
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
3
7
1
4
1

|

d
o
w
n
l
o
a
d
e
d
:

2
3
.
4
.
2
0
2
4

Softw Syst Model (2009) 8:5–19
DOI 10.1007/s10270-008-0081-4

SPECIAL SECTION PAPER

Meta-environment and executable meta-language using smalltalk:
an experience report

Stéphane Ducasse · Tudor Girba · Adrian Kuhn ·
Lukas Renggli

Received: 23 March 2007 / Revised: 2 February 2008 / Accepted: 7 February 2008 / Published online: 11 March 2008
© Springer-Verlag 2008

Abstract Object-oriented modelling languages such as
EMOF are often used to specify domain specific meta-
models. However, these modelling languages lack the abil-
ity to describe behavior or operational semantics. Several
approaches have used a subset of Java mixed with OCL
as executable meta-languages. In this experience report we
show how we use Smalltalk as an executable meta-language
in the context of the Moose reengineering environment. We
present how we implemented EMOF and its behavioral
aspects. Over the last decade we validated this approach
through incrementally building a meta-described reengineer-
ing environment. Such an approach bridges the gap between
a code-oriented view and a meta-model driven one. It avoids
the creation of yet another language and reuses the infrastruc-
ture and run-time of the underlying implementation language.
It offers an uniform way of letting developers focus on their
tasks while at the same time allowing them to meta-describe
their domain model. The advantage of our approach is that
developers use the same tools and environment they use for
their regular tasks. Still the approach is not Smalltalk specific
but can be applied to language offering an introspective API
such as Ruby, Python, CLOS, Java and C#.

Communicated by Prof. Oscar Nierstrasz.

S. Ducasse (B) · T. Girba · A. Kuhn · L. Renggli
Software Composition Group, University of Bern,
Bern, Switzerland
e-mail: stephane.ducasse@free.fr
URL: http://www.iam.unibe.ch/∼scg

S. Ducasse
Language and Software Evolution Group, ADAM Team,
INRIA-Lille Nord Europe, LIFL/USTL1, CNRS UMR,
8022 Lille, France
e-mail: stephane.ducasse@inria.fr

Keywords Meta behavior description · Reflective
language · Executable modeling language · Smalltalk

1 Introduction

Object-oriented modelling languages such as MOF, EMOF
[23] or ECore [7] are often used to describe domain specific
meta-models. However, these modelling languages only sup-
port the description of structural entities and their relation-
ships. They do not have support for the definition of behavior,
and, as such, they cannot be used to specify the operational
semantics of meta-models [32].

Attempts such as the UML Virtual Machine [38] failed
similarly to capture the specification of operations at the
meta-level. Adaptive Object Models [40] used the Type-
Object design pattern and workflow to describe at meta-level
the structure and behavior of business models [42]. Other
approaches have used ECA rules to describe the behavior
of the meta-level [17]. Recently, Xactium [8] proposed a
simple object-oriented model and imperative OCL to model
state and behavior at the meta-level in an executable form.
Xion [34] was an extension of OCL with imperative seman-
tics to support the definition of action and behavior in web-
modeling context. More recently, Kermeta was introduced as
an executable EMOF compliant meta-language with OCL-
like expressions [19,32].

In the late nineties we started to build Moose, a reengi-
neering environment [10,12,15,36], and we faced the need
to be able to describe not only the structure at the meta-level
but also the behavior. After evaluating the different alter-
natives that were offered to us at that time, we decided to
use Smalltalk. For the meta-level we first extended Smalltalk
with a simple entity relationship meta-meta-model. Then we

123

6 S. Ducasse et al.

migrated to MOF and finally EMOF. In this paper, we report
on our experience of using Smalltalk as a meta-language to
specify EMOF structure and behavior in an uniform way.
Such an approach avoids to have to design and implement
yet another language and it allows the developer to only use
one single language to program at different meta-layers.

This paper is an extension of our previous paper in which
we show how we integrated in Smalltalk a self-described
EMOF, and how we used Smalltalk as an executable meta-
language [14]. The novelties are:

Complete meta-environment. In the previous paper, we
focused on meta-descriptions for one application alone.
In this paper, we present Fame, a complete meta-
environment, that extends the complete Smalltalk envi-
ronment. Not only domain classes, but also system classes
from the standard libraries may be decorated with
descriptions and can thus be serialized or browsed using
the same infrastructure and UI. In particular, while EMOF
is self-described on paper, it is now self-described in our
implementation.

Complete development-environment. As we reuse Smalltalk
to implement the behavioral semantics of the meta-model,
the same tools (code browser, debugger, refactoring tools,
etc.) can be used to maintain both code and meta-model.
Also, we have extended the UI of the object inspector to
add the meta-description as an additional view.

Improved implementation. We have enhanced our MOF
implementation (called Fame) from MOF 1.4 to EMOF
2.0, the main difference between the two standards being
that associations are modeled as opposing attributes
rather than as first-class elements. Thus, the new imple-
mentation fits better to Smalltalk, which also does not
have associations as first-class objects.

In the next section we list the challenges we faced when
building our reengineering environment emphasizing the
need for an executable meta-description. In Sect. 3 we briefly
describe Smalltalk and its reflective capabilities (an overview
of the Smalltalk syntax can be found in Appendix A). Sec-
tion 4 details our approach of integrating MOF in Smalltalk
and we describe our implementation called Fame. The fol-
lowing sections present some of the infrastructure that we
built on the meta-description, and how we used the approach
in the context of the Moose reengineering environment and
the Famix meta-model [12,18]. In Sect. 7 we evaluate the
approach and present future work, and eventually conclude
in Sect. 8 with a summary.

2 The need of executable meta-language

As “meta” is an overloaded term, we start with a number
of definitions (for further details on meta and reflexive

architecture we invite the reader to read Maes’s work [29,
30]): “A meta-system is a computational system that has as
its domain another computational system called its object-
domain. [...] A meta-system has a representation of its object-
system in its data. Its program specifies meta-computation
about the object-system and is therefore called a meta-
program. A programming environment has a meta-level
architecture if it has an architecture which supports meta-
computation.” Muller et al. proposed to see executable meta-
models as meta-data + actions [32]. We define an executable
meta-language as a meta-program that can be executed. Such
meta-language can be self-described.

Starting in 1996, our main research effort was concen-
trated on reengineering object-oriented legacy systems
[9,11]. Since then we incrementally developed Moose, a
modular reengineering environment [16,36]. In this process,
we felt the need to meta-describe our environment to enable
us to be more efficient building new tools for our reengi-
neering research. Using meta-modeling was just a means
to introduce more flexibility and extensibility in our tools
and not a research topic on its own. We started using an
entity-relationship meta-meta-model, then moved to MOF
and recently to EMOF. Nowadays, Moose uses meta-
descriptions to support various activities such as model
persistency and automatic UI generation. This context had
practical impact on our solution. We describe here the main
challenges that we faced so that the reader can assess our
solution. They basically can be summarized by two ques-
tions:

– How can we get the best of the two worlds? We would
like to continue with our code-oriented development, and
at the same time benefit from using a meta-modeling
approach. It should be possible to edit code and meta-
models, exactly the same way using the same set of stan-
dard development tools.

– How to make the meta-model executable? The need for
imperative semantics at the meta-model level is well doc-
umented [8,32]. We want to avoid generated code, and we
want to use the same programming language to express
the meta-semantics in the same language as the rest of
the code.

Even if our solution is developed in the specific context of
Smalltalk, we believe that it presents interesting results and
shows how executable meta-models can be used in practical
settings. It is the recent publications on executable meta-
languages Xion [34], Kermeta [32], Xactium [8] and our
successful work in building our reengineering environment
that convinced us that our experience is worth being reported
to the modeling community. We believe that our approach is
applicable to other languages and in particular to languages

123

Meta-environment and executable meta-language using smalltalk 7

offering introspective capabilities like CLOS [3,13], Ruby,
Python, and Java. In fact, a subset of Fame has recently been
ported to both Python and Java1.

The goal of Moose, our reengineering environment, is to
enable other developers, mainly researchers or consultants,
to develop new analysis techniques, visualizations, metrics,
etc. These researchers, while fluent in object-oriented pro-
gramming, should not be hampered with the details of meta-
modeling: the environment should let them express their
ideas with as less additional programming effort as possible.
Developers that want to extend the environment should be
able to do so without having to learn a new language or new
tools. They should be able to use their “native” programming
language and their favorite development tools.

The implications are the following ones. We do not want
to use generative techniques that would yield forbidden code,
i.e., code that the developers must not edit in their IDE. String
manipulation and other such kind of low-level operations
are to be avoided, because of breaking the object-oriented
metaphor. The same environment should be used to program
the base language and the meta one. In this way, the navi-
gation, versioning tools, debuggers, code refactorings, code
browsers can be used at all levels. The same argumentation
applies to the semantics of the meta-model.

The most common semantics of a meta-model are con-
straints, e.g., on derived attributes or as pre- and postcondi-
tions on operations. These constraints are usually expressed
in OCL, a purely declarative language that lacks imperative
power.

As a consequence, several approaches added imperative
features to OCL-extensions in their own object-oriented ker-
nels [8,32,34]. However, using a different language involv-
ing different tools to define meta-program is exactly what we
want to avoid, rather the same environment should be used
at all levels. In particular, the developers should be able to
use the same debugging tools and incremental hot recom-
pilation, i.e., editing and recompiling in the debugger, since
this is one of the cornerstone of productive Smalltalk devel-
opment. Possibly the same paradigm should be used at the
base and meta-level.

Therefore, we needed to extend our implementation of
EMOF to allow for executable semantics written in Smalltalk
at the meta-level as well. For example, we would like to add
the semantics of a derived property using Smalltalk code
similar to the following constraint.

context Person::numberOfAllChildren
post: result = self.children->size() + self.children->sum

(numberOfAllChildren)

In the next section we present Smalltalk. Readers fimi-
lar with the language may skip to Sect. 4 that explains how

1 http://www.iam.unibe.ch/scg/svn_repos/Sources/Fame/.

Object

name
age
children

Person

new
Object class

Person class

:Person

instance of

instance of

instance of

Fig. 1 The class Person is an instance of the metaclass Person class

we implemented Fame, our running meta-environment in
Smalltalk that fulfills the requirements formulated in this sec-
tion.

3 Smalltalk in a nutshell

Smalltalk is a pure object-oriented language. Smalltalk pro-
grams consists of objects, classes, methods and messages
[21]. The support for built-in queriable declarative annota-
tions make it a powerful language for meta descriptions since
we can annotate methods and query such meta-descriptions
from within the language.

In this section we describe the Smalltalk object model [21]
and we point out some similarities of the Smalltalk language
with OCL, the object constraint language.

In Smalltalk everything is an object and objects commu-
nicate exclusively via message passing (method invocation).
This is applied uniformly in the sense that message passing
is favored over other language constructs, even over control-
flow constructs. For example, ifTrue:ifFalse is a method
defined in Boolean, rather than being a language construct
as in other languages.

Objects are instances of classes. All instance variables are
private to the object and all methods are public. There is
single inheritance between classes, classes are objects too.
A class is an instance of a metaclass which has this class as
its sole instance. Class methods are simply methods of the
metaclasses and follow all the previous rules. For example,
in the Fig. 1, the class Person is an instance of the metaclass
Person class.

The complete Smalltalk system (library, compiler, envi-
ronment) is written in itself, therefore can be queried and
manipulated within itself allowing powerful introspective
and reflective facilities [39]. In particular, the Smalltalk meta-
level can be queried.

Query language. Because of its reflective capabilities,
Smalltalk can be easily used as a query meta-language on it
own structure. For example, the following expressions query

123

http://www.iam.unibe.ch/scg/svn_repos/Sources/Fame/

8 S. Ducasse et al.

the methods defined locally, all the methods, and all the
instances of the class Person. For comparison, equivalent
OCL statements are shown beside the Smalltalk code.

Smalltalk OCL
Person selectors Person.ownedOperation

Answer the method names defined locally.
Person allSelectors size Person.operation->size()

Answer the number of methods locally and inherited
by Person.
Person allInstances Person.allInstances()

Answer all the instances of the class Person in
the system.

Iterators. Smalltalk offers high level iterators such as col-

lect:, select:, reject:, includes:, do:, do:separatedBy:, occurence-

sOf:. The definition of new iterators is open and simple.
The iterators are passed closures to be evaluated. For exam-
ple, the Smalltalk closure [:each |each even] is equivalent to
(each|each->even()) in OCL.

With a sequenceable collection col containing the num-
bers from 1 to 4 we can evaluate the following expressions
(an overview of the Smalltalk syntax can be found in Appen-
dix A):

Smalltalk OCL
col := #(1 2 3 4) let col=Sequence{1, 2, 3, 4} in

col collect: [:each col->collect(even)

| each even]

Answer the collection #(false true false true).

col select: [:each col->select(even)

| each even]

Answer the collection #(2 4).

col inject: 0 into: [:each col->iterate(v, a =0 | v + a)

:next | each + next]

Answer the sum of all the numbers, 1 + 2 + 3 + 4 = 10.

Declarative meta descriptions. The Smalltalk language pro-
vides declarative annotations called Pragmas. Pragmas are
pure annotations that can be attached to method definitions
and do no influence the behavior of the method. These anno-
tations can be queried directly from the language which
makes them useful as a declarative registration mechanism.

The following example shows how an application can
define a method and several menu items that will invoke this
method in the very same method body. In our example, the
method openFileBrowser is defined in class VisualLauncher

and it consists of a line that opens the FileBrowser applica-
tion. The two annotations between < > are used to declare
that such a method can be invoked from the menu bar using
the browse menu item and from the tool bar by clicking on
the icon, see the Fig. 2.

Fig. 2 The File Browser can be invoked both from the menu and from
the toolbar due to the two Pragmas

VisualLauncher>>openFileBrowser
<menuItem: ’File Browser’ icon: #fileBrowser menu: #(#tool-

Bar)>
<menuItem: ’File Browser’ icon: #fileBrowser shortcut: #F2
menu: #(#menuBar file)>

FileBrowser open

Below we give the expression that returns a collection of
all the annotations named menuItem:icon:menu: defined in the
system. An annotation knows the relevant meta-information
about its use such as the method and class in which it is
declared. The system uses this expression to collect all the
menu items for the launcher application and therefore
remains extensible as the menu and toolbar structure is not
hardcoded into the class.

Pragmas allNamed: #menuItem:icon:menu:

Class Extension Mechanism. In Smalltalk as in CLOS or
Objective-C 2.0, a method can be part of a different package
than the package its class definition belongs to. In the exam-
ple above, the class VisualLauncher is defined in the package
Tools-Misc, while the method openFileBrowser is defined in
Tools-File Browser. As a result, this method is available on the
class VisualLauncher, and consequently only appears in the
menu, when the Tools-File Browser package is loaded.

This mechanism, called class extension, lets the devel-
oper extend existing classes with new behavior. Inheritance
is not a solution to the problem as clients should still refer
to the original class. In our example, extending the Visual-

Launcher via subclassing would not work as the menu could
have been extended by different clients, and we still want to
refer to VisualLauncher to open and see all the tools that are
available [4].

Please note that while class extensions are extensively
used in Smalltalk, the mechanism can also be found in other
languages. For example in Java methods can be added to
other classes using AspectJ [27].

Class extensions and meta annotations are crucial to
extend an existing system with new behavior and meta-data.
The class extensions allow one to integrate new code tightly
in the adequate and responsible class. Method annotations
add meta information to the code, so that the existing sys-
tem knows about the new functionality and, for example, can
provide entry points through the user interface.

123

Meta-environment and executable meta-language using smalltalk 9

4 Integrating a self-described EMOF in smalltalk

In this section we describe how we integrate Fame, an
EMOF compliant and self-described meta-environment, in
Smalltalk. As motivated in Sect. 2, the rationale is to describe
existing source code entities using meta-descriptions that
comply to EMOF We want to describe the domain classes
in a generic way, such that certain parts of our application
(such as user interface and serialization) can be written as
generic interpreters using these classes’ descriptions rather
than requiring custom code for each single domain class. In
particular, we present how we extended EMOF with exe-
cutability.

Smalltalk is a reflective language (i.e., supporting both
introspection and intercession [6]), it already includes a
causally connected meta-description2 of its own run-time
and structure in a similar fashion as CLOS and its Meta-
Object protocol [26]. To bridge the two worlds (EMOF and
Smalltalk) we used the architecture shown in Fig. 3. In the
example, the class Person is described by an instance of the
EMOF.Class class, and instances of the class Person are meta-
described by that EMOF.Class description.

Such an architecture can be seen as a validation of the
nowadays well-known distinction between two conceptu-
ally different kinds of instance-of relationships: (i) a tradi-
tional and implementation driven one where an instance is
an instance of its type, and (ii) a representation one where
an instance is described by another entity [5]. Atkinson and
Kühne [1,2] named these two kinds: form vs. contents or lin-
guistic vs. ontological. However, back in 1997, when devel-
opment of Moose started, the distinction between instance-of
and described-by relationships was neither clear nor
described in the literature. Hence, our architecture acts as
a confirmation of the related work as it was not influenced
by existing readings.

We implemented the EMOF core of MOF 2.0 as meta-
description framework, and which is the main focus of this
paper, executable behavior by reusing Smalltalk’s language
and object system. In our implementation EMOF is self-
described and its behavior is implemented using Smalltalk.

4.1 The triangle between instance, class and description

In Fame each object may take part in an instance-of rela-
tionship with its Smalltalk class, and an equivalent meta-
described-by relationship with its EMOF class. To avoid
confusion between the object models of Smalltalk and EMOF,

2 Causal connection is defined by Maes as: “A computational system
may also be causally connected to its domain. This means that the system
and its domain are linked in such a way that if one of the two changes,
this leads to an effect upon the other” [29].

name="Person"
:EMOF.Class

age=30
:Person

age
Person

 described by

meta-described by instance of

Fig. 3 Relation between an instance of Person and both its meta-
description and its Smalltalk class

in this paper, we refer to Smalltalk classes as class and to
EMOF instances as meta-description objects.

The semantics of these two views is as follows: the
instance-of represents the implementation view of an object,
including all implemented methods, whereas meta-described-
by represent the domain view of the object, including all
properties relevant for the application’s domain. The rela-
tion between methods and properties is neither surjective nor
injective, on the one hand, there may be implementation spe-
cific methods that do not access application properties, on
the other hand, there may be properties whose value is not
accessed by methods but rather stored in a dictionary for
example.

As illustrated on Fig. 3, there is a triangular relation
between object, class and description:

– instance-of relates objects to classes,
– meta-described-by relates objects to meta-description

objects, and
– described-by related classes with meta-description

objects.

All associations are navigable both ways: the instance-of
association is managed natively by Smalltalk, whereas meta-
described-by and described-by are managed by Fame:

"Native Smalltalk methods"
Object >> class.
Class >> allInstances.

"Fame methods"
Object >> metaDescription.
EMOF.Class >> allModelElements.

Class >> asMetaDescription.
EMOF.Class >> asSmalltalkClass.

For most uses of Fame in the context of Moose we pre-
serve a one-to-one mapping between each Smalltalk class and
its corresponding meta-description on Fame’s meta-model
layer (except for the implementation of EMOF itself, whose
classes are mapped to Fame’s meta-meta-model layer

123

10 S. Ducasse et al.

instead). However, Fame can manage both multiple descrip-
tions for a Smalltalk class and descriptions that do not have
Smalltalk representation.

On Fig. 3, the Smalltalk object :Person is an instance of
the Smalltalk class Person and meta-described by an instance
of EMOF.Class named “Person”. Further, the class specifies
an instance variable “age” which is accessible in the instance
using the accessors age() and age(int) (or age and age:

respectively in Smalltalk lingo), and described in the
meta-description by a contained instance of EMOF.Property.
We show below how we create the meta-description of
Person:

person := EMOF.Class new.
person name: #Person.
person ownedAttributes

add: (EMOF.Property new name: #name; type: String primitive);
add: (EMOF.Property new name: #age; type: Integer primitive);

add: (EMOF.Property new name: #children; type: person;
lower: 0; upper: Unlimited positive).

Please note that this description of Person is manually
defined manually since this is an example. In the running
meta-environment however, all meta-descriptions declared
using method annotations and assembled dynamically, as
described in the next section.

The meta-described-by relation of Fame’s meta-meta
layer, i.e., how its EMOF implementation describes itself,
deserves a deeper discussion. The diagram in Fig. 4 offers
an illustration of this relationship. Each meta-description is
an instance of the Smalltalk class EMOF.Class, which is, in
turn, meta-described using an instance of itself. This means
that on Fame’s meta-meta layer, the triangle is rather a pair
of objects with all three associations of the triangle linking
between the same two participants. Not only is the M3 layer
described using descriptions of itself, but also its implemen-
tation is described using instances of itself.

As a consequence, source code and meta-model and
meta-meta-model are all written in the same language and
treated in the same fashion. Note that this bootstrap is not
new as it is present in the core of the CLOS and Smalltalk
metaclass core.

4.2 Declaration of meta-descriptions in source code

The declaration of meta-descriptions can either be done in a
separate location (e.g., external XML files) or embedded in
the source code using method annotations. In our experience
the latter is better, as storing meta-description in a separate
location is not optimal. Information that belongs together is
stored in two places, which leads to duplication and thus
the danger of getting out of sync. In particular, since exter-
nal files may not be taken into account by refactorings and

integrated version control system. Hence, we chose to embed
the declaration in the actual source code using annotations.

At the source code level, the relation between accessors
and property descriptions is maintained with method anno-
tation, as shown below:

Person >> age
<property: #age type: Integer>
ˆage

Person >> age: anInteger
<property: #age type: Integer>
age := anInteger

For each method annotation, Fame creates an EMOF. Prop-

erty instance and for each class annotation an EMOF.Class

instance.
The relation between classes and meta-descriptions is not

as straightforward as we would like, as VisualWorks does
not feature class annotations. Hence, as a workaround, each
Smalltalk class has a fix-named method containing a method
annotation, which Fame relates to the class based on nam-
ing convention. The same scheme is used to meta-describe
properties without an implementing method, e.g., derived
attributes.

This solution prevents us to maintain several meta-
descriptions related to one class, but it is good enough for our
purpose, as in the context of Moose we mainly use a one-to-
one mapping between classes and meta-descriptions. How-
ever, Fame can handle several descriptions to be attached
to the same class. In this case, the programmer can either
define a new fix-named prefix to be used for another meta-
description, or he needs to maintain the mapping program-
matically.

4.3 Extending the triangle with executability

Both the class and the meta-description describe a differ-
ent view of an object’s properties and operations. The class
describes (and implements) attributes and methods in terms
of Smalltalk. The meta-description describes properties and
operations in terms of EMOF, but does not provide imple-
mentation neither for the operations behavior nor for the
properties setters and getters.

When executing ordinary Smalltalk code, the Smalltalk
run-time is aware of the instance-of relationship only and
executes code accordingly. The question is how the meta-
description layer can access the domain it describes. For
example, how can we obtain, given a Person object, the actual
value of the age EMOF property? In particular, it may hap-
pen that there is not a direct mapping between the meta-
description level and the underlying domain classes. For
example, in the case of a derived property it is frequent that

123

Meta-environment and executable meta-language using smalltalk 11

name = 'Hans'
age = 30
children = {}

hans:Person

name
age
children

Person

Person class

name="name"
type=String

:EMOF.Property

name
ownedAttributes

EMOF.Class

name="Person"
:EMOF.Class

name="EMOF.Class"
:EMOF.Class

instance of

instance of

instance of

instance of

meta-described by

meta-described by

meta-described by

described by

described by

Metaclass

instance of

Fig. 4 The complete architecture bridging the Smalltalk and the EMOF meta-model

ClosureAccess SelectorAccess

EMOF.Property read(Element)
write(Element,Object)

AccessStrategy

DictionaryAccess

Fig. 5 Extension of EMOF.Property with binding to behavior in
Smalltalk

the equivalent Smalltalk method is absent from the domain
class. Therefore, we have to find a way to store and manage
behavior in terms of EMOF. Bridging these two different lev-
els is one aspect of bringing executability to the meta-level,
the other being that EMOF classes are implemented within
an implementation language, Smalltalk in our case.

Figure 5 illustrates how we extend EMOF.Property with an
access strategy to achieve executability at the meta-level. An
access strategy instance knows how to invoke the setter and
getter methods associated with an EMOF attribute. In the
same way, we add an additional default value strategy to the
Property and also extend EMOF.Operation with an invocation
strategy. There are two ways to bind behavior to a property (i)
first we can bind closures (called blocks in Smalltalk) to the
property, which are then performed on each access, (ii) we
can bind method names to the property, which are then used to
call an existing Smalltalk method using reflection. The third
strategy shown on the figure, the DictionaryStrategy, provides
glue code to store properties in a general purpose dictionary.

Using the ClosureAccess it is possible to define the seman-
tics of a derived attribute as follows:

(Person asMetaDescription at: #numberOfAllChildren)
strategy: (ClosureAccess new

getBlock: [:element |
element children size + element children sum: [:child |

child numberOfAllChildren]]).

The difference between this example and the OCL con-
straint in Sect. 2, is that the above implementation is actually
executed each time the derived property is accessed at run-
time, whereas a constraint is checked during modeling time
to verify that a model conforms to its meta-model.

Note that the closure access strategy is useful to bridge
model when there is not a one to one mapping between the
level and that extra computation should be performed.

5 Building meta-aware infrastructural tools

In this section, we present the tools that form the important
parts of the infrastructure of our environment: model import,
meta-model generation, and access and navigation between
objects at runtime. Whereas, in the following section we show
more precisely the navigation in the context of the Moose
reengineering environment and the Famix code meta-model.

5.1 Importing and exporting models

Import and export is an important benefit of using meta-
descriptions. Having meta-described objects, we can
automate the serialization framework to become a mere inter-
preter of the meta-description.

– To store a set of elements, for each element, the type and
all non-derived properties are serialized to a stream.

– To load a set of element, the stream is read and for each
entry an object of the according type is created and its
non-derived attributes read from the stream and set in the
newly created instance.

Special care has to be taken to resolve cyclic dependencies
between objects.

To allow for different file formats, we defined MSE,
an intermediate format that facilitate the serialization of

123

12 S. Ducasse et al.

entities
noname:Model

classes
Sandbox:Namespace

signature='zork()'
zork:Method

bar:Attribute

(Moose.Model
 (entity
 (FAMIX.Namespace (id: 1)
 (name 'Sandbox')

)
 (FAMIX.Class (id: 2)
 (name 'Foo')
 (belongsTo (idref: 1))

)
 (FAMIX.Method
 (name 'zork')
 (signature 'zork()')
 (belongsTo (idref: 2))

)
 (FAMIX.Attribute
 (name 'bar')
 (belongsTo (idref: 2))

)
)

)

Fig. 6 A sample MSE intermediate and the corresponding object struc-
ture

elements at any meta-layer. MSE is based on literal arrays
and a LISP-like syntax. Please refer to Fig. 6 for an MSE
example.

Fame is an open environment in the sense that it accepts
different kinds of source code information coming from exter-
nal plugins. We use MSE as intermediate format for all avail-
able import and export plugins. Initially, we supported CDIF
and XMI files, whereas currently KM3 [24] and ECORE files
are supported, as well as savefiles in the MSE format itself.

5.2 Importing other meta-models

Fame is based on existing domain classes annotated with the
declarations of their corresponding meta-model. However,
when importing a third-party meta-model such as EMF, these
domain classes may be missing. As we do not want to imple-
ment missing classes by hand, first we import the meta-model
(which can be expressed using EMF) and create descrip-
tion instances that conform to the EMOF meta-meta-model,
then use these imported descriptions to generate the missing
classes and annotate the generated classes with declarations.
This way we get to the same point as if the classes would have
been there in the first place: we get existing domain classes
annotated with the declarations of their corresponding meta-
model.

Fame supports the generation of meta-described meta-
models from MOF description: from a MOF description, the
system can generate classes representing new models and
their associated descriptions. However, while the generation
of initializers, accessors and other structural navigation facil-
ities is trivial (and resemble to the work on the UML virtual
machine [38]), more sophisticate behavior can not be infered
from model data alone.

5.3 Inspector

Smalltalk applications are developed at runtime, they do not
require to be restarted when a method is compiled or a class

is defined. Using Fame this is no different: developers cre-
ate, modify and remove meta-descriptions while the meta-
described application is running. Thus we extend Smalltalk
to let programmers interact with meta-descriptions at run-
time. Programmers can query property values and operation
results at runtime using the Object Inspector.

The Object Inspector is a cornerstone of any Smalltalk
IDE, it presents the internal state of an object and offers
to navigate the object structure. An inspector window is
divided into two panes, see Fig. 7, the left pane enumerates
all attributes of the inspected object, the right pane shows the
value of the attribute selected on the left. When double click-
ing on an attribute, the inspector “dives” into the attribute,
i.e., the value of the attribute becomes the new focus of the
inspector. Furthermore, as Smalltalk is a living system it is
possible to change the internal state of an object by typing
an expression into the right pane and evaluating it.

However, relying on the built-in reflection of Smalltalk,
the inspector is restricted to present the Smalltalk view of
objects. We extended the inspector to also provide the EMOF
view of objects, showing all meta-described properties on the
left and using the access strategies to read and write values
presented in the right pane. Thanks to the inspector’s exten-
sion mechanism and the reflective nature of meta-description,
we are able to extend the IDE with convenient access on the
meta-layers.

6 MOOSE: a dedicated meta-described environment

Now we briefly present how the meta-model infrastructure
is used in the particular context of our reengineering envi-
ronment. Research in reverse engineering is about creating
new ways of representing software. As the representation is
dictated by the meta-model, we needed the meta-model to be
extensible. This is not a problem per se, but in the same time
we needed to be able to browse the results and also interact
with other tools via external formats. As a consequence we
built several generic tools that would cope with these exten-
sions. To represent source code of different languages we
defined a specific code-oriented meta-model named Famix
[18,12]

To be able to communicate with third parties tools we
provided generic import/export. We started with supporting
the CDIF format, later we replaced it with XMI [41] and
eventually moved to MSE (our own compact format). The
generic engine depends only on the meta-description of the
meta-model. That is, the only thing the programmer has to do
is to code his domain classes and describe storable elements.
Based on this, the objects in the model can be serialized in
either XMI or MSE.

The act of analyzing can be decomposed in several generic
atomic actions: (i) introspection—given an element, what are

123

Meta-environment and executable meta-language using smalltalk 13

Fig. 7 Two screenshots of the same inspector window: on the left showing Smalltalk’s view of an object, on the right showing the EMOF view.
Note that the EMOF view includes more attributes, as some of these attributes are derived ones

its properties? (ii) selection—given a collection of elements,
which are the elements matching a certain rule? (iii) naviga-
tion—given an element, what are its related elements? and
(iv) presentation—given a collection of elements, what is the
order of the elements? Also, an important factor in reverse
engineering research is the exposure to the data. That is why
we implemented generic tools to address the four points
above while being independent of the type of data. Again,
we accomplished this by making the tools dependent only
on the meta-descriptions [15].

Because of the extension possibilities, Moose enabled
several directions of research in reverse engineering. As a
result, several techniques have been implemented to deal
with the diversity of data, techniques which are orthogo-
nal to the types of data. As a consequence, we have imple-
mented a mechanism for integrating these techniques. Our
solution was to extend EMOF.Property and EMOF.Operation

with a UI-displayable string. Using this annotation we can
build a menu, and different tools can register themselves to
the context they can handle.

Figure 8 shows the different extensions we performed
on EMOF as well as one application in building a generic
browser. An operation may represents a particular Action
that can be triggered on a certain type of element. It extends
EMOF.Operation with the title of the action and a category
that is used to construct submenus. Also an operation may
represent a boolean Expression, which is how search filter
rules are called in Moose, and properties may represent a
Metric which is a description for a measurement. Both the
invocation of the actions and the computation of the metrics
and of the expressions is done via the mechanisms specified
in the EMOF standard.

Figure 8 also shows how the generic browser of Moose
uses the meta descriptions. The mapping between the differ-
ent parts of the browser and the meta-descriptions are denoted
with arrows that also show how the meta-descriptions are

metric

**

elementmenuexpression

invokeOn(Element,Arguments)

actionBlock
displayName
category

EMOF.Operation

read(Element)
write(Element,Object)

strategy
displayName
acronym

EMOF.Property

EMOF.Class

Fig. 8 We extended EMOF with new entities and new methods to
hook in the execution. The Moose Browser is a generic tool based on
the meta-descriptions

seen by the user. For example, by selecting an element we
can trigger its menu which is composed of actions. In the
figure, we selected a FAMIXClass and in its menu we have
a Mondrian submenu. Mondrian is a visualization engine
for scripting visualizations base on a graph model [33], and
one visualization defined in Mondrian is the Class Blueprint
[16], and it can be applied on any class through the contex-
tual menu. The code below shows the method that Mondrian
extends the FAMIXClass to spawn the Class Blueprint. Note
that the method below is packaged in the Mondrian pack-
age, using class extension, and not in Moose where the class
FAMIXClass is defined. Like this, we can trigger the menu
action only when Mondrian is loaded.

123

14 S. Ducasse et al.

AbstractEntity

Class Method

Attribute Access

Snapshot

Inheritance ...

0..1

1
Version

*

1

Class
History

Method
History

Attribute
History

Access
History

Inheritance
History ...

Class
Version

Method
Version

Attribute
Version

Access
Version

Inheritance
Version ...

History rank

Fig. 9 An excerpt from the Hismo meta-model

FAMIXClass>>viewClassBlueprint
<action: ‘Class Blueprint’ category: ‘Mondrian’>
| view |
view := ViewRenderer new.
view open

The described mechanisms in Moose allowed for defini-
tion and manipulation of several meta-models. Some of these
are:

– Famix is a language-independent meta-model for repre-
senting procedural and object-oriented code [18].

– Hismo is a generic meta-model for analyzing software
evolution based on representing history as first class entity
(see Fig. 9) [20].

– Dynamix offers support for dynamic analysis by extend-
ing the Famix meta-model with the notions of trace and
features [22].

7 Evaluation and discussion

Our approach takes the best of the object-oriented program-
ming and meta-modeling worlds and uses it in a practical
setup. One the one hand, we continue to use only one para-
digm and environment. This helps our developers to develop
their own applications or to extend our environment. They do
not have to learn a new language and they stay within their
known environment. On the other hand, we provide a meta-
described extensible environment in which meta-interpreters
can deliver their power. Using Smalltalk as a meta-modeling
language provided us with several advantages:

– Executability: We obtained a meta-model that is exe-
cutable and that can be extended using the Smalltalk

language constructs (declarative annotations, class exten-
sions).

– Good performance: Because we use a professional
Smalltalk environment, we can focus on our main activi-
ties and we do not have to worry about performance that
building our own language would have implied.

– Tools support: We can use the same toolsets (debugger,
version management, refactorings) to develop both our
domain and our meta-domain.

– Extensibility: Using class extensions we can preserve
the one-to-one correspondence to the meta-descriptions
while still be able to extend the entities with new capa-
bilities given by orthogonal tools. For example, we can
package the visualization specific methods and their meta-
descriptions together with the visualization engine, rather
than have these methods in the base code. In this way, we
obtain loose tool inter-depencies rather than a hard-coded
one.

As the meta-description are retained at runtime of the
application, programmers can benefit from generic UI and
IO components. Instead of generating custom code for each
meta-described object’s UI, we rather have one generic com-
ponent that creates on-the-fly a dynamic UI based on the
meta-descriptions of any object. The same goes for serializa-
tion.

7.1 Language features necessary to develop an executable
meta-environment

When developing Fame we identified the following language
features as most useful for implementing an executable meta-
evironment:

– Reflection: The ability to introspect on objects, including
the possibility to create instances by class name and to
perform methods that are not known at compile time. This
is a must have to achieve executability.
For example the serializer, during import it must be able
to create new instances by name and to call accessors
based on property descriptions. The same for the runtime-
generated UI, it must read and store the value of properties
based on their description.

– Annotations: Declarative annotations are necessary to
ensure the extensibility of the system. This is nice to
have to guarantee that meta-descriptions stay in sync
when applying code manipulation tools (e.g., refactor-
ings). However, already in our environment, we have to
live with a workaround for classes, as Smalltalk does not
support class annotations. Relying on naming conven-
tions could be a way when annotations are not available,
but is less flexible (Note that JavaBeans relies on naming

123

Meta-environment and executable meta-language using smalltalk 15

convention rather than annotations to guarantee the same
issue).

– Closures: Closure or the ability to define code on the fly
whose execution can be delayed is important in particular
to be able to specify mapping between the levels. Closures
are used to express how domain objects are accessed and
how such information is composed to define semantics at
the EMOF level.

– Class extensions: Class extensions allow the domain code
to be extended with behavior and annotations by third par-
ties. This is a nice feature to achieve package merging.
Using class extensions we get the merging semantics of
EMOF for free: the plugins of Moose, for example, use
class extensions to merge additions into the core packages
of the FAMIX metamodel.

7.2 Code-generation versus runtime meta-interpretation

As we show in Sect. 6, the Moose UI is completely driven
by the meta-descriptions of the entities Moose presents to
the user. In particular, the meta-descriptions are used to
control the navigation, menus and the information displayed.
Furthermore, meta-descriptions are used for generic import/
export.

Most model-driven approaches rely on code generation.
The meta-model is used to generate not only domain classes,
but also to generate custom UI code and data access objects
(DAO) or serialization code. An important feature of our
system is that we prefer to avoid code generation (e.g., for
custom UI and serialization). Instead we rely on generic
implementations that interpret the meta-descriptions at run-
time.

If developers use a traditional modeling tool, they can
obtain a skeleton of program automatically generated by the
tool from a given model. Using our approach developers
do not use a modeling tool, but they focus on writing the
Smalltalk code and then add the meta-description to bene-
fit from the generic mechanisms. The meta-descriptions are
also added as code, which means that both the code and the
meta-description are developed using the Smalltalk tools.

Note that EMF which favors code generation also asso-
ciates meta-description with the generated classes. However,
such descriptions which are called metaclasses in EMF jar-
gon, do not seem to be used by the run-time environment
once the code is generated.

While for most activities we rely on runtime interpretation,
when do use code generation in the first stage of implement-
ing a foreign meta-model (as described in Sect. 5.2).

7.3 Discussion about causal connection

With our approach we bridge two worlds, and as we discuss
above, this satisfies our goals. However, we want to stress

that our current implementation is not reflective in the sense
that descriptions are not causally connected [30] to the other
two parts of the meta-triangle, object and class. This has an
implication: the correspondence between the base domain
and the meta-model has to be manually done by attaching
meta-descriptions to the domain classes. This limit can be cir-
cumvented when we deal with foreign meta-models that we
load in our environment (as presented in Sect. 5.2) because
we can generate code that is based on the meta-descriptions.

However, causal connection can be done as follows: The
reflective features of Smalltalk allow to a running program
to change, add and remove parts of itself at runtime. Using
this, an executive meta-environment can change the code of
the running program whenever the metamodel changes and
thus establish full causality. An implementation of the meta-
environment can even rely on the predefined refactorings of
the RefactoryBrowser [37] to do so. This is different from
purely introspective reflection, as for example given in Java,
where the structure of running programs must not be changed
and thus causality is difficult to establish.

Still, even given that, when describing EMOF in itself we
cannot ensure the causal connection. Let us illustrate this
point. When we describe the class EMOF.Class we declare
that it has the property ownedAttributes by defining the class
method metamodelOwnedAttributes which represents the
property.

EMOF.Class class>>metamodelOwnedAttributes
ˆEMOF.Property new

name: #ownedAttribute;
type: EMOF.Property description;
oppositeName: #class;
upper: Unlimited positive;
isOrdered: true

Smalltalk EMOF.Class class has an instance variable
ownedAttributes that represents the attributes. Methods then
can access and describe the behavior of the EMOF.Class. For
example, the following code shows an accessor and an iter-
ator over all attributes:

EMOF.Class>>ownedAttributes
"ownedAttribute : Property 0..* -- The attributes owned by a
class. These do not include the inherited attributes.
Attributes are represented by instances of
Property. [UML Infrastructure 2.0, p93]"

ˆownedAttributes ifNil: [ownedAttributes := Set new]

EMOF.Class>>allAttributesDo: aBlock
self ownedAttributes do: aBlock.
self superClasses do: [:superClass | superClass
allAttributesDo: aBlock]

We see here that the correspondence between the meta-
description and the implementation that they describe has
to be maintained manually (even if some behavior can be

123

16 S. Ducasse et al.

automated by querying and manipulating the meta-
descriptions). This is normal for two reasons. First, it is
difficult to generate the Smalltalk code for the EMOF ker-
nel from the EMOF descriptions, since in order to do so,
instances of the EMOF classes are needed. Second, even if
we would use another representation to represent temporar-
ily the EMOF descriptions and generate the code and their
respective EMOF descriptions from this other representation,
we could not generate all the behavior but only the generic
behavior that is linked with structural code navigation and
querying.

7.4 Tradeoffs

Our approach is not strictly EMOF compliant as the MOF
standard does not describe execution. (Note that the same
situation arises with EMF since ECore meta-models are by
nature not compliant to MOF.) It does not follow a tradi-
tional MDA decomposition. As such, model transformation
of behavior may be more difficult than if we would have
been using a model to describe the behavior as suggested
by Action Semantics [35], or a dedicated language such as
Kermeta [32]. However, since Smalltalk also offers a reflec-
tive API, we developed some simple meta-model transfor-
mations based on the Refactoring Browser.

An alternative would have been to extend the language or
the Smalltalk meta-model itself, but from a practical point of
view, extending a language is expensive. We want to reuse
existing tools that work at the level of the current Smalltalk
meta-model. For example, we want to store the meta-level
code in our default storage database, which uses a fixed
schema for example. Such limitations are to be found in any
language’s development environment.

The common objection against using a programming lan-
guage as an executable meta language can be summarized by
saying that languages provide too much or too few. Muller
et al. [32] said: “Existing programming languages already
provide a precise operational semantic for action specifica-
tions. Unfortunately, these languages provide both too much
(e.g., interfaces), and too few (they lack concepts available
in MOF, such as associations, enumerations, opposite prop-
erties, multiplicities, derived properties …).”

Like other mainstream object-oriented programming lan-
guage, Smalltalk does not support associations, derived enti-
ties, opposite properties directly in the language, and because
of that the developer may be facing implementation decisions
instead of meta-modeling ones. From the language point of
view, the Smalltalk meta-model is minimalist. We believe
that given our constraint to use a programming language to
describe both our base domain and the meta-description, the
choice of Smalltalk was adequate and offered a good and
practical solution to our problems.

7.5 Related work and applicability

While we reported our experience using Smalltalk as an exe-
cutable meta-language, our approach can be applied to other
environments or languages with different levels of integra-
tion in the host language. Before highlighting some of the key
features that will help reproducing our approach we discuss
some related work.

Our approach is close to EMF [7]: both approaches have
an implementation of a MOF kernel in a generalist language.
The main difference between our approach and the one used
in EMF is that we manipulate EMOF entities at run-time
via meta-interpreters while EMF traditional use is geared
towards code generation.

In our approach, EMOF entities are attached with the
domain code they describe. Generating code can be more
powerful when there is not a simple one to one mapping
between the described entities and the entities that are gen-
erated. Interestingly the EMF code generation attaches the
MOF entities to the generated class: The EObjectImpl class
defines the method eclass() which returns the meta-entity
(called in EMF jargon the metaclass of the class and which
corresponds to our meta-description). However to the best of
our knowledge, the run-time environment executing the gen-
erated code does not make use of the so called metaclasses.

MDR (Metadata Repository) implements the MOF, XMI
and JMI standards for the Java NetBeans platform [31]. MDR
uses an event notification mechanism to integrate the meta-
model into the NetBeans IDE, similar to our approach using
annotations. MDR supports multiple inheritance at the model
level by generating and combining interfaces default behav-
ior. Contrary to other MOF implementations, MDR uses
automatic run-time code generation. All JMI methods that
do not require custom implementation are implemented dur-
ing the runtime by dynamically generating bytecode. This
has the advantage that code generation is delayed until it is
actually used, but also it also freezes the meta-model as soon
as the code is generated. Our system allows one to easily
change and adapt the meta-model at run-time, even after it
has been instantiated.

The alternative to get executable metamodels are Xactium
[8] and Kermeta [32]. These two executable meta-languages
define a new language whose core is close to the EMOF one.
Kermeta which is an implementation of EMOF in addition
to the traditional class, method, inheritance model supports
multiple inheritance and relationships. The pros of such an
approach is a minimal and dedicated language to specify
meta-level operations. The cons is that all the tools have to
be redeveloped or adapted. In addition, using our approach
we get a minimal model and run-time semantics of Smalltalk
plus all the available tools.

Johnson et al. propose the type object design pattern [25]
to separate the object from its type. In the meta-triangle Fig. 3

123

Meta-environment and executable meta-language using smalltalk 17

we presented two different applications (and a derived one)
of the type object: (1) the instance of relationship represents
the classic paradigm of object oriented programming with
instances and classes, whereas (2) the described by relation-
ship decouples the object from its class by supplementing it
with an exchangeable type.

8 Conclusion

To make our reengineering environment more flexible and
extensible, we introduced a meta-description and used this
meta-description to build extensible reengineering tools. We
used Smalltalk as an executable meta-language, and we sim-
plified our code and its logic by factoring knowledge at the
meta-level. Our developers could focus on their tasks without
having to learn new languages and new tools.

We show how a 3-layer architecture can be introduced in a
reflective language, validating the distinction between instan-
tiation and representation links in meta-modeling tools archi-
tectures [2,5]. We believe that our approach can be applied in
other mainstream programming languages. Still to gain the
maximum from this approach we believe that being able to
annotate methods, to query these annotations, and to pack-
age methods independently from the classes they belong are
important factors.

Our solution influenced our reengineering environment in
several ways:

– The decision to use Smalltalk as a meta-language makes
it possible to reuse the tools provided by the development
environment: browser, debugger, versioning, refactoring,
etc. Moreover it eases the entry level as developers do not
need to learn another language.

– Having first class meta-description as ordinary objects
also helps manipulating the meta-model, and building
flexible tools based on it. For example, we can develop
meta-interpreters as simple methods or objects.

– Having a meta-description greatly enhances the possibil-
ities to refactor and change existing code, since a change
to the meta-model only needs to be performed at one sin-
gle place, without requiring to change the generic tools
(e.g., import/export).

By letting the end-user programmer naturally annotate his
base code with meta-descriptions, we narrow the gap between
what are traditionally seen as complex and separated tasks.
We coin this approach “literate meta-programming” [28].

As future work we want to extend Fame towards a scoped
environment where multiple meta-models may co-exist at the
same time in the same environment, thus offering alternative
descriptions on the same data.

Table 1 Syntactical elements of Smalltalk

. a period separates statements.

; a cascade is used to send multiple messages
to the same receiver.

:= assignment.

ˆ returns statement; exit the method where it
appears.

‘a string’ single quotes delimit strings.

[statements] square brackets delimit lexical closures
(AKA block).

[:x :y | 2 * y * x] closures can take arguments.

| tmpVar1 tmpVar2 | temporary variables are declared using
pipes.

“commented” comments.

$a the character a.

#symb a symbol which is a unique string.

#(a b) an array containing a and b.

{ 1+2 . 4} a dynamic array containing two elements:
3 and 4.

true, false booleans.

nil the undefined value.

self the current receiver of a message. Same
semantics as this in Java.

super to invoke overridden method. Same seman-
tics as in Java.

thisContext to access execution stack.

Acknowledgments We gratefully acknowledge the financial support
of the Swiss National Science Foundation for the project “Analyz-
ing, Capturing and Taming Software Change” (SNF project 200020-
113342), and the French National Research Agency (ANR) for the
project JC05 4287 “Cook: Rearchitecting object-oriented applications”
(2005–2008).

Appendix A: Syntax

Here we give the complete Smalltalk syntax. Table 1 shows
the different syntactical elements of Smalltalk. There are
three kinds of messages: unary, binary and keyword mes-
sages.

Unary. Messages that do not take any arguments. Example:
aCollection removeAll.

Binary. Messages that take one argument and whose name
is among (+ * @ , ...)

1 + 3. "Hello ", "world !"

Keyword-based. Messages that can take multiple parame-
ters. Keywords are composed of token ended by a semi col-
umn. Each argument are written after each of the token.

123

18 S. Ducasse et al.

aCollection replaceFrom: 1 to: 6 with: anOtherCollection.
"Equivalent in Java to:" aCollection.replaceFromToWith(1, 6,
anOtherCollection);

Message sending priority. Messages have different priority:
unary are executed first, then binary, and finally keyword-
based. For example:

5 factorial + 5 gcd: 5 should be read as: ((5 factor-
ial) + 5) gcd: 5

Thus mathematical operation order is not preserved. So 3 +

4 * 3 is equal to 21 and not 15. You should write 3 + (4 * 3) if
you want to give priority to the multiplication.

Cascades. You also can send several messages to the same
object. To do so, you use the ; construct.

aCollection
add: anObject;
add: anOtherObject;
add: aThirdObject.

Closure application. A closure is executed using messages
value, value:, ...

[:x :y | 2 * y * x] value: 3 value: 100
returns 600

References

1. Atkinson, C., Kuehne, T.: The essence of multilevel metamodeling.
In: Proceedings of the UML Conference. LNCS, vol. 2185, pp. 19–
33 (2001)

2. Atkinson, C., Kuehne, T.: Concepts for comparing modeling tool
architecture. In: Proceedings of the UML Conference. LNCS, vol.
3713, pp. 19–33 (2005)

3. Bobrow, D.G., DeMichiel, L.G., Gabriel, R.P., Keene, S.,
Kiczales, G., Moon, D.A.: Common lisp object system specifi-
cation, x3j13. Technical Report 88-003, (ANSI COMMON LISP)
(1988)

4. Bergel, A., Ducasse, S., Nierstrasz, O.: Classbox/J: Controlling
the scope of change in Java. In: Proceedings of 20th International
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA’05), pp. 177–189. ACM Press,
New York (2005)

5. Bézivin, J., Gerbé, O.: Towards a precise definition of the
OMG/MDA framework. In: Proceedings Automated Software
Engineering (ASE 2001), pp. 273–282. IEEE Computer Society,
Los Alamitos CA (2001)

6. Bobrow, D.G., Gabriel, R.P., White, J.L. : CLOS in context—the
CLOS in context—the shape of the design. In: Paepcke, A. (ed.)
Object-Oriented Programming: The CLOS Perspective, pp. 29–
61. MIT Press, Cambridge (1993)

7. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.:
Eclipse Modeling Framework. Addison Wesley Professional,
Reading (2003)

8. Clark, T., Evans, A., Sammut, P., Willans, J.: Applied Metamod-
elling: A Foundation for Language Driven Development (2004)

9. Ducasse, S., Demeyer, S. (eds.): The FAMOOS Object-
Oriented Reengineering Handbook. University of Bern,
Switzerland (1999)

10. Demeyer, S., Ducasse, S., Lanza, M.: A hybrid reverse engineer-
ing platform combining metrics and program visualization. In:
Balmas, F., Blaha, M., Rugaber, S. (eds.) Proceedings of 6th Work-
ing Conference on Reverse Engineering (WCRE’99). IEEE Com-
puter Society (1999)

11. Demeyer, S., Ducasse, S., Nierstrasz, O.: Object-Oriented Reengi-
neering Patterns. Morgan Kaufmann, Los Altos (2002)

12. Demeyer, S., Ducasse, S., Tichelaar, S.: Why unified is not univer-
sal. UML shortcomings for coping with round-trip engineering.
In: Rumpe, B. (ed.) Proceedings UML’99 (The Second Interna-
tional Conference on the Unified Modeling Language). LNCS, vol.
1723, pp. 630–644, Kaiserslautern, Germany. Springer, Heidelberg
(1999)

13. DeMichiel, L.G., Gabriel, R.P.: The common lisp object system:
an overview. In: Bézivin, J., Hullot, J.-M., Cointe, P., Lieberman,
H. (eds.) Proceedings ECOOP ’87 of LNCS, vol 276, pp. 151–170.
Springer, Paris (1987)

14. Ducasse, S., Gîrba, T.: Using Smalltalk as a reflective executable
meta-language. In: International Conference on Model Driven
Engineering Languages and Systems (Models/UML 2006). LNCS,
vol. 4199, pp. 604–618. Springer, Berlin (2006)

15. Ducasse, S., Gîrba, T., Lanza, M., Demeyer, S.: Moose: a collab-
orative and extensible reengineering environment. In: Tools for
Software Maintenance and Reengineering, RCOST/Software
Technology Series, pp. 55–71. Franco Angeli, Milano (2005)

16. Ducasse, S., Lanza, M.: The class blueprint: visually the class
blueprint: visually supporting the understanding of classes. Trans.
Softw. Eng. (TSE) 31(1), 75–90 (2005)

17. Devos, M., Tilman, M.: Incremental development of a repository-
based framework supporting organizational inquiry and learning.
In: OOPSLA’98 Practioner’s Report (1998)

18. Demeyer, S., Tichelaar, S., Ducasse, S.: FAMIX 2.1—The
FAMOOS Information Exchange Model. Technical Report.
University of Bern, Switzerland (2001)

19. Fleurey, F.: Langage et méthode pour une ingénierie des modèles
fiable. Ph.D. Thesis, Thèse de doctorat, Université de Rennes 1
(2006)

20. Gîrba, T., Ducasse, S.: Modeling history to analyze software evo-
lution. J. Softw. Maintenance Res. Practice (JSME) 18, 207–
236 (2006)

21. Goldberg, A., Robson, D.: Smalltalk 80: the Language and its
Implementation. Addison Wesley, Reading (1983)

22. Greevy, O.: Enriching Reverse Engineering with Feature Analysis.
Ph.D. Thesis, University of Berne (2007)

23. Object Management Group. Meta object facility (MOF) 2.0 core
final adopted specification. Technical Report, Object Management
Group (2004)

24. Jouault, F., Bézivin, J.: KM3: a DSL for metamodel specification.
In: IFIP International Conference on Formal Methods for Open
Object-Based Distributed Systems. LNCS, vol. 4037, pp. 171–185.
Springer, Heidelberg (2006)

25. Johnson, R., Wolf, B.: Type object. In: Martin, R.C., Riehle, D.,
Buschmann, F. (eds.) Pattern Languages of Program Design, vol. 3,
chap. 4. Addison Wesley, Reading (1998). ISBN:0-201-31011-2

26. Kiczales, G., des Rivières, J., Bobrow, D.G.: The Art of the Metaob-
ject Protocol. MIT Press, Cambridge (1991)

27. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
Griswold, W.G.: An overview of Aspect J. In: Proceeding ECOOP
2001. LNCS, vol. 2072, pp. 327–353. Springer, Heidelberg (2001)

28. Knuth, D.E.: Literate Programming. Center for the Study of
Language and Information, Stanford (1992)

29. Maes, P.: Computational reflection. Ph.D. Thesis, Laboratory for
Artificial Intelligence, Vrije Universiteit Brussel, Brussels (1987)

30. Maes, P.: Concepts and experiments in computational reflection.
In: Proceedings OOPSLA’87, ACM SIGPLAN Notices, vol. 22,
pp. 147–155 (1987)

123

Meta-environment and executable meta-language using smalltalk 19

31. Matula, M.: Netbeans metadata repository. Technical Report,
NetBeans (2003)

32. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving executability
into object-oriented meta-languages. In: Kent, S., Briand, L. (eds.)
Proceedings of MODELS/UML’2005. LNCS, vol. 3713, pp. 264–
278, Montego Bay, Jamaica. Springer, Heidelberg (2005)

33. Meyer, M., Gîrba, T., Lungu, M.: Mondrian: An agile visualiza-
tion framework. In: ACM Symposium on Software Visualization
(SoftVis 2006), pp. 135–144. ACM Press, New York (2006)

34. Muller, P.-A., Studer, P., Fondement, F., Bézivin, J.: Independent
web application modeling and development with netsilon. Softw.
Syst. Model. 4(4), 424–442 (2005)

35. Mellor, S.J., Tockey, S., Arthaud, R., LeBlanc, P.: Software-
platform-independent, precise action specifications for UML. In:
Bézivin, J., Muller, P.-A. (eds.) The Unified Modeling Language,
UML’98—Beyond the Notation. First International Workshop,
Mulhouse, France. LNCS, vol. 1618, pp. 281–286 (1998)

36. Nierstrasz, O., Ducasse, S., Gîrba, T.: The story of Moose: an agile
reengineering environment. In: Proceedings of the European Soft-
ware Engineering Conference (ESEC/FSE 2005), pp. 1–10. ACM
Press, New York (2005). Invited paper

37. Roberts, D., Brant, J., Johnson, R.E.: A refactoring tool for
Smalltalk. Theory Pract. Object Syst. (TAPOS) 3(4), 253–
263 (1997)

38. Riehle, D., Fraleigh, S., Bucka-Lassen, D., Omorogbe, N.: The
architecture of a uml virtual machine. In: Conference on Object-
Oriented Programming Systems, Languages, and Applications
(OOPSLA ’01), pp. 327–341 (2001)

39. Rivard, F.: Pour un lien d’instanciation dynamique dans les lan-
gages à classes. In: JFLA96. INRIA—collection didactique (1996)

40. Riehle, D., Tilman, M., Johnson, R.: Dynamic object model. In:
Pattern Languages of Program Design, vol. 5. Addison-Wesley,
Reading (2005)

41. Tichelaar, S., Ducasse, S., Demeyer, S.: FAMIX: Exchange expe-
riences with CDIF and XMI. In: Proceedings of the ICSE 2000
Workshop on Standard Exchange Format (WoSEF 2000) (2000)

42. Yoder, J.W., Johnson, R.: The adaptive object model architectural
style. In: Proceeding of the working IEEE/IFIP Conference on
Software Architecture 2002 (WICSA3 ’02) (2002)

Author’s Biography

Stéphane Ducasse After spend-
ing 10 years at the Software
Composition Group of the Uni-
versity of Bern, Stèphane Ducasse
is senior researcher (Directeur
de recherche) at INRIA. His
fields of interests are: dynamic
languages, reflective systems,
reengineering of object-oriented
applications, program visualiza-
tion, modeling, maintenance. He
is involved in the develop-
ment of Squeak an open-source

Smalltalk and he is the president of the European Smalltalk User Group.
He can be reached at E-mail.: stephane.ducasse@inria.fr.

Tudor Girba attained the Ph.D.
degree in 2005, and since then he
is working as senior researcher at
the Software Composition Group,
University of Berne, Switzerland.
His interests lie in the area of soft-
ware engineering with focus on
software understanding. He is one
of the main architects and devel-
opers of the Moose reengineering,
and he participated in the devel-
opment of several other reverse
engineering tools and models. He
authored more than 40 technical
papers and he participated in more

than 10 program committees of international conferences and work-
shops. He is the president of the Moose Association and is member in
the Executive Board of CHOOSE (the Swiss Object-Oriented Software
Engineering society). He offers consulting services in the area of soft-
ware engineering, reengineering and quality assessment. He also blogs
on the topic of presentation and modeling.

Adrian Kuhn is a doc-
toral candidate in computer sci-
ence at University of Bern.
He is the main architect and
developer of Fame, the meta-
modeling framework presented
in this publication. His research
interests include programming
language design, software evo-
lution, and tool building. He
received his MSc in computer
science from the University of
Bern. Contact him at E-mail.:
akuhn@iam.unibe.ch.

Lukas Renggli is a doctoral
candidate in computer science
at the University of Bern. His
research interests include pro-
gramming languages, software
design, domain specific languages,
meta-programming, and web
application development. He
received his MSc in computer
science from the University of
Bern. Contact him at Software
Composition Group, Institut für
Informatik, Neubrückstrasse 10,
3012 Bern, Switzerland, E-mail.:
renggli@iam.unibe.ch.

123

mailto:stephane.ducasse@inria.fr
mailto:akuhn@iam.unibe.ch
mailto:renggli@iam.unibe.ch

	1
	2 The need of executable meta-language
	3 Smalltalk in a nutshell
	4 Integrating a self-described EMOF in smalltalk
	4.1 The triangle between instance, class and description
	4.2 Declaration of meta-descriptions in source code
	4.3 Extending the triangle with executability

	5 Building meta-aware infrastructural tools
	5.1 Importing and exporting models
	5.2 Importing other meta-models
	5.3 Inspector

	6 Moose: a dedicated meta-described environment
	7 Evaluation and discussion
	7.1 Language features necessary to develop an executable meta-environment
	7.2 Code-generation versus runtime meta-interpretation
	7.3 Discussion about causal connection
	7.4 Tradeoffs
	7.5 Related work and applicability

	8 Conclusion
	Acknowledgments

