal semantics as well as of UML and its meta-
model.

2 Syntax

The abstract syntax of the OCL sub-language that we
consider is given in Table 1. Although the OCL 2.0 pro-
posal [33] provides the OCL with a UML-based meta-
model and thus an abstract syntax, we stick to a more
conventional presentation as a BNF-grammar, mimicking
the OCL 1.5 grammar [32].
An OCL specification in Spec consists of optional

pseudofeature definitions in Def, i.e. attributes and op-
erations, and an invariant constraint in Constr. As in
OCL 1.5 and deviating from OCL 2.0, pseudofeature def-
initions provide auxiliary functions for OCL expressions
for enhanced modelling expressiveness; like invariants,
pseudofeatures are defined in the context of a UML clas-
sifier. Without loss of generality, we only admit a single
definition or constraint per context. In addition to the
OCL expressions in Expr already present in OCL 1.4 and
following the OCL 2.0 proposal, we introduce an explicit
undef symbol, representing failing computations, a cor-
responding function symbol isUndef for testing whether
a given expression results in undef, and tuple expres-
sions and types that can be regarded as records. However,
we retain a type Type, the type of all types (abbrevi-
ating OclType, which has been removed in OCL 2.0),
and define a new type Void, the empty type, which af-
ford a consistent typing system. Moreover, we abbreviate
OclAny to Any. The boolean connectives and and or are
singled out, as they show “parallel” semantical behaviour
different from the other OCL properties [32, p. 6–11].
The OCL built-ins allInstances and asType (abbrevi-
ating oclAsType) do not apply to arbitrary expressions
but only to types, leading to a simpler type system as in
OCL 2.0.
The OCL sub-language in Table 1 leaves out some syn-

tactic sugar like names for invariants, the let for pseu-
dofeature definitions, the functions that can be defined
in terms of iterate [11], pre- and in-fix notation, and
comments. More importantly, we do not treat template
types, navigation to association classes and through qual-
ified associations, and package pathnames as primitives.
This decision is justified as follows. Firstly, although the
UML 1.4/5 specification only considers models with fully
instantiated templates [31], OCL constraints can also be
written for uninstantiated templates as the template type
as well as its formal parameters are model elements. Sec-
ondly, for association classes, as described in the OCL 1.5
specification [32, pp. 6–15f.], the name of an association
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Table 1. OCL abstract syntax

Term ::= Spec | Constr | Expr
Spec ::= {Def}Constr
Def ::= contextType def: (AttrDef |OpDef)

Constr ::= contextType inv:Expr
AttrDef ::= Name :Type =Expr
OpDef ::= Name ( [Var :Type {,Var :Type}] ) :Type =Expr
Expr ::= Literal | self | Var | Type | undef |

(Set | Bag | Sequence) { [Expr {,Expr}] } |
Tuple {Name =Expr {,Name =Expr} } |
letVar [:Type] =Expr inExpr |
ifExpr thenExpr elseExpr endif |
Expr andExpr | Expr orExpr |
Expr . asType (Type ) |
Type . allInstances ( ) |
Expr . isUndef ( ) |
Expr -> iterate (Var [:Type] ;Var [:Type] =Expr |Expr ) |
Expr .Name |
Expr .Name ( [Expr {,Expr}] ) |
Expr ->Name ( [Expr {,Expr}] )

Literal ::= IntegerLiteral |RealLiteral | BooleanLiteral | StringLiteral
Type ::= Name | Void | Integer | Real | Boolean | String | Any | Type |

(Set | Bag | Sequence | Collection) (Type ) |
Tuple (Name :Type {,Name :Type} )

Var ::= Name

class with an initial lower-case letter can either be used
like an additional structural feature for navigation or, if
the navigation direction is not clear, this name has to
be extended by the role name of the opposite association
end through which the association class is to be reached;
this is considered as a simple naming convention. Thirdly,
qualified association ends [32, pp. 6–16f.] are taken to be
abbreviations for association classes showing the quali-
fiers as structural features [19]. Finally, pathnames in-
volving packages are taken to be names conforming to an
additional naming convention.
We omit the types OclExpression (which has also

been discarded in OCL 2.0) and OclState and pre- and
post-conditions thus concentrating on OCL as a con-
straint navigational expression language.

3 Type system

The type of an OCL term, and thus its well-formedness,
depends on information from an underlying UML static
structure. In particular, we need to take into account
classifiers like classes, structural and query behavioural
features like attributes resp. operations, the generalisa-
tion (or inheritance) relationship, opposite association
ends, association classes, etc., and the built-in OCL types
and properties. We abstractly axiomatise this informa-
tion as static bases. These are parametric in the classi-
fiers and the generalisation relationship and provide an
extension mechanism by pseudofeatures. This axioma-
tisation also captures the declaration retrieval of (over-

loaded and overridden) features and properties that is
only vaguely described in the UML specification by full-
descriptors [31, p. 2–75]. We present a type inference sys-
tem for OCL terms over such a static basis. This system
annotates the terms for later evaluation of overloaded or
overridden features and properties and of pseudofeatures.
We prove that the type system entails unique annotations
and types.
The type inference system and the axiomatisation of

static bases generalise Clark’s definition [11]. A static
basis corresponds to Clark’s static models, but does
not enforce a contra/covariant overriding scheme of be-
havioural features and allows for the redefinition of
structural features. Moreover, in contrast to Clark’s ap-
proach [11, Thm. 6] and the typing system by Richters
and Gogolla [39], the type inference system entails unique
types. Richters and Gogolla base the OCL typing system
on more explicit algebraic signatures for capturing the
static properties of a UML model.

3.1 Static bases

A static basis Ω defines types, a type hierarchy, functions
for declaration retrieval, and an extension mechanism for
declarations. The types and the type hierarchy are the
ones defined in the underlying UML static structure. The
declaration retrieval is necessary for typing an OCL ex-
pression that uses names of the UML static structure.
The purpose of the extension mechanism is to extend the
underlying UML static structure with the declarations
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Fig. 1. Sample class diagram

local to OCL specifications, and in this way to allow a uni-
form typing mechanism.
Let us illustrate themain characteristics of static bases

by means of a simple example. Consider the UML static
structure diagram of Fig. 1. The diagram induces the
static basis Ω with classifier types CΩ = {A, B} and the
inheritance relation B≤CΩ A. The declared features are re-
trieved by the full-descriptor function fdΩ. Given a feature
name, a class, and possibly a list of argument types, fdΩ
searches for the feature declaration closest to the class in
the inheritance hierarchy. In particular, fdΩ(a, B) = A.a : A
althougha is not a feature declared in B, since a is inherited
by B from A and has type A. Moreover,

fdΩ(b, B) = B.b : B

fdΩ(bs, B) = B.bs : Set(B)

fdΩ(m, A, ()) = A.m : ()→ B

fdΩ(m, B, ()) = B.m : ()→ A

and fdΩ(b, A) is undefined. Opposite association ends
showing the annotation {ordered} are captured by defin-
ing the full-descriptor to yield a feature declaration
with resulting collection type Sequence(. . .), instead of
Set(. . .) as for bs.
Taking the constraint in the note into account, the

static basis Ω is extended by the declaration δ = A.f :
Integer and thus, in particular, the declarations of the
extended static basis Ω, δ contain

fdΩ,δ(f, B) = A.f : Integer .

In the following, we formally define the tools used in
this example, namely types, type hierarchy, declaration
retrieval, and extensions of static bases.

Types. The (compile-time) types of OCL include the clas-
sifier types of the underlying UML model and the OCL
built-in types. The OCL built-in types consist of: the set
B of basic types like Integer, the collection types like
Set(. . .), tuple types, and the distinguished types Any,
Void, and Type. Formally, let Ω be a static basis and CΩ
be the classifier types of Ω. Then, the set TΩ of OCL
(compile-time) types is defined as follows:

TΩ ::= UΩ | S (TΩ )
UΩ ::= AΩ | Type | Tuple(Name :TΩ {,Name :TΩ} )
AΩ ::= Void |B | CΩ | Any
S ::= S | Collection
S ::= Set | Bag | Sequence
B ::= Integer | Real | Boolean | String

We require that the names in the finite set parameter CΩ
are different from the other type names in the grammar
above. The set S defines the concrete collection type func-
tions yielding, when applied to a type parameter, a con-
crete collection type; S adds the abstract collection type
function Collection that yields the abstract collection
type.
The type Void is not required by the OCL specifi-

cation; it is subtype of all types and denotes the empty
type, that will be used for typing both empty collections
and the undefined value. Any is the common supertype
of all basic and classifier types. The tuple types are de-
fined by the type constructor Tuple; all names in a type
Tuple(. . .) have to be distinct, their order is immaterial.
The type Type is the type of all types (as used in impred-
icative polymorphism [28]).
Each Literal l (see Table 1) has a type, written as

type(l), such that type(n) = Integer if n is an IntegerLit-
eral, etc.

Type hierarchy. The type hierarchy of OCL includes the
generalisation (or inheritance) relationship of the under-
lying UML model and puts also the OCL built-in types
in relation. Let Ω be a static basis, CΩ be its classifiers,
and ≤CΩ denote the generalisation hierarchy on the clas-
sifier typesCΩ. The subtype relation ≤Ω of a static basis Ω
is formally defined as the least partial order that satisfies
the following axioms:

1. for all τ ∈ TΩ, Void≤Ω τ
2. for all α ∈AΩ, α≤Ω Any
3. Integer≤Ω Real
4. for all ζ1, ζ2 ∈ CΩ, if ζ1 ≤CΩ ζ2, then ζ1 ≤Ω ζ2
5. for all τ1, . . . , τn ∈ TΩ, τ ′1, . . . , τ

′
n ∈ TΩ

and a1, . . . , an ∈Name,
if τi ≤Ω τ ′i , 1≤ i≤ n, then
Tuple(a1 : τ1, . . . , an : τn)≤Ω
Tuple(a1 : τ

′
1, . . . , an : τ

′
n)

6. for all τ1, . . . , τn, τn+1 ∈ TΩ
and a1, . . . , an, an+1 ∈Name,
Tuple(a1 : τ1, . . . , an : τn, an+1 : τn+1)≤Ω

Tuple(a1 : τ1, . . . , an : τn)
7. for all σ ∈ S and τ ∈ TΩ, σ(τ)≤Ω Collection(τ)
8. for all σ ∈ S and τ1, τ2 ∈ TΩ,
if τ1 ≤Ω τ2, then σ(τ1)≤Ω σ(τ2)

In words,≤Ω includes≤CΩ , has Void as minimum, Any as
maximum of “simple” types (i.e., types excluding collec-
tions, tuples and the type Type of types), and the intuitive
relationship among basic types and among collections.
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On the one hand and according to OCL 1.5 [32,
p. 6–7], collection types are basic types; on the other
and following OCL 1.5 [32, pp. 6–29f.] and OCL 2.0 [33,
p. 6–1], these types are not basic types (cf. also [4]). We
choose the second definition (in contrast to [36]) and
define σ(τ) �≤Ω Any, in order to avoid the Russell para-
dox that could arise from Set(Any)≤Ω Any (see [6]), in
this way allowing a näıve set interpretation of types. As
a consequence, none of the properties of Any, like inequal-
ity or oclIsKindOf, is immediately available for collec-
tions. Note also that Type �≤Ω Any, in contrast to [12],
accounting for a clearer separation between sorts and
kinds [28].
The subtyping rules for Tuple are modelled on named

products [28]: Subtypes may constrain the types of the
components and may show additional components. Note
that tuple types showing the same components but in dif-
ferent order are equal.
As a notational convention, if the least upper bound

of types τ1, . . . , τn with respect to ≤Ω exists, we denote it
by
⊔
Ω{τ1, . . . , τn}. For example,

⊔
Ω{Integer, Real} =

Real and
⊔
Ω{Integer, Boolean} = Any, but Integer

and Set(Integer) have no least upper bound. In the
presence of multiple inheritance, least upper bounds may
also fail to exist for sets of classifier types. Note that⊔
Ω ∅= Void.

Declaration retrieval. The typing of OCL expressions re-
lies on information of features in the underlying UML
model as well as on the predefined OCL properties.
A mechanism for fetching feature declarations is therefore
necessary. A declaration describes the signature of an ex-
isting feature, i.e. information on the location of a feature
in the type hierarchy, possibly the type of its parameters,
and its return type. Given a static basis Ω, the declara-
tions DΩ in Ω read as follows:

DΩ ::= TΩ . Name : TΩ |
TΩ . Name : T

∗
Ω→ TΩ .

The retrieval of (overloaded or overridden) properties,
features, pseudofeatures, opposite association ends, and
association classes in a static basis Ω is defined by two
suitably axiomatised maps. These maps represent the
search for a type showing the desired feature in the
generalisation hierarchy above and including a given
type.
For attribute-like features, given a name a and a type τ ,

the partial function

fdΩ :Name×TΩ⇀DΩ

yields, when defined, a declaration τ ′.a : τ ′′ such that
τ ≤Ω τ ′. The type τ ′ (represents a type that) shows
a structural (pseudo-)feature, an opposite association
end, or an association class with name a of type τ ′′.
If fdΩ(a, τ) is defined, then fdΩ(a, τ

′) is defined for all
τ ′ ≤Ω τ , i.e., a is inherited by all subtypes of τ .

In the example of Fig. 1 and considering the diagram
without the constraint note,

fdΩ(a, A) = A.a : A ,

fdΩ(a, B) = A.a : A ,

fdΩ(b, B) = B.b : B ,

fdΩ(bs, B) = B.bs : Set(B) , and

fdΩ(b, A) is undefined.

For behavioural features, given a name o, a type τ , and
a sequence of types (τi)1≤i≤n, the partial function

fdΩ :Name×TΩ×T
∗
Ω⇀DΩ

yields, when defined, a declaration τ ′.o : (τ ′i)1≤i≤n → τ
′
0

such that τ ≤Ω τ ′ and τi ≤Ω τ ′i for all 1≤ i≤ n. The type τ
′

(represents a type that) shows a query behavioural
(pseudo-)feature or a property with name o, parameter
types τ ′1, . . . , τ

′
n, and return type τ

′
0. If fdΩ(o, τ, (τi)1≤i≤n)

is defined, then also fdΩ(o, τ
′, (τ ′i)1≤i≤n) is defined for

all τ ′ ≤Ω τ and τ ′i ≤ τi for all 1 ≤ i ≤ n, i.e., again, o is
inherited by all subtypes of τ .
In the example of Fig. 1 and considering the diagram

without the constraint note,

fdΩ(m, A, ()) = A.m : ()→ B and

fdΩ(m, B, ()) = B.m : ()→ A .

Static bases also provide the declaration retrieval of
the predefined OCL properties [32, Sect. 6.8]. Table 2
shows a non-exhaustive list of axioms for OCL properties,
where τ, τ ′ ∈ TΩ and a ∈ Name. Note that projections of
tuples are treated like properties.

Extensions. A constraint may contain definitions of aux-
iliary features by means of the def: clause [32, Sect. 6.8].
These additional features extend the context within
which the constraint is to be typed. We thus require
that static bases be extendable by new declarations.
We only put mild requirements on the chosen extension
mechanism.
A static basis Ω can be extended by a declaration

of a structural pseudofeature τ.a : τ ′ with τ, τ ′ ∈ TΩ if
fdΩ(a, τ) is undefined (i.e., if the attribute is indeed new).
A static basis Ω can also be extended by a declara-
tion of a behavioural pseudofeature τ.o : (τi)1≤i≤n→ τ0
with τ, τ0, τ1, . . . , τn ∈ TΩ if fdΩ(o, τ, (τi)1≤i≤n) is unde-
fined (i.e., if the operation is in fact new). The result
Ω′ of such an extension of Ω must again be a static
basis.
If the extension consists in a declaration δ = τ.a : τ ′,

we require that fdΩ′(a, τ) = δ and that fdΩ′ is the same as
before for a previously existing a′, that is, fdΩ′(a

′, τ ′) =
fdΩ(a

′, τ ′) if a′ �= a. Analogously, for the extension by
a declaration δ = τ.o : (τi)1≤i≤n → τ0 we require that
fdΩ′(o, τ, (τi)1≤i≤n) = δ and that fdΩ′(o

′, τ ′, (τ ′i)1≤i≤n)
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Table 2. Typing of sample built-in OCL properties

fdΩ(a, Tuple(a : τ)) = Tuple(a : τ).a : τ

fdΩ(=, τ, τ
′) = τ.= : τ ′→ Boolean

fdΩ(oclIsKindOf, α, Type) = α.oclIsKindOf : Type→ Boolean

fdΩ(first, Sequence(τ)) = Sequence(τ).first :→ τ

fdΩ(including, σ(τ), τ
′) = σ(τ).including : τ ′→ σ(

⊔
Ω{τ, τ

′})

fdΩ(union, σ(τ), σ(τ
′
)) = σ(τ).union : σ(τ ′)→ σ(

⊔
Ω{τ, τ

′})

is the same as fdΩ(o
′, τ ′, (τ ′i )1≤i≤n) if o

′ �= o. Finally, we
require that TΩ′ = TΩ and ≤Ω′ =≤Ω.
The constraint note in the diagram of Fig. 1 extends

the static basis Ω with the declaration δ = A.f : Integer
yielding the static basis Ω′ with

fdΩ′(f, A) = A.f : Integer

fdΩ′(f, B) = A.f : Integer

by the inheritance requirement for static bases, and which
leaves Ω unchanged with respect to its types and its type
hierarchy.
We assume that some scheme of extending static bases

is fixed that observes the above requirements. We let Ω, δ
denote the extension of a static basis Ω by the declaration
δ according to the chosen scheme.

3.2 Type inference

The type inference system on the one hand allows to de-
duce the type of a given OCL term over a given static
basis. On the other hand, the inference system pro-
duces a normalised and annotated OCL term adding
type information on pseudofeature declarations and over-
loaded or overridden properties for later evaluation: The
declaring type of a structural feature has to be deter-
mined statically for accessing overridden attributes [32,
Sect. 6.5.9]; we also record the expected return type of
a behavioural feature or property call, in order to cope
with the ad hoc polymorphism of UML, as illustrated by
the overloading of operation m() in Fig. 1. The adoption
of a contra/covariant overriding scheme for behavioural
features would render the recording of return types
dispensable [11].
We first define annotated OCL terms by means of

a grammar and then introduce the rules that allow to
infer the type and the annotation of a given term using
the type and annotation of the terms that form part of
the term of interest. Finally, we draw a detailed compar-
ison of our approach with the typing systems in the OCL
literature.
The grammar for annotated OCL terms transforms

the grammar in Table 1 by consistently replacing Term,
Spec, Def, Constr, AttrDef, OpDef, and Expr by A-Term,
A-Spec, A-Constr, A-AttrDef, A-OpDef, and A-Expr, re-

spectively. Furthermore, the original clauses

AttrDef ::= Name :Type =Expr
OpDef ::= Name ( [Var :Type {,Var :Type}] ) :

Type =Expr
Expr ::= · · · |

letVar [:Type] =Expr inExpr |
Expr -> iterate(Var [:Type] ;
Var [:Type] =Expr |Expr ) |

Expr .Name |
Expr .Name ( [Expr {,Expr}] ) |
Expr ->Name ( [Expr {,Expr}] )

are replaced by

A-AttrDef ::= NameType :Type =A-Expr
A-OpDef ::= NameType ( [Var :Type {,Var :Type}] ) :

Type =A-Expr
A-Expr ::= · · · |

letVar =A-Expr inA-Expr |
A-Expr -> iterate(Var ;Var =A-Expr |
A-Expr ) |

A-Expr .NameType |
A-Expr .NameType ( [A-Expr {,
A-Expr}] ) |

A-Expr ->NameType ( [A-Expr {,
A-Expr}] )

The annotations by a Type for the definition of attributes
and of operations as well as for using a structural feature
record the defining class. The Type annotations for (over-
loaded or overridden) behavioural feature retrieval keep
track of the expected return type in order to deal with
ad hoc polymorphism. Annotations are written as sub-
scripts. The optional type assertions for let and iterate
are omitted, as suitable types can be inferred.
A typing judgement of the type inference system puts

in relation a static basis, a type environment, the (unan-
notated) term of interest, an annotated term, and a type.
These judgements are to be interpreted as follows: On the
basis of the underlying UML model and in the context of
the given type environment, the (unannotated) term can
be annotated as expressed by the annotated term and has
the given type. The type environment is used to trace the
types of subexpressions in the context of the unannotated
term. The annotation is used to deal with inheritance
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and overloading, in order to type and later to evaluate
correctly the term of interest. The annotated term simul-
taneously represents the normal form of the unannotated
term and thus simplifies the rules of evaluation.
A type environment over a static basis Ω is a finite se-

quence Γ of variable typings of the form x1 : τ1, . . . , xn : τn
with xi ∈ Var∪{self} and τi ∈ TΩ for all 1≤ i ≤ n; we
denote {x1, . . . , xn} by dom(Γ), and τi by Γ(xi) if xj �= xi
for all i < j ≤ n. The empty type environment is de-
noted by ∅, concatenation of type environments Γ and Γ′

by Γ,Γ′.

Table 3. Type inference system I

(Spec:)

(Ω, (δj)1≤j≤n; Γ, self : ζi � di � d̃i : δi)1≤i≤n
Ω, (δj)1≤j≤n; Γ, self : ζ � e � ẽ : Boolean

Ω;Γ � (context ζi def: di)1≤i≤n context ζ inv: e �

(context ζi def: d̃i)1≤i≤n context ζ inv: ẽ : Boolean

(Def:1)
Ω; Γ � e � ẽ : τ ′

Ω;Γ � a : τ = e � aζ : τ = ẽ : (ζ.a : τ )
where ζ =Γ(self) and if τ ′ ≤Ω τ

(Def:2)
Ω; Γ, (xi : τi)1≤i≤n � e � ẽ : τ

′

Ω;Γ � o(x1 : τ1, . . . , xn : τn) : τ = e �

oζ(x1 : τ1, . . . , xn : τn) : τ = ẽ : (ζ.o : (τi)1≤i≤n→ τ )
where ζ =Γ(self) and if τ ′ ≤Ω τ

(Lit:) Ω; Γ � l � l : type(l) (Self:) Ω; Γ � self � self : Γ(self)

(Var:) Ω; Γ � x � x : Γ(x) (Type:) Ω; Γ � τ � τ : Type

(Undef:) Ω; Γ � undef � undef : Void

(Coll:)
(Ω; Γ � ei � ẽi : τi)1≤i≤n

Ω;Γ � σ{e1, . . . , en} �

σ{ẽ1, . . . , ẽn} : σ(τ)

where τ =
⊔
Ω{τi | 1≤ i≤ n}

(Tup:)
(Ω; Γ � ei � ẽi : τi)1≤i≤n

Ω;Γ � Tuple{a1 = e1, . . . , an = en} �

Tuple{a1 = ẽ1, . . . , an = ẽn} : Tuple(a1 : τ1, . . . , an : τn)

(Let:)
Ω; Γ � e � ẽ : τ Ω;Γ, x : τx � e′ � ẽ′ : τ ′

Ω;Γ � let x [: τx] = e in e′ � let x = ẽ in ẽ′ : τ ′
]where τx = τ [

if τ ≤Ω τx

(Cond:)
Ω; Γ � e � ẽ : Boolean (Ω; Γ � ei � ẽi : τi)1≤i≤2

Ω; Γ � if e then e1 else e2 endif �

if ẽ then ẽ1 else ẽ2 endif : τ

where τ =
⊔
Ω{τ1, τ2}

(And:)
(Ω; Γ � ei � ẽi : Boolean)1≤i≤2

Ω; Γ � e1 and e2 �

ẽ1 and ẽ2 : Boolean

(Or:)
(Ω; Γ � ei � ẽi : Boolean)1≤i≤2

Ω; Γ � e1 or e2 �

ẽ1 or ẽ2 : Boolean

(Iter:)

Ω; Γ � e � ẽ : σ(τ) Ω; Γ � e′ � ẽ′ : τ ′

Ω; Γ, x : τx, x
′ : τx′ � e

′′ � ẽ′′ : τ ′′

Ω;Γ � e->iterate(x [: τx]; x
′ [: τx′ ] = e

′ | e′′) �

ẽ->iterate(x; x′ = ẽ′ | ẽ′′) : τx′

]where τx = τ , τx′ = τ
′[ if τ ≤Ω τx and τ

′, τ ′′ ≤Ω τx′

The type inference system derives judgements of the
form Ω; Γ � t � t̃ : θ where Ω is a static basis, Γ is a type
environment over Ω, t is a Term, t̃ is an A-Term, and
θ is a type in TΩ or a declaration in DΩ. When writing
such a judgement, we assume that self, undef, isUndef,
asType, allInstances, and, and or are reserved names
and that Var and TΩ ⊆ Type are disjoint. The empty type
environment may be omitted.
Judgements are derived using the rules in Tables 3–4.

A rule may only be applied if its premises and its con-
clusion as well as its side conditions (in particular ap-
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Table 4. Type inference system II

(Cast:)
Ω; Γ � e � ẽ : τ

Ω;Γ � e.asType(τ ′) � ẽ.asType(τ ′) : τ ′
if τ ≤Ω τ

′ or τ ′ ≤Ω τ

(Inst:) Ω; Γ � τ.allInstances() � τ.allInstances() : Set(τ)

(IsUndef:)
Ω; Γ � e � ẽ : τ

Ω;Γ � e.isUndef() � ẽ.isUndef() : Boolean

(Feat:1)
Ω; Γ � e � ẽ : υ

Ω;Γ � e.a � ẽ.aτ ′ : τ
′′
if fdΩ(a, υ) = τ

′.a : τ ′′

(Feat:2)

Ω; Γ � e � ẽ : υ

(Ω; Γ � ei � ẽi : τi)1≤i≤n

Ω;Γ � e.o(e1, . . . , en) �

ẽ.oτ ′0(ẽ1, . . . , ẽn) : τ
′
0

if fdΩ(o, υ, (τi)1≤i≤n) =

τ ′.o : (τ ′i)1≤i≤n→ τ
′
0

(Prop:)

Ω; Γ � e � ẽ : σ(τ)

(Ω; Γ � ei � ẽi : τi)1≤i≤n

Ω;Γ � e->o(e1, . . . , en) �

ẽ->oτ ′0(ẽ1, . . . , ẽn) : τ
′
0

if fdΩ(o, σ(τ), (τi)1≤i≤n) =

τ ′.o : (τ ′i)1≤i≤n→ τ
′
0

(Sing:1)

Ω; Γ � e � ẽ : υ Ω; Γ � e′ � ẽ′ : τ ′

Ω;Γ, x : υx, x
′ : τx′ � e

′′ � ẽ′′ : τ ′′

Ω;Γ � e->iterate( x [: υx]; x
′ [: τx′ ] = e

′ | e′′) �

Set{ẽ}->iterate( x; x′ = ẽ′ | ẽ′′) : τx′

]where υx = υ,

τx′ = τ
′[

if υ ≤Ω υx and

τ ′, τ ′′ ≤Ω τx′

(Sing:2)

Ω; Γ � e � ẽ : υ

(Ω; Γ � ei � ẽi : τi)1≤i≤n

Ω;Γ � e->o(e1, . . . , en) �

Set{ẽ}->oτ ′0(ẽ1, . . . , ẽn) : τ
′
0

if fdΩ(o, Set(υ), (τi)1≤i≤n) =

τ ′.o : (τ ′i)1≤i≤n→ τ
′
0

(Short:1)
Ω; Γ � e � ẽ : σ(τ)

Ω;Γ � e.a � ẽ->iterate(i; a = σ{} |

a->includingσ(τ ′′)(i.aτ)) : σ(τ
′′)

if fdΩ(a, τ ) = τ
′.a : τ ′′ and

where σ = Bag if σ �= Sequence, and σ = Sequence otherwise

(Short:2)
Ω; Γ � e � ẽ : σ(τ) (Ω; Γ � ei � ẽi : τi)1≤i≤n

Ω;Γ � e.o(e1, . . . , en) �

ẽ->iterate(i; a = σ{} |

a->includingσ(τ ′0)
(i.oτ ′0(ẽ1, . . . , ẽn))) : σ(τ

′
0)

if fdΩ(o, τ, (τi)1≤i≤n) = τ
′.o : (τ ′i)1≤i≤n→ τ

′
0 and

where σ = Bag if σ �= Sequence, and σ = Sequence otherwise

plications of the least upper bound operator
⊔
) are well

defined. The metavariables that are used in the rules
and which may be variously decorated range as follows:
l ∈ Literal; υ ∈ UΩ, ζ ∈ CΩ, σ ∈ S, σ ∈ S, τ ∈ TΩ, δ ∈DΩ;
x∈Var; a, o ∈Name; e ∈Expr, ẽ ∈A-Expr, d ∈AttrDef∪
OpDef, d̃ ∈ A-AttrDef∪A-OpDef. For the optional type

assertions for let and iterate (see rules (Let:), (Iter:),
and (Sing:)) we use the following convention: If they are
not present, the part of the side-conditions bracketed
with ]. . .[ applies.
The rules follow the OCL specification ([32, Chapt. 6]

and also [33, Chapt. 2]) as closely as possible. The rules
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(Spec:) and (Def:1–Def
:
2) in Table 3 treat definitions of

pseudofeatures as being simultaneous; dependent defini-
tions may be easily introduced (cf. [27]).
The rule (Undef:) assigns type Void to undef; alter-

natively, every type could show an undefined value and
some naming convention, like Integer::undef, or type
assertion, like undef : Integer, could be used to avoid
Void. Similarly, the rule (Coll:) provides a unique type
for the empty concrete collections (in contrast to [11])
using σ(Void). As required by OCL 2.0 [33] and as [12],
we include nested collections, in contrast to OCL 1.5 [32,
Sect. 6.5.13] where flattening is applied to all collections.
Generally, the least upper bound (cf. [38]) is not

directly justified by the specification. In particular,
Schürr [42] suggests to employ union types instead; [11,
38] require homogenous collections; the typing rules
of [23] depend on the expression order.
The type of a conditional expression, as given by the

rule (Cond:), complies with OCL 2.0 [33], which differs
from OCL 1.4 [31, pp. 6–35]. There, independently of the
type of e2, the (evaluation) type of e1 is assumed to be
the type of the whole expression; [36] requires comparable
types, [11] a single type.
The casting rule (Cast:) in Table 4 allows both down-

and up-cast, see OCL 1.5 [32, pp. 6–10, 6–17f., 6–30] ([36]
requires that the new type is smaller than the original
type; casting not present in [11, 20]). Note, however, that
this rule does not allow for arbitrary expressions result-
ing in a type as the argument for asType, since this would
imply term-dependent types as, for example, in

5.asType(if 1.=(2) then Real

else Integer endif)

which is ruled out by the grammar in Table 1. Similarly,
(Inst:) does not allow allInstances to be called on arbi-
trary expressions, but only type literals.
The annotation in (Feat:1) accounts for the retrieval of

an overloaded or overridden structural feature, opposite
association end, association class, see OCL 1.5 [32, pp. 6–
17f.] (not present in [11, 36]), and also of tuple components.
Theannotations in (Feat:2) and (Prop

:) arenecessary, since
we do not require any return type restriction for query be-
havioural features and properties (in contrast to [11]).
The rules (Sing:1–Sing

:
2) are the so-called “singleton”

rules, see OCL 1.5 [32, pp. 6–14], allowing to apply collec-
tion properties to non-collection expressions (not present
in [11, 36]); note that such an expression must be of a type
in UΩ in contrast to (Iter

:) and (Prop:). In particular,
these rules account for self.a->notEmpty() to be well-
formed, if a is an opposite association end with multipli-
city 0 . . 1 [32, pp. 6–14]. The rules (Short:1–Short

:
2) define

the shorthand notation for features on members of collec-
tions, see OCL 1.5 [32, pp. 6–25] (not present in [6, 11,
20, 36]); notice that the expression must be of collection
type in contrast to (Feat:1) and (Feat

:
2). There is no sub-

sumption rule since such a rule would interfere with the
overriding of properties and features (cf. e.g. [15]).

Let us illustrate type inference by the following exam-
ples.

– The term Set{} has type Set(Void) by (Coll:).
– The term Set{"1", 1} has type Set(Any) by (Coll:),
but the term Set{Boolean, 1} cannot be typed since
Type and Integer have no common supertype.
– The term Set{Set{},Set{1}} has type Set(Set(In-
teger)) by (Coll:),
but the term Set{1,Set{1}} cannot be typed because
there is no least upper bound for both Integer and
Set(Integer).
– Given that Set(Void)≤Ω Set(Integer), the term
Set{}->union(Set{1}) has type Set(Integer) by
(Feat:2).
– The term 1->including(1) has type Boolean by
(Sing:2);
the term Set{1, 2, 3}.+(1) has type Bag(Integer)
by (Short:2).

3.3 Unique typing

The above presented type inference system, in contrast
to [11, 39], entails unique annotations as well as unique
types and declarations. Unique typing, on the one hand,
makes a more efficient parsing possible, and on the other
increases the readability of an OCL specification.

Proposition. Let Ω be a static basis, Γ a type environ-
ment over Ω, and t a Term. If Ω;Γ � t � t̃ : θ and Ω;Γ � t �
t̃′ : θ′ for some A-Term’s t̃ and t̃′ and types or declarations
θ and θ′, then t̃= t̃′ and θ = θ′.

Proof. By structural induction on the term t using
the fact that, in particular, the antecedents of (Iter:)
and (Sing:1), (Feat

:
1) and (Short

:
1), (Feat

:
2) and (Short

:
2),

(Prop:) and (Short:2) are mutually exclusive. �

If Ω; Γ � t � t̃ : θ, then t and t̃ are said to be well typed.
We also write Ω; Γ � t̃ : θ; the corresponding t can be ob-
tained by erasing the annotations and adding suitable
type assertions for let and iterate.

4 Operational semantics

The evaluation of an OCL term depends on informa-
tion from an underlying UML object model, the instances
and their types, the values of structural features, and
the implementations of query behavioural features of in-
stances, as well as the implementations of the built-in
OCL properties. We abstractly summarise this informa-
tion in a dynamic basis which is the dynamic counterpart
of static bases and is axiomatised analogously; such dy-
namic bases are independent of static bases. Dynamic
bases uniformly capture the possible non-determinism
and non-termination of pseudofeatures. We define a big-
step operational semantics for evaluating OCL terms over
a dynamic basis. This operational semantics operates on
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normalised and annotated terms that carry information
for retrieving overridden structural features as well as in-
formation on the expected return type of a behavioural
feature call. These data in general will be obtained by
type inference. Accordingly, we also define a conformance
relation between static and dynamic bases, such that the
semantics satisfies a subject reduction property with re-
spect to the type system of the previous section: If a term
over a static basis can be typed, then the result of evalu-
ating it in a conforming dynamic basis has the expected
type.
The big-step operational semantics subsumes the op-

erational semantics as defined by Clark [11]. In particular,
the non-determinism of OCL expressions is made explicit
(cf. [11, Thm. 1]). We also take into account other special
features of OCL like the non-sequential evaluation order
of and and or and auxiliary definitions.

4.1 Dynamic bases

A dynamic basis ω defines values and results, a typing re-
lation, implementation retrieval functions, and an exten-
sion mechanism for implementations. Dynamic bases and
their implementation retrieval functions as well as the ex-
tension mechanism are in one-to-one correspondence to
the paronymous entities in static bases. The particular
notion of run-time types and a special typing relation un-
derline the independence of dynamic bases from static
bases.
Let us illustrate dynamic bases and their associated

properties by means of an exemplary definition of a dy-
namic basis ω based on the static structure diagram in
Fig. 1. Let the collection of instances (or objects)Oω in ω
be the set {o, o′}. Every instance is associated with its ac-
tual types from the run-time classifiersCω = {A, B}; we let
o :ω A, o

′ :ω B, and o
′ :ω A; this instance relation between

instances and (run-time) classifiers records all types of
an instance. Let attribute a of o be bound to o itself,
attribute b of o′ be bound to o′ itself, the opposite associ-
ation end bs be bound to the empty set, method m called
on o not terminate, and method m called on o′ yield o.
In the dynamic basis ω, the valuation of attributes

and the behaviour of operations is reflected by the im-
plementation retrieval function implω. For attributes and
opposite association ends, the implementation retrieval
function takes as parameters the feature name, the type
in which the feature has been declared, and the instance
for which the feature is to be evaluated. Thus

implω(aA, o) = o

implω(bB, o
′) = o′

implω(bsB, o
′) = Set{}

and implω(xA, o) is undefined. The extension of attribute
and opposite association end names by their declaring
types allows us to retrieve overridden features. For oper-
ations, the implementation retrieval function takes as pa-

rameters the operation name, the expected return type,
the instance for which the operation call is to be evalu-
ated, and the arguments of the operation call. Thus

implω(mB, o, ()) =⊥

implω(mA, o
′, ()) = o

The extension of operation names by the expected return
type caters for UML’s ad hoc polymorphism which does
not require method m of B to be declared with a return
type less than or equal to the return type of m in A.
Finally, taking the constraint note into account, the

dynamic basis is extended by the implementation ι =
A.f≡ 1+2, and thus, in particular, the implementations of
the extended dynamic basis ω, ι contain

implω,ι(fA, o
′) = A.f≡ 1+2

where the annotation in fA reflects the defining type of
f, as f is a pseudoattribute. Note the use of the symbol
“≡” to avoid confusion with the equality sign: The imple-
mentation of the pseudofeature fA called on o

′ is ι, namely
A.f≡ 1+2.
In the following we formally define the tools used in

this example, namely values, types, typing relation, im-
plementation retrieval, and extensions of dynamic bases.

Values and results. The outcome of an OCL term may
be a literal basic value like 1 or true; an instance (or ob-
ject) from the collection of instances over which the term
is evaluated; a collection or tuple value like Set{ . . . };
a (run-time) type like Integer; or the result undef. How-
ever, the evaluation of an OCL term may not terminate
at all.
The (run-time) types Tω of a dynamic basis ω are de-

fined as TΩ for a static basis Ω in Sect. 3.1, but replacing
CΩ by a finite set parameter Cω representing the clas-
sifier types in a model. The finite set Oω represents the
instances in a model, disjoint from Literal (see Table 1)
and from Tω. With these parameters, the values Vω and
results Vω of a dynamic basis ω are defined as follows:

Vω ::= Vω | undef
Vω ::= Nω | (Set | Bag | Sequence) { [Vω {,Vω}] } |

Tuple{Name =Vω {,Name =Vω} }
Nω ::= Literal | Tω |Oω

All names in a value Tuple{. . .} have to be distinct.
Values of the form σ{. . . } with σ ∈ S = {Set, Bag, Se-

quence} are collection values, the values of the form
Tuple{. . .} are tuple values. The values in Nω are ba-
sic values. We assume suitably axiomatised arithmeti-
cal, boolean, etc. functions and relations on values such
that, e.g., 1+ 1 = 2, 1.0 = 1, false∧ true = false,
Set{1,2}= Set{2,1, 1}, 1≤ 2, Tuple{a = 1, b = 2}=
Tuple{b = 2, a = 1}, etc.
Collection values are constructed by a map makeω :

S×V ∗ω → Vω such that makeω(σ, v1 · · · vn) = σ{v1, . . . ,



                                                                               19

vn}; if σ = Set, repetitions in v1 · · · vn are discarded,
such that only the leftmost occurrence of a value re-
mains. If n = 0, we write makeω(σ, ∅). More generally,
for a set M = {v1, . . . , vn}, we let makeω(σ,M) de-
note makeω(σ, v1 · · · vn). By abuse of notation, we put
makeω(undef) = undef.
A collection value v = σ{v1, . . . , vn} has a sequence

value representation v′, written as v � v′, if either
σ = Sequence and v = v′ or makeω(Sequence, vπ(1) · · ·
vπ(n)) = v

′ for some permutation π of 1, . . . , n and where
v1, . . . , vn are all different if σ = Set. In general, a collec-
tion value has several different sequence value representa-
tions; e.g. Set{1, 2}� Sequence{1, 2}, Set{1, 2}�
Sequence{2, 1}, and, furthermore, Set{1, 2, 1} �
Sequence{1, 2}, by Set{1, 2, 1}= Set{1, 2}; but, in
particular, Set{1, 2} �� Sequence{1, 1, 2}.
For the representation of (bounded) non-determinism

and non-termination, as for instance witnessed by turn-
ing a set value into a sequence value by asSequence [32,
pp. 6–40], we introduce the powerdomain of results
℘(Vω)⊥, defined as the set of all non-empty subsets X of
Vω ∪{⊥} such that ifX is infinite thenX contains⊥ [35];
the special element⊥ indicates non-termination.

Typing relation. The typing relation in a dynamic basis
ω is based on an instance relation between instances and
classifiers, denoted by :Oω ⊆ Oω×Cω. This relation puts
an object into relation with all the classifiers the object is
an instance of, which may be several in the presence of in-
heritance; thus the instance relation is left-total and not
necessarily functional.
Given a instance relation :Oω ⊆Cω×Cω, the typing re-

lation :ω ⊆ V ω×Tω between results and types of ω is de-
fined as the least relation satisfying the following axioms:

1. for all v ∈ Literal, v :ω type(v),
where type(v) is the type of the literal as defined in
Sect. 3.1

2. for all v ∈ Tω, v :ω Type
3. for all v ∈Oω , if v :Oω τ then v :ω τ
4. for all τ ∈ Tω, undef :ω τ
5. for all v ∈ Vω , if v :ω Integer then v :ω Real
6. for all v ∈ Vω , if v :ω α ∈Aω then v :ω Any
7. for all v1, . . . , vn ∈ Vω and a1, . . . , an ∈Name,
if vi :ω τi ∈ TΩ, 1≤ i≤ n,
then Tuple{a1 = v1, . . . , an = vn} :ω Tuple(ai1:τi1,
. . . , aik : τik)
for 1≤ i1 < · · ·< ik ≤ n, k ≥ 1

8. σ{} :ω σ(Void)
9. for all v1, . . . , vn ∈ Vω,
if vi :ω τ ∈ Tω, 1≤ i≤ n, then σ{v1, . . . , vn} :ω σ(τ)

10. for all v ∈ Vω , if v :ω σ(τ) then v :ω Collection(τ)

Note that the relation :ω is again left-total. If v :ω τ , we
say that “v is in (or belongs to) τ” and also that “v inhab-
its τ”. In particular, the only inhabitant of type Void is
undef. The type hierarchy on the run-time types of ω can
be derived from the typing relation:We define the subtype
relation ≤ω ⊆ Tω×Tω as follows: τ ≤ω τ ′ if, and only if,

v :ω τ implies v :ω τ
′ for every v ∈ V . Thus in contrast to

the type inference system, we introduce explicit type sub-
sumption in dynamic bases, i.e., if v :ω τ and τ ≤ω τ ′ then
also v :ω τ

′.
A finite type is a type τ ∈ Tω such that the set {v ∈ Vω |

v :ω τ} is finite; explicitly, the only finite types are Void,
Boolean, Type, a type in Cω, and a type of the form σ(τ)
withτ finite.Forafinite typeτ ,wedenote thefinite set{v ∈
Vω | v :ω τ} byω(τ); for all other types τ ,ω(τ) is undef.

Implementation retrieval. The retrieval of implementa-
tions of (overloaded or overridden) properties, features,
pseudofeatures, opposite association ends, and associa-
tion classes in a dynamic basis ω is defined by two partial
maps yielding implementations. Implementations consist
of an implementation signature and an implementation
body, separated by ≡. The implementation signature lo-
cates the feature in the type hierarchy and, in the case
of behavioural features, it also holds information on the
formal parameter names and the declared return type of
the feature. The implementation body is either an anno-
tated expression, originating from an auxiliary definition,
or a function from a list of values to the powerdomain of
results, for predefined features. Formally,

Iω ::= Tω .Name≡A-Expr |
Tω .Name≡Fω |
Tω .Name (Var

∗ ) : Tω ≡A-Expr |
Tω .Name (Var

∗ ) : Tω ≡Fω

where Fω denotes the set of non-deterministic implemen-
tation functions V +ω → ℘(Vω)⊥. An implementation func-
tion takes a value for the implicit self parameter and the
remaining formal parameters and yields a set in the power-
domain of results, which can possibly contain undef or⊥.
For attribute-like features, given a name a, a type τ

(the annotation), and a value v with v :ω τ , the partial
function

implω :Name×Tω×Vω⇀ Iω

yields, when defined, an implementation τ.a ≡ ψ rep-
resenting the implementation of a structural (pseudo-)
feature, an opposite association end, an association class,
or a tuple component with name a, which has to be de-
fined in τ as required by the annotation.
In particular, if implω(a, τ, v) = τ.a ≡ ψ with ψ ∈

Fω , then ψ : Vω → ℘(Vω)⊥, i.e., ψ has to be unary. If
implω(a, τ, v) is defined, then implω(a, τ, v

′) is defined for
all v′ such that v :ω τ

′ implies v′ :ω τ
′, i.e., a is present for

all values with the same (run-time) types as v.
For operation-like features, given a name o, a type τ

(the annotation), a value v with v :ω τ
′, and a sequence of

values (vi)1≤i≤n, the partial function

implω :Name×Tω×Vω×V
∗
ω ⇀Iω

yields, when defined, an implementation τ ′.o((xi)1≤i≤n) :
τ ≡ ψ representing the implementation of a query be-
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havioural (pseudo-)feature or a property with name o,
defined with return type τ as required by the annotation.
In particular, if implω(o, τ, v, (vi)1≤i≤n) = τ

′.o
((xi)1≤i≤n) : τ ≡ ψ with ψ ∈ Fω , then ψ : V nω → ℘(Vω)⊥,
i.e., ψ has to show the desired arity. If implω(o, τ, v,
(vi)1≤i≤n) is defined, then implω(o, τ, v

′, (vi)1≤i≤n) is de-
fined for all v′ such that v :ω τ

′ implies v′ :ω τ
′.

In order to enhance readability, the type argument
of implω is written as a subscript of the name argu-
ment as e.g. implω(aτ , v) and implω(oτ , v, (vi)1≤i≤n).
By abuse of notation, if implω(aτ , v) = τ.a ≡ ψ, with
ψ ∈ Fω, we write implω(aτ , v) for ψ(v). Similarly, if
implω(oτ , v, (vi)1≤i≤n) = τ

′.o((xi)1≤i≤n) : τ ≡ψ with ψ ∈
Fω, we write implω(oτ , v, (vi)1≤i≤n) for ψ(v, (vi)1≤i≤n).
If the resulting function is deterministic, we identify the
singleton result set and its element.
For the example introduced above, see Fig. 1, we have

implω(mB, o, ()) = B.m()≡m

with m : Vω → ℘(Vω)⊥ and m(o) = {⊥} which we con-
veniently abbreviated into implω(mB, o, ()) =⊥. Similarly,
we have

implω(aA, o) = A.a≡ a

with a : Vω → ℘(Vω)⊥ and a(o) = {o}.
Table 5 contains some sample axioms for the retrieval

of the implementation of built-in OCL properties.

Extensions. We require that a dynamic basis ω be ex-
tendable. If τ ∈ Tω and implω(aτ , v) is undefined for all
v :ω τ , then ω can be extended by putting τ.a ≡ ψ with
ψ either an A-Expr of an Fω. If implω(oτ0 , v, (vi)1≤i≤n)
is undefined for all v :ω τ and all v1, . . . , vn ∈ Vω, then
ω can be extended by putting τ.o((xi)1≤i≤n) : τ0 ≡ ψ.
An extension ω′ of ω must again be a dynamic basis,
i.e., implω′ must respect inheritance. For the exten-
sion by an implementation ι = τ.a ≡ ψ we require that
implω′(aτ , v) = ι for all v :ω τ and that implω′(a

′
τ ′ , v) is

the same as implω(a
′
τ ′ , v) if a

′ �= a. Similarly, for the ex-
tension by an implementation ι= τ.o((xi)1≤i≤n) : τ0 ≡ ψ
we require that implω′(oτ0 , v, (vi)1≤i≤n) = ι for all v :ω τ
and v1, . . . , vn ∈ Vω and that implω′(o

′
τ ′ , v

′, (vi)1≤i≤n) is
the same as implω(o

′
τ ′ , v

′, (vi)1≤i≤n) if o
′ �= o. Finally, we

require that Tω′ = Tω and :ω′ = :ω.

Table 5. Semantics of sample built-in OCL properties

implω(aTuple(a : τ), Tuple{a = v}) = Tuple(a : τ).a≡ v

implω(=Boolean, v, v
′) = (v = v′)

implω(oclIsKindOfBoolean, v, τ ) = {v :ω τ}

implω(firstτ , Sequence{v1, . . . , vn}) = {v1}

implω(includingσ(τ), v, v
′) = {makeω(σ, v v

′)}

implω(unionσ(τ), v, v
′) = {makeω(σ, v v

′)}

In the example above, the constraint note in the di-
agram of Fig. 1 extends the dynamic basis ω with the
implementation ι = A.f ≡ 1.+(2) yielding the dynamic
basis ω′ with

implω′(fA, o
′) = A.f≡ 1.+(2)

which leaves ω unchanged with respect to its types and its
typing relation.
The above are only weak requirements on possible

extension mechanisms for implementations. We assume
that some scheme of extending dynamic bases is fixed and
we write ω, ι for the extension of a dynamic basis ω by the
implementation ι according to the chosen scheme.

4.2 Evaluation

The operational semantics evaluates annotated OCL
terms in the context of a dynamic basis and some variable
assignments. The variable assignments record the values
of the terms on which the term of interest depends. The
dynamic basis delivers the information on the actual state
of the object system, as sketched above.
A variable environment over a dynamic basis ω is a fi-

nite sequence γ of variable assignments of the form x1 
→
v1, . . . , xn 
→ vn with xi ∈Var∪{self} and vi ∈ Vω for all
1≤ i≤ n. We denote the set {x1, . . . , xn} by dom(γ) and
the value vi by γ(xi) if xi �= xj for all i < j ≤ n. The empty
variable environment is denoted by ∅, concatenation of
variable environments γ and γ′ by γ, γ′.
The operational semantics derives judgements of the

form ω; γ � t̃ ↓ ρwhere ω is a dynamic basis, γ is a variable
environment over ω, t̃ is an annotated term, and ρ ∈ Vω ∪
Iω. If such a judgement can be derived, then the term t̃
is said to evaluate to ρ in the dynamic basis ω and with
the variables (on which the evaluation of t̃ may depend)
assigned as given by γ. The empty variable environment
may be omitted.
Judgements are derived by the rules in Tables 6–7.

As in the previous section we require that a rule be ap-
plied only if all its constituents are well defined. The
metavariables, that may be variously decorated, range as
follows: l ∈ Literal; ζ ∈ Cω, σ ∈ S, τ ∈ Tω; x ∈Var; a, o ∈
Name; v ∈ Vω, v ∈ Vω, ι∈ Iω ; ẽ∈A-Expr, d̃∈A-AttrDef∪
A-OpDef. We additionally adopt the following general
failing convention that applies to all rules with the excep-
tions of the rules (And↓1–And

↓
3) and (Or

↓
1–Or

↓
3): if undef

occurs as a result in a judgement of a premise of some rule
where a value v ∈ Vω is required, the term in the conclu-
sion evaluates to undef.
The operational rules are presented in close correspon-

dence to the typing rules in Tables 3–4. All rules, except
the rules (Cond↓1–Cond

↓
2), (And

↓
2–And

↓
3), and (Or

↓
2–Or

↓
3)

in Table 6, require of all subterms to be fully evaluated
and to result in a value in Vω in order to deliver a result
for the term of interest. In particular, in contrast to [31,
Sect. 6.4.10], we treat conditionals as being non-failing
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Table 6. Operational semantics I

(Spec↓)

(ω, (ιj)1≤j≤n; γ � d̃i ↓ ιi)1≤i≤n
(ω, (ιj)1≤j≤n; γ, self �→ v � ẽ ↓ vv)v∈ω(ζ)

ω; γ � (context ζi def: d̃i)1≤i≤n context ζ inv: ẽ ↓
∧
v vv

(Def↓1) ω; γ � aζ : τ = ẽ ↓ ζ.a≡ ẽ

(Def↓2) ω; γ � oζ(x1 : τ1, . . . , xn : τn) : τ = ẽ ↓ ζ.o((xi)1≤i≤n) : τ ≡ ẽ

(Lit↓) ω; γ � l ↓ l (Self↓) ω; γ � self ↓ γ(self)

(Var↓) ω; γ � x ↓ γ(x) (Type↓) ω; γ � τ ↓ τ

(Undef↓) ω; γ � undef ↓ undef

(Coll↓)
(ω;γ � ẽi ↓ vi)1≤i≤n

ω; γ � σ{ẽ1, . . . , ẽn} ↓makeω(σ, v1 · · · vn)

(Tup↓)
(ω; γ � ẽi ↓ vi)1≤i≤n

ω; γ � Tuple{a1 = ẽ1, . . . , an = ẽn} ↓ Tuple{a1 = v1, . . . , an = vn}

(Let↓)
ω; γ � ẽ ↓ v ω; γ, x �→ v � ẽ′ ↓ v′

ω; γ � let x = ẽ in ẽ′ ↓ v′

(Cond↓1)
ω;γ � ẽ ↓ true ω; γ � ẽ1 ↓ v1

ω; γ � if ẽ then ẽ1 else ẽ2 endif ↓ v1

(Cond↓2)
ω; γ � ẽ ↓ false ω;γ � ẽ2 ↓ v2

ω; γ � if ẽ then ẽ1 else ẽ2 endif ↓ v2

(And↓1)
(ω;γ � ẽi ↓ vi)1≤i≤2

ω; γ � ẽ1 and ẽ2 ↓ v1∧v2
(Or↓1)

(ω; γ � ẽi ↓ vi)1≤i≤2

ω; γ � ẽ1 or ẽ2 ↓ v1∨v2

(And↓2)
ω; γ � ẽi ↓ false

ω; γ � ẽ1 and ẽ2 ↓ false
(Or↓2)

ω;γ � ẽi ↓ true

ω; γ � ẽ1 or ẽ2 ↓ true
where i= 1 or i= 2 where i= 1 or i= 2

(And↓3)
(ω;γ � ẽi ↓ vi)1≤i≤2

ω; γ � ẽ1 and ẽ2 ↓ undef
(Or↓3)

(ω; γ � ẽi ↓ vi)1≤i≤2

ω; γ � ẽ1 or ẽ2 ↓ undef

if v1 �= false, v2 = undef or
v1 = undef, v2 �= false

if v1 �= true, v2 = undef or
v1 = undef, v2 �= true

(Iter↓)

ω; γ � ẽ ↓ v ω;γ � ẽ′ ↓ v′0
(ω;γ, x �→ vi, x

′ �→ v′i−1 � ẽ
′′ ↓ v′i)1≤i≤n

ω; γ � ẽ->iterate(x; x′ = ẽ′ | ẽ′′) ↓ v′n
if v� Sequence{v1, . . . , vn}

and non-strict in the evaluation of the then and else
clauses (for strict rules for conditionals see [9]). Moreover,
the (And↓) and (Or↓) rules yield parallel Boolean connec-
tives and and or [31, pp. 6–11] (not treated in [6, 11, 36]),
such that even terms containing a non-terminating sub-
term may evaluate to a result (for a more detailed discus-
sion on the three-valued logic of OCL see [21]; however,
non-termination is not discussed). The parallel behaviour

of andmay be summarised by the following table:

and true false undef ⊥

true true false undef ⊥
false false false false false

undef undef false undef ⊥
⊥ ⊥ false ⊥ ⊥
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Table 7. Operational semantics II

(Cast↓)
ω; γ � ẽ ↓ v

ω;γ � ẽ.asType(τ) ↓ v

where v = v if v :ω τ , and

v = undef if v � :ω τ

(Inst↓) ω;γ � τ.allInstances() ↓makeω(Set, ω(τ ))

(IsUndef↓)
ω;γ � ẽ ↓ v

ω;γ � ẽ.isUndef() ↓ v

where v = true if v = undef, and

v = false if v �= undef

(Feat↓1)
ω; γ � ẽ ↓ v

ω;γ � ẽ.aτ ↓ v′
(Feat↓2)

ω;γ � ẽ ↓ v

ω;self �→ v � ẽ′ ↓ v′

ω;γ � ẽ.aτ ↓ v′

if v′ ∈ implω(aτ , v) if implω(aτ , v) = τ
′.a≡ ẽ′

(Feat↓3)

ω;γ � ẽ ↓ v

(ω;γ � ẽi ↓ vi)1≤i≤n

ω;γ � ẽ.oτ0(ẽ1, . . . , ẽn) ↓ v
′
if v′ ∈ implω(oτ0 , v, (vi)1≤i≤n)

(Feat↓4)

ω;γ � ẽ ↓ v (ω;γ � ẽi ↓ vi)1≤i≤n
ω;self �→ v, (xi �→ vi)1≤i≤n � ẽ

′ ↓ v′

ω; γ � ẽ.oτ0(ẽ1, . . . , ẽn) ↓ v
′

if implω(oτ0 , v, (vi)1≤i≤n) =

τ.o((xi)1≤i≤n) : τ0 ≡ ẽ
′

(Prop↓1)

ω; γ � ẽ ↓ v

(ω;γ � ẽi ↓ vi)1≤i≤n

ω;γ � ẽ->oτ0(ẽ1, . . . , ẽn) ↓ v
′
if v′ ∈ implω(oτ0 , v, (vi)1≤i≤n)

(Prop↓2)

ω;γ � ẽ ↓ v (ω;γ � ẽi ↓ vi)1≤i≤n
ω;self �→ v, (xi �→ vi)1≤i≤n � ẽ

′ ↓ v′

ω; γ � ẽ->oτ0(ẽ1, . . . , ẽn) ↓ v
′

if implω(oτ0 , v, (vi)1≤i≤n) =

τ.o((xi)1≤i≤n) : τ0 ≡ ẽ
′

The only rules that possibly introduce the undefined
result undef are (Undef↓) in Table 6, the (Cast↓) rule
(cf. [31, pp. 6–56]), the (Inst↓) rule (cf. [31, pp. 6–19]) and
the (Feat↓1), (Feat

↓
3), and (Prop

↓
1–Prop

↓
2) rules in Table 7.

Undefined results can only be caught by the (IsUndef↓)
rule, but not by feature or property calls. The (Iter↓) rule
allows for considerable, but bounded non-determinism
if applied to a collection value that is not a sequence
(in contrast to [36, 39]; not present in [6]). Finally, note
that (Feat↓1), (Feat

↓
3), or (Prop

↓
1) are only applicable if

the implementation body retrieved by implω yields a re-
sult such that ⊥, i.e. non-termination, cannot be the
outcome of an evaluation; similarly, the recursive nature
of (Feat↓2) and (Feat

↓
4) may prevent the evaluation from

terminating.
Let us list some illustrative examples of term evalua-

tion.

– The evaluation of

context A def: g(n : Integer) : Integer =

n*g(n+1)

context A inv: g(1) > 0

does not terminate.

– The term if true then undef else 1 evaluates to
undef by (Cond↓1),
the term if undef then true else false evaluates
to undef by the failing convention.
– true or if 1/0 then true else false evaluates to
true by (Or↓2).
Similarly, ẽ and false evaluates to false by (And↓2)
for every well-typed annotated expression ẽ, even if
the evaluation of ẽ does not terminate.
– Set{1, 2}->iterate(i; a = 0 | i) non-determin-
istically evaluates to either 2 or 1 by (Iter↓), de-
pending on the chosen sequence value representa-
tion for Set{1, 2}, namely Sequence{1, 2} resp. Se-
quence{2, 1}.
Sequence{Set{1},Set{2}}->iterate(i;a = Set{}

| a->union(i)) deterministically evaluates to
Set{1, 2}.
– undef.asType(Boolean) evaluates to undef by the
failing convention.
– Set(Boolean).allInstances()↓
Set{Set{}, Set{true}, Set{false}, Set{true,

false}}

by definition of ω(Set(Boolean)) and by (Inst↓).
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– Integer.allInstances()↓ undef by definition of
makeω and (Inst

↓).
– 2.=(2.0) ↓ true

However, the evaluation of self.a->notEmpty(),
where a is an opposite association end with multipli-
city 0 . . 1 will never result in false: The powerdomain
of results does not contain the empty set, and thus the
evaluation of a must either contain some value or undef,
or ⊥.

4.3 Subject reduction

We define a conformance relation between dynamic and
static bases that ensures, on the one hand, that the
compile-time and the run-time types as well as the type
hierarchies are compatible and, on the other hand, that
implementations respect declarations.
Let Ω be static basis and ω a dynamic basis. We say

that the type hierarchy of ω conforms to Ω if Tω = TΩ
and ≤ω =≤Ω. If the type hierarchy of ω conforms to Ω,
an implementation ι of ω conforms to a declaration δ
of Ω, written ι :ω δ, if one of the following axioms is
satisfied:

1. for f ∈ Fω, (τ.a≡ f) :ω (τ.a : τ ′) if for all v :ω τ and for
all r ∈ f(v) either r :ω τ ′ or r =⊥

2. for ẽ ∈A-Expr, (τ.a≡ ẽ) :ω (τ.a : τ ′) if Ω; self : τ � ẽ :
τ ′′ with τ ′′ ≤ω τ ′

3. for f ∈Fω , (τ.o((xi)1≤i≤n) : τ0 ≡ f) :ω (τ ′.o : (τ ′i)1≤i≤n
→ τ ′0) if τ ≤ω τ

′ and for all v :ω τ
′, vi :ω τ

′
i , 1≤ i≤ n,

and for all r ∈ f(v, (vi)1≤i≤n) either r :ω τ ′0 or r =⊥
4. for ẽ ∈ A-Expr, (τ.o((xi)1≤i≤n) ≡ ẽ : τ ′0) :ω (τ

′.o :
(τ ′i )1≤i≤n → τ

′
0) if τ ≤ω τ

′ and Ω; self : τ ′, (xi :
τ ′i)1≤i≤n � ẽ : τ

′′
0 with τ

′′
0 ≤ω τ

′
0

A dynamic basis ω conforms to a static basis Ω if

1. the type hierarchy of ω conforms to Ω
2. for every a ∈ Name such that fdΩ(a, τ) = τ

′.a : τ ′′,
implω(aτ ′ , v) is defined for all v ∈ Vω with v :ω τ and
implω(aτ ′ , v) :ω fdΩ(a, τ)

3. for every o ∈ Name such that fdΩ(o, τ, (τi)1≤i≤n) =
τ ′.o : (τ ′i)1≤i≤n → τ

′
0, implω(oτ ′0

, v, (vi)1≤i≤n) is de-
fined for all v, v1, . . . , vn ∈ Vω with v :ω τ and vi :ω
τi for all 1 ≤ i ≤ n and implω(oτ ′0 , v, (vi)1≤i≤n) :ω
fdΩ(o, τ, (τi)1≤i≤n)

Note that if ω conforms to Ω, ι :ω δ, and both ω, ι and Ω, δ
are defined, then ω, ι conforms to Ω, δ.

Even when typing and annotating an OCL term over
a static basis and evaluating the annotated term over
a dynamic basis that conforms to the static basis, the op-
erational semantics turns out to be not type sound in the
strict sense, i.e., converging well-typed terms may well re-
sult in undef. For example,

Set{1, 1.2}->iterate(i : Any;

a : Sequence(Any) = Sequence{} |

a->including(i))->first().asType(Integer)

may evaluate (after annotation) to 1, if Set{1, 1.2}
is chosen to be represented by Sequence{1, 1.2}; or it
may evaluate to undef, if Set{1, 1.2} is represented by
Sequence{1.2, 1}.
However, if the operational semantics reduces an OCL

term of inferred type τ to some value then this value is in-
deed of type τ , i.e., the operational semantics in Sect. 4.2
satisfies the subject reduction property with respect to
the type inference system in Sect. 3.2. In order to state
and prove this result, we say that a variable environment
γ over ω conforms to a type environment Γ over Ω if
dom(γ)⊇ dom(Γ) and γ(x) :ω Γ(x) for all x ∈ dom(γ).

Proposition. Let Ω be a static basis and ω a dynamic ba-
sis conforming to Ω; let Γ be a type environment over Ω
and γ a variable environment over ω conforming to Γ; let t
be a Term and t̃ an A-Term; let θ ∈ TΩ∪DΩ and ρ ∈ Vω ∪
Iω. If Ω;Γ � t � t̃ : θ and ω; γ � t̃ ↓ ρ, then ρ :ω θ.

Proof. By induction on the height of the proof tree of
Ω; Γ � t � t̃ : θ; see Appendix A. �

Obviously, the proposition remains valid when replac-
ing ρ ∈ Vω ∪ Iω by ρ ∈ V ω ∪ Iω since undef :ω τ for all
τ ∈ Tω.

4.4 Termination

Awell-typed OCL constraint, i.e., a well-typed OCL term
not showing any auxiliary definitions, always yields some
result when evaluated over a termination dynamic basis,
viz. a dynamic basis not showing recursive definitions or
non-termination.
More formally, we call a dynamic basis ω a termina-

tion dynamic basis if all implementation retrieval func-
tions implω yield only implementation bodies in Fω and
all these implementation bodies do not result in a set con-
taining ⊥. In particular, the sets in the range of these
bodies are all finite.

Proposition. Let Ω be a static basis and ω a termination
dynamic basis conforming to Ω; let Γ be a type environ-
ment and γ a variable environment over ω conforming to
Γ; let t be a term in Constr∪Expr and t̃ an annotated term
in A-Constr∪A-Expr; let τ ∈ TΩ. If Ω;Γ � t � t̃ : τ then
there is a result v ∈ Vω such that ω; γ � t̃ ↓ v.

Proof. By induction on the type derivation and using the
failing convention for the operational rules. �

5 Denotational semantics

The big-step operational semantics for OCL terms de-
scribed in the previous section gives rise to a denota-
tional semantics, by endowing the semantic domains
with suitable orderings and assigning an element of the
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powerdomain of results to each OCL term. All opera-
tional rules applying to the same OCL term are gath-
ered into a single clause defining the denotation of this
term; each clause has to take into account the potential
non-determinism of the operational evaluation process,
undefined results, and non-termination. Moreover, dy-
namic basis extensions only show implementation bodies
that are functions, that is, the expressions of all auxiliary
pseudofeature definitions are replaced by its functional
denotations.
The denotational semantics goes beyond the defin-

ition of the set-based denotational semantics by Richters
andGogolla [39], as non-determinism and non-termination
is included. In particular, the denotation of a term is
a set possibly including ⊥ for non-termination rather
than a single value.

5.1 Semantic domains

The denotational semantics is defined over the restricted
class of denotational dynamic bases, i.e., all those dy-
namic bases ω showing only implementation bodies in Fω ;
we denote by Jω the set of implementations in Iω with
implementations bodies in Fω.
We view (Vω)⊥ as a flat domain ((Vω)⊥,�) with ⊥ as

the least element. We endow the powerdomain of results
℘(Vω)⊥ with the Egli-Milner ordering [35]

X � Y if, and only if (∀x ∈X .∃y ∈ Y . x� y)∧

(∀y ∈ Y .∃x ∈X .x� y) ;

the domain Fω is equipped with the point-wise order-
ing, again written �. Finally, the implementations with
an implementation body in Fω, i.e. Jω, are ordered
by (π ≡ ψ) � (π′ ≡ ψ′) if, and only if π = π′ and
ψ � ψ′. The least fixed-point operator on Jω is denoted
byY.

We use, besides the semantic functions in Sect. 4.1,
some additional maps defined over a denotational dy-
namic basis ω, viz., liftings that extend the domain of
functions from values and results to the powerdomain of
results, a strict conditional, parallel boolean connectives,
and an iterate functional.
The families of liftings

⋃
ω f
(n),
⋃
ω g
(n) : (℘(Vω)⊥)

n→ ℘(Vω)⊥

defined for all n-ary functions f : (Vω)
n→ ℘(Vω)⊥ and g :

(Vω)
n→ ℘(Vω)⊥ by

(
⋃
ω v1 · · · vn . f)X1 · · ·Xn =

(
⋃
v1∈X1∩Vω ,...,vn∈Xn∩Vω

f(v1, . . . , vn))

∪ ((X1∪· · ·∪Xn)∩{undef,⊥})

(
⋃
ω v1 · · · vn . g)X1 · · ·Xn =

(
⋃
v1∈X1∩Vω ,...,vn∈Xn∩Vω

g(v1, . . . , vn))

∪ (X1∪· · ·∪Xn)∩{⊥})

respectively, lift functions on the semantic domains (Vω)
n

and (Vω)
n to functions on (℘(Vω)⊥)

n, propagating unde-
fined results and non-termination.
The strict conditional is defined by

condω : Vω× (Vω)⊥× (Vω)⊥→ (Vω)⊥

condω v r r
′ =




r, if v = true

r′, if v = false

⊥, otherwise

The parallel boolean connectives are defined by

∧ω,∨ω : (Vω)⊥× (Vω)⊥→ (Vω)⊥

r1∧ω r2 =




r1∧ r2, if r1, r2 ∈ {true, false}

false, if r1 = false or r2 = false

undef, if r1 = undef and r2 /∈ {false,⊥} or

r1 /∈ {false,⊥} and r2 = undef

⊥, otherwise

r1∨ω r2 =




r1∨ r2, if r1, r2 ∈ {true, false}

true, if r1 = true or r2 = true

undef, if r1 = undef and r2 /∈ {true,⊥} or
r1 /∈ {true,⊥} and r2 = undef

⊥, otherwise

The family of iterate functionals

iterateω − f γ :Var×V
∗
ω ×Var×Vω→ ℘(V ω)⊥

defined for all functions f from variable environments
over ω to ℘(V ω)⊥ and for all variable environments γ over
ω by

iterateω x ∅ x
′ v f γ = {v}

iterateω x v1 · · · vn x
′ v f γ =

(
⋃
ω v
′ . iterateω x v2 · · · vn x′ v′ f γ) f(γ, x 
→ v1, x′ 
→ v)

iterates a function on variable environments over a se-
quence of values and accumulates previous results.
Finally, we interpret a variable environment γ over

a dynamic basis ω as a partial function from variables
to results, defining γ(x) as γ(x) if γ(x) is defined and
γ(x) = undef otherwise. Likewise, the partial functions
implω(aτ , v) are extended to implω(aτ , v) = implω(aτ , v)
if implω(aτ , v) is defined and implω(aτ , v) = {undef} oth-
erwise, and analogously for implω(oτ , v, (vi)1≤i≤n).

5.2 Denotational equations

The denotational semantics is given by a family of func-
tions

[[−]]ω γ : A-Term→ (℘(V ω)⊥∪Jω)

depending on a denotational dynamic basis ω and a vari-
able environment γ over ω.
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Table 8. Denotational semantics

(Spec∈) [[(context ζi def: d̃i)1≤i≤n context ζ inv: ẽ]]ω γ =
⋃
v∈ω(ζ)([[ẽ]] (ω, (ιi)1≤i≤n) (γ, self �→ v))

where (ιi)1≤i≤n =Yλ(ιi)1≤i≤n . ([[d̃i]] (ω, (ιj)1≤j≤n) γ)1≤i≤n

(Def∈1 ) [[aζ : τ = ẽ]]ω γ = ζ.a≡ λv . [[ẽ]]ω (γ, self �→ v)

(Def∈2 ) [[oζ(x1 : τ1, . . . , xn : τn) : τ = ẽ]]ω γ =

ζ.o((xi)1≤i≤n) : τ ≡ λv . λ(vi)1≤i≤n . [[ẽ]]ω (γ, self �→ v, (xi �→ vi))

(Const∈) [[l]]ω γ = {l}

(Self∈) [[self]]ω γ = {γ(self)}

(Var∈) [[x]]ω γ = {γ(x)}

(Type∈) [[τ ]]ω γ = {τ}

(Undef∈) [[undef]]ω γ = {undef}

(Coll∈) [[σ{ẽ1, . . . , ẽn}]]ω γ =

(
⋃
ω v1 · · · vn . {makeω(σ, v1 · · · vn)}) ([[ẽ1]]ω γ) · · · ([[ẽn]]ω γ)

(Tup∈) [[Tuple{a1 = ẽ1, . . . , an = ẽn}]]ω γ =

(
⋃
ω v1 · · · vn . {Tuple{a1 = v1, . . . , an = vn}})

([[ẽ1]]ω γ) · · · ([[ẽn]]ω γ)

(Let∈) [[let x = ẽ in ẽ′)]]ω γ = (
⋃
ω v . [[ẽ

′]]ω (γ, x �→ v)) ([[ẽ]]ω γ)

(Cond∈) [[if ẽ then ẽ1 else ẽ2 endif)]]ω γ =

(
⋃
ω v . {condω v r r

′ | r ∈ ([[ẽ1]]ω γ), r
′ ∈ ([[ẽ2]]ω γ)} ([[ẽ]]ω γ)

(And∈) [[ẽ1 and ẽ2]]ω γ = {r1∧ω r2 | r1 ∈ ([[ẽ]]ω γ), r2 ∈ ([[ẽ2]]ω γ)}

(Or∈) [[ẽ1 or ẽ2]]ω γ = {r1∨ω r2 | r1 ∈ ([[ẽ]]ω γ), r2 ∈ ([[ẽ2]]ω γ)}

(Iter∈) [[ẽ->iterate(x; x′ = ẽ′ | ẽ′′)]]ω γ =

(
⋃
ω v v

′
0 .
⋃
v�Sequence{v1, . . . , vn}

iterateω x v1 · · · vn x
′ v′0 ([[ẽ

′′]]ω) γ)

([[ẽ]]ω γ) ([[ẽ′]]ω γ)

(Cast∈) [[ẽ.asType(τ)]]ω γ =

(
⋃
ω v . {v

′ | (v :ω τ ∧v′ = v)∨ (v � :ω τ ∧v′ = undef)}) ([[ẽ]]ω γ)

(Inst∈) [[τ.allInstances()]]ω γ = {makeω(Set, ω(τ ))}

(IsUndef∈) [[ẽ.isUndef()]]ω γ = (
⋃
ω v . {v | (v = undef∧v = true)∨

(v �= undef∧v = false)}) [[ẽ]]ω γ

(Feat∈1 ) [[ẽ.aτ ]]ω γ = (
⋃
ω v . implω(aτ , v)) ([[ẽ]]ω γ)

(Feat∈2 ) [[ẽ.oτ(ẽ1, . . . , ẽn)]]ω γ = (
⋃
ω v v1 · · · vn . implω(oτ , v, (vi)1≤i≤n))

([[ẽ]]ω γ) ([[ẽ1]]ω γ) · · · ([[ẽn]]ω γ)

(Prop∈) [[ẽ->oτ(ẽ1, . . . , ẽn)]]ω γ = (
⋃
ω v v1 · · · vn . implω(oτ , v, (vi)1≤i≤n))

([[ẽ]]ω γ) ([[ẽ1]]ω γ) · · · ([[ẽn]]ω γ)
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The definition of [[−]]ω γ is stated in Table 8. The
metavariables range as follows: l ∈ Literal; ζ ∈ Cω , σ ∈ S,
τ ∈ Tω; x ∈Var; a, o ∈Name; v ∈ Vω , v ∈ V ω, r ∈ (Vω)⊥,
ι ∈ Jω; ẽ ∈A-Expr, d̃ ∈A-AttrDef∪OpDef.
Given an ascending chain (ιi,0)1≤i≤n � (ιi,1)1≤i≤n �

(ιi,2)1≤i≤n � . . . of implementation tuples, we have
that

⊔
n[[ẽ]] (ω, (ιi,n)1≤i≤n) γ = [[ẽ]] (ω,

⊔
n(ιi,n)1≤i≤n) γ.

Therefore, the denotational equations are well defined.
In particular, the functional λ(ιi)1≤i≤n . ([[d̃i]] (ω,
(ιj)1≤j≤n) γ)1≤i≤n used in (Spec

∈) is continuous.

5.3 Adequacy

By its very construction, the denotational and the oper-
ational semantics coincide on well-typed OCL terms over
a denotational dynamic basis. Note that every termina-
tion dynamic basis is also a denotational dynamic basis,
but the converse does not hold. For instance, evaluation
of the first term evaluation example in Sect. 4.2 leads to
a denotational dynamic basis, but g does not terminate,
and thus this dynamic basis does not form a termination
dynamic basis.
In order to state and prove that the denotational se-

mantics is adequate with respect to the operational se-
mantics we define the extensional equality on implemen-
tations over a dynamic basis ω by:

1. (ζ.a ≡ ẽ) = (ζ.a ≡ f) with ẽ ∈ A-Term and f ∈ Fω in
case ω; γ, self 
→ v � ẽ ↓ v if, and only if v ∈ f(v)

2. (ζ.o((xi)1≤i≤n) : τ ≡ ẽ) = (ζ.o((xi)1≤i≤n) ≡ f) with
ẽ ∈ A-Term and f ∈ Fω in case ω; γ, self 
→ v, (xi 
→
vi)1≤i≤n � ẽ ↓ v if, and only if v ∈ f(v, (vi)1≤i≤n)

Proposition. LetΩ be a static basis and ω a denotational
dynamic basis conforming to Ω; let Γ be a type environ-
ment over Ω and γ a variable environment over ω con-
forming to Γ; let t be a Term and t̃ an A-Term; let θ ∈ TΩ∪
DΩ and ρ ∈ Vω ∪ Iω. If Ω;Γ � t � t̃ : θ, then ω; γ � t̃ ↓ δ if,
and only if either ρ ∈ [[t̃]]ω γ and ρ ∈ Vω or ρ= [[t̃]]ω γ and
ρ ∈ Iω.

Proof. By structural induction on t̃, see Appendix B. �

6 Expressiveness

Mandel and Cengarle [26] have argued that all primi-
tive recursive functions can be encoded as OCL expres-
sions. We prove the reverse direction of this observation:
that the evaluation of a well-typed OCL constraint or
expression, i.e. a well-typed OCL term not showing pseu-
dofeature definitions, over a static basis and a denota-
tional dynamic basis conforming to the static basis, and
only showing primitive recursive implementation bod-
ies, is primitive recursive. In particular, the evaluation of
a well-typed OCL expression over the static basis corres-
ponding to an empty UML static structure is primitive
recursive.

Since every primitive recursive function can be repre-
sented by an OCL expression, a function evaluating all
OCL expressions cannot be primitive recursive [22]. How-
ever, for every OCL term the denotational semantics in
Sect. 5 defines a function that evaluates the term and
is moreover primitive recursive. For example, the OCL
expression

Sequence{x, y}->iterate(i; a = 0 | a.+(i))

encoding addition of x and y denotes the following func-
tion parameterised over variable environments γ:

[[Sequence{x, y}->iterate(i; a = 0 | a.+Integer(i))]]ω γ =

(
⋃
ω v v

′
0 .
⋃
v�Sequence{v1, . . . , vn}

iterateω i v1 · · · vn a v
′
0

([[a.+Integer(i)]]ω) γ)([[Sequence{x, y}]]ω γ) ([[0]]ω γ) =

(
⋃
ω v v

′
0 .
⋃
v�Sequence{v1, . . . , vn}

iterateω i v1 · · · vn a v
′
0

(λγ′ . (
⋃
ω v v1 . implω(+Integer, v, v1)) ([[a]]ω γ

′) ([[i]]ω γ′)) γ)

((
⋃
ω v1 v2 . {makeω(Sequence, v1 v2)}) ([[x]]ω γ) ([[y]]ω γ))

([[0]]ω γ) =

(
⋃
ω v v

′
0 .
⋃
v�Sequence{v1, . . . , vn}

iterateω i v1 · · · vn a v
′
0

(λγ′ . (
⋃
ω v v1 . implω(+Integer, v, v1)) {γ

′(a)} {γ′(i)}) γ)

((
⋃
ω v1 v2 . {makeω(Sequence, v1 v2)}) {γ(x)} {γ(y)} }) {0} .

The variable environment represents parameter passing.
In order to state and prove this result generally, we call

a denotational dynamic basis ω primitive recursive if all
the functions implω(a, τ, v) and implω(o, τ, v, (vi)1≤i≤n),
defined in ω, and the relation :ω are primitive recursive.

Proposition. Let Ω be a static basis and ω a primi-
tive recursive denotational dynamic basis conforming to
Ω; let Γ be a type environment over Ω; let t be a term in
Constr∪Expr and t̃ be an annotated term in A-Constr∪
A-Expr; let τ ∈ TΩ. If Ω;Γ � t � t̃ : τ , then there is a prim-
itive recursive function eval(t̃)ω γ from variable envi-
ronments over ω conforming to Γ to ℘(V ω)⊥ such that
eval(t̃)ω γ = [[t̃]]ω γ.

Proof. Using suitable encodings for variable environ-
ments over ω, (V ω)⊥, and finite sequences and sets of
(V ω)⊥, all auxiliary functions used in the definition of
[[t̃]]ω γ are primitive recursive. Thus, by induction over
the term structure of t̃, all functions in [[t̃]]ω are primitive
recursive. Hence, we may define eval(t̃)ω γ = [[t̃]]ω γ. �

Any denotational dynamic basis conforming to the
static basis for the empty UML static structure can ob-
viously be chosen to be primitive recursive. Thus, every
OCL expression that is well typed over the static ba-
sis for the empty UML static structure, i.e., a pure
OCL expression, denotes a primitive recursive func-
tion. However, the def: clause allows the definition of
arbitrary recursive functions. Therefore, this syntactic
enhancement considerably enlarges the expressiveness
of OCL.
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7 Conclusions

We have presented a type inference system, a big-step
operational semantics, and a denotational semantics for
OCL 1.4/2.0 including the possibility of defining addi-
tional pseudofeatures. The operational semantics sat-
isfies a subject reduction property with respect to the
type inference system, the denotational semantics co-
incides with the operational semantics on well-typed
terms. The corrections and additions to previous for-
mal approaches to OCL 1.1/3/4 are pervasive. More-
over, we have studied the expressiveness of OCL by
showing that all pure OCL expressions are primitive
recursive.
The semantics of OCL terms relies on the semantics of

the underlying UML model. We have abstractly axioma-
tised UML static structures and UML object models,
stating only some sufficient conditions, such that OCL
terms can be uniquely typed and type-safely evaluated.
However, it seems desirable to define a single, agreed-
upon semantics of UML static structures and object
models in order to further the prospect of tool-support.
Such a semantics may restrict overriding of operations
to a co-/contra-variance scheme and may also show
a tighter support for UML templates (cf. the treatment
by Clark [11]), association classes and qualified asso-
ciation ends (see the equivalence rules by Gogolla and
Richters [19]).
We expect our semantics to be properly integrable

with the existing semantics for OCL pre- and post-
conditions by Clark [11] or Gogolla and Richters [37,
39], which amounts, roughly speaking, to interpreting
OCL post-conditions over two dynamic bases. Again,
a clear understanding of the interplay between
OCL pre-/post-condition specifications and UML in-
heritance is indispensable (see [21, 34]). Furthermore,
the type inference system may be useful for alterna-
tive, graphical representations of OCL constraints, as
investigated by Kent and Howse [24] or Bottoni
et al. [8].
The operational interpretation of OCL constraints

is complemented by treating OCL as a logic. On the
one hand, Beckert, Keller, and Schmitt suggest to trans-
late OCL, however, omitting pseudofeature definitions,
iterate, and undef, into first-order predicate logic [5],
thus providing an immediate to use base for theorem
provers. Schmitt [41] also investigates the expressive-
ness of the iterate construct in a first-order logic and
finite models showing some connections with a tran-
sitive closure operator. Moreover, Baar, Beckert, and
Schmitt propose to interpret the @pre modality in a dy-
namic logic [3]. On the other hand, pseudofeature dec-
larations may be viewed as additional implementa-
tion constraints by a fixed-point interpretation [9]. The
study of the precise relation between the operational
and the logical view of OCL remains to be
explored.
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Appendices

A Proof of subject reduction

Proposition. Let Ω be a static basis and ω a dynamic ba-
sis conforming to Ω; let Γ be a type environment over Ω
and γ a variable environment over ω conforming to Γ; let t

be a Term and t̃ an A-Term; let θ ∈ TΩ∪DΩ and ρ ∈ Vω ∪
Iω. If Ω;Γ � t � t̃ : θ and ω; γ � t̃ ↓ ρ, then ρ :ω θ.

Proof. By induction on the height of the proof tree of
Ω; Γ � t � t̃ : θ.
If n = 0, nothing has to be proved. Thus, let n > 0 and
let the claim be proved for all proof tree heights n′ < n.
We proceed by case analysis on the last proof step for
Ω; Γ � t � t̃ : θ; in the following, we treat only some exem-
plary cases:

(Spec:): Then t̃ = (context ζi def: d̃i)1≤i≤n context
ζ inv: ẽi and θ = Boolean with (Ω, (δj)1≤j≤n; Γ, self :
ζi � ẽi :δi)1≤i≤n andΩ, (δj)1≤j≤n; Γ, self:ζ � ẽ : Boolean.
The only applicable operational rule for such a t̃ is
(Spec↓) and, thus, if we have ω, (ιi)1≤i≤n; γ � t̃ ↓ v then
necessarily ω, (ιj)1≤i≤n � d̃i ↓ ιi for 1 ≤ i ≤ n and ω,
(ιj)1≤j≤n; γ, self 
→ v′ � ẽ ↓ vv′ for all v

′ ∈ ω(ζ) with v =∧
v′ vv′ . But then ω, (ιi)1≤i≤n conforms to Ω, (δi)1≤i≤n
and γ, self 
→ v′ conforms to Γ, self : ζ for all v′ ∈ ω(ζ).
Since vv′ ∈ Vω for all v

′ and there is no value v′′ with
v′′ :ω Void and Void is the only sub-type of Boolean,
we have vv′ :ω Boolean by the induction hypothesis and,
a fortiori, v :ω Boolean= θ.

(Def:1): Then t̃= xζ : τ = ẽ and θ = ζ.x : τ with Ω; Γ � ẽ :
τ ′, Γ(self) = ζ, and τ ′ ≤Ω τ . The only applicable oper-
ational rule for such a t̃ is (Def↓1) and, thus, if we have
ω; γ � t̃ ↓ ι, then ι = ζ.x≡ ẽ. Since τ ′ ≤Ω τ , we have ι :ω
ζ.x : τ = θ.

(Self:): Then t̃= self and θ = Γ(self). The only appli-
cable operational rule for such a t̃ is (Self↓) and, thus,
if we have ω; γ � self ↓ v, then v = γ(self); but, then,
the claim is clear, for γ conforms to Γ and thus we have
γ(self) :ω Γ(self) = θ.

(Coll:): Then t̃= σ{ẽ1, . . . , ẽn} and θ = σ(τ) with τ =⊔
Ω{τi | 1 ≤ i ≤ n}, and Ω; Γ � ẽi : τi for 1 ≤ i ≤ n. The
only applicable operational rule for such a t̃ is (Coll↓) and,
thus, if we have ω; γ � t̃ ↓ v then necessarily ω; γ � ẽi ↓ vi
for 1≤ i≤ nwith v =makeω(σ, ∅) = σ{} if n= 0, and v =
makeω(σ, v1 · · · vn), otherwise. If n= 0 then v :ω σ(Void)
and thus v :ω σ(τ). However, if n > 0, by the induction
hypothesis, vi :ω τi and thus vi :ω τ

′ for all 1 ≤ i ≤ n.
Hence we have v :ω σ(τ)= θ.

(Let:): Then t̃ = let x = ẽ in ẽ′ and θ = τ ′ with Ω; Γ �
ẽ : τ and Ω; Γ, x : τx � ẽ′ : τ ′ with τ ≤Ω τx. The only ap-
plicable operational rule for such a t̃ is (Let↓) and, thus,
if we have ω; γ � t̃ ↓ v then necessarily ω; γ � ẽ ↓ v′ and
ω; γ, x 
→ v′ � ẽ′ ↓ v. By the induction hypothesis, v′ :ω τ
and thus v′ :ω τx, and, since hence γ, x 
→ v′ conforms to
Γ, x : τx, also v :ω τ

′ = θ.

(Cast:): Then t̃= e.asType(τ) and θ = τ with Ω; Γ � ẽ :
τ ′ and τ ′ ≤Ω τ or τ ≤Ω τ ′. The only applicable rule for
such a t̃ is (Cast↓) and, thus, if we have ω; γ � t̃ ↓ v then
necessarily ω; γ � ẽ ↓ v with v :ω τ = θ.
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(Feat:1): Then t̃ = ẽ.aτ and θ = τ
′ with Γ �Ω ẽ : υ and

fdΩ(a, υ) = τ.a : τ
′. There are two applicable rules for

such a t̃: (Feat↓1) and (Feat
↓
2) with ω; γ � ẽ.aτ ↓ v.

If (Feat↓1) has been applied, then we have ω; γ � ẽ ↓ v
′ with

implω(aτ , v
′) = τ.a≡ v. By the induction hypothesis v′ :ω

τ and since (τ.a≡ v) :ω (τ.a : τ ′), we also have v :ω τ ′ = θ.
If (Feat↓2) has been applied, then we necessarily have
ω; γ � ẽ ↓ v′ and ω; self 
→ v′ � ẽ′ ↓ v and implω(aτ , v

′) =
τ.a ≡ ẽ′. By the induction hypothesis v′ :ω τ and since
(τ.a ≡ ẽ′) :ω (τ.a : τ ′), we also have Ω; self : τ � ẽ′ : τ ′′

with τ ′′ ≤ω τ ′. Since self 
→ v′ conforms to self : τ ,
again applying the induction hypothesis, v :ω τ

′′ ≤ω
τ ′ = θ.

(Short:2): Then t̃= ẽ->iterate(i; a = ẽ
′ | ẽ′′) and θ =

σ(τ ′0) with ẽ
′ = σ{}, ẽ′′ = a->includingσ(τ ′0)

(i.oτ ′0
(ẽ1,

. . . , ẽn)) and Ω; Γ � ẽ : σ(τ), Ω; Γ � ei � ẽi : τi for 1 ≤
i ≤ n, and fdΩ(o, τ, (τi)1≤i≤n) = τ

′.o((τ ′i)1≤i≤n)→ τ
′
0.

The only applicable rule for such a t̃ is (Iter↓) and,
thus, if we have ω; γ � t̃ ↓ v then necessarily ω; γ � ẽ ↓ v′

and ω; γ � ẽ′ ↓ v′′0 and ω; γ, i 
→ v
′
i, a 
→ v

′′
i−1 � ẽ

′′ ↓ v′′i
for 1 ≤ i ≤ n where v′ � Sequence{v′1, . . ., v

′
n} with

v = v′′n. By the induction hypothesis v
′ :ω σ(τ). Moreover,

σ{} :ω σ(Void)≤Ω σ(τ ′0) and Ω; Γ, i : τ, a : σ(τ
′
0) � e

′′ �
ẽ′′ : σ(τ ′0) for e

′′ = a->including(i.o(e1, . . . , en)) by
the assumptions in Table 2. Thus by the induction hy-
pothesis, inductively, v′′i :ω σ(τ

′
0) for 1 ≤ i ≤ n, since

hence γ, i 
→ v′i, a 
→ v
′′
i−1 conforms to Γ, i : τ, a : σ(τ

′
0). In

particular, v :ω σ(τ
′
0)= θ. �

B Proof of adequacy

Proposition. LetΩ be a static basis and ω a denotational
dynamic basis conforming to Ω; let Γ be a type environ-
ment over Ω and γ a variable environment over ω con-
forming to Γ; let t be a Term and t̃ an A-Term; let θ ∈ TΩ∪
DΩ and ρ ∈ Vω ∪ Iω. If Ω;Γ � t � t̃ : θ, then ω; γ � t̃ ↓ δ if,
and only if either ρ ∈ [[t̃]]ω γ and ρ ∈ Vω or ρ= [[t̃]]ω γ and
ρ ∈ Iω.

Proof. By structural induction on t̃. We show only some
exemplary cases:

Let t̃ = (context ζi def: ẽi)1≤i≤n context ζ inv: ẽ.
The only applicable operational rule for such a t̃ is
(Spec↓), the only applicable denotational clause (Spec∈).
By (Spec↓), we have ω; γ � t̃ ↓ v′ with v′ ∈ Vω if, and only
if ω, (ιj)1≤j≤n; γ � d̃i ↓ ιi for all 1≤ i≤ n and ω, (ιj)1≤j≤n;
γ, self 
→ v � ẽ ↓ vv with vv ∈ Vω for all v ∈ ω(ζ). But,
ω, (ιj)1≤j≤n; γ � d̃i ↓ ιi for all 1≤ i≤ n if, and only if we
have (ι′i)1≤i≤n=Yλ(ι

′
i)1≤i≤n .([[d̃i]] (ω, (ι

′
j)1≤j≤n) γ)1≤i≤n

and ιi = ι
′
i for all 1≤ i≤ n by induction on the structure

of d̃ and Kleene’s fixed-point theorem.
If ω; γ � t̃ ↓ v′ with v′ ∈ Vω then, since Ω; Γ � t � t̃ :
τ , the variable environment γ, self 
→ v conforms to
Γ, self : ζ for all v ∈ ω(ζ). Thus we have, by the in-
duction hypothesis, that ω, (ι′j)1≤j≤n; γ, self 
→ v � ẽ ↓
vv if, and only if vv ∈ [[ẽ]] (ω, (ι′j)1≤j≤n) (γ, self 
→ v),

and hence if, and only if v′ ∈ [[t̃]]ω γ by the definition
of (Spec∈). Conversely, ω; γ � t̃ ↓ undef if, and only
if ω, (ι′j)1≤j≤n; γ, self 
→ v � ẽ ↓ undef for some v ∈
ω(ζ), if, and only if undef ∈ [[ẽ]] (ω, (ι′j)1≤j≤n) (γ, self 
→
v), if, and only if undef ∈ [[t̃]]ω γ by the definition
of
⋃
ω.

Let t̃= if ẽ then ẽ1 else ẽ2 endif. The only applicable
operational rules for such a t̃ are (Cond↓1) and (Cond

↓
2),

the only applicable denotational clause (Cond∈). By
(Cond↓1) and (Cond

↓
2), ω; γ � t̃ ↓ v with v ∈ Vω , if, and

only if either ω; γ � ẽ ↓ true and ω; γ � ẽ1 ↓ v1 with
v1 ∈ Vω or ω; γ � ẽ ↓ false and ω; γ � ẽ2 ↓ v2 with v2 ∈ Vω ,
if, and only if either true ∈ [[ẽ]]ω γ and v1 ∈ [[ẽ1]]ω γ
or false ∈ [[ẽ]]ω γ and v2 ∈ [[ẽ2]]ω γ by the induction
hypothesis, and hence if, and only if v ∈ [[t̃]]ω γ by
the definition of (Cond∈). Conversely, ω; γ � t̃ ↓ undef
if, and only if ω; γ � ẽ ↓ undef or ω; γ � ẽ ↓ true and
ω; γ � ẽ1 ↓ undef or ω; γ � ẽ ↓ false and ω; γ � ẽ2 ↓
undef, if, and only if undef ∈ [[ẽ]]ω γ or true ∈ [[ẽ]]ω γ
and undef ∈ [[ẽ1]]ω γ or false ∈ [[ẽ]]ω γ and undef ∈
[[ẽ2]]ω γ, if, and only if undef ∈ [[t̃]]ω γ by the definition
of
⋃
ω.

Let t̃ = ẽ1 and ẽ2. The only applicable operational rules
for such a t̃ are (And↓1–And

↓
3), the only applicable de-

notational clause (And∈). By (And↓1–And
↓
3), ω; γ � t̃ ↓ v

with v ∈ Vω if, and only if ω; γ � ẽi ↓ vi with v1, v2 ∈
Vω or ω; γ � ẽ1 ↓ false or ω; γ � ẽ2 ↓ false, if, and
only if vi ∈ [[ẽi]]ω γ for 1 ≤ i ≤ 2 or false ∈ [[ẽ1]]ω γ
or false ∈ [[ẽ2]]ω γ by the induction hypothesis, if and
only if v ∈ [[t̃]]ω γ by the definition of ∧ω. Conversely,
ω; γ � t̃ ↓ undef if, and only if ω; γ � ẽi ↓ vi with v1, v2 ∈
Vω and v1 �= false and v2 = undef or v1 = undef and
v2 �= false, if, and only if undef ∈ [[t̃]]ω γ by the defin-
ition of ∧ω.

Let t̃ = ẽ->iterate(x; x′ = ẽ′ | ẽ′′). The only applica-
ble operational rule for such a t̃ is (Iter↓), the only appli-
cable denotational clause (Iter∈). By (Iter↓), ω; γ � t̃ ↓ v
with v ∈ Vω if, and only if ω; γ � ẽ ↓ v′ with v′ ∈ Vω and
ω; γ � ẽ′ ↓ v′′0 and ω; γ, x 
→ v

′
i, x
′ 
→ v′′i−1 � ẽ

′′ ↓ v′′i with
v′′i ∈ Vω for 0≤ i≤ nwhere v

′� Sequence{v′1, . . ., v
′
n}.

By the induction hypothesis, ω; γ � ẽ ↓ v′ if, and only
if v′ ∈ [[ẽ]]ω γ and ω; γ � ẽ′ ↓ v′′0 if, and only if v

′′
0 ∈

[[ẽ′]]ω γ. Moreover, since Ω; Γ � t � t̃ : τx′ , inductively,
all variable environments γ, x 
→ v′i, x

′ 
→ v′′i−1 conform
to Γ, x : τx, x

′ : τx′ for some τx, τx′ ∈ TΩ, and thus we
have that ω; γ, x 
→ v′i, x

′ 
→ v′′i−1 � ẽ
′′ ↓ v′′i if, and only

if v′′i ∈ [[ẽ
′′]]ω (γ, x 
→ v′i, x

′ 
→ v′′i−1). Thus, ω; γ � t̃ ↓ v if,
and only if v ∈ [[t̃]]ω γ by the definition of (Iter∈). Con-
versely, ω; γ � t̃ ↓ undef if, and only if ω; γ � ẽ ↓ undef
or ω; γ � ẽ′ ↓ undef or ω; γ � ẽ ↓ v′ and ω; γ � ẽ′ ↓ v′′0
with v′, v′′0 ∈ Vω and ω; γ, x 
→ v

′
i, x
′ 
→ v′′i−1 � ẽ

′′ ↓ v′′i
for 1 ≤ i ≤ k and ω; γ, x 
→ v′k, x

′ 
→ v′′k−1 � ẽ
′′ ↓ undef

and 1 ≤ k ≤ n where v′� Sequence{v′1, . . . , v
′
n}. But

hence ω; γ � t̃ ↓ undef if, and only if undef ∈ [[t̃]]ω γ by
the induction hypothesis and the definition of iterateω
and
⋃
ω. �
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Index of symbols

Ω;Γ � t � t̃ : θ (type judgement)
ω; γ � t̃ ↓ ρ (evaluation judgement)

Ω (static basis), Sect. 3.1
ω (dynamic basis), Sect. 4.1
Ω, δ (static basis extension), Sect. 3.1
ω, ι (dynamic basis extension), Sect. 4.1

AΩ (simple types), Sect. 3.1
B (basic types), Sect. 3.1
CΩ (classifiers), Sect. 3.1
S (concrete collections), Sect. 3.1
S (collections), Sect. 3.1
TΩ (compile-time types), Sect. 3.1
UΩ (non-collection types), Sect. 3.1
≤Ω (subtype relation), Sect. 3.1
≤CΩ (generalisation relation), Sect. 3.1⊔
Ω (supremum of types), Sect. 3.1
type (type of a literal), Sect. 3.1

⊥ (non-termination), Sect. 4.1
Cω (classifiers), Sect. 4.1
Nω (basic values), Sect. 4.1
Oω (instances), Sect. 4.1
Tω (run-time types), Sect. 4.1
Vω (values), Sect. 4.1
Vω (results), Sect. 4.1
℘(Vω)⊥ (powerdomain of results), Sect. 4.1
:ω (subtype relation), Sect. 4.1
:ω (typing relation), Sect. 4.1
:Oω (instance relation), Sect. 4.1
� (sequence value representation), Sect. 4.1
∧ω (parallel and), Sect. 5.1
∨ω (parallel or), Sect. 5.1
condω (conditional), Sect. 5.1
iterateω (iterate functional), Sect. 5.1
makeω (collection constructor), Sect. 4.1⋃
ω (lifting), Sect. 5.1⋃
ω (lifting), Sect. 5.1

DΩ (declarations), Sect. 3.1
fdΩ (declaration retrieval), Sect. 3.1

Fω (non-deterministic functions), Sect. 4.1
Iω (implementations), Sect. 4.1
Jω (denotational implementations), Sect. 5.1
· · · ≡ ψ (implementation), Sect. 4.1
implω (implementation retrieval), Sect. 4.1
implω (lifted implementation retrieval), Sect. 4.1

∅ (empty type environment), Sect. 3.2
Γ (type environment), Sect. 3.2
x : τ (variable typing), Sect. 3.2
Γ,Γ′ (concatenation of type environments), Sect. 3.2
Γ(x) (variable typing retrieval), Sect. 3.2
dom(Γ) (domain of a type environment), Sect. 3.2

∅ (empty variable environment), Sect. 4.2
γ (variable environment), Sect. 4.2
x 
→ v (variable assignment), Sect. 4.2
γ, γ′ (concatenation of variable environments), Sect. 4.2
γ(x) (variable assignment retrieval), Sect. 4.2
γ(x) (lifted variable assignment retrieval), Sect. 4.2
dom(γ) (domain of a variable environment), Sect. 4.2

α (∈AΩ), Sect. 3.1
δ (∈DΩ), Sect. 3.1
ι (∈ Iω), Sect. 4.2
ψ (∈A-Expr∪Fω), Sect. 4.1
ρ (∈ Vω ∪ Iω), Sect. 4.2
σ (∈ S), Sect. 3.1
σ (∈ S), Sect. 3.1
τ (∈ TΩ), Sect. 3.1
θ (∈ TΩ∪DΩ), Sect. 3.2
υ (∈ UΩ), Sect. 3.2
ζ (∈ CΩ), Sect. 3.1
a (∈Name), Sect. 3.1
d (∈AttrDef∪OpDef), Sect. 3.2
d̃ (∈A-AttrDef∪A-OpDef), Sect. 3.2
e (∈ Expr), Sect. 3.2
l (∈ Literal), Sect. 3.1
r (∈ (Vω)⊥), Sect. 4.3
v (∈ Vω), Sects. 3.1, 3.2
v (∈ Vω), Sect. 3.2
x (∈Var), Sect. 3.2

]. . .[ (optional clause), Sect. 3.2
A-. . . (annotated terms), Sect. 3.2


