
Noname manuscript No.
(will be inserted by the editor)

Generating Instance Models from Meta Models
Karsten Ehrig1, Jochen M. Küster2, Gabriele Taentzer3

1 Department of Computer Science, University of Leicester, United Kingdom, e-mail: : karsten@mcs.le.ac.uk
2 IBM Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland, e-mail: : jku@zurich.ibm.com
3 Department of Computer Science, Philipps-University Marburg, Germany, e-mail: : taentzer@mathematik.uni-marburg.de

Received: date / Revised version: date

Abstract Meta modeling is a wide-spread technique to de-
fine visual languages, with the UML being the most promi-
nent one. Despite several advantages of meta modeling such
as ease of use, the meta modeling approach has one disad-
vantage: It is not constructive, i.e., it does not offer a direct
means of generating instances of the language. This disad-
vantage poses a severe limitation for certain applications. For
example, when developing model transformations, it is desir-
able to have enough valid instance models available for large-
scale testing. Producing such a large set by hand is tedious.
In the related problem of compiler testing, a string grammar
together with a simple generation algorithm is typically used
to produce words of the language automatically. In this paper,
we introduce instance-generating graph grammars for creat-
ing instances of meta models, thereby overcoming the main
deficit of the meta modeling approach for defining languages.

Key words meta model, UML, graph grammar, instance
generation

1 Introduction

With models expressed in the Unified Modeling Language
(UML) [35] becoming widely used in software engineering,
also the meta modeling approach to define the syntax of mod-
eling languages has gained a wide acceptance: Commonly, a
meta model is designed which defines the abstract syntax of
the language in a declarative way. Instantiation of the meta
model then yields a concrete model.

The meta modeling approach has several advantages, one
of them being that a visual meta model allows a quick grasp
of the concepts being defined. Further, the meta modeling ap-
proach is also beneficial when it comes to defining complex
modeling languages, consisting of several individual models.
Nevertheless, there exists also one disadvantage: Whereas
constructing words of a language defined by a string gram-
mar can easily be done by applying grammar derivations,

meta model instantiation is hard to operationalize, due to the
declarative form of a meta model.

In common applications of the UML, this does not pose a
problem because the process of instantiation is performed by
the software engineer when constructing models. However,
there are a number of emerging applications where firstly an
approach is needed for generating a large set of instances au-
tomatically and secondly the generation process must also be
described explicitly. In other words, instead of the declara-
tive meta model an equivalent operational description of the
language defined by the meta model is required.

Important applications of an operational description of
the language defined by a meta model include automated test-
ing of model transformations and code generators as well
as testing of model debuggers [27]. Model driven architec-
ture [34] favors a widespread usage of model transformations.
The quality of model transformations is thus crucial for their
successful and widespread usage and needs to be validated
by automated testing [29,32]. In the related problem of com-
piler testing [12], the generation of a large amount of models
from a context-free grammar is common practice and a key
issue in being able to test compilers automatically. For test-
ing model transformations and code generators, a large set of
automatically generated instance models is required but cur-
rently it is unclear how this large set can be obtained. A large
set of automatically generated instance models is also benefi-
cial as input for model debuggers for ensuring the quality of
the model debugger itself, i.e., for testing that the model de-
bugger can handle all valid models. Further, automatic editor
generation for domain specific languages may also depend on
an operational description of the language.

Graph grammars [14] provide a constructive, well-studied
approach to language definition with a formal foundation that
allows to prove important properties. In model-driven engi-
neering, graph transformation has been used to provide a for-
mal foundation for models which then enables to prove termi-
nation and confluence of model transformations [28, 39], to
formalize model refactoring operations [31] or for formally
specifying model interpreters [26]. One key characteristic of

graph grammars is that they provide an operational descrip-
tion of a language.

Up until now, the relationship between meta models and
graph grammars has not been studied in depth, but started
in [10]. In this paper, we propose to derive an instance-
generating graph grammar from a meta model in order to ob-
tain an operational description of the language defined by the
meta model. This work of translating the declarative specifi-
cation of the language into an operational one can be seen as
a foundational technique within model engineering because
it will allow the adoption of techniques well-known for lan-
guages defined by grammars also to languages defined by a
meta model and thereby closes an important technology gap.

In order to achieve this, the instance-generating graph
grammar derived from a meta model has to generate all pos-
sible instances of the meta model and should not generate
any model that is not an instance of the meta model. In terms
of graph grammar derivation, one has to ensure that every
model that is created by a derivation of the graph grammar is a
valid instance of the meta model and further that for every in-
stance of the meta model there exists a derivation in the graph
grammar. This completeness of the instance-generating graph
grammar is important for the applications of the instance-
generating graph grammar: For model transformation testing
because it allows a complete coverage of all possible inputs.
For editor generation, it ensures that the language defined by
the meta model is indeed the one supported by the editor.

In this paper, we present our approach for automatic
derivation of instance-generating graph grammars from meta
models. The paper is based on our previous work [20] but
elaborates a new section for tool support. Furthermore, it ex-
tensively discusses further extensions of this approach.

The paper is organized as follows: We first introduce meta
models in Section 2 and graph transformation in Section 3.
In Section 4, we explain how an instance-generating graph
grammar can be derived for a meta model containing all
main features. OCL constraints are not yet considered dur-
ing this generation process, but have to be checked after-
wards until now. Section 5 contains the proof that the derived
graph grammar generates exactly those instances induced by
the given meta model. As a consequence, the concept of the
instance-generating graph grammar allows to show formally
the completeness of the generated instances. The construc-
tion of an instance generating graph grammar from the meta
model is automated, the tool support is described in Section 6.
In Section 7 we consider extensions of our approach. We con-
clude by a discussion of related and future work.

2 Metamodels with OCL-Constraints

Visual languages such as the UML [35] are commonly de-
fined using a meta modeling approach. In this approach, a
visual language is defined using a meta model to describe the
abstract syntax of the language. A meta model can be consid-
ered as a class diagram on the metalevel, i.e. it contains meta
classes, meta associations and cardinality constraints. Further

State

SimpleState

StateVertex

InitialState

Transition

StateMachine

CompositeState

source
target

Event

1

1

*

*

0..1

*
0..*

FinalState

Action

0..1

0..1

1

0..1 0..1

top

outgoing
incoming

effect

trigger

{abstract}

{abstract}

sub-
Vertex

Figure 1 Meta model for statecharts

features include special kinds of associations such as aggre-
gation, composition and inheritance as well as abstract meta
classes which cannot be instantiated.

The instance of the meta model must conform to the car-
dinality constraints. In addition, instances of meta models
may further be restricted by the use of additional constraints
specified in the Object Constraint Language (OCL) [36].

Figure 1 shows a slightly simplified statechart meta model
(based on [35]) which will be used as running example. A
state machine has one top CompositeState. A Composite-
State contains a set of StateVertices where such a State-
Vertex can be either an InitialState or a State. Note that
StateVertex and State are modeled as abstract classes. A
State can be a SimpleState, a CompositeState or a Final-
State. A Transition connects a source and a target state. Fur-
thermore, an Event and an Action may be associated to a
transition. Aggregations and compositions have been sim-
plified to an association in our approach but they could be
treated separately as well (this would lead to additional rules
in the instance-generating graph grammar, see below). For
clarity, we hide association names, but show only role names
in Figure 1. The association names between classes StateV-
ertex and Transition are called source and target as corre-
sponding role names. The names of all other associations are
equal to their corresponding role names. Since we want to
concentrate on the main concepts of meta models here, we do
not consider attributes in our example. Having an instance at
hand, it is straight forward to generate random attribute val-
ues in a post processing step.

The set of instances of the meta model can be restricted
by additional OCL constraints. For the simplified statecharts
example at least the following OCL constraints are needed:

1. A final state cannot have any outgoing transitions:
context FinalState inv: self.outgoing->size()=0

2. A final state has at least one incoming transition:
context FinalState inv:
self.incoming->size()>=1

3. An initial state cannot have any incoming transitions:
context InitialState inv: self.incoming->size()=0

2

4. Transitions outgoing InitialStates must always target a State:
context Transition inv:
self.source.oclIsTypeOf(InitialState) implies
self.target.oclIsKindOf(State)

5. Well-formedness rule for acyclic subvertex relations:
context CompositeState inv:
not self.allSubVertices()->includes(self)
with additional operation:
CompositeState::allSubVertices():Set(StateVertex)
allSubVertices = subvertex->
union(subvertex->collect(v | v.allSubVertices()))

The complexity of generating instances of meta mod-
els crucially depends on the language elements used within
meta models. For simple meta models without any constraints
(not even multiplicity constraints) and inheritance (general-
ization/specialization), instantiation is rather straightforward
by creating instances of metaclasses and associations. How-
ever, meta models as commonly used in language specifica-
tion documents such as [35] heavily make use of multiplic-
ity and OCL constraints as well as inheritance and abstract
classes. For instantiation of such meta models, more sophisti-
cated techniques are needed. In particular, there is a need for
a systematic derivation of instances of meta models. In the
following, we will describe the concepts of graph transfor-
mation which will represent the formal basis of our approach
(inspired by the use of context-free grammars for deriving
textual languages).

3 Graph Transformation

In this section we present typed graph transformations with
inheritance (see [10]), which will be the basis for the for-
mal background for Instance Generating Graph Grammars
(IGGG) in Section 5.

In object-oriented modelling, graphs can be used at two
levels: the type level and the instance level. This typing
concept has been described by typed graphs [14], where
a fixed type graph serves as abstract representation of the
meta model. As in object-oriented modelling, types can be
attributed and structured by an inheritance relation. Types
should be divided into abstract types which cannot have in-
stances and concrete types. Instances of a type graph with in-
heritance (TGI) are object graphs equipped with a structure-
preserving mapping to the type graph. A meta model can thus
be represented by a type graph with inheritance plus a set of
constraints over this type graph expressing multiplicities.

A graph has nodes, and edges, where each edge links two
nodes. We consider directed graphs, i.e. every edge has a dis-
tinguished start node (its source) and end node (its target). A
type graph defines a set of types, which is used to assign a
type to the nodes and edges of a graph. A type graph with in-
heritance is a type graph with a distinguished set of abstract
nodes and inheritance relations between the nodes. The in-
heritance clan of a node represents all its sub nodes.

Definition 1 (type graph with inheritance) A type graph
with inheritance is a triple TGI = (TG , I, Abs) consisting

of a type graph TG = (TGV , TGE , srcTG, tgtTG) (with a
set TGV of nodes, a set TGE of edges, source and target
functions srcTG, tgtTG : TGE → TGV), an acyclic inher-
itance relation I ⊆ TGV × TGV , and a set Abs ⊆ TGV ,
called abstract nodes. For each x ∈ TGV , the inheritance
clan is defined by clanI(x) = {y ∈ TGV | (y, x) ∈ I∗},
where I∗ is the reflexive-transitive closure of I .

State

SimpleState

StateVertex

InitialState

Transition

StateMachine

CompositeState

source
target

Event

FinalState

Action

top

effect

trigger
sub-
vertex

{abstract}

{abstract}

Figure 2 Sample typegraph derived from Figure 1

Figure 2 shows a sample type graph derived from Fig-
ure 1. Please note that associations are replaced by labeled
directed edges where one role name is taken over as edge la-
bel. The arrow direction depends on which role name is taken
over, i.e. points to the end of that role name.

Graphs are related by graph morphisms, which map the
nodes and edges to those of another graph, compatible with
source and target mappings.

A graph can be typed over the type graph with inheri-
tance by a pair of functions, from nodes to node types and
from edges to edge types, respectively. This pair of functions
does not constitute a graph morphism in general, but takes
the inheritance relation into account. Typing is realized as in
object-oriented modelling. That means for example that all
instance nodes have to be typed by non-abstract type nodes.
The resulting morphism is called clan morphism; it uniquely
characterizes the type morphism into the flattened type graph.

Definition 2 (clan morphism) Let TGI = (TG , I, Abs)
with TG = (TGV , TGE , srcTG, tgtTG) be a type graph
with inheritance. A clan-morphism ctp : G → TGI from
a graph G = (GV , GE , srcG, tgtG) to TGI is a pair ctp =
(ctpV : GV → TGV , ctpE : GE → TGE) such that for all
e ∈ GE the following holds:

– ctpV ◦ srcG(e) ∈ clanI(srcTG ◦ ctpE(e)) and
– ctpV ◦ tgtG(e) ∈ clanI(tgtTG ◦ ctpE(e)).

(G, ctp) is called a clan-typed graph.

Figure 3 shows a sample instance graph typed over the
graph in Figure 2 where the typing relations are indicated by
dashed arrows.

The main idea of graph grammars and graph transfor-
mation is the rule-based modification of graphs where each

3

State

SimpleState

StateVertex

InitialState

Transition

StateMachine

CompositeState

source
target

Event

FinalState

Action

top

effect

triggersub-
vertex

{abstract}

{abstract}

:InitialState

:CompositeState

:StateMachine

top

:FinalState

subVertexsubVertex

Figure 3 Sample instance graph typed over Figure 2 (typing rela-
tions are indicated by dashed arrows).

application of a graph transformation rule leads to a graph
transformation step. The core of a graph transformation rule
is a pair of graphs, called left-hand side and right-hand side.
Roughly spoken, applying a rule means to find a match of the
left-hand side in the source graph and to replace the image of
the left-hand side by a copy of the right-hand side leading to
the target graph of the graph transformation.

For controlling a rule application, negative applica-
tion conditions NAC(x) and atomic application conditions
P (x,∨i∈Ixi)) can be defined which are needed in Section 4.
Although NAC(x) is a special case of P (x,∨i∈Ixi)) with
I = ∅, we introduce both kinds of application conditions, due
to a clearer definition of instance generating rules. Roughly
spoken, a negative application condition can be considered
as a graph structure that must not be present in the source
graph. Formally, a match is defined by a matching morphism
m : L → G that embeds the left-hand side L of a rule into
the source graph G.

Definition 3 (application condition) A negative application
condition is of the form NAC(x), where x : L→ X is an in-
jective morphism. A morphism m : L→ G satisfies NAC(x)
if there does not exist an injective morphism p : X → G with
p ◦ x = m:

L
x //

m
��?

??
??

??

=

X

p
|~
~~~

~~~~~
~

G

An atomic application condition is of the form
P (x,∨i∈Ixi) where x : L → X and xi : X → Ci with
i ∈ I are injective morphisms. A morphism m : L → G sat-
isfies P (x,∨i∈Ixi) if for all injective morphisms p : X → G
with p ◦ x = m there does exist an i ∈ I and an injective

morphism qi : Ci → G with qi ◦ xi = p:

L
x //

m
��?

??
??

??
?

=

X
p

��~~
~~

~~
~~

xi //

=

Ci

qi

uujjjjjjjjjjjjjjjjjjjj

G

Remark 1 (partial morphism) For abbreviation proposes the
morphism x : L → X is sometimes noted as a partial mor-
phism only. Without loss of generality x could be extended to
a total morphism by adding missing nodes and edges of L to
X .

Definition 4 (rules) A rule typed over a type graph TGI =
(TG , I, Abs) with inheritance is given by p = (L l← K r→
R,Ap), where L, K,R are clan-typed graphs, l and r are
type-preserving injective graph morphisms, ctp−1

R (Abs) ⊆
r(KV), and Ap is a set of application conditions of the form
NAC(x) or P (x,∨i∈Ixi) as defined in Def. 3.

Remark 2 (type-refining morphism) Between clan-typed
graphs we use type-refining morphisms (see also Def. 5
in [37]) where a node with type t can be mapped to a
node with a type in clan(t). In the following, we call a
type-refining morphism just morphism. If each node is
mapped to a node with the same type, the corresponding
morphism is called type-preserving. Intuitively, type-refining
morphisms are needed to apply the well developed theory for
typed graphs also for typed graphs with inheritance.

Definition 5 (rule matching and application) Given a rule
p as in Def. 4 and a clan-typed graph (G, ctpG), then m is a
match of p in G if

– m is an injective morphism of the left-hand side L of the
rule p = (L l← K r→ R,Ap) as defined in Def. 4 in the
graph G;

– tK(x1) = tK(x2) for tK = ctpG◦m◦l and x1, x2 ∈ KV

with r(x1) = r(x2);
– m satisfies all simple negative application conditions and

all atomic application conditions in Ap.

Given a match m, a direct derivation (G, ctpG)
p,m
=⇒

(H, ctpH) exists if there is a span of graph morphisms
G←D→H and a co-match m∗ : R→H of p in H where
(1) and (2) are pushouts in the category of GraphsTG as
defined in [18]:

L

m

��
(1)

K

(2)

loo

k

��

r // R

m∗

��
G D

foo g // H

Given a rule set R, (G, ctpG) ∗⇒R (H, ctpH) is a fi-
nite sequence of an arbitrary number of direct derivations
by rules of R. A derivation (G, ctpG) ∗⇒R (H, ctpH) termi-
nates, if 6 ∃r ∈ R : (H, ctpH)⇒r (H ′, ctpH′).

4

Rules can be distributed over different layers. In each
layer, the rules are applied for as long as possible before go-
ing to the next layer.

Example 1 (rule with application conditions) Figure 4
shows the application of the rule InsertStateVer-
tex source Transition taken from the graph grammar
derivation rule set in Figure 10 (which will be described in
Section 4).

1:StateVertex

source

2:Transition2:Transition

1:StateVertex

2:Transition

1:StateVertex

L K R

1:InitialState

2:Transition

1:InitialState

2:Transition

source

1:InitialState

2:Transition

G D H

3:SimpleState 3:SimpleState 3:SimpleState

targettargettarget

Figure 4 Application of rule InsertStateVertex source Transi-
tion to connect :InitialState via the source edge with :Transition

The abstract node 1:StateVertex in the left-hand side L
is mapped to the concrete node 1:InitialState in the graph
G, indicated by the same number in front of the node names.
2:Transition is mapped respectively. All remaining parts of
G, i.e. 3:SimpleState and the target edge, are preserved
during rule application. Moreover 1:InitialState and 2:Tran-
sition are preserved since they are contained in the interme-
diate graphs K and D. In the right-hand side R the source
edge is inserted between both nodes resulting in the target
graph H . The advantage of the abstract node 1:StateVertex
is that the rule has to be defined only once to be applicable to
all concrete nodes typed over StateVertex (see Figure 3 for
the typing relations).

Figure 5 shows two application conditions for the sample
rule. A rule can be applied only if the part of the rules left-
hand side L, identified with the NAC graph, is not contained
in the source graph G. The first negative application condition
NAC1 ensures that the rule can only be applied if 1:StateV-
ertex and 2:Transition are not connected via a source edge,
so the rule could only be applied once. The second nega-
tive application condition NAC2 ensures that 2:Transition is
not connected to another :StateVertex in the current graph.
1:StateVertex has been added to NAC2 to fulfill the con-
dition that the morphism x : L → NAC2 has to be total.
Please note, that for abbreviation purposes x may be noted as
a partial morphism, i.e. 1:StateVertex may be omitted.

2:Transition

1:StateVertex

2:Transition

:StateVertex

NAC2 L

source

2:Transition

1:StateVertex

NAC1

source

1:InitialState

2:Transition

G

3:SimpleState

target

1:StateVertex

Figure 5 Application conditions NAC1 and NAC2 of rule Insert-
StateVertex source Transition

4 Generating Instances by Graph Grammars

In this section, we introduce the idea of an instance-
generating graph grammar that allows one to derive instances
of an arbitrary meta model in a systematic way. The corre-
sponding graph grammar requires (1) a start graph that will
be the empty graph, (2) a type graph that is obtained by con-
verting the meta model class diagram to a type graph and (3)
graph grammar rules which are described below.

We use the concept of layered graph grammars [16] to or-
der rule applications. Layer 1 rules create instances of each
class. To generate all possible instances we have to allow an
arbitrary number of applications of these rules, meaning that
Layer 1 does not terminate and has to be interrupted by user
interaction or after a random time period. Alternatively, we
could specify in advance how many instances of each class
we allow and terminate automatically once these bounds have
been reached. Layer 2 rules deal with generating links cor-
responding to associations with at least one 1-multiplicity.
Those rules have to be applied as long as possible to ensure
the multiplicity constraints, requiring that rule application in
this layer has to terminate. Layer 3 creates links correspond-
ing to associations with 0..n-multiplicities. The rules in this
layer can be applied arbitrarily often because these links are
optional.

We use abstract node types (corresponding to abstract
classes) leading to the concept of abstract rules. An abstract
rule contains at least one node of abstract type. For each con-
crete subtype of the abstract type this induces a corresponding
rule.

Given a concrete meta model, assembling the rules de-
rived, the type graph created and the empty start graph leads
to an instance-generating graph grammar for this meta model.
The rules of the instance-generating graph grammar are deter-

5

mined by the occurrence of specific meta model patterns: The
idea is to associate to a specific meta model pattern a graph
grammar rule that creates an instance of the meta model pat-
tern under certain conditions. In the following, we describe
the rules that we derive for common meta model patterns.

Instance-generating rules: Layer 1 of any instance-
generating graph grammar (see pattern p0 in Figure 6) con-
tains rules of the form createE’ where E’ is replaced by the
name of any non-abstract class, so E′ ∈ clan(E) . The meta
model pattern for this rule is simply a class. For a concrete
meta model, we will get such a create rule for each non-
abstract class within the meta model, allowing us to create
an arbitrary number of instances of all non-abstract classes.

We have three meta model patterns for the rules in
Layer 2, corresponding to the three possible multiplicity con-
straints (see Figure 7 and 8). The first rule for each pattern
creates a link between existing instances. The second rule for
each pattern creates a link together with an instance of an
object. In general, we use NACs to ensure that the created
link does not violate the multiplicity constraints (e.g. the two
instances are not already connected by such a link, or the in-
stance of A is not already connected to an instance of E).

To ensure the to one multiplicity on the specified associa-
tion ends insertE’ a ANewObj resp. insertE’ a ANewObj2
creates a new instance of any concrete E’ ∈ clan(E) resp.
A’ ∈ clan(A) if no application condition holds. In case of a 1
to * relation (see pattern p1) a new instance of E’ ∈ clan(E)
is created if no concrete instance of E is present, which is en-
sured by NAC1. In case of a 1 to 0..1 or 1 to 1 relation (see
pattern p2 and p3) the rule can only be applied if any match
of an instance of E is already connected to an instance of A,
which is ensured by the application condition. NAC2 of the
rules insertE’ a ANewObj resp. insertE’ a ANewObj2 re-
quires that the instance of A is not connected to an instance
of E yet.

We also have three meta model patterns for the rules of
Layer 3 (corresponding to the three possible multiplicity con-
straints) (see Figure 9). The rules for these patterns create
links between existing instances. The NACs ensure, that the
created link does not violate the upper multiplicity constraints
as in the first rules of the corresponding pattern in Layer 2.
The graph grammar derivation rules in layer 3 can be applied
arbitrarily often, they are terminating as described above.

Not shown in the figures is another rule set where all
edges are redirected, i.e., their direction is reversed. These
complementary rules are needed for all rules in Figure 7 and
the second rule in Figure 9 only, since the associations have
different multiplicities at their ends.

Generating Statechart Instances: We now discuss an
instance-generating graph grammar for the meta model of
statecharts (see Figure 1). For brevity, we do not show the
details of all rules. The example rules shown in Figure 10
- 12 construct a simple instance graph consisting of a state
machine with its top CompositeState containing three state
vertices and two transitions between them. In the application

conditions shown in Figures 10 - 12 the node types are abbre-
viated (CS for CompositeState etc.).

First, we get Layer 1 rules for all concrete classes occur-
ring in the class diagram. These are createStateMachine,
createCompositeState, createSimpleState, createFinal-
State, createInitialState, createTransition, createEvent,
and createAction.

For association source between StateVertex and Tran-
sition (corresponding to an instance of pattern p1), we de-
rive four rules: one rule creates a link source between an
existing StateVertex and an existing Transition. Further, for
each concrete class that inherits from class StateVertex one
rule is derived that creates the StateVertex, an InitialState, a
CompositeState, SimpleState or a FinalState, and the link
source. Note that the abstract class StateVertex could be
matched to any of its concrete subclasses InitialState, Com-
positeState, FinalState, and SimpleState. For association
target between StateVertex and Transition, similar rules are
derived.

For association top between StateMachine and Com-
positeState, an instance of pattern p2, we derive the corre-
sponding two rules. One of them is shown in Figure 10, cre-
ating a CompositeState to a StateMachine if each other
CompositeState is bound and the StateMachine is not al-
ready connected to a top CompositeState.

We further get instances of pattern p4 (association be-
tween Transition and Action) and p5 (association between
Transition and Event as well as association between Com-
positeState and StateVertex).

5 Formal Background for Instance Generating Graph
Grammars

In this section we present the formal background for Instance
Generating Graph Grammars (IGGG) based on the formal
theory of typed graph transformations with inheritance (see
[10]). As the main result of this paper, we present the equiv-
alence of instance sets generated by an instance-generating
graph grammar on the one hand, and induced by a type graph
with multiplicities on the other hand.

Definition 6 (multiplicities) A multiplicity is a pair [i, j] ∈
N × (N ∪ {∗}) with i ≤ j or j = ∗. The set of multiplicities
is denoted Mult . The special value ∗ indicates that the max-
imum number of nodes or edges is not constrained. For an
arbitrary finite set X and [i, j] ∈ Mult , we write |X| ∈ [i, j]
if i ≤ |X| and either j = ∗ or |X| ≤ j.

Now we define an induced graph language over a type
graph with multiplicities TGImult. As usual, we use multi-
plicities to decorate the edges of type graphs. The multiplic-
ities express the number of incoming, respectively outgoing
edges for each target, respectively source instance.

Definition 7 (Type graph with multiplicities) A type graph
with multiplicities (see [37]) is a tuple TGmult =

6

Meta Model Pattern Grammar Rule Application ConditionsLayer

:E’
createE'1

Ep0 Arbitrarily often

Figure 6 Rules for graph grammar derivation: Layer 1

A

E

2:A

1:E1:E

*

Meta Model Pattern Grammar Rule Application Conditions

1

p1

Layer

2

2:A 2:A

:E

2:A

1:E

NAC1 NAC2

insertE_a_A

1:A

:E’

1:A

:E

NAC1
insertE'_a_ANewObj

a
a a a

a

A

E

2:A

1:E1:E

0..1

1

p22

2:A

insertE_a_A

2:A

:E’

2:A

insertE'_a_ANewObj

a
a

a

2:A

:E

:A

1:E

NAC1 NAC2

2:A

1:E

NAC3

a a a

1:E

Cond

:A

1:E

a

1:A

:E

NAC2

a

2:A

:E

NAC2

a

Figure 7 Rules for graph grammar derivation: Layer 2

(TGI , msrc , mtgt) consisting of a type graph with inheri-
tance TGI and additional functions msrc , mtgt : TGI E →
Mult , called edge multiplicity functions.

Considering the meta model in Figure 1, it can be formal-
ized to a type graph with multiplicities in a straightforward
way. The node types are given by classes, the edge types by
associations. In contrast to the associations, edge types have
to be always directed. For each edge type a direction can be
arbitrarily chosen. Figure 13 shows the resulting type graph
with multiplicities derived from Figure 1.

Definition 8 (TGImult-induced graph language) Given a
type graph TGImult with multiplicities as defined in Def. 7,
the induced graph language is defined by:
L(TGImult) =
{(G = (GV , GE , srcG, tgtG), ctpG : G→ TGI) |
∀e ∈ TGIE ∧ ∀v ∈ ctp−1

G (t) with
t ∈ clan(src(e)) : |ctp−1

G (e) ∩ src−1(v)| ∈ mtgt(e) and

State

SimpleState

StateVertex

InitialState

Transition

StateMachine

CompositeState

source
target

Event

FinalState

Action

top
trigger

sub-
vertex

{abstract}

{abstract}

1

1

*

*

0..1

*
0..*

0..1

0..1

1

0..1 0..1
effect

Figure 13 Type graph with multiplicities derived from Figure 1

7

A

E

2:A

1:E1:E

1

Meta Model Pattern Grammar Rule Application Conditions

1

p3

Layer

2

2:A 2:A

:E

:A

1:E

NAC1 NAC2

insertE_a_A

2:A

:E’

2:A

insertE'_a_ANewObj

2:A

1:E

NAC3

a a a a a

a

:A’

1:E1:E

insertE_a_A'NewObj2

a

1:E

Cond

:A

1:E

a

2:A

:E

NAC2

a

2:A

Cond

2:A

:E

a

:A

1:E

NAC2

a

Figure 8 Rules for graph grammar derivation: Layer 2

Meta Model Pattern Grammar Rule Application ConditionsLayer

A

E

2:A

1:E1:E

0..1

0..1

p43

2:A

insertE_a_A

A

E

2:A

1:E1:E

*

0..1

p53

2:A 2:A

:E

2:A

1:E

NAC1 NAC2

insertE_a_A

2:A

:E

:A

1:E

NAC1 NAC2

2:A

1:E

NAC3

a a a a a

a a a a

A

E

*

*

p63

2:A

1:E1:E

2:A 2:A

1:E

NAC
insertE_a_A

a a a

Arbitrarily often

Arbitrarily often

Arbitrarily often

Figure 9 Rules for graph grammar derivation: Layer 3

8

Grammar Rule Example GraphLayer

:StateMachine
createStateMachine1

:StateMachine

Application Conditions

createCompositeState, createInitialState,
createSimpleState, createTransition,
createFinalState, createEvent, createAction

:SimpleState

:InitialState

:StateMachine

:Transition

:Transition

1
:Event

:Action

:SimpleState

:InitialState

:StateMachine

:Transition :Transition

2:T

:SV

2:T

1:SV

NAC1 NAC2

source source

1:StateVertex

source

2:Transition2:Transition

1:StateVertex

InsertStateVertex_source_Transition

source source

2

InsertInitialState_source_TransitionNewObj,
InsertCompositeState_source_TransitionNewObj,
InsertFinalState_source_TransitionNewObj,
InsertSimpleState_source_TransitionNewObj

:Event :Action

:FinalState

:FinalState

Figure 10 Example grammar rules 1

Grammar Rule Example GraphLayer Application Conditions

1:StateVertex

target

2:Transition2:Transition

2 InsertStateVertex_target_Transition

:SimpleState

:InitialState

:StateMachine

:Transition :Transition
source sourcetarget

:FinalState

target

InsertInitialState_target_TransitionNewObj,
InsertCompositeState_target_TransitionNewObj,
InsertSimpleState_target_TransitionNewObj,
InsertStateVertex_target_Transition

:Event :Action

1:StateVertex

2:T

:SV

2:T

1:SV

NAC1 NAC2

target target

:CompositeState

top

1:StateMachine1:StateMachine

2

InsertCompositeState_top_StateMachineNewObj :CompositeState

:StateMachine
top

2:CS

Cond1

:SM

2:CS

top

1:SM

:CS

NAC2

top

InsertCompositeState_top_StateMachine

:SimpleState

:InitialState

:Transition :Transition
sourcetarget

:FinalState

target

:Event :Action

source

Figure 11 Example grammar rules 2

9

Example Grammar Rule Example GraphLayer Application Conditions

:SimpleState

:InitialState

:CompositeState

:StateMachine

:Transition
:Transition

top

source
source

target

:FinalState

target

subVertex
subVertex

subVertex

3 InsertTransition_effect_Action

3 InsertTransition_trigger_Event

:Event :Action

1:Transition

effect

2:Action2:Action

1: Transition

trigger effect

1:T

effect

:A

NAC1 NAC2 NAC3

:T

2:A

1:T

2:A

effect effect

2:SV

:CS

2:SV

1:CS

NAC1 NAC21:CompositeState

subVertex

2:StateVertex2:StateVertex

1:CompositeState

InsertCompositeState_subVertex_StateVertex3

subVertex
subVertex

Figure 12 Example grammar rules 3

∀e ∈ TGIE ∧ ∀v ∈ ctp−1
G (t) with

t ∈ clan(tgt(e)) : |ctp−1
G (e) ∩ tgt−1(v)| ∈ msrc(e)},

where ctpG is a clan morphism.

Example 2 Considering the example graph in Figure 12, the
multiplicities for edge type subvertex are fulfilled: For the
only composite state c |ctp−1(subvertex) ∩ src−1(c)| =
3 ∈ [0, ∗], since three edges of type subvertex start in c. For
all state vertices s |ctp−1(subvertex) ∩ tgt−1(s)| ≤ 1 ∈
[0, 1], since each s has an incoming edge of type subvertex.
The composite state is not subvertex of any other vertex and
all other state vertices are subvertices of the only composite
state.

Having formalized a meta model given by a class dia-
gram through a type graph with multiplicities, we are now
ready to define the language of an instance-generating graph
grammar. Based on a given type graph with multiplicities, we
mainly formalize the set of rules needed for instance gener-
ation. The rules are already given in Sec. 4. Please note that
rules insertE a A and insertE’ a ANewObj differ depend-
ing on the source and target multiplicities of the correspond-
ing patterns.

Since all given rules are intended to be matched injec-
tively, they do not capture the case of patterns with loops as
edge types, which would be translated to loops in the type
graph. That’s why loops are excluded in the following.

Definition 9 (instance-generating graph grammar and
language) Given a type graph TGImult with multiplicities as
in Def. 7 without loops, an instance generating graph gram-
mar is denoted by IGGG = (TGI, ∅, R), where R is the
union of the following sets of rules. The rules are depicted in
Figures 6 - 9 and are formalized in the obvious way according
to Def. 4.

– R1 = {createE’ | ∀E′ ∈ TGIN ∧ E′ 6∈ Abs} with rules
createE’ as in Figure 6

– R2 = R21 ∪R22 ∪R23 with
R21 = {insertE a A | ∀A, E ∈ TGIN , a ∈ TGIE :
with
(msrc(a) = [1, 1] ∨mtgt(a) = [1, 1])}
R22 = {insertE’ a ANewObj | ∀A, E ∈ TGIN , a ∈
TGIE : with
(msrc(a) = [1, 1] ∨mtgt(a) = [1, 1]) ∧E′ ∈ clan(E) ∧
E′ 6∈ Abs}
R23 = {insertE a A’NewObj2 | ∀A, E ∈ TGIN , a ∈
TGIE : with
(msrc(a) = [1, 1] ∨mtgt(a) = [1, 1]) ∧A′ ∈ clan(A) ∧
A′ 6∈ Abs}
with rules insertE a A, insertE’ a ANewObj, and in-
sertE’ a ANewObj2 as in Figure 7 - 8

– R3 = {insertE a A | ∀A, E ∈ TGIN , a ∈ TGIE

with msrc(a) 6= [1, 1] ∧ mtgt(a) 6= [1, 1]} with rules
insertE a A as in Figure 9

R is layered, i.e. there is a function rl : R→ N with rl(r) =
i for all r ∈ Ri for i = {1, 2, 3}. Function rl is called rule
layer function.
The generated graph language is defined by the following set
of concrete typed graphs: L(IGGG) = {(G, ctpG) | ∅ ∗⇒R1

(H, ctpH) ∗⇒R2 (K, ctpK) ∗⇒R3 (G, ctpG) ∧ 6 ∃r ∈ R2 :
(K, ctpK)⇒r (K ′, ctpK′)}.

The following lemma states that the rule application of
rules in R2 to any graph created by rules of R1 always termi-
nates. This property is needed in the following theorem.

Lemma 1 (termination of rule layer 2) Given an instance
generating graph grammar IGGG(TGI, ∅, R) where TGI
does not contain any loop as edge type, let L1(IGGG) =
{(H, ctpH) | ∅ ∗⇒R1 (H, ctpH)}. All derivation sequences

10

(H, ctpH) ∗⇒R2 (G, ctpG) with (H, ctpH) ∈ L1(IGGG)
terminate.

Proof See [19].

As one main result the following theorem states that the
instance sets generated by an IGGG and those induced by a
type graph with multiplicities are equal.

Theorem 1 (equality of languages) Given a type graph
TGImult with multiplicities and without loops and an in-
stance generating graph grammar IGGG = (TGI, ∅, R) for
TGImult, we have L(IGGG) = L(TGImult).

Proof See [19].

6 Application and Tool Support

In this section, we describe application and tool support for
instance-generating graph grammars. We first explain how,
given a meta model for a language, an IGGG can be auto-
matically generated, using a model transformation encoded
in the graph transformation tool environment AGG [7, 38].
We then show how the instance-generating graph grammar
for the statecharts meta model can be used to generate arbi-
trary statechart instances. Finally, we discuss the application
of ICGGs to complete incomplete instance models.

6.1 Generation of the IGGG

Automatic derivation of instances from meta models is a
complex task which needs tool support. We have automated
the construction of an IGGG by providing a model transfor-
mation that derives an IGGG from a meta model.

The general procedure is shown in Figure 14. First the ex-
isting meta model (for example the statecharts meta model)
has to be modeled using some CASE tool such as Rational
Software Architect [1], Poseidon [11], OMONDO Eclipse-
UML [2], etc. Nowadays most of these CASE tools support
XMI [6] as export format. Unfortunately, each CASE tool
supports its own variant of XMI such that an exchange of
meta models between different CASE tools is not that easy.
The meta model stored in XMI has to be first translated to
GXL [5] (the standard exchange format for graphs), e.g. by
stylesheet format transformations [4].

The GXL representation of the meta model is imported
into the graph transformation system AGG. Inside the AGG
tool, the model transformation for deriving from an existing
meta model an instance-generating graph grammar is applied.
The result of this translation (3) is a graph representation of
a graph transformation system that has to be converted into
an executable AGG graph grammar. The converter (4) which
translates such a graph into an AGG graph grammar in GGX,
the storing format used by AGG, is written in Java. The Java-
Converter produces the instance generating graph grammar
(5) that creates instance models (6) for the given meta model.
Generated instance models could be exported to GXL and

Meta Model translate to GGX,
import into AGG

Instance of
Meta Model

AGG-GTS

Representation
of IGGG

Java-Converter

IGGG

transformation result

input

output

generates

1 2

3

6 5

4

Figure 14 From meta model to instance generating graph grammar

translated to various XMI formats to be used in other mod-
elling tools.

This tooling support is considered for the example state
machine meta model in the following.

The abstract syntax graph of the state machine meta
model in GXL format shown in Figure 15 is the start graph
for the AGG graph transformation system. The type graph
of the meta graph transformation system shown in Figure 16
contains the source and target type graphs. This meta model
representation is close to the XMI representation, but heavily
simplified.

On the left of Figure 16, the meta model soure type graph
is shown. In our case, a meta model consists of Classes,
binary Associations where each association end (AssEnd)
holds its multiplicity constraints, and inheritance relations be-
tween Classes. An Association is connected to its ends by
s and t-edges correspondingly to source and target and just
keep the reading information. An inheritance relation is rep-
resented by a parent edge from the child class to its parent
class. In addition type Visited and edge type typeGraphPar-
ent are included. Type Visited is needed to keep informa-
tion which classes and associations have already been pro-
cessed, edge type typeGraphParent is needed to store the
inheritance relations in the TypeGraph node of the target
type graph. On the right-hand side of Figure 16 the target
type graph is shown. It describes a graph representation of
a graph transformation system. The root types are RuleSet
and TypeGraph which corresponds to the structural configu-
ration of graph transformation systems. A RuleSet contains
a set of Rules which each have one left-hand side (LHS),
one right-hand side (RHS), and can have negative applica-
tion conditions (NAC). LHS, RHS, and NAC are graphs
which are described by Nodes, possibly with Attributes, and
Edges. The different parts of a rule are presented in an in-
tegrated way, i.e. a node occurring in LHS and RHS is pre-
sented only once but with two edges pointing to their contain-
ers. The TypeGraph contains a set of Nodes (possibly with
Attributes), their inheritance relations (parent edge type),
and Edges.

The rules of the meta graph transformation system trans-
form a source meta model to a target graph grammar. First the

11

Figure 15 Abstract syntax graph of state machine meta model in Figure 1

Figure 16 Type graph of the meta graph transformation system

TypeGraph of the target type graph is generated. The rules
createNodeTypeWithoutBound and createEdgeType in
Figure 17 and 18 create Node nodes in the target type graph
for Class nodes in the source type graph, Edge nodes for As-
sociation nodes and parent edges for parent edges. Please
note that both rules have an additional NAC each (not shown),
checking if the right-hand side pattern can already be found
in the graph. In this case, the corresponding rule has al-
ready been applied at the considered class node (Association
node). A Class is unbound if it has no edge to an association
end with multiplicity 1..1. If it is bound we have to store this

information by an additional edge to the helper node Bound,
these node types are created by similar rules.

Then the rules of the instance generating graph grammar
are built. For each Class node in the source instance a Rule
node with name createObject, an empty left-hand side and
a Node node with the given class name in the right-hand side
is generated, see Figure 19. Again note that this rule has an
additional NAC (which is not shown), checking if the right-
hand side pattern can already be found in the graph. These
rules belong to layer 1.

For each Association node the corresponding rules are
generated as described in Section 4.

12

Figure 17 Creation of Nodes

Figure 18 Creation of Edges to represent associations

The result of this graph transformation is a graph rep-
resentation of a graph transformation system that has to be
converted into an executable AGG graph grammar. The Java
converter translates this graph into an AGG graph grammar
using the AGG application programming interface methods
to read the AGG graph representing the graph transforma-
tion system and to create corresponding rules and types in
AGG accordingly. The result is the instance generating graph
grammar that creates instance models for the given meta
model. The converting tool as well as the complete descrip-
tion and implementation of two examples are available at
http://tfs.cs.tu-berlin.de/agg/MM2GraGra.

6.2 Example generation of a statechart instance

In the following, we will discuss the practical results that we
obtained when generating statechart instances using the gen-
erated IGGG.

Figure 20 shows an instance graph as abstract syntax
graph that has been generated by the IGGG for the state-
chart meta model in Fig. 1. It shows an instance of the class
StateMachine, connected to a top CompositeState which
contains a CompositeState. This CompositeState contains

two FinalStates and one InitialNode. In addition, the in-
stance graph contains a number of Transitions, Events and
Actions. When comparing the instance graph with the meta-
model for statecharts shown in Figure 1 we realize that the
instance graph is indeed an instance of this metamodel. As
such it could be converted to the concrete syntax of state-
charts automatically to contain a concrete statechart.

However, there are two problems. The first problem arises
because the generation has not ensured OCL constraints for-
mulated over the metamodel in Figure 1. For example, in the
UML specification, there is an OCL constraint that forbids
cyclic subvertex dependency. As we do not currently take
OCL constraints into account during the generation, the in-
stance might violate such OCL constraints which results into
an invalid statechart instance. How to deal with OCL con-
straints in the generation is discussed in Section 7.

A second problem arises because in the generation we
do not ensure that certain classes are instantiated more often
than others. Typically, a statechart contains many more sim-
ple states than final states or initial states. For example, the in-
stance graph generated in Figure 20 does not contain a single
SimpleState. This leads to artificial statecharts that might
look odd when comparing them to those statecharts that we
are used to. To restrict the number of possible instances, fur-

13

Figure 19 createObject rule for creating Nodes in the instance graph

Figure 20 1st sample instance graph generated by the IGGG

Figure 21 2nd sample instance graph generated by the IGGG

14

s1

s2 s3
e1/a1

Statechart_0

e1/a2

e2/a3

Figure 22 3rd sample instance graph generated by the IGGG in abstract and concrete syntax

ther constraints may be added to the metamodel. A related
problem that occurs in this context is that instances of several
classes need not be connected to other parts of the generated
instance graph. For example, according to the metamodel in
Figure 1, an instance of the class Event can be connected to
any number of Transition objects, including zero. This leads
to valid instance graphs such as the one shown in Figure 21,
where Actions and Events stay unconnected. This problem
could be resolved by changing the target multiplicities of trig-
ger from 0..1 to 1.

Node multiplicity constraints can be defined to ensure
that reasonable statecharts are generated. These multiplic-
ity constraints can be translated to application conditions as
shown in [37] and would thus be checked during executing
rules of layer 1 and during creation of new objects in layer
2. Multiplicity constraints could also include constraints for
requiring certain relations between the numbers of instances
to hold. For example, it could be defined that each composite
state has to contain at least one simple state. Realistic multi-
plicity constraints could be obtained by mining or harvesting
existing statecharts.

Figure 22 shows a statechart in abstract syntax and in the
corresponding concrete syntax that we generated using AGG,
with the following maximal node multiplicities: At most one
StateMachine, CompositeState, InitialState, at most three
SimpleStates, at most four Transitions, and no FinalState.
For Events and Actions, we allowed at most 3. Figure 23
shows another statechart that we generated with the following

maximal node multiplicities: At most one StateMachine,
CompositeState, FinalState and InitialState, at most three
SimpleStates, and at most four Transitions. For Events and
Actions, we allowed at most five. In both cases, we have im-
posed additional association constraints in order to minimize
unconnected classes such as unconnected events. Note that
for readability reasons we have manually named the state-
charts, states, events and actions.

From these two examples we can conclude that our gener-
ation approach can be adapted to generate typical instances.
The equivalence proof in Section 5 shows that all instances
can be generated by IGGGs, even the odd ones usually not
thought of. In particular the odd ones can prove beneficial
when using generated statecharts for model transformation
testing purposes.

6.3 Completion of statechart instances

Beside instance generation, instance completion may also
play an important role and could be performed with our ap-
proach. This is useful for the generation of instances of a
given meta model containing a specific pattern, e.g., all in-
stances having five transitions, or all instances with exactly
one transition starting at a specific class. So the instances ex-
pected to be particular test cases can be generated for a spe-
cific test suite.

15

s1 s2 s3

e1/a1

Statechart_1

e1/a2 e2 e1/a3

Figure 23 4th sample instance graph generated by the IGGG in abstract and concrete syntax

First it has to be checked whether the given instance is
valid, i.e. if it is typed over the type graph of the instance
generating graph grammar. This is done by importing the in-
stance as start graph into the instance generating graph gram-
mar. AGG checks the typing if the type graph is enabled.

Additionally, the given instance must not violate the up-
per multiplicities given by the meta model. They can be ex-
pressed by graph constraints, what is shown in [37]. AGG
supports graph constraints, each multiplicity can be defined
as atomic constraint, they are combined to one constraint
which is checked.

If the imported instance fulfills the graph constraint and
is typed correctly, it can be completed to a valid meta model
instance by applying the rules of layer 2. Thereafter, we en-
sure that the instance also fulfills the lower multiplicities. The
rules in layer 3 ensure that all valid instances are generated.

7 Extensions of the Approach

So far, we considered a kind of meta models that is restricted
in a certain sense: We have not considered textual properties
such as attributes, and special features such as loop associ-
ations and arbitrary multiplicity constraints. Moreover, well-
formedness rules in form of OCL constraints have not yet

been investigated. In this section, we discuss our approach to
instance generation in the context of these extensions.

7.1 Textual properties

First of all, we have not explicitly dealt with generating at-
tribute values. There are (at least) two possible solutions
for this: One possibility is to perform a postprocessing step
which generates arbitrary attribute values. A set of prede-
fined values is specified for each attribute, to be used within
attribute assignment. Another approach would be to explic-
itly include attributes in the graph grammar rules and as-
sign attributes already while deriving the instance of the meta
model. Also properties of associations like navigation direc-
tions, role names, etc. can also be included in certain at-
tributes.

7.2 Special Features

The instance generating graph grammar has not considered
meta models that contain loop associations, singleton classes
and arbitrary multiplicity constraints. In the following, we
briefly describe how our approach can also deal with meta
models containing such features.

16

Loop associations can be generated by just extending the
rule set of the instance generating graph grammar. Similarly
to the rules in Figure 7 - 9 a new association is added, but
class E is equal to class A. Thus, both instances in each rule
are of type E, or are even the same instance. The negative
application conditions have to be adapted accordingly.

If the meta model contains singleton classes, the create
rule for the corresponding instance has to have an additional
application condition to ensure that at most one instance of
this class is created.

In our approach, we do not allow associations with multi-
plicity constraints of the form m..n with m, n 6= 0, 1 and ∗. If
any such multiplicity constraints would be allowed, it might
happen that certain combinations of multiplicities do not have
legal instances. To find out whether legal instances exist, a
system of inequations has to be solved (see e.g. [30]). If legal
instances exist, they can be generated by similar rules as pre-
sented above. To ensure a minimal number of instances, rules
insertE’ a ANewObj have to adapted such that not only one
A has to exist, but as many instances as the lower bound pre-
scribes. Moreover, to ensure the maximal number of instances
in application conditions, we have to specify them in a nega-
tive application condition which is no problem for small num-
bers, but can become inconvenient for larger numbers. How-
ever, the experience showed that larger numbers in multiplic-
ity constraints are extremely seldom and may be subject to
future work.

7.3 Well-formedness rules

The graph grammar introduced in Section 4 ensures multi-
plicity constraints of the meta model, but well-formedness
rules are not considered until now. Ensuring OCL constraints
can be done in two ways: In a first solution, constraints are
checked once the overall derivation of an instance model has
terminated. However, this leads to the generation of a large
number of non-valid instances in between. A more promising
approach is to take the constraints into consideration during
the derivation process: For each meta model class the corre-
sponding OCL constraints can be identified. Following this
line, OCL constraints are first translated to graph constraints
which are further translated to application condition of in-
stance generating rules in the sense of [17].

We started to work on this second line of constraint
checking and showed in [40] how a restricted form of OCL
constraints can be translated to graph constraints. We re-
stricted OCL constraints to equality, size, and attribute oper-
ations for navigation expressions, called restricted OCL con-
straints. In the following, we introduce this restricted form
of OCL constraints for which we have already a clear idea
how to translate them to graph constraints as defined above.
A precise definition of that translation is still future work.

Restricted OCL constraints The restricted OCL constraints
that can be translated are divided into atomic navigation ex-
pressions and complex navigation expressions.

Atomic navigation expressions are OCL expressions that

– express equivalent navigations, like
self.assoc1=self.assoc2.assoc3,

– end with operation size() (if the result is compared with
constants),

– end with operations isEmpty(), notEmpty() or isUnique(),
or

– end with attribute operations (not considered explicitly in
the paper).

The navigation expressions contain navigation along associ-
ation ends or association classes only. Atomic navigation ex-
pressions can be transformed into basic graph constraints of
the form ∃x or boolean formulae over basic graph constraints.

Operation size() can be translated into a Boolean graph
constraint that is composed of two basic graph constraints.
The first constraint ensures that there exist the minimum
number of association ends, the second prohibits the exis-
tence of more than the constant value association ends. If the
comparison operation is≤ or≥ the OCL constraint would be
translated into just one graph constraint.

Operations isEmpty() and notEmpty() can
be translated back to a size() operation:
self.assoc1->isEmpty() is translated back to
self.assoc1->size()=0, self.assoc1->notEmpty() to
self.assoc1->size()>=1.

Collection operation isUnique() can be translated into
a size() operation, if the body of the collection opera-
tion is a navigation expression ending at an instance set:
self.assoc1->isUnique(navexp) is translated back to
self.assoc1.navexp->size()<=1.

Operations isTypeOf and isKindOf can also be used in-
side of navigation expressions, since graph constraints are
formulated based on typed graph morphisms and, especially
on clan morphisms (see [37]).

Complex navigation expressions are characterized like
this: Atomic navigation expressions are complex navigation
expressions. Given complex navigation expressions a, b and
c, expressions not(a), a and b, a or b, a implies b, and if a
then b else c are complex navigation expressions.

Although being restricted, all OCL constraints for the
simple statechart meta model example in Figure 1 are of
this form and thus can be translated to graph constraints (see
[40]). In [37], we showed how graph constraints (which can
also contain abstract types) are translated to application con-
ditions. This enables to take into account OCL constraints
during the derivation process.

In future work, OCL constraints and graph constraints
have to be further compared concerning their expressive-
ness. It is expectable that not all OCL constraints can be
translated to graph constraints. Those OCL constraints are
either checked by a constraint checker after the generation
process (as indicated above), or they are translated not
only to application conditions of rules, but to special rules
themselves. To illustrate this idea at an example, consider
e.g. the well-formedness rule for acyclic subvertex relations
which can be expressed by the following OCL constraint:

17

context CompositeState inv:
not self.allSubVertices()->includes(self)

with additional operation:

CompositeState::allSubVertices():Set(StateVertex)
allSubVertices = subvertex->
union(subvertex->collect(v | v.allSubVertices()))

Unlike the rules in layer 1 (Figure 6), the creation of a
new composite state is possible only, if another composite
state is already there, or if this is not the case, the composite
state is created as top state of the state machine. Creating
composite states just by rules where parent nodes are
required on the left-hand sides, an acyclic subvertex relation
is granted.

8 Related Work

One closely related approach is the one by Alanen and Por-
res [8]: They describe two algorithms, one to derive a context-
free grammar from a meta model and another one for deriv-
ing a meta model from a context-free grammar. The aim of
their work is to bridge the gap between artifacts defined by a
context-free grammar and software models for which the syn-
tax is specified by a meta model. Their algorithm for grammar
derivation can only deal with composite associations between
metaclasses, restricting it to tree-like meta models which is a
severe limitation for practical usage. Furthermore, the algo-
rithm does not support ordinary associations with arbitrary
cardinalities. This limitation is not surprising given the prop-
erties of context-free grammars. It represents one reason for
the approach to use graph grammars instead of context-free
grammars.

Another related problem is the one of automated snapshot
generation for class diagrams for validation and testing pur-
poses, tackled by Gogolla et al. [22]. In their approach, prop-
erties that the snapshot has to fulfill are specified in OCL. For
each class and association, object and link generation pro-
cedures are specified using the language ASSL. In order to
fulfill constraints and invariants, ASSL offers try and select
commands which allow the search for an appropriate object
and backtracking if constraints are not fulfilled. The overall
approach allows snapshot generation taking into account in-
variants but also requires the explicit encoding of constraints
in generation commands. As such, the problem tackled by au-
tomatic snapshot generation is different from the meta model
to graph grammar translation.

Courcelle [15] considers graph grammars in the context
of monadic second order logic, a logical language which is
favourite for its decidability properties and suitable for ex-
pressing graph properties. It is up to future work to investi-
gate the literature for equivalence results of graph languages
defined by graph grammars on the one hand, and by graph
properties on the other hand.

Formal methods such as Alloy [3, 24] can also be used
for instance generation: After translating a class diagram to

Alloy one can use the instance generation within Alloy to
generate an instance or to show that no instances exist. This
instance generation relies on the use of SAT solvers and can
also enumerate all possible instances. In contrast to such an
approach, our approach aims at the construction of a gram-
mar for the metamodel and thus establishes a bridge be-
tween metamodel-based and grammar-based definition of vi-
sual languages. As the grammar rules are explicitly men-
tioned, our approach also allows applications which require
interaction during the derivation process or only a partial
derivation process. One possible application is the comple-
tion of a model instance by applying only a partial set of
grammar rules to it. One advantage of our instance gener-
ation approach over approaches relying on formal methods
such as Alloy is that our instance generation process is close
to instance generation in practice, while being fully formal,
and avoids a translation to a formal method such as Alloy.
Although such a translation is already available (see Anas-
tasakis et al. [9]), this gives rise to the problem how results
can be visualized in a user-friendly manner. For example, an
instance found in the Alloy language needs to be translated
back into UML. This additional overhead is avoided by our
approach which operates more directly on meta models and
their instances.

In the area of pattern recognition, there have been sev-
eral approaches to grammatical inference: Given a finite set
of sample patterns, a grammar should be deduced such that
the language generated by the grammar contains the sample
patterns. Originally, this problem has been tackled where pat-
terns are encoded as strings and regular grammars are gener-
ated [21]. In the context of graph grammars, Jeltsch and Kre-
owski [25] describe how a hyperedge replacement grammar
can be derived from a finite set of graph samples. Our prob-
lem setting is slightly different because we are given a meta
model to describe all instances and not only a finite set of
samples.

Further (complementary) related work can be seen in the
area of model-driven testing [13, 23, 33] where the aim is to
use a model of the system to produce suitable test data. The
problem of generating those instances from the grammar that
provide a suitable coverage for testing can possibly benefit
from existing research in this area.

9 Conclusion and Future Work

Currently, the widespread approach of defining visual lan-
guages by a meta model and a set of OCL constraints has one
main disadvantage: Such a definition is not constructive. This
represents a severe disadvantage for applications where an
operational description is required i.e. for generating a large
set of instances automatically. Possible applications include
automated testing of model transformations or automatic ed-
itor generation.

In this paper, we have introduced the idea of instance-
generating graph grammars which is basically the equivalent
to a Chomsky grammar for textual languages. Being able to

18

generate an instance-generating graph grammar for an arbi-
trary meta model closes an important technology gap and
allows the adoption of well-known techniques for grammar-
based languages also for languages defined by meta models.

On the basis of meta model patterns and corresponding
derivation rules, our approach allows the construction of an
instance-generating graph grammar for meta models without
OCL constraints. We have illustrated our approach for a sim-
plified statechart meta model and shown that the automatic
generation of instances is possible. With regards to complete-
ness, we have used the theory of typed graph transformation
with inheritance to show that the instance sets generated by
an IGGG and those induced by the corresponding type graph
with multiplicities are equal.

In Section 7, we discussed extensions of our approach
which have to be considered in future work. These are es-
pecially well-formedness rules in form of OCL constraints.
We sketched how a restricted set of OCL constraints can be
translated into graph constraints and explained how they can
be taken into account during instance generation. The pre-
cise translation of metamodels with loops associations, arbi-
trary multiplicity constraints, and well-formedness rules to
an equivalent instance generating graph grammars is left to
future work.

Further work is needed in order to elaborate on possible
applications of our technique: Besides the presented exam-
ple for statecharts generation, we like to test instance gen-
eration for further and especially larger meta models, last but
not least, for showing that this approach can scale. For testing
model transformations, techniques are needed that allow the
generation of selected instance models that represent a suit-
able diversity of all possible models. For editor generation, it
needs to be explored how the graph grammar generated from
a meta model can be used to test the usability of the editor.

Acknowledgements

This work has been partially sponsored by the IST-2005-
16004 Integrated Project SENSORIA (Software Engineer-
ing for Service-Oriented Overlay Computers), and the Ger-
man Research Foundation with project ”Application of graph
transformation to visual modeling languages”. The authors
would also like to thank their former colleague Jessica
Winkelmann for her contributions to the presented work and
the referees for their useful comments.

References

1. IBM Rational Software Architect V7.0. Available at
http://www.ibm.com/software/awdtools/
architect/swarchitect/index.html.

2. OMONDO EclipseUML 3.2.0 Studio. Available at http://
www.omondo.com.

3. The Alloy Analyzer 4.0 http://alloy.mit.edu/.
4. XSL Transformations (XSLT) Version 1.0. Available at http:

//www.w3.org/TR/xslt.

5. GXL http://www.gupro.de/GXL, 2005.
6. XMI – XML Metadata Interchange Version 2.0, 2005.
7. AGG Homepage. http://tfs.cs.tu-berlin.de/

agg.
8. M. Alanen and I. Porres. A Relation Between Context-Free

Grammars and Meta Object Facility Metamodels. Technical
Report TUCS No 606, TUCS Turku Center for Computer Sci-
ence, March 2003.

9. K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. UML2Alloy:
A Challenging Model Transformation. In G. Engels et al., ed-
itor, Proceedings ACM/IEEE 10th International Conference on
Model Driven Engineering Languages and Systems, volume
4735 of Lecture Notes in Computer Science, pages 436–450.
Springer, 2007.

10. R. Bardohl, H. Ehrig, J. de Lara, and G. Taentzer. Integrating
Meta Modelling with Graph Transformation for Efficient Vi-
sual Language Definition and Model Manipulation. In M. Wer-
melinger and T. Margaria-Steffens, editors, Proc. Fundamen-
tal Aspects of Software Engineering 2004, volume 2984, pages
214–228. Springer LNCS, 2004.

11. M. Boger, T. Sturm, E. Schildhauer, and E. Graham. Poseidon
for UML Users Guide. Gentleware AG, 2003. Available under
http://www.gentleware.com.

12. A. S. Boujarwah and K. Saleh. Compiler test case generation
methods: a survey and assessment. Information and Software
Technology, 39(9):617–625, 1997.

13. M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and
A. Pretschner, editors. Model-Based Testing of Reactive Sys-
tems, Advanced Lectures [The volume is the outcome of a re-
search seminar that was held in Schloss Dagstuhl in January
2004], volume 3472 of Lecture Notes in Computer Science.
Springer, 2005.

14. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and
M. Löwe. Algebraic Approaches to Graph Transformation Part
I: Basic Concepts and Double Pushout Approach. In G. Rozen-
berg, editor, Handbook of Graph Grammars and Computing by
Graph transformation, Volume 1: Foundations, pages 163–246.
World Scientific, 1997.

15. B. Courcelle. The expression of graph properties and graph
transformations in monadic second-order logic. In G. Rozen-
berg, editor, Handbook of graph grammars and computing by
graph transformations, vol. 1: Foundations, pages 313–400.
World Scientific, New-Jersey, London, 1997.

16. H. Ehrig, K. Ehrig, J. de Lara, G. Taentzer, D. Varró, and
S. Varró-Gyapay. Termination Criteria for Model Transforma-
tion. In M. Wermelinger and T. Margaria-Steffen, editors, Proc.
Fundamental Approaches to Software Engineering (FASE), vol-
ume 2984 of Lecture Notes in Computer Science, pages 214–
228. Springer Verlag, 2005.

17. H. Ehrig, K. Ehrig, A. Habel, and K.-H. Pennemann. Con-
straints and application conditions: From graphs to high-level
structures. In F. Parisi-Presicce, P. Bottoni, and G. Engels,
editors, Proc. 2nd Int. Conference on Graph Transformation
(ICGT’04), LNCS 3256, pages 287–303, Rome, Italy, October
2004. Springer.

18. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals
of Algebraic Graph Transformation. EATCS Monographs in
Theoretical Computer Science. Springer, 2006.

19. K. Ehrig, J. Küster, G. Taentzer, and J. Winkelmann. Automat-
ically Generating Instances of Meta Models. Technical Report
2005–09, Technical University of Berlin, Dept. of Computer
Science, November 2005.

19

20. K. Ehrig, J. M. Küster, G. Taentzer, and J. Winkelmann. Gen-
erating Instance Models from Meta Models. In R. Gorrieri and
H. Wehrheim, editors, Formal Methods for Open Object-Based
Distributed Systems, 8th IFIP WG 6.1 International Confer-
ence, FMOODS 2006, Bologna, Italy, June 14-16, 2006, Pro-
ceedings, volume 4037 of LNCS, pages 156–170. Springer,
2006.

21. K. S. Fu and T. L. Booth. Grammatical Inference: Introduction
and Survey. IEEE Transcations on Systems, Man, and Cyber-
netics, SMC-5:95–111, 409–423, 1975.

22. M. Gogolla, J. Bohling, and M. Richters. Validating UML and
OCL Models in USE by Automatic Snapshot Generation. Soft-
ware and Systems Modeling, 4(4):386–398, 2005.

23. A. Hartman and K. Nagin. The AGEDIS Tools for Model Based
Testing. In N. J. Nunes, B. Selic, A. da Silva, and J. Álvarez,
editors, UML Satellite Activities, Revised Selected Papers, vol-
ume 3297 of Lecture Notes in Computer Science, pages 277–
280. Springer, 2005.

24. D. Jackson. Alloy: a lightweight object modelling notation.
ACM Trans. Softw. Eng. Methodol., 11(2):256–290, 2002.

25. E. Jeltsch and H.-J. Kreowski. Grammatical Inference Based
on Hyperedge Replacement. In Hartmut Ehrig, Hans-Jörg Kre-
owski, and Grzegorz Rozenberg, editors, Proc. 4th. Int. Work-
shop on Graph Grammars and their Application to Computer
Science, volume 532 of Lecture Notes in Computer Science,
pages 461–474. Springer-Verlag, 1991.

26. G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the
Use of Graph Transformation in the Formal Specification of
Model Interpreters. Journal of Universal Computer Science,
9(11):1296–1321, 2003.

27. A. Kirshin, D. Dotan, and A. Hartman. A UML Simulator
Based on a Generic Model Execution Engine. In T. Kühne,
editor, MoDELS Workshops, volume 4364 of Lecture Notes in
Computer Science, pages 324–326. Springer, 2006.

28. J. M. Küster. Definition and validation of model transforma-
tions. Software and Systems Modeling (SoSyM), 5(3):233–259,
2006.

29. J. M. Küster and M. Abd-El-Razik. Validation of Model Trans-
formations - First Experiences Using a White Box Approach. In
T. Kühne, editor, MoDELS Workshops, volume 4364 of Lecture
Notes in Computer Science, pages 193–204. Springer, 2007.

30. A. Maraee and M. Balaban. Efficient Reasoning About Finite
Satisfiability of UML Class Diagrams with Constrained Gener-
alization Sets. In D. H. Akehurst, R. Vogel, and R. F. Paige,
editors, Model Driven Architecture- Foundations and Applica-
tions, Third European Conference, ECMDA-FA 2007, Haifa, Is-
rael, June 11-15, 2007, Proceedings, volume 4530 of Lecture
Notes in Computer Science, pages 17–31. Springer, 2007.

31. T. Mens. On the Use of Graph Transformations for Model
Refactoring. In R. Lämmel, J. Saraiva, and J. Visser, editors,
Generative and Transformational Techniques in Software Engi-
neering, volume 4143 of Lecture Notes in Computer Science,
pages 219–257. Springer, 2006.

32. J.-M. Mottu, B. Baudry, and Y. Le Traon. Mutation Anal-
ysis Testing for Model Transformation. In A. Rensink and
J. Warmer, editors, Model Driven Architecture - Foundations
and Applications, Second European Conference, ECMDA-FA
2006, Bilbao, Spain, July 10-13, 2006, Proceedings, volume
4066 of LNCS, pages 376–390. Springer, 2006.

33. C. Nebut, F. Fleurey, Y. Le Traon, and J.-M. Jézéquel. Auto-
matic Test Generation: A Use Case Driven Approach. IEEE
Trans. Software Eng., 32(3):140–155, 2006.

34. Object Management Group. MDA Guide Version 1.0.1, June
2003.

35. Object Management Group (OMG). UML 2.0 Superstructure
Final Adopted Specification. OMG document pts/03-08-02, Au-
gust 2003.

36. Object Management Group (OMG). OCL 2.0 Specification.
OMG document ptc/2005-06-06, June 2005.

37. A. Rensink and G. Taentzer. Ensuring Structural Constraints
in Graph-Based Models with Type Inheritance. In Proc. Fun-
damental Approaches to Software Engineering (FASE), pages
64–79. LNCS 3442, Springer, 2005.

38. G. Taentzer. AGG: A Graph Transformation Environment for
Modeling and Validation of Software. In J. Pfaltz, M. Nagl, and
B. Boehlen, editors, Application of Graph Transformations with
Industrial Relevance (AGTIVE’03), pages 446 – 456. LNCS
3062, Springer, 2004.

39. D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, and
G. Taentzer. Termination Analysis of Model Transforma-
tions by Petri Nets. In A. Corradini, H. Ehrig, U. Montanari,
L. Ribeiro, and G. Rozenberg, editors, Graph Transformations,
Third International Conference, volume 4178 of LNCS, pages
260–274. Springer, 2006.

40. J. Winkelmann, G. Taentzer, K. Ehrig, and J. M. Küster. Trans-
lation of Restricted OCL Constraints into Graph Constraints for
Generating Meta Model Instances by Graph Grammars. In Pro-
ceedings of the 5th International Workshop on Graph Transfor-
mations and Visual Modeling Techniques (GT-VMT’06), pages
153–164, 2006.

20

