
Softw Syst Model (2008) 7:25–47
DOI 10.1007/s10270-007-0056-x

REGULAR PAPER

Refactoring OCL annotated UML class diagrams

Slaviša Marković · Thomas Baar

Received: 1 March 2006 / Revised: 20 August 2006 / Accepted: 21 February 2007 / Published online: 15 May 2007
© Springer-Verlag 2007

Abstract Refactoring of UML class diagrams is an
emerging research topic and heavily inspired by refactor-
ing of program code written in object-oriented implementa-
tion languages. Current class diagram refactoring techniques
concentrate on the diagrammatic part but neglect OCL con-
straints that might become syntactically incorrect by chang-
ing the underlying class diagram. This paper formalizes the
most important refactoring rules for class diagrams and clas-
sifies them with respect to their impact on attached OCL
constraints. For refactoring rules that have an impact on
OCL constraints, we formalize the necessary changes of the
attached constraints. Our refactoring rules are specified in a
graph-grammar inspired formalism. They have been imple-
mented as QVT transformation rules. We finally discuss for
our refactoring rules the problem of syntax preservation and
show, by using the KeY-system, how this can be resolved.

Keywords Refactoring · QVT · Imperative OCL ·
Graph-transformations · Syntax preserving refactoring
rules · Source code verification

1 Introduction

Modern software development processes, such as Rational
Unified Process (RUP) [17] and eXtreme Programming (XP)

Communicated by Dr. Lionel Briand.

S. Marković (B) · T. Baar
École Polytechnique Fédérale de Lausanne (EPFL),
School of Computer and Communication Sciences,
1015 Lausanne, Switzerland
e-mail: slavisa.markovic@epfl.ch

T. Baar
e-mail: thomas.baar@epfl.ch

[6], propagate the application of refactoring to support
iterative software development. Refactoring (see [20] for an
overview) is a structured technique to improve the quality of
software artifacts.

Artifacts produced in all phases of the software devel-
opment life cycle could become a subject of refactoring.
Existing techniques and tools, however, still mainly target
implementation code. An up-to-date list of existing tools and
their application domains can be found in [30].

In his seminal work [28], Opdyke has introduced the con-
cept of refactoring of implementation code. He defined
refactorings as “... reorganization plans that support change
at an intermediate level” and identified 26 of such reorgani-
zation plans; now better known as refactoring rules. A refac-
toring rule for implementation code describes usually three
main activities:

1. Identify the parts of the program that should be refactored
(code smells).

2. Improve the quality of the identified part by applying
refactoring rules, e.g. the rule MoveAttribute moves one
attribute to another class. As the result of this activity,
code smells such as LargeClass disappear.

3. Change the program at all other locations which are
affected by the refactoring done in step 2. For exam-
ple, if at some location in the code the moved attribute is
accessed, this attribute call became syntactically incor-
rect in step 2 and must be rewritten.

The application of refactoring rules, called refactoring steps,
is most often pattern-driven. A design that is an instance of
Design Patterns [14] can usually be extended and maintained
much better than a design that is less structured. Thus, it is
often beneficiary to transform the current design towards an

123

26 S. Marković, T. Baar

instance of Design Patterns. Pattern-driven refactoring steps
have been thoroughly studied in [16,21].

To a certain degree, refactoring rules depend on the lan-
guage they are applied on. This explains why there are many
catalogs of refactoring rules for different languages. The most
complete and influential catalog was published by Fowler in
[13] for the refactoring of Java code. The refactoring of arti-
facts that are more abstract than implementation code is a
relatively new research topic that became urgent with the
success of the UML. Some initial catalogs of refactoring
rules for UML diagrams are presented in [2,31,33]. How-
ever, neither these catalogs nor any of the existing UML
refactoring tools [8,9,29] support—apart from some simple
Rename-refactorings—the refactoring of attached OCL con-
straints once the underlying UML class diagram has changed.
Speaking in terms of the above given MoveAttribute exam-
ple, the first two steps have been realized by many tools but
the last step is usually ignored. For the refactoring of OCL,
we are aware of only one approach. Correa and Werner pres-
ent in [12] some refactoring rules for OCL, but these rules
focus on the improvement of poorly structured OCL con-
straints and take only to a very limited extent the relationship
between OCL constraints and the underlying class diagram
into account.

We give in this paper a formal specification of the most
important refactoring rules for UML class diagrams includ-
ing the necessary changes on attached OCL constraints. Triv-
ially, it is always necessary to change an OCL constraint if
the refactoring of the underlying class diagram would make
this constraint syntactically invalid. We believe that our rules
are syntax preserving, i.e. each rule preserves the syntac-
tical correctness of the UML/OCL model it is applied on.
Section 2 contains some ‘design guidelines’ for the devel-
opment of syntax preserving refactoring rules. However, we
have formally proved the syntax preservation property only
for the rule ExtractClass (see Sect. 5). Another criterion for
refactoring rules is semantics preservation, i.e. the meaning
(semantics) of the model remains the same whenever the
refactoring rule is applied. We do not discuss the problem of
semantics preservation in this paper, but refer the interested
reader to [4].

Our formal description of refactoring rules is done on the
level of the metamodel for UML and OCL. Unlike other
approaches that describe refactoring rules formally [12,15,
31,33], we do not use OCL pre-/postconditions for this pur-
pose. The formalism of our choice is the graph-grammar
inspired notation proposed by the QVT Merge Group in an
early submission for the OMG standard Query/View/Trans-
formation (QVT) [25]. Unfortunately, the graphical notation
for QVT has changed in the final adopted specification [26],
but we keep using the initial graphical notation in order to
keep the rules presented in this paper similar to those pre-
sented in the conference version of this paper [18].

All refactoring rules presented in this paper have been
implemented using Together Architect 2006 for Eclipse, a
commercial CASE tool that supports development and exe-
cution of QVT transformations [9]. The implementation of
our rules can be downloaded from [19].

The paper is organized as follows. In Sect. 2 we give pre-
liminaries necessary to understand our rules, which are for-
mally defined in Sect. 3. An overview of implementation
steps is given in Sect. 4. In Sect. 5 we show on one example
how syntax preservation of refactoring rules can be proven
formally. For this task, the KeY-system has been successfully
applied. Section 6 concludes the paper.

2 Formalizing refactoring rules in QVT

Model transformations are widely recognized as the heart
and soul of model-driven development [32]. Refactoring
rules are a special form of model transformations for which
the source and the target model are expressed using the same
language. In this paper, we describe refactoring rules in a
graphical formalism that has been suggested by the QVT
Merge Group in [25].

The following subsections give a brief introduction to the
most important elements of QVT. We discuss using a very
simple example the general structure of refactoring rules
and give some guidelines for achieving syntax preservation.
Finally, since our aim is to refactor UML class diagrams
together with attached OCL constraints, we recall the rele-
vant parts of the official UML/OCL metamodel in order to
facilitate the understanding of refactoring rules presented in
Sect. 3.

2.1 Basic concepts

A model transformation is defined as a set of transformation
rules. In the graphical notation proposed in [25], a transfor-
mation rule consists of two patterns, left hand side (LHS)
and right hand side (RHS), which are connected with the
symbol . Optionally, a rule can have parameters and a
when-clause containing a constraint written in OCL.

The LHS and RHS patterns are denoted by a generalized
form of object diagrams. In addition to the normal object dia-
grams, free variables can be used in order to indicate object
identifiers and values of attributes. The same variable can
occur both in LHS and RHS and refers at all occurrences
– during the application of the rule – to the same value. In
order to distinguish between objects/links occurring in pat-
terns and objects/links occurring in concrete models we will
use the terms pattern objects/links and concrete objects/links,
respectively.

A rule is applied on a source model (represented as an
instance of the metamodel, i.e. as a graph) as follows: In the

123

Refactoring OCL annotated UML class diagrams 27

source model, a subgraph that matches with LHS is searched
and rewritten by a new subgraph derived from RHS under
the same matching. If the obtained target model still con-
tains subgraphs matching with LHS, the rule is applied iter-
atively as long as it is applicable (possibly infinitely often).
A matching is an assignment of all variables occurring in
LHS/RHS to concrete values. When applying a rule, the
matching must obey the restrictions imposed by the when-
clause. This semantics of QVT rules has the following con-
sequences: If a pattern object appears in the rule’s RHS but
not in its LHS (i.e., in LHS there is no pattern object identi-
fied by the same variable) then—when applying the rule—a
corresponding, concrete object is created. If there is a pattern
object in LHS but not in RHS, then the matching object in
the source model is deleted together with all ‘dangling links’.
Similarly, a link is created/deleted if the corresponding pat-
tern link does not appear in both LHS and RHS (pattern links
are identified by their role names and the pattern objects they
connect). The value of an attribute for a concrete object is
changed only if the attribute is shown on the corresponding
pattern object in RHS. The attribute’s new value for the con-
crete object is obtained by the expression shown as value for
the attribute in RHS under the current matching. Values of
attributes that are not mentioned in RHS remain unchanged.

2.2 How to write syntax preserving QVT rules

The purpose of this subsection is twofold. Firstly, the sec-
tion should illustrate on concrete examples the above given
basic concepts of QVT, which already allow to write quite
expressive transformation rules. Secondly, some basic prin-
ciples of the design of syntax preserving refactoring rules are
explained. These principles have been frequently applied for
the design of the (more complex) rules presented in Sect. 3
for the refactoring of UML/OCL models.

2.2.1 Example: Item-View world

In order to explain QVT’s basic concepts, we start with refac-
toring rules for a tiny Item-View language, Fig. 1 shows its
metamodel.

There are two non-abstract language concepts Item and
View, which both inherit the metaattribute name from Model-
Element. The metaassociation between Item and View indi-
cates that arbitrarily many views can be attached to one item
(which is called the owner of the view). Furthermore, the
self-association on Item indicates that each item can have an
arbitrary number of parent- and child-items. Moreover, we
assume that the parent-child relationship is acyclic. This can
be expressed in OCL by the following invariant:

context Item inv CycleFree:
self.allParents()->excludes(self)

ModelElement

name : String

Item
0..*

owner

1
View

parent
0..*0..*

child

Ownership

Inheritance

view

Fig. 1 Metamodel for simple Item-View language

context Item def:
allParents():Set(Item)=

self.parent->union(self.parent.allParents()->asSet())

Please note that the additional query allParents(), which
represents the transitive closure of the parent-relationship,
is well-defined despite its recursive definition (see [3] for a
detailed justification).

2.2.2 Two simple refactoring rules

As a first example, the renaming of an item, which has been
selected by the user, is formalized by the QVT rule Rename-
Item1 as shown in the left part of Fig. 2. The selected item is
passed as the first parameter of the rule and the rule’s LHS
checks whether the passed item really exists in the source
model (what should, trivially, be always the case). The pattern
RHS is identical to LHS except for attribute name, whose
value is set to newName, the rule’s second parameter.

A second version of the Rename-refactoring is formalized
by rule RenameItem2 shown in the right part of Fig. 2. Here,
the item that should be renamed is determined by a match
of its name with the first parameter of the rule (oldName).
Applied on a given source model, this rule would iteratively
make the following two steps as long as possible: (1) search
for an item with name oldName in the current model and
(2) rename the found item to newName. Please note that the
application of this rule might not terminate if there is an item
with oldName in the source model and newName is the same
as oldName. Also the first rule RenameItem1 suffers from the
same problem. We will see later, how termination problems
can be avoided by adding a when-clause to the QVT rule.

2.2.3 Checking syntax preservation of a given rule

A refactoring rule is called syntax preserving if for every
syntactically correct source model the obtained target model
is syntactically correct as well. Syntactically correct models
are exactly the valid instances of the metamodel, what boils
down to the following three criteria: (1) all model elements

123

28 S. Marković, T. Baar

Fig. 2 Two versions of
RenameItem refactoring rule

RenameItem1(it:Item, newName:String)

it:Item

name=newName
it:Item

Item selected by user

RenameItem2(oldName:String, newName:String)

it:Item

name=newName

it:Item

name=oldName

Item identified by name(a) (b)

are well-typed, (2) all multiplicity constraints are met, and
(3) all well-formedness rules are obeyed. Invalid instances
of the Item-View metamodel would be, for example, an Item
object having a value of type Integer for attribute name (fails
to meet criterion (1) due to type declaration of name), a View
object that is linked to two Item objects (see criterion (2) and
multiplicity for owner), and an Item object having a self-link
for association Inheritance (see criterion (3) and well-form-
edness rule CycleFree).

If the syntax preservation of a given refactoring rule should
be shown, it has to been argued for every valid metamodel
instance that the refactoring rule is either not applicable or
that the target model is a valid metamodel instance as well.
Fortunately, only a single step of the rule application has to
be taken into account. By a simple induction argument, one
can lift the syntax preservation property from a single step
to the whole rule application. The argumentation on the syn-
tactical correctness of each possible target model can be split
according to the three validity criteria given above. A detailed
argumentation for the refactoring RenameItem1 is given in
Table 1. More generally, the following aspects should to be
taken into account:

– The target model is well-typed whenever RHS is well-
typed. Note that ill-typed model elements can only stem
from ill-typed pattern elements. The type correctness of
RHS is, however, checked mechanically once the rule is
implemented with a QVT editor such as Together Archi-
tect 2006.

– Multiplicity constraints should always be checked care-
fully whenever the rule creates or deletes objects/links.
Please note that also all multiplicities from inherited asso-
ciations have to be obeyed.

– Arguing about the preservation of well-formedness rules
requires the most effort. In a first step, one has to iden-
tify all those well-formedness rules of the metamodel
that might be affected by the refactoring. We have done
this task for all UML/OCL refactorings manually, but,
recently, an interesting approach to automate this filter-
ing has been developed by Cabot [10,11]. In a second
step, convincing arguments have to be found that the fil-
tered well-formedness rules are obeyed in all possible
target models. We show in Sect. 5 on one example, how
such an argumentation can be formalized by using the
KeY-system.

2.2.4 Using when-clauses to ensure syntax preservation

The argumentation on the preservation of well-formedness
rules is not always as trivial as the one for RenameItem1
shown in Table 1. Often, a refactoring rule can (potentially)
destroy many of the metamodel’s well-formedness rules. In
this case, we need a more sophisticated argumentation why
the refactoring rule is nevertheless syntax preserving. To
illustrate the problem, we add another invariant to the Item-
View metamodel:

context Item inv UniqueNameInInheritance:
self.allParents().name->excludes(self.name)

Informally speaking, this well-formedness rule requires
the name of each Item object to be different from the name
of all its (transitive) parents. Obviously, this well-formedness
rule is not always preserved by RenameItem1 since there is no
provision made to ensure that newName is not already used
by any of the parents. This problem can be fixed by using
QVT’s when-clause. A first (not fully successful) attempt to
correct the rule RenameItem1 is shown in Fig. 3.

The when-clause adds some new restrictions for the appli-
cation of the rule. The rule is only applicable on those sub-
graphs of the source model that (1) match with LHS and (2)
for which the expression given in the when-clause is eval-
uated to true. Note that identifiers for pattern objects (here
it) can be used within the when-clause. Informally speaking,
the rule is now only applicable on such Item objects whose
parents have not already used newName as a name.

Unfortunately, this when-clause does not preserve Unique-
NameInInheritance in all cases. For example, suppose the
rule is applied on concrete Item object it1 whose parents
have names different from newName. After the rule has been
executed (and it1 has been renamed to newName), the well-
formedness rule is indeed valid for it1. However, it might be
the case that the source model contains another object it2,
which is a child of it1 and which has the name newName
as well. Then, UniqueNameInInheritance does not hold any-
more in the target model for it2, because it has now the same
name as its parent it1.

In order to prevent such cases, the when-clause has to
check not only for the parent items but also for the child
items whether newName is already used as a name. The fol-
lowing additional operations facilitate to write the necessary
when-clause in a compact way.

123

Refactoring OCL annotated UML class diagrams 29

Table 1 Arguing on the syntax preservation of RenameItem1

Type declarations In the RHS of the rule, all pattern objects, their attribute values and links between them are well-typed according
to the metamodel.

Multiplicities Since neither objects nor links are created/deleted by the rule application, all multiplicity constraints are auto-
matically obeyed in the target model.

Well-formedness rules The only well-formedness rule is CycleFree and the only change on a model that could make it invalid is adding
links for the Inheritance association to the model. Since this does not happen in the Rename-rules, the invariant
CycleFree is preserved.

Fig. 3 Renaming of selected
item—when-clause is not
sufficient to preserve
UniqueNameInInheritance

RenameItem1_With_Insufficient_When(it:Item, newName:String)

it:Item

name=newName
it:Item

{when}
it.allParents().name->excludes(newName)

context Item def:
allChildren():Set(Item)=

self.child->union(self.child.allChildren()->asSet())

context Item def:
allConflictingNames():Bag(String)=

self.allParents().name
->union(self.allChildren().name)
->including(self.name)

The corrected version of the RenameItem1 refactoring is
shown in Fig. 4. Note that the rule is applicable at most
once and, thus, termination of the rule application is always
ensured.

Actually, many refactoring rules for UML/OCL have a
very similar when-clause because the UML metamodel con-
tains quite a few well-formedness rules imposing unique
names for model elements.

2.3 Extends-relationship between QVT rules

Another important concept of QVT is the extends-relation-
ship between rules. The need for extensions of QVT rules is
motivated by the next well-formedness rule:

context Item inv DerivedViewName:
self.view->forAll(v| v.name = ’viewOf_’.concat(self.name))

Informally speaking, DerivedViewName stipulates that all
views attached to the same item must share the same name,
which can be derived from the item’s name.

Again, each of the above given RenameItem-refactorings
would fail to preserve this invariant. Interestingly, there are
now at least three possibilities to fix this problem. One
possibility is to disallow renaming of Item objects if they
have already a view attached. This is easily realized by

extending the existing when-clause shown in Fig. 4 by and
it.view->isEmpty(). A second possibility is to delete
all attached View objects when an Item object is renamed.
The third possibility is to rename all attached View objects
accordingly.

Figure 5 shows the realization of the third possibility in
form of an extension of RenameItem1. The new rule is called
UpdateViewNames and is applied in the following way:
Whenever a match for LHS of the extended rule (Rename-
Item1) is found, all its extensions (here UpdateViewNames)
are applied on the current LHS-match as often as possible.
Note that the patterns LHS/RHS from the extension rule can
use elements from the extended rule. For example, the pattern
object it:Item in LHS of RenameItem1 refers for every match
in the source model to the same model element as the pat-
tern object it:Item in LHS of UpdateViewNames. The pattern
object v:View in LHS of UpdateViewNames matches itera-
tively with any View object that is attached to it. The RHS of
UpdateViewNames enforces to rewrite the name of all these
View objects with the value ’viewOf_’.concat(new-
Name). The when-clause in UpdateViewNames ensures the
termination of the rule application.

2.4 Metamodel of UML/OCL

We present now all parts of the official metamodel for UML
1.5 and OCL 2.0 that are relevant for the refactoring rules
presented in Sect. 3. Our refactoring rules are still based on
UML 1.5 (and not on UML 2.0, which was already the official
UML version in time of writing this paper) for many reasons.
First of all, we had the goal to stay as close as possible to the
conference version of this paper [18], where initial versions
of the refactoring rules from Sect. 3 are presented. More

123

30 S. Marković, T. Baar

Fig. 4 Renaming of selected
item—correct version for
UniqueNameInInheritance

RenameItem1_With_Sufficient_When(it:Item, newName:String)

it:Item

name=newName
it:Item

{when}
it.allConflictingNames()->excludes(newName)

Fig. 5 Extension of
RenameItem1

UpdateViewNames extends RenameItem1(it:Item, newName:String)

it:Item
it:Item

v:View

name='viewOf_'.concat(newName)

owner

v:View
owner

{when}

not (v.name = 'viewOf_'.concat(newName))

view
view

importantly, however, the implementation of our approach
had topmost priority and we encountered numerous problems
when trying to apply the QVT engine we used to repositories
containing UML 2.0 models.

The refactoring rules we formulate in Sect. 3 for UML 1.5
are also applicable in a very similar way to UML 2.0 models.
In Sect. 3.3, we describe a possible migration process for
refactoring rules from UML 1.5 to UML 2.0. As an exam-
ple, the UML 1.5 refactoring rules MoveAttribute and Move-
AssociationEnd are merged to MoveProperty for UML 2.0.
So far, however, we were unable to implement this refactor-
ing rule due to the above mentioned technical problems.

2.4.1 Declaration of metaclasses

Figures 6 and 7 show relevant parts of the official metamod-
el for UML 1.5 and OCL 2.0 (for a complete definition see
[22,24]). The chosen fragment of the UML-part of the meta-
model concentrates on the main concepts of class diagrams.
The OCL-part covers the most important OCL expressions.

2.4.2 Well-formedness rules

The metamodel for UML and OCL contains hundreds of
well-formedness rules and, as we have seen above, each well-
formedness rule can become crucial if the syntax preservation
of the refactoring rule is discussed. Our refactoring rules are
designed to preserve only some, but—as we believe—the
most important well-formedness rules of UML/OCL. This
decision was a trade-off between the completeness of our

ModelElement

name : Name

Feature Classifier

StructuralFeature

Attribute

0..*

0..1

+owner

{ordered}
+feature

1+type

0..*

+typedFeature

NamespaceGeneralizableElement

+namespace0..1

+ownedElement

BehavioralFeature

isQuery : Boolean

Operation

Package

0..*

Parameter

0..*

0..1

+parameter
{ordered}+type1

+typedParameter

0..*

Fig. 6 UML—core backbone and relationships

approach and the readability of when-clauses, which grow
when more well-formedness rules have to be preserved.

Since the UML/OCL refactorings considered in this paper
mainly rename, move, or add model elements, the well-
formedness rule ensuring the uniqueness of used names in a
classifier is easily broken when the refactoring rules do not
make any provision. According to the UML 1.5 metamod-
el, all attributes, opposite association ends and other owned
elements (e.g. contained classes) of a classifier must have a
unique name. Moreover, these names must also not be used
by any of the parent classifiers. A (slightly simplified) version
of the official well-formedness rule looks as follows:

123

Refactoring OCL annotated UML class diagrams 31

Fig. 7 OCL—overview and
PropertyCallExp

Constraint
(from Core)

ModelElement
(from Core)

Expression
(from Data_Types)

OclExpression

Classifier
(from Core)

ExpressionInOcl

0..*
0..*

0..1 +contextualClassifier
+bodyExpression

1
1

+type

+constrainedElement

+constraint

0..1 1

+body

Namespace
(from Core)

Attribute
(from Core)

OclExpression

AttributeCallExp

ModelPropertyCallExp

NavigationCallExp

AssociationEndCallExp
AssociationEnd

(from Core)

0..1+appliedProperty

0..* 1

+referredAttribute

1

10..*

0..1

+navigationSource

+source

+referredAssociationEnd

Classifier
(from Core)

+type

OperationCallExp
Operation
(from Core)0..*

1
+referredOperation

+arguments

{ordered} 0..*

0..1

1

VariableExp
VariableDeclaration

varName : String

+referredVariable

10..*

+type

1

PropertyCallExp

LoopExp

IteratorExp

1..* iterators
0..1

0..1 initExpression

0..1

0..*

+parentOperation

context Classifier inv UniqueUsedName:
self.allUsedNames()->forAll(n|

self.allUsedNames()->count(n)=1)

context Classifier def:
allUsedNames():Bag(String)=

self.allParents()->including(self)
->iterate(c; acc:Bag(String)=Bag{}|
acc->union(c.oppositeAssociationEnds().name)

->union(c.attributes().name)
->union(c.ownedElement.name))

As we have seen in the Item-View example, it is conve-
nient to define an additional operation that will capture also
the names already used in the children of a classifier.

context Classifier def:
allConflictingNames():Bag(String)=

self.allUsedNames()->union(
self.allChildren()->including(self)
->iterate(c; acc:Bag(String)=Bag{}|

acc->union(c.oppositeAssociationEnds().name)
->union(c.attributes().name)
->union(c.ownedElement.name)))

Please note that the definition of many additional opera-
tions such as

Classifier.allParents():Set(Classifier),
Classifier.allChildren():Set(Classifier),
Classifier.conformsTo(Classifier):Boolean, etc.
is omitted here but can be found in the official definition of
the metamodel [22,24].

A second important well-formedness rule in the metamod-
el of UML 1.5 is that two operations with the same signa-
ture can be owned by any two classifiers (even if one of the
classifiers is a specialization of the other one), but the two
operations cannot be owned by the same classifier.

context Classifier inv UniqueMatchingSignature:
self.operations()->forAll(f,g|

f.matchesSignature(g) implies f=g)

3 A catalog of UML/OCL refactoring rules

In this section, we present the most important refactoring
rules for UML 1.5 class diagrams. These rules handle OCL
2.0 constraints that are attached to the refactored class dia-
gram. At the end of this section, in Sect. 3.3, an example for
a possible migration from refactoring rules for UML 1.5 to
such for UML 2.0 is given. Note that each refactoring rule is

123

32 S. Marković, T. Baar

Table 2 Overview of UML/OCL refactoring rules

Refactoring rules Influence on syntactical correctness
of OCL constraints

MM-representation Textual notation

RenameClass No Yes

RenameAttribute No Yes

RenameOperation No Yes

RenameAssociationEnd No Yes

PullUpAttribute No No

PullUpOperation No No

PullUpAssociationEnd No No

PushDownAttributea No No

PushDownOperationa No No

PushDownAssociationEnda No No

ExtractClass No No

ExtractSuperclass No No

MoveAttribute Yes Yes

MoveOperation Yes Yes

MoveAssociationEnd Yes Yes

aOnly push down to one subclass is considered in this paper

syntax preserving only with respect to the part of the UML 1.5
metamodel given in the last section. Some of the refactoring
rules are designed also for the preservation of some further
important well-formedness rules (encoding restrictions for
OCL expressions) that are given in the text at appropriate
places.

Our catalog (see Table 2 for an overview) is inspired by
the refactoring rules for the static structure of Java programs
given by Fowler in [13]. We took the freedom to change some
of the rule names introduced by Fowler in order to indicate
UML as their new application domain (e.g., MoveMethod
became MoveOperation). In few cases, not only the name
but also the semantics of the rule has changed (e.g., PullUp-
Operation moves in our version only the selected operation
whereas in [13] also relevant fields are moved).

Not all class diagram refactoring rules have an influence
on attached OCL constraints. Table 2 classifies the rules
according to this criterion. Note that Rename-refactorings
require to change the textual representation of relevant con-
straints but not their metamodel-representation.

3.1 Rules without influence on OCL

3.1.1 RenameClass/Attribute/Operation/AssociationEnd

These rules are very similar to each other and only Rename-
Attribute (see Fig. 8) is discussed here in detail. The Rename-
rules differ mostly in the when-clause, whose purpose is to

check whether the proposed new name is already in use in
the enclosing Namespace of the renamed element.

In rule RenameAttribute, the parameter a refers to the attri-
bute whose name should be changed. Since RenameAttribute
is designed to work on class diagrams, we make in LHS the
assumption that the owner of a is a Class, though it could be
any Classifier according to the metamodel (similar assump-
tions are made also in all other refactoring rules). The first
line of the when-clause is necessary to guarantee termination
when applying the rule. The second line ensures the applica-
bility of the rule only in cases, in which the new name of the
attribute is not already used within the owning class or one
of its parents or children.

At a first glance, renaming an attribute requires to change
all attached OCL constraints where the attribute is used.
However, these changes are required only for the textual nota-
tion. If the attached OCL constraint is seen as an instance of
the metamodel, then this instance remains the same. Note
that the OCL-part of the metamodel refers to the UML-part.
Thus, each renaming made within the underlying UML class
diagram is automatically propagated to all OCL expressions
that use the renamed element.

3.1.2 PullUpAttribute/Operation/AssociationEnd

A PullUp-rule never causes a change in the attached OCL
constraints. The constraints, however, cannot be ignored
when applying PullUp-rules (an exception is the very simple
PullUpAttribute rule). Similarly to a Rename-rule, whose
application can be prevented by a badly chosen value for
parameter newName, a PullUp-rule becomes non-applicable
if certain constraints are attached to the current class dia-
gram. Again, this application condition is expressed in the
when-clause of the rule.

The rule PullUpAttribute removes one attribute from a
class and inserts this attribute into one of its superclasses; a
concrete example is shown in Fig. 9.

The LHS of the rule (Fig. 10) requires the owning class son
of the selected attribute to be a direct subclass of the destina-
tion class father. The when-clause prevents the applicability
of the rule in situations in which another subclass of father,
i.e. a sibling of son or one of its children, already uses the
name of the moved attribute. Note that in such situations the
query allConflictingNames() applied on father would yield
a bag that contains the name of the moved attribute at least
twice. The RHS formalizes that the owner of attribute a has
changed from class son to class father (link from a to son is
deleted and link to father is created).

The rule PullUpAttribute has no influence on OCL con-
straints because a refactoring step widens the applicability
of the moved attribute. In the OCL constraints attached to
the source model, the moved attribute a can only occur in
attribute call expressions (AttributeCallExp) of form exp.a.

123

Refactoring OCL annotated UML class diagrams 33

Fig. 8 Formalization of
RenameAttribute refactoring

RenameAttributeUML(a:Attribute, newName:String)

{when}
oldName <> newName and
c.allConflictingNames()->excludes(newName)

a:Attribute

name=newName

c:Class

c:Class

owner

owner
feature

a:Attribute

name=oldName

feature

ExaSon

ExaFather1 ExaFather2

ExaSon

exaAttr

ExaFather2ExaFather1

exaAttr

OtherSon

exaAttr

Fig. 9 Example of applying PullUpAttribute

Here, the type of expression exp must conform to son, the
owning class of attribute a. After the refactoring, exp.a is
still syntactically correct because the type of exp conforms
also to father, the new owner of attribute a.

The rule PullUpOperation shown in Fig. 11 is almost iden-
tical to PullUpAttribute except for the when-clause. Since
moving an operation can make the well-formedness rule
UniqueMatchingSignature (see Sect. 2.4.2) invalid, it is
checked in the first line of the when-clause that father does
not own already an operation whose signature matches with
the one of the moved operation o.

The rest of the when-clause prevents the following situ-
ation: By moving operation o from son to father, also the
predefined variable self, which is used in the pre-/postcon-
ditions attached to o, changes its type from son to father.
Consequently, expressions such as self.attSon,1 where att-
Son is an attribute declared in son, would become syntacti-
cally incorrect after the refactoring. The when-clause checks
exactly for the occurrence of these cases. For the sake of
a concise description, the when-clause uses queries such as
getAllSubexpressions(), isPossibleToChangeTypeTo() which
are not defined in the metamodel of UML/OCL but whose
definitions are made available in [19].

Fowler has faced in [13] the same problem for the cor-
responding refactoring rule PullUpMethod and proposes to
pull up in such a situation also all used attributes from son to
father. We do not follow this approach here since Fowler’s
solution could be simulated in our setting by a sequential
application of multiple PullUp-rules.

1 Note that OCL allows in the textual notation to suppress self. Thus,
the variable self within self.feature is sometimes given only implicitly.

Besides the self -expressions within the constraints
attached to operation o, also query expressions of form
exp.o(...) are affected by the refactoring (however, such
expressions are only possible if o is a query). Note that these
expressions cannot become syntactically incorrect because
OCL’s type rules require the type of exp to conform to the
owner of operation o (same argumentation as for PullUpAt-
tribute).

The rule PullUpAssociationEnd shown in Fig. 12 checks
for the absence of expressions of form exp.ae.attSon, what
corresponds to the check for self -expressions in PullUpOp-
eration. Also expressions of form exp.aet, where aet refers to
the opposite association end of ae, are affected by the refac-
toring but their syntactical correctness is always preserved
(same argumentation as for query expressions exp.o(...) in
rule PullUpOperation).

3.1.3 PushDownAttribute/Operation/AssociationEnd

The PushDown-rules2 are in many respects inverse to the
PullUp-rules. While PullUp-rules change the owner of ele-
ments from son to father, PushDown-rules move them from
father to son. We have already observed for PullUp-rules that
relevant (i.e. affected) OCL expressions can be divided into
two groups and that the when-clause had to make provision
only for one group of expressions. As we will see now, Push-
Down-rules have to make provision for exactly the opposite
group of expressions.

The rule PushDownAttribute moves an attribute from the
parent to a selected subclass (see Fig. 13). As described by
Fowler in [13] for the corresponding rule PushDownField,
the attribute must be moved to that subclass that covers the
‘usage’ of the attribute. The attribute a is used in a class c if at
least one of the constraints attached to the class diagram has
a subexpression of form exp.a and exp has a type conforming
to c.

The formalization of PushDownAttribute is given in
Fig. 14. The when-clause has to check possible name conflicts

2 We consider here only rules that push a model element down to exactly
one subclass. For the more general case of pushing down to multiple
subclasses, see [18].

123

34 S. Marković, T. Baar

Fig. 10 PullUpAttribute
refactoring rule

 PullUpAttributeUML(a:Attribute, father:Class)

g:Generalization

father:Class

a:Attribute
son:Class

child

g:Generalization

father:Class

a:Attribute
son:Class

parent

specialization

generalization

feature

owner

owner

feature

parent

specialization

generalization

child

father.allConflictingNames()->count(a.name)=1
{when}

PullUpOperationUML(o:Operation, father:Class)

g:Generalization

father:Class

son:Class

child

g:Generalization

father:Class

son:Class

parent

specialization

generalization

feature

owner

owner

feature

parent

specialization

generalization

child

father.getAllOperations()->forAll(op| not(op.matchesSignature(o))) and
o.constraint->forAll(c|
 c.body.oclAsType(ExpressionInOcl).
 bodyExpression.getAllSubexpressions()
 ->select(exp| exp.oclIsKindOf(VariableExp) and
 exp.oclAsType(VariableExp).referredVariable.varName='self')
 ->forAll(selfExp| selfExp.isPossibleToChangeTypeTo(father)))

o:Operation
o:Operation

{when}

Fig. 11 PullUpOperation refactoring rule

 PullUpAssociationEndUML(ae:AssociationEnd, father:Class)

{when}
father.allConflictingNames()
->count(ae.getOppositeAssociationEnd().name) = 1 and
AssociationEndCallExp.allInstances()
->forAll(aece| (aece.referredAssociationEnd = ae) implies
 aece.isPossibleToChangeTypeTo(father))

father:Class

g:Generalization

specialization

generalization

child

son:Class ae:AssociationEnd
participant

association

parent
father:Class

g:Generalization

specialization

generalization

child

son:Class ae:AssociationEnd

participant

association

parent

Fig. 12 PullUpAssociationEnd refactoring rule

in user, but – in addition to the check done in PullUpAttrib-
ute – also for occurrences of expressions of form exp.a where
the type of exp conforms to father but not to user.

The when-clause of rule PushDownOperation (see
Fig. 15) checks for query expressions with operation o but not
for self -expressions (note that rule PullUpOperation checks
the opposite).

Rule PushDownAssociationEnd is defined analogously to
PushDownOperation and, thus, omitted here.

3.1.4 ExtractClass/Superclass

The rule ExtractClass (see Fig. 16) creates an empty class
extracted in the same namespace nsp as the selected class src

123

Refactoring OCL annotated UML class diagrams 35

ExaFather

exaAttr
ExaFather

ExaSon1 ExaSon3ExaSon2

exaAttr
ExaSon1 ExaSon3ExaSon2

Fig. 13 Example of applying PushDownAttribute

and connects both classes with a new association. The multi-
plicity of the new association is 1 on both sides. Besides the
class src, also the name for the extracted class and the two role
names for the newly created association have to be passed
as parameters. The new class name newName must not be
already used in the enclosing namespace of src. To express
this formally, the when-clause has to make a case distinc-
tion on the actual type of the enclosing namespace (either
Classifier or Package according to our metamodel shown in
Fig. 6). While the role name for the association end on src
can be chosen arbitrarily, the other one must not be in the set
of conflicting names for src.

The rule ExtractSuperclass (see Fig. 17) creates an empty
class as well but inserts the newly created class between the
source class and one of its direct parent classes. Note that
ExtractClass/Superclass differ from the corresponding rules
given by Fowler in [13]. Our rules are more atomic since
they do not move features from the source class to the newly
created class. In order to move features to the new class one

could apply the refactorings MoveAttribute/AssociationEnd/
Operation or PullUpAttribute/AssociationEnd/Operation.

Applying the rules ExtractClass/Superclass cannot alter
the syntactical correctness of attached OCL constraints
because both rules merely introduce new model elements
and do not delete or change old ones.

3.2 Rules with influence on OCL

3.2.1 MoveAttribute/Operation/AssociationEnd

The application of rule MoveAttribute is usually driven by the
wish to make a class smaller; an example of this refactoring
is shown in Fig. 18.

The selected attribute is moved from a source to a destina-
tion class over an association with multiplicity 1 on both ends.
If source and destination class are connected with more than
one such association, it is for the refactoring of the attached
OCL constraints important to know, over which association
the attribute was moved. Thus, the second parameter of the
rule shown in Fig. 19 is an association end that identifies both
the destination class and the used association. The restric-
tion that attributes can only be moved over an association
with multiplicity 1-1 ensures the semantics preservation of
the rule (recall that the preservation of semantics is not dis-
cussed in this paper). However, the multiplicity restriction
is sufficient but not necessary for semantics preservation of

Fig. 14 PushDownAttribute
refactoring rule

PushDownAttributeUML(a:Attribute, user:Class)

father:Class

specialization

parent

generalization

child

g:Generalization

user:Class

feature

father:Class

specialization

parent

owner

generalization

child

g:Generalization

user:Class

a:Attribute

{when}
user.allConflictingNames()->count(a.name)=1 and
AttributeCallExp.allInstances()
->forAll(ace| ace.referredAttribute = a
 implies ace.source.type.conformsTo(user))

a:Attribute
owner

feature

Fig. 15 PushDownOperation
refactoring rule

 PushDownOperationUML(o:Operation, user:Class)

g:Generalization

father:Class

user:Class

child

g:Generalization

father:Class

user:Class

parent
specialization

generalization

feature
owner

owner

featureparent

specialization

generalization

child

user.getAllOperations()->forAll(op|
 not(op.matchesSignature(o))) and
OperationCallExpression.allInstances()
->forAll(oce| (oce.referredOperation = o)
 implies oce.source.type.conformsTo(user))

o:Operation o:Operation

{when}

123

36 S. Marković, T. Baar

 ExtractClassUML(src:Class, newName:String, role1:String, role2:String)

as:Association

ae1:AssociationEnd

name=role1

ae2:AssociationEnd

name=role2

extracted:Class

name=newName

participant

association

{when}

if (nsp.oclIsKindOf(Classifier))
then nsp.oclAsType(Classifier)
 .allConflictingNames()->excludes(newName)
else nsp.ownedElement.name->excludes(newName)
endif and
src.allConflictingNames()->excludes(role1)

namespace

ownedElement

namespace
ownedElement

namespace

ownedElement

ownedElement

participant

association

src:Class

src:Class

association

association

connection

connection

nsp:Namespace

nsp:Namespace
namespace

m1:Multiplicity

m2:Multiplicity

mr1:MultiplicityRange

lower=1
upper=1

mr2:MultiplicityRange

lower=1
upper=1

range

range

multiplicity

multiplicity

Fig. 16 ExtractClass refactoring rule

 ExtractSuperclassUML(son:Class, father:Class, newName:String)

son:Class

child

generalization
child
generalization

son:Class

g1:Generalization

namespacespecialization
parent

generalization

child

ownedElement

ownedElement

ownedElement

namespace

namespace

{when}

nsp:Namespace

nsp:Namespace
if (nsp.oclIsKindOf(Classifier))
then nsp.oclAsType(Classifier)
 .allConflictingNames()->excludes(newName)
else nsp.ownedElement.name->excludes(newName)
endif

namespace
ownedElement

g:Generalization g:Generalization

extracted:Class

name=newName

father:Class father:Class
parent

specialization specialization
parent

Fig. 17 ExtractSuperclass refactoring rule

ExaInitial

exaAttr

ExaDestination

exaAttr

ExaInitialExaDestination1

1 1exaDestination exaDestination

exaInitial exaInitial 1

Fig. 18 Example of applying MoveAttribute

a rule application. The interested reader is referred to [4],
where the semantics preservation property is analyzed and
proven for some variations of MoveAttribute.

Analogously to the changes of Java code described by
Fowler for the corresponding refactoring MoveField, this rule
must update attached OCL constraints on all locations where
the moved attribute is used. The necessary change of the
OCL expressions can be seen as a kind of Forward Navi-
gation. For the example from Fig. 18, this would mean that
an expression of form exp.exaAttr, where exp has a type
conforming to the source class ExaInitial, is not type
correct after the attribute has moved to the destination class.
Thus, the term exp.exaAttr should be rewritten with exp.

exaDestination.exaAttr. This refactoring of OCL
constraints is formalized by a second rule (see Fig. 20), which
extends the first rule. The RHS inserts between the attribute
call expression ace and its source expression oe a new asso-
ciation end call expression aece that realizes the forward
navigation.

The rule MoveOperation is usually applied when some
class has too much behavior or when classes are collaborat-
ing too much.

The formalization of the UML part of MoveOperation is
similar to that of MoveAttribute and shown in Fig. 21. As for
MoveAttribute, the association connecting source and des-
tination class must have on both ends multiplicity 1. The

123

Refactoring OCL annotated UML class diagrams 37

Fig. 19 UML part of
MoveAttribute rule

MoveAttributeUML(a:Attribute, ae2:AssociationEnd)

a:Attribute

feature

dest:Classsrc:Class

as:Association

ae1:AssociationEnd

connection

{when}
dest.allConflictingNames()->excludes(a.name) and
ae1.multiplicity.is(1,1) and
ae2.multiplicity.is(1,1)

connection

association

participantparticipant

association

owner

association association

ae2:AssociationEnd

a:Attribute feature

dest:Classsrc:Class

as:Association

ae1:AssociationEnd

connection connection

association

participantparticipant

association

owner

association association

ae2:AssociationEnd

Fig. 20 OCL part of
MoveAttribute rule (forward
navigation)

 MoveAttributeOCL_Forward extends MoveAttributeUML(a:Attribute, ae2:AssociationEnd)

ace:AttributeCallExp

a:Attribute

referredAttribute

source

appliedProperty

ace:AttributeCallExp

aece:AssociationEndCallExp

ae2:AssociationEnd
source referredAssociationEnd

appliedProperty

a:Attribute

referredAttributeappliedProperty
source

oe:OclExpressionoe:OclExpression

main difference to MoveAttribute is the when-clause that is
tailored to preserve the well-formedness rule UniqueMatch-
ingSignature (see Sect. 2.4.2).

The changes induced on attached OCL constraints can be
described in three steps. The last two steps refer to the differ-
ent handling of query- and self -expressions, what is fully
analogous to what we have already observed in PullUp- and
PushDown-rules.

Change Context: If a constraint is attached to the moved
operation (e.g. as pre-/postcondition) then the context of
this constraint has to be changed, for example from con-
text ExaInitial::exaOp() to context ExaDesti-
nation::exaOp(). Fowler describes in [13] informally
this step as “Copy the code from the source method to the
target”.
The context of a constraint is formalized in the OCL meta-
model by the metaassociation from ExpressionInOcl to
Classifier with role name contextualClassifier. However,
this metaassociation is derived. Consequently, changing
the context of a constraint is subsumed in our setting by
changing the owner of the moved operation, as formal-
ized in Fig. 21.

Forward Navigation (Handle Query): In case that the moved
operation is a query, all operation call expressions have
to redirect their references to the moved operation (see
Fig. 22). This means to substitute all expressions exp.
exaOp()by exp.exaDestination.exaOp(). This
step corresponds to “Turn the source method into a del-
egating method” from Fowler’s book.

Backward Navigation: All occurrences of self -expressions
in the constraints attached to the moved operations have

changed their type from ExaInitial to ExaDesti-
nation. This requires to rewrite the expression self by
self. exaInitial. This navigation is possible due to
multiplicity 1 on the end of class ExaInitial.
What is left to be done is to embed the new expression
self.exaInitial at the same location at which the
original expression self was placed. In the refactoring
rule from Fig. 23, this has been formalized by the link
between ve and exp. Note that there is no such metaasso-
ciation context-subExpressions in the official UML/OCL
metamodel. The metaassociation has been defined here
as a derived association that subsumes all existing
owning-relationships between OCL expressions, such as
appliedProperty-source, parentOperation-arguments,
etc. A similar extension of the OCL 2.0 metamodel has
been also proposed by Correa and Werner in [12].
For the backward navigation step, Fowler says: “... create
or use a reference from the target class to the source”.

The rule MoveAssociationEnd is very similar to Move-
Attribute for the refactoring of the UML part; Fig. 24 shows
an example and Fig. 25 the formalization as QVT rule.

The refactoring of OCL constraints consists of two parts,
one for forward and one for backward navigation. The for-
ward navigation is analogous to MoveAttribute and rewrites
association end call expressions of form exp. roleB by exp.
exaDestination.roleB. Figure 26 shows the formal-
ization as QVT rule. Note that the association end aet, which
is determined by the when-clause of the rule, matches with
roleB in the example from Fig. 24.

The backward navigation has to address the problem that
the type of expression exp.roleA has changed – depending

123

38 S. Marković, T. Baar

Fig. 21 UML part of
MoveOperation rule

 MoveOperationUML(o:Operation, ae2:AssociationEnd)

feature

dest:Classsrc:Class

as:Association

ae1:AssociationEnd

connection

dest:Class

as:Association

ae1:AssociationEnd

connection

o:Operation

ae2:AssociationEnd
ae2:AssociationEnd

{when}
dest.getAllOperations()->forAll(op|

not(op.matchesSignature(o)) and
ae1.multiplicity.is(1,1) and
ae2.multiplicity.is(1,1)

connection

association

participant
association
participant

owner

feature

association

participant

owner

participant

association

connection

o:Operation

src:Class

Fig. 22 OCL part 1 of
MoveOperation rule (forward
navigation/handle query)

 MoveOperationOCL_Forward extends MoveOperationUML(o:Operation, ae2:AssociationEnd)

oce:OperationCallExp

o:Operation

appliedProperty

oce:OperationCallExp

appliedProperty

appliedProperty
source

o:Operation

ae2:AssociationEnd

source
referredOperation

source referredAssociationEnd
oe:OclExpression oe:OclExpression

ae2ce:AssociationEndCallExp
referredOperation

on the multiplicity and ordering of the association end
with name roleA – from ExaInitial, Set(ExaIni-
tial), Sequence(ExaInitial) to ExaDestina-
tion, Set(ExaDestination), Sequence (Exa
Destination), respectively.

The two rules shown in Fig. 27 cover the first and the
third case correctly. If the association end with name roleA
has multiplicity 0..1 or 1..1, then the expression exp.ro-
leA is rewritten by exp.exaInitial.roleA. For all other
(many-valued) multiplicities, the original expression exp.
roleA is rewritten by exp.roleA->collect(it| it.
exaInitial). Note that we have chosen it as the name
for the iterator variable but any other name could have been
taken as well. Our rewriting is, however, only fully correct
if the association end named roleA was ordered and the
original and new expressions have type Sequence(Exa-
Initial). For unordered association ends, the expression
exp.roleA should3 be rewritten by exp.roleA->collect
(it| it.exaInitial)->asSet() in order to ensure
that the original and new expression have the same type
Set(ExaInitial).

Finally, the new expression has to be embedded at the
same location as the original expression what is formalized
analogously to rule MoveOperation.

3.3 Reformulation of refactoring rules for UML 2.0

As already mentioned, the above given catalog of refactoring
rules is defined on top of the metamodel for UML 1.5 and
thus not directly applicable for UML 2.0 models. In this sub-

3 This exceptional case is not reflected in the rule shown in Fig. 27 but
has been implemented in our tool (see [19]).

section, we discuss how our refactoring rules can be refor-
mulated for UML 2.0. As an example we have chosen one of
the most drastic changes in UML 2.0 for class diagrams: the
unification of attributes and opposite association ends.

Figure 28 shows the relevant part of the UML 2.0 meta-
model [23] and the aligned OCL 2.0 metamodel [27]
(AttributeCallExp and AssociationEndCallExp were unified
to PropertyCallExp). An instance of metaclass Property in
the UML 2.0 metamodel can represent either an attribute of
a class (in this case, it is an ownedAttribute of the class), a
navigable association end (encoded as an ownedAttribute of
the class at the opposite association end and, furthermore, a
memberEnd of its association), or a non-navigable associa-
tion end (only a memberEnd of its association).

3.3.1 MoveProperty

The rule MoveProperty is the counterpart of MoveAttribute
and MoveAssociationEnd already specified for UML 1.5. For
the sake of brevity, we assume that the moved property has
the multiplicity 0..1 or 1..1. We have already shown in rule
MoveAssociationEnd how a multiplicity greater than 1 can
be handled.

The transformation rule formalized in Fig. 29 is very sim-
ilar to the UML part of MoveAttribute and MoveAssociation-
End shown in Figs. 19 and 25, respectively. MoveProperty
moves one property from the source to the destination class.
The when-clause specifies that this rule is applicable only if
the name of the moved property is not in conflict with the
destination class.

In Fig. 30 and Fig. 31, the necessary forward and back-
ward navigation changes on the attached OCL constraints are
formalized analogously to MoveAssociationEnd.

123

Refactoring OCL annotated UML class diagrams 39

Fig. 23 OCL part 2 of
MoveOperation rule (backward
navigation)

 MoveOperationOCL_Backward extends MoveOperationUML(o:Oper ation, ae2:AssociationEnd)

ve:VariableExp

ae1:AssociationEnd

{when}

v:VariableDeclaration

varName='self'

referredVariable

v:VariableDeclaration

varName='self'

referredVariable

referredAssociationEndsource
appliedProperty

o.constraint->collect(c| c.body
 .oclAsType(ExpressionInOcl)
 .bodyExpression)->asSet()
.getAllSubexpressions()->includes(ve)

ve:VariableExp

exp:OclExpression

context

subExpressions

exp:OclExpression
context

subExpressions

topexp:AssociationEndCallExp

exaInitialexaInitial
ExaDestinationExaInitialExaDestination

1

1 1

ExaClass ExaClass

roleB

roleB

roleA roleA

exaDestination exaDestination
ExaInitial

1

Fig. 24 Example of applying MoveAssociationEnd

MoveAssociationEndUML(ae:AssociationEnd, ae2:AssociationEnd)

{when}
ae1.multiplicity.is(1,1) and
ae2.multiplicity.is(1,1) and
let aet:AssociationEnd=

ae.getOppositeAssociationEnd() in
dest.allConflictingNames()->excludes(aet.name)

dest:Class

as:Association

ae1:AssociationEnd

connection

ae2:AssociationEnd

association

connection

association

participantparticipant

src:Class

association association

ae:AssociationEnd

participant

association

dest:Class

as:Association

ae1:AssociationEnd

connection

ae2:AssociationEnd

association

connection

association
participantparticipant

src:Class

association association

ae:AssociationEnd

participant
association

Fig. 25 UML part of MoveAssociationEnd rule

 MoveAssociationEndOCL_Forward extends MoveAssociationEndUML(ae:AssociationEnd, ae2:AssociationEnd)

source

appliedProperty

ae2ce:AssociationEndCallExp

ae2:AssociationEnd
source referredAssociationEnd

appliedProperty

appliedProperty

source

aetce:AssociationEndCallExp aetce:AssociationEndCallExp

oe:OclExpression

oe:OclExpression

aet:AssociationEnd

referredAssociationEnd

aet:AssociationEnd

referredAssociationEnd

aet = ae.getOppositeAssociationEnd()
{when}

Fig. 26 OCL part 1 of MoveAssociationEnd rule (forward navigation)

123

40 S. Marković, T. Baar

 MoveAssociationEndOCL_Backward extends MoveAssociationEndUML(ae:AssociationEnd, ae2:AssociationEnd)

appliedProperty

source

topexp:AssociationEndCallExpaece:AssociationEndCallExp

referredAssociationEnd
ae1:AssociationEnd

aece:AssociationEndCallExp

 MoveAssociationEndOCL_Backward extends MoveAssociationEndUML(ae:AssociationEnd, ae2:AssociationEnd)

aec:AssociationEndCallExp

ae1:AssociationEnd

not (ae.multiplicity.isManyValued())

ae:AssociationEnd

ae.multiplicity.isManyValued()

dest:Class

topexp:IteratorExp

name='collect'

ve:VariableExp

appliedProperty

source

body

referredAssociationEnd

{when}

{when}

referredAssociationEnd

ae:AssociationEnd
referredAssociationEnd

aece:AssociationEndCallExp

ae:AssociationEnd

referredAssociationEnd

vd:VariableDeclaration

varName='it'

aece:AssociationEndCallExp
source

appliedProperty

referredVariable

iterators

type

ae:AssociationEnd
referredAssociationEnd

exp:OclExpression

context

subExpressions

exp:OclExpression

context

subExpressions

exp:OclExpression

context

subExpressions

exp:OclExpression

context

subExpressions

Fig. 27 OCL part 2 of MoveAssociationEnd rule (backward navigation)

4 Implementation of refactoring rules in QVT

We implemented all rules of our refactoring catalog using the
QVT implementation of Together Architect 2006 for Eclipse
[9]. Our rule implementation is based on the metamodel for
UML 1.5 class diagrams and OCL 2.0 as shown in Sect. 2.4.
The implementation of the rules, together with the used meta-
model can be downloaded from [19].

4.1 Overview

Together Architect 2006 for Eclipse implements a large body
of the QVT standard.4 The implemented version of the trans-
formation rules looks at the first glance quite different from
what was specified in graphical form in Sect. 3. There are
obvious changes on the notational level – Together Architect
2006 supports so far only the textual notation of QVT – but,
in general, we made the experience that implementing the

4 A list of missing features not implemented yet is shipped with
Together.

refactoring rules in Together Architect 2006 for Eclipse is
a straightforward and – thanks to Together’s matured editor
and debugger for OCL – also a painless task.

Before we describe in more details the transition from a
refactoring rule given in graphical notation to an implemen-
tation in textual QVT, let us recall the steps to follow when
applying a rule on a concrete source model. These steps are

1. Find a substructure in the source model that matches with
the LHS of the transformation rule. If no LHS-matching
substructure exists, the application of the transformation
rule terminates.

2. Rewrite the identified substructure with the RHS under
the same matching.

3. Continue with step 1 where the source model is now the
model obtained by the last rewriting step (step 2).

Note that, theoretically, it could be the case that the rewrit-
ing step 2 adds a new LHS-matching substructure that has not
been present in the original source model. For the refactoring

123

Refactoring OCL annotated UML class diagrams 41

Classifier

Property

Association

Class

Relationship

class

ownedAttribute

memberEndassociation

0..1

0..1

*

*

MultiplicityElement

lower : Integer
upper : UnlimitedNatural

NamedElement

name : String [0..1]

OclExpression

PropertyCallExp Property

0..1

0..1

0..n

0..1 +source

+referredProperty

TypedElement

+appliedElement

+referringExp

Fig. 28 Relevant part of UML2.0 and OCL2.0 for MoveProperty

MovePropertyUML(p:Property, p2:Property)

dest:Classsrc:Class

as:Association

memberEnd

{when}

dest.allConflictingNames()->excludes(p.name)) and
p1.multiplicity.is(1,1) and
p2.multiplicity.is(1,1) and
not (p.multiplicity.isManyValued())

ownedAttributeownedAttribute

association association

ownedAttribute

class

p2:Propertyp1:Property

p:Property

memberEnd

classclass

dest:Classsrc:Class

as:Association

memberEnd

ownedAttributeownedAttribute

association association

ownedAttribute

class

p2:Propertyp1:Property

memberEnd

classclass

p:Property

Fig. 29 UML part of MoveProperty rule

 MovePropertyOCL_Forward extends MovePropertyUML(p:Property, p2:Property)

source

source referredProperty

referredProperty
appliedElement

source

pce:PropertyCallExp
pce:PropertyCallExp

oe:OclExpression

oe:OclExpression

p:Property

p:Property

referredProperty pc:PropertyCallExp

p1:Property

appliedElement

appliedElement referredExp

referredExp

referredExp

Fig. 30 OCL part 1 of MoveProperty rule (forward navigation)

rules we specified in this paper, however, this case does not
occur. Please note that each refactoring rule is invoked sep-
arately by the user. This is an important difference to other
rewrite systems where a model is transformed by a concur-
rent application of multiple transformation rules.

The major obstacle to implement our graphical rules
directly in textual QVT is the lack of a pattern-matching
mechanism in textual QVT, which would allow to find all sub-
structures of a source model that match with LHS (step 1).
The basic entity in QVT to describe a transformation is a

mapping that works on a certain domain. A mapping can
call sub-mappings or queries; the latter are implemented by
a sequence of OCL expressions. Mappings are written in a
dialect of OCL, called Imperative OCL. This dialect is no
longer side-effect free and adds to standard OCL two facili-
ties, assignment (:=) and object creation (object ...),
for the manipulation of data structures.

The main application scenario for QVT is the descrip-
tion of transformations in which source and target model
are instances of different metamodels. When working in this

123

42 S. Marković, T. Baar

Fig. 31 OCL part 2 of
MoveProperty rule (backward
navigation)

 MovePropertyOCL_Backward extends MovePropertyUML(p:Property, p2:Property)

source

source referredProperty

referredProperty
appliedElement

source

pce:PropertyCallExp

oe:OclExpression

oe:OclExpression

pm:Property

referredProperty

pm:Property

appliedElement

appliedElement referredExp

referredExp
referredExp

as:Association

memberEnd

association

association
p:Property

memberEnd
as:Association

memberEnd
association

p:Property
memberEnd

association

p2:Property

exp:OclExpression

context

subExpressions

exp:OclExpression

context

subExpressions

pce:PropertyCallExp

topexp:PropertyCallExp

mode, the QVT mapping traverses the source model, nor-
mally by calling sub-mappings, and creates successively the
target model. In our refactoring scenario, however, we have
the special case that the metamodels for source and target
model coincide. Moreover, the source and target model them-
selves coincide except at some locations where substructures
have been refactored. QVT supports this special scenario
by inout-variables which represent both the source and the
target of a mapping. Within the mapping, it is only possi-
ble to change those parts of the data structure to which the
inout-variables refer. All other, untouched, parts of the data
structure will then be copied automatically from the source
to the target model.

The general approach to implement our refactoring rules
is as follows. A mapping implements a traversal through the
source model in order to find all substructures that match with
LHS. Fortunately, due to the simple structure of used LHS
patterns, this task is easily programmed manually and does
not require to apply sophisticated search algorithms. Then,
for each matching substructure, a sub-mapping is invoked
that realizes the rewriting step accordingly to RHS.

Figure 32 shows the application of a QVT transformation
on a concrete UML/OCL source model in our tool RoclET,5

into which the implementation of refactoring rules has been
integrated.

4.2 Entry-point mapping

A model transformation is implemented in QVT usually by a
set of (sub)mappings, but there is one top-level mapping that
represents the whole transformation. In the QVT jargon, this
top-level mapping is called entry-point mapping. One impor-
tant restriction is that the entry-point mapping can have only
one parameter, representing the model-element on which the
transformation is applied. In our case, the chosen parameter
is always the root element of the source model.

The fact that the entry-point mapping has just one param-
eter does not correspond to our graphical refactoring rules.

5 RoclET is available from www.roclet.org

The parameters in our graphical rules encode decisions taken
by the user, e.g. for rule MoveAttribute the decisions, which
attribute should be moved over which association end. If the
entry-point mapping has only one parameter, the user deci-
sions can obviously not be passed as arguments. A solution
for this problem is to simulate the needed parameters by
query calls. The entry-point mapping for rule ExtractClass
looks as follows:

transformation extractClass;

-- import of private QVT library
import utils;

-- declaration of metamodel for source/target model
metamodel ’core’;

mapping main(in model: core::Model): core::Model {
init {

-- simulation of parameter passing
var src := getSrc(model);
var newName := getNewName();
var role1 := getRole1();
var role2 := getRole2();

-- call of sub-mapping with all required parameters
var d := extractClass(model, src, newName, role1, role2);

result:=model;
}

}

4.3 Finding the matches for LHS

The first step that has to be realized by the implementation
of a refactoring rule is finding the substructure of the source
model that matches with the LHS of the rule. Since the class
src is passed as an argument of the refactoring rule, finding
an LHS-match boils down to simply check the when-clause.

query extractClass (inout root:core::Package,
in src:core::Class,
in newName:String,
in role1:String,
in role2:String):OclVoid{

if findUMLMatch(src, newName, role1)

123

Refactoring OCL annotated UML class diagrams 43

Fig. 32 Application of refactoring rule on a concrete UML/OCL model

then applyRHSUML(src.namespace, src, newName, role1, role2)
else true
endif;

undefined
}

query findUMLMatch(in src:core::Class,
in newName:String,
in role1:String):Boolean{

if (whentest1(src.namespace, newName) and whentest2(src, role1))
then true
else false
endif

}

query whentest1(in nsp:core::Namespace,
in newName:String):Boolean{

if (nsp.oclIsKindOf(core::Classifier))
then nsp.oclAsType(core::Classifier)

.allConflictingNames()->excludes(newName)
else nsp.ownedElement.name->excludes(newName)
endif

}
query whentest2(in src:core::Class,

in role1:String):Boolean{
src.allConflictingNames()->excludes(role1)

}

4.4 Applying RHS

Once a matching substructure is identified, this substructure
is passed to applyRHSUML, which implements a rewriting

of the substructure according to the RHS of the transforma-
tion rule. The rewrite step uses extensively the new facilities
integrated into Imperative OCL in order to manipulate data
structures.

mapping applyRHSUML(inout nsp:core::Namespace,
in src:core::Class,
in newName:String,
in role1:String,
in role2:String):core::Class{

init{
var extracted := object core::Class {

name := newName
};

nsp.ownedElement += extracted;
var as:core::Association := object core::Association{

namespace:=nsp
};

var ae1:core::AssociationEnd :=
object core::AssociationEnd{

association := as;
name := role1;
participant := extracted;
multiplicity :=

object core::Multiplicity{
range += object core::MultiplicityRange{

lower := 1;
upper := 1}}

};
var ae2:core::AssociationEnd :=

object core::AssociationEnd{
association := as;
name := role2;
participant := src;

123

44 S. Marković, T. Baar

multiplicity :=
object core::Multiplicity{

range += object core::MultiplicityRange{
lower := 1;
upper := 1}}

};

result:=undefined;
}

}

The most important difference to normal OCL is the usage
of keyword object in order to express the creation of an
object. The first statement, for example, expresses that the
local variable extracted is assigned to a newly created
object of type Class whose attribute name has the same
value as parameter newName.

4.5 Summary

The encoding of the graphical refactoring rules as given in
Sect. 3 into textual QVT is straightforward. We have used for
all refactoring rules the same structure as for rule
ExtractClassUML. The main difference between graphical
and implemented version is that the search for an LHS-match
had to be realized by a concrete algorithm. This algorithm,
however, is trivial for refactoring rules because the elements
from the source model that are affected by the refactoring
rule are always passed as parameters. This trait of refactor-
ing rules minimizes the effort to search for the right location
in the source model that matches with the LHS of the rule.

Encoding the RHS in textual QVT is straightforward as
well; one has just to change the relevant properties of the
elements identified by RHS. Please note that the implemen-
tation of RHS has only an influence on the current location
and does not change anything else in the rest of the model.

5 Using KeY to prove formally the preservation
of well-formedness rules

In the conference version of this paper [18], we published
a version of rule ExtractClassUML whose application could
break the following well-formedness rule in the UML meta-
model, which ensures that classes residing in the same
namespace (usually this is the contextual package) have to
have different names:

context c1,c2:Class inv:
(c1.namespace=c2.namespace and c1.name=c2.name) implies c1=c2

Our mistake in [18] was to have forgotten to set up the
namespace for the newly created class extracted and to ensure
in the when-clause, that the name of class extracted has not
been already taken by another class residing in the same
namespace.

It is not difficult to argue informally that the version of
ExtractClassUML presented in this paper (Fig. 16) preserves
the well-formedness rule on the uniqueness of class names:
Whenever ExtractClassUML is applicable, the when-clause
ensures that in the namespace of class src there is no class
with name newName. Applying ExtractClassUML means to
create exactly one new class extracted. Let us assume that the
well-formedness rule is broken for the target model. Since it
was satisfied in the source model and all classes have kept
their names, the only possibility is that there is in the name-
space of extracted a second class with the same name as
extracted. This, however, is prevented by the when-clause of
ExtractClassUML and by the fact that src and extracted have
the same namespace.

Such an argumentation would probably convince most
people but, as any informal argumentation, it is prone to
errors since it takes the semantics of the implementation lan-
guage, here Imperative OCL, only informally into account.
The argumentation would be more reliable if it would base
on a formal semantics of the implementation language and
would take literally the implementation of the transformation
into account.

To our knowledge, there is no tool available yet, that is
based on the formal semantics of Imperative OCL (which is
a rather recent dialect of OCL). There are, however, verifi-
cation tools for other programming languages such as Java,
C++, etc. available, that could be used to verify syntactic
preservation of transformation rules, if these rules would be
implemented in Java, C++, etc. instead of Imperative OCL.

We show in the rest of the section, how the KeY-system,6

a verification system for Java, could be used to prove syntac-
tic preservation for a Java-implementation of ExtractClass-
UML, which looks literally the same as the implementation
in Imperative OCL discussed in Sect. 4. Note that this is still
not a formal proof yet for the version of ExtractClassUML
implemented in Imperative OCL since the KeY-system can
currently verify only Java implementations. There are, how-
ever, no fundamental obstacles to adapt the KeY-system, so
that it can handle in addition to implementations written in
Java also those written in Imperative OCL.

The KeY-system, see [1] for an overview and [7] for a
complete introduction, allows software developers to prove
formally that the implementation of a Java method satisfies a
method contract (pre-/postcondition together with invariants
written in OCL). In particular, one can formally show that
whenever a method is invoked in a system state, in which all
invariants and the method’s precondition hold, the execution
of the method will terminate in a state, in which the invariants

6 The KeY-system is published under the GNU Public License (GPL)
and can be downloaded from www.key-project.org. KeY is
available both as a stand-alone tool and as a TogetherCC plugin.

123

Refactoring OCL annotated UML class diagrams 45

1 range

0..*

1

ownedElement

namespace

firstAE

1

participant

secondAE

AssociationEndClass

Model

+extractClassUML:void
+main:void

Multiplicity

MultiplicityRange

-lower:int
-upper:int

Namespace

Association

ModelElement

+name:String

Fig. 33 Simulation of the UML/OCL metamodel by Java classes

hold as well (this functionality is available as PreserveInvari-
ant in the KeY menu).

In order to apply the KeY-system to prove the preservation
of the well-formedness rule on unique class names, the meta-
model and the effect of applying ExtractClassUML had to be
encoded in Java. Figure 33 shows how the relevant part of the
metamodel is encoded; the metaclasses Class, Association,
etc. became ordinary Java classes.

The Java class Model has been added just to serve as
a container for the refactoring rules. The effect of the rule
ExtractClassUML would be implemented in Java as follows:

/**
* @ preconditions Class.allInstances->forAll(c|
* c.namespace=src.namespace implies c.name<>newName)
*/

public void extractClass(Class src, String newName) {

if (src!=null) {

Class extracted=new Class(newName);
extracted.namespace=src.namespace;
Association as=new Association();
as.firstAE= new AssociationEnd(extracted,

new Multiplicity(new MultiplicityRange(1,1)));
as.secondAE=new AssociationEnd(src,
new Multiplicity(new MultiplicityRange(1,1)));
as.namespace=src.namespace;
}

}

The listing shows the source code as it is managed by Tog-
etherCC. The JavaDoc comment @preconditions contains

the condition on the pre-state in OCL syntax (comparable
with the when-clause). The body of extractClassUML
resembles the implementation of applyRHSUML written in
Imperative OCL. The only exception is that the Java ver-
sion encodes the additional pre-condition src!=null as
an if-statement. For the version implemented in Imperative
OCL, the same condition is automatically stipulated by the
semantics of OCL.

The invariant to be proven is exactly the same as in the
real metamodel and attached in OCL syntax to class Model.

/**
* @invariants Class.allInstances->forAll(c1,c2|
* c1.namespace=c2.namespace and
* c1.name=c2.name
* implies c1=c2)
*/
public class Model { ... }

The KeY-system is able to prove fully automatically for
the shown implementation of ExtractClass that the invariant
is preserved.

6 Conclusions

The refactorings considered in this paper realize a special
form of model synchronization: a change in a UML class
diagram should trigger an automatic update of attached OCL
constraints. A minimal requirement for a refactoring rule is
that a refactoring step does not destroy the syntactic cor-
rectness of the manipulated UML/OCL model. Ideally, the
semantics of the model remains unchanged as well.

In this paper, five groups of refactoring rules (Rename,
PullUp, PushDown, Extract, Move) are investigated and clas-
sified with respect to their influence on attached OCL con-
straints. Only Move-refactorings require to update attached
OCL constraints but the applicability of PullUp- and
PushDown-refactorings depends on the absence of certain
OCL constraints. The rules targeting attributes are generally
less complex than the rules for operations and association
ends.

We formalized all refactoring rules in form of QVT model
transformations that are based on graph-transformations.
This formalization allows a precise argumentation that the
refactoring rules preserve the syntax and the semantics of the
models they are applied on. Syntax preservation is formally
shown for one example in Sect. 5. Semantics preservation
was not in the scope of this paper but has been discussed in
[4].

The understandability of graphical QVT rules depends,
most likely, on the degree of familiarity with the underly-
ing metamodel and on personal preferences. The experiences
we gained when writing up and discussing multiple versions
of the refactoring rules presented in Sect. 3 let us conclude

123

46 S. Marković, T. Baar

that graph-transformation systems are a excellent choice for
the formalization of refactoring rules. The readability of our
rules can, however, be even improved for persons who are
only vaguely familiar with the metamodel for UML/OCL.
As shown in [5], this can be achieved by defining a concrete
syntax for refactoring rules. This concrete syntax can hide
many internals of the UML/OCL metamodel from the reader,
but keeps the expressive power of ordinary QVT rules.

All rules presented in this paper have been fully imple-
mented in the tool RoclET, a versatile tool for the
development and analysis of OCL specifications. RoclET’s
refactoring functionality takes from the user the burden to
correct manually all OCL constraints that became syntacti-
cally incorrect when the underlying UML diagram has been
refactored. We see this as a necessary pre-condition to pull up
agile techniques, which became quite popular over the recent
years on the implementation level, also to the modeling level.

Acknowledgments This work was supported by Swiss National Sci-
entific Research Fund under reference number 2000-067917.

References

1. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle,
R., Menzel, W., Mostowski, W., Roth, A., Schlager, S., Schmitt,
P.H.: The KeY tool. Softw. Syst. Model. 4(1), 32–54 (2005)

2. Astels, D.: Refactoring with UML. In: Proceedings of 3rd Inter-
national Conference on eXtreme Programming and Flexible Pro-
cesses in Software Engineering, pp. 67–70 (2002)

3. Baar, T.: The definition of transitive closure with OCL— limi-
tations and applications. In: Broy, M., Zamulin, A.V. (ed.) Per-
spectives of Systems Informatics, 5th International Andrei Ershov
Memorial Conference, PSI 2003, Akademgorodok, Novosibirsk,
Russia, 9-12 July 2003, Revised Papers, volume 2890 of LNCS,
pp. 358–365. Springer, Heidelberg (2003)

4. Baar, T., Marković, S.: A graphical approach to prove the seman-
tic preservation of UML/OCL refactoring rules. In: Virbitska-
ite, I., Voronkov, A. (eds.) Proceedings, 6th International Andrei
Ershov Memorial Conference on Perspectives of System Infor-
matics (PSI 2006), Akademgorodok near Novosibirsk, Russia, vol
4378 of LNCS, pp. 70–83. Springer, Heidelberg (2007)

5. Baar, T., Whittle, J.: On the usage of concrete syntax in model
transformation rules. In: Virbitskaite, I., Voronkov, A. (eds.) Pro-
ceedings, 6th International Andrei Ershov Memorial Conference
on Perspectives of System Informatics (PSI 2006), Akademgor-
odok near Novosibirsk, Russia, vol. 4378 of LNCS, pp. 84–97.
Springer, Heidelberg (2007)

6. Beck, K.: Extreme programming explained: embrace change.
Addison-Wesley, Reading (2000)

7. Beckert, B., Hähnle, R., Schmitt, P.H.: (eds.) Verification of
Object-Oriented Software: The KeY Approach. LNAI 4334.
Springer, Heidelberg (2007)

8. Boger, M., Sturm, T., Fragemann, P.: Refactoring browser for
UML. In: Proceedings of 3rd International Conference on extreme
Programming and Flexible Processes in Software Engineering, pp.
77–81 (2002)

9. Borland: Together technologies. http://www.borland.com/
together/ (2007)

10. Cabot, J., Teniente, E.: Computing the relevant instances that may
violate an OCL constraint. In: Pastor, O., Falcão e Cunha, J. (eds.)
17th International Conference on Advanced Information Systems
Engineering, CAiSE 2005, Porto, vol. 3520 of LNCS, pp. 48–62.
Springer, Heidelberg (2005)

11. Cabot, J., Teniente, E.: Incremental evaluation of OCL constraints.
In: Dubois, E., Pohl, K. (eds.) Advanced Information Systems
Engineering, 18th International Conference, CAiSE 2006, Luxem-
bourg, Luxembourg, Proceedings, vol. 4001 of LNCS, 5–9 June
2006, pp. 81–95. Springer, Heidelberg (2006)

12. Correa, A., Werner, C.: Applying refactoring techniques to
UML/OCL. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J.
(eds.) UML 2004—the Unified Modeling Language. Model Lan-
guages and Applications, Lisbon, Portugal, vol. 3273 of LNCS,
pp. 173–187. Springer, Heidelberg (2004)

13. Fowler, M.: Refactoring: Improving the Design of Existing Pro-
grams. Addison-Wesley, Reading (1999)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns:
elements of reusable object-oriented software. Addison-Wesley,
Reading (1995)

15. Van Gorp, P., Stenten, H., Mens, T., Demeyer, S.: Towards
automating source-consistent UML refactorings. In: Stevens, P.,
Whittle, J., Booch, G. (eds.) UML 2003—The Unified Modeling
Language, Modeling Languages and Applications, San Francisco,
CA, USA, vol. 2863 of LNCS, pp. 144–158. Springer, Heidelberg
(2003)

16. Kerievsky, J.: Refactoring to Patterns. Addison-Wesley, Reading
(2004)

17. Kruchten, P.: The Rational Unified Process: An Introduction.
Addison-Wesley, Reading (2004)

18. Marković, S., Baar, T.: Refactoring OCL annotated UML class
diagrams. In: Briand, L., Williams, C. (eds.) Model Driven Engi-
neering Languages and Systems, 8th International Conference,
MoDELS 2005, Montego Bay, Jamaica, 2–7 October 2005, Pro-
ceedings, vol. 3713 of LNCS, pp. 280–294. Springer, Heidelberg
(2005)

19. Marković, S., Baar, T.: Documentation of UML/OCL refactor-
ing rules. http://www.roclet.org/publications/SoSymSpecialIssue-
Models05/, 2007

20. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE
Trans. Softw. Eng. 30(2), 126–139 (2004)

21. O’Cinneide, M.: Automated application of design patterns: a
refactoring approach. Ph.D. Thesis, University of Dublin, Trinity
College (2001)

22. OMG: UML 1.5 Specification. OMG Document formal/03-03-01
(2003)

23. OMG: UML 2.0 Infrastructure Specification. OMG Document
ptc/03-09-15 (2003)

24. OMG: UML 2.0 OCL specification—OMG final adopted specifi-
cation. OMG Document ptc/03-10-14 (2003)

25. OMG: Revised submission for MOF 2.0, query/views/transforma-
tions, version 1.8. OMG document ad/04-10-11 (2004)

26. OMG: Meta object facility (MOF) 2.0 query/view/transformation
specification. OMG document ptc/05-11-01, Nov 2005

27. OMG: Object constraint language—OMG available specification,
version 2.0. OMG document formal/06-05-01 (2006)

28. Opdyke, W.F.: Refactoring: A program restructuring aid in design-
ing object-oriented application frameworks. Ph.D. Thesis, Univer-
sity of Illinois at Urbana-Champaign (1992)

29. Porres, I.: Model refactorings as rule-based update transforma-
tions. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003—The
Unified Modeling Language, Modeling Languages and Applica-
tions, San Francisco, CA, USA, vol. 2863 of LNCS, pp. 159–174.
Springer, Heidelberg (2003)

30. Refactoring community: refactoring homepage. http://www.refac-
toring.com (2007)

123

Refactoring OCL annotated UML class diagrams 47

31. Rumpe, B.: Agile Modellierung mit UML. Springer, Heidelberg
(2005) In German

32. Sendall, S., Kozaczynski, W.: Model transformation: the
heart and soul of model-driven software development. IEEE
Softw 20(5), 42–45 (2003)

33. Sunyé, G., Pennaneac’h, F., Ho, W.-M., Guennec, A.L., Jézéquel,
J.-M.: Using UML action semantics for executable modeling
and beyond. In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.)
Advanced Information Systems Engineering, 13th International
Conference, CAiSE 2001, Interlaken, Switzerland, Proceedings,
vol. 2068 of LNCS, 4–8 June 2001, pp. 433–447. Springer,
Heidelberg (2001)

Author Biographies

Slaviša Marković graduated
from the University of Belgrade
and is currently a PhD stu-
dent and research assistant at the
Software Engineering Labora-
tory (LGL), Swiss Federal Insti-
tute of Technology in Lausanne
(EPFL). His research interests
include model transformations,
model refactorings, and seman-
tics of constraint languages.

Thomas Baar is Senior Resear-
cher and Lecturer for soft-
ware engineering at the École
Polytechnique Fédérale de Lau-
sanne (EPFL). His research
interests include quality-oriented
software processes, (semi-)
formal specification techniques,
and automatic verification of sys-
tem implementations. Dr. Baar
holds a diploma degree in com-
puter science from Humboldt-
University Berlin and a doctoral
degree from University Karls-
ruhe. He is a member of the
ACM.

123

	Refactoring OCL annotated UML class diagrams
	Abstract
	Introduction
	Formalizing refactoring rules in QVT
	Basic concepts
	How to write syntax preserving QVT rules
	Example: Item-View world
	Two simple refactoring rules
	Checking syntax preservation of a given rule
	Using when-clauses to ensure syntax preservation
	Extends-relationship between QVT rules
	Metamodel of UML/OCL
	Declaration of metaclasses
	Well-formedness rules
	A catalog of UML/OCL refactoring rules
	Rules without influence on OCL
	RenameClass/Attribute/Operation/AssociationEnd
	PullUpAttribute/Operation/AssociationEnd
	PushDownAttribute/Operation/AssociationEnd
	ExtractClass/Superclass
	Rules with influence on OCL
	MoveAttribute/Operation/AssociationEnd
	Reformulation of refactoring rules for UML 2.0
	MoveProperty
	Implementation of refactoring rules in QVT
	Overview
	Entry-point mapping
	Finding the matches for LHS
	Applying RHS
	Summary
	Using KeY to prove formally the preservationof well-formedness rules
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

