
SoSyM manuscript No.
(will be inserted by the editor)

An Algebra of Product Families?

Peter Höfner1, Ridha Khedri2, Bernhard Möller1

1 Institut für Informatik, Universität Augsburg, Germany,
e-mail: {hoefner,moeller}@informatik.uni-augsburg.de

2 Department of Computing and Software, McMaster University,
Hamilton, Canada, e-mail: khedri@mcmaster.ca

March 2, 2010

Abstract Experience from recent years has shown that it is often advan-
tageous not to build a single product but rather a family of similar products
that share at least one common functionality while having well-identified
variabilities. Such product families are built from elementary features that
reach from hardware parts to software artefacts such as requirements, archi-
tectural elements or patterns, components, middleware, or code. We use the
well established mathematical structure of idempotent semirings as the ba-
sis for a product family algebra that allows a formal treatment of the above
notions. A particular application of the algebra concerns the multi-view rec-
onciliation problem that arises when complex systems are modelled. We use
algebraic integration constraints linking features in one view to features in
the same or a different view and show in several examples the suitability of
this approach for a wide class of integration constraint formulations. Our
approach is illustrated with a Haskell prototype implementation of one
particular model of product family algebra.

Key words Product family, product line, idempotent semiring, multi-
view reconciliation, formal family specification, feature modelling.

1 Introduction

The concepts of product families originally stem from hardware industry.
They allow manufacturing several variants of products, which leads to a
significant reduction of development and maintenance costs. As early as
1976 Parnas [31] realised that the adoption of the product family paradigm
is also useful in software development. The research on product families aims

? Revised and enlarged version of [17,20]

at studying the commonality/variability occurring in a family of products in
order to have better management of and processes for software production.
This family approach proposes that, instead of focusing attention on a single
immutable system to be built, one takes into account predictable changes
to it. To this end one performs analysis and design of a family of systems
that share a core part (commonality in all the members). Such a family is
called a product line or an f -carrying family (“f” standing for “common
features”) when its members have a common set of features that satisfy the
specific needs of a particular market segment or mission and are developed
from a common set of core assets in a prescribed way [6,33].

By now, the notion of product family has gained a lot of attention and has
found its way into the software development process in industry [32]. Weiss
and Lai [41, Preface, p. xvii] report that applying family-based processes
at Lucent Technologies led to decreases in development time and costs for
family members by 60% to 70%.

With the current strong emphasis on embedded systems, product fam-
ilies consisting of both hardware and software components also become of
rising interest. Hence, more generally, a product family can be defined as
a set of products that share common hardware or software artefacts such
as requirements [34], architectural properties [35], components [28], mid-
dleware [13], or code [40]. In the remainder, we call such artefacts features.
This fits well with the widely accepted view that a feature is a concep-
tual characteristic visible to stakeholders (e.g., users, customers, developers,
managers, etc.). At the requirements level, a feature encapsulates a set of re-
lated system-environment interactions. For instance, the IEEE standard [36,
p. 19] states the following:

“A feature is an externally desired service by the system that may
require a sequence of inputs to effect the desired result. For example,
in a telephone system, features include local call, call forwarding, and
conference call.”

Also, in [34], Savolainen et al. write “A feature is specified by a set of
requirements; this set may contain one or more requirements”. Therefore,
a feature can be described using scenarios (or use-cases) that provide the
system-environment interactions.

The aim of the present paper is to underpin the ideas of family-based
development with a formalism that allows a mathematically precise descrip-
tion and manipulation of product families. To this end we propose a product
family algebra that we use to describe and analyse the commonalities and
variabilities of a system family. We will extend the standard notion of an
idempotent semiring to cover product families, refinements, product devel-
opment and classification and, finally, multi-view reconciliation. In its main
models the elements are sets of products, i.e. product families.

The multi-view reconciliation problem is of particular importance for
embedded systems such as automotive systems. These are very difficult to
specify using one single model that takes the software and the hardware

2

perspective of the system into consideration. For engineering tasks, it is
common to adopt multi-view approaches. For instance, when constructing a
building, the specifiers elaborate many views of it: structure view, plumbing
view, electrical wiring view, etc. These views need to be coherent. When we
carry this approach over to product families, the complexity of the problem
increases: each product of every view needs to be coherent with at least one
in the other views.

Each view gives a partial description of the considered family, including
a mixture of optional and required features/properties. Reconciling these
views when integrating them helps to eliminate contradictory features/prop-
erties of the family, which leads to convergence towards a comprehensive
overall specification of the family. It is worth noting that this specification
might not be complete; it depends on the domain coverage of the views.

After view reconciliation, the obtained family model comprises potential
products. Some of them are theoretically possible in the family model but
correspond to inconsistent scenarios that cannot be realised jointly; at a
more detailed level, the functional requirements associated with the features
clash. In [26], the reader finds a discussion on the transformation from an
algebraic model of a family given as a product family algebra term into a
more concrete model of its members, of the commonality of its members, or
of a simple combination of requirements features.

To eliminate the inconsistent products we will introduce requirement
constraints as additional axioms formulated in terms of the algebra.

The paper is organised as follows. We start in Section 2 by giving a
simple example of a product family. In Section 3, we present the basics of
product family algebra and discuss the relationship to feature oriented do-
main analysis. Section 4 reports on a Haskell prototype implementation
of a model of that algebra. In Section 5, as an example we discuss a product
family that exhibits a sophisticated structure of subfamilies. In Section 6,
we discuss building product families and generating desirable products. In
Section 7, we extend the algebra by a requirement relation and elaborate
on its properties and its use in formally capturing informal integration con-
straints. In Section 8, we present our approach to the multi-view reconcilia-
tion problem. In Section 9, we give a case study of a two-view specification
of a driver assisting system and its reconciliation using our technique. Sec-
tion 10 contains a comprehensive review of the literature of product family
based software development. We conclude and point to future research in
Section 11; in particular, we indicate how the reconciled views can be used
for further analysis at more concrete levels of requirements employing al-
ready known requirement analysis techniques. The paper is rounded off by
Appendix A, which gives proofs for our mathematical results, Appendix B,
which presents a cross-section of our Haskell implementation, and Ap-
pendix C, which sketches the use of an automated theorem prover in the
context of product family algebra.

3

2 Example of a Simple Product Family

The following example is adapted from a case study given in [5]. An elec-
tronics company might have a family of three product lines: MP3 Players,
DVD Players and Hard Disk Recorders. Table 1 presents the commonalities
and the variability of this family. All its members share the list of features
given in the Commonalities column. A member can have some mandatory
features and might have some optional features that another member of the
same product line lacks. For instance, we can have a DVD Player that is
able to play music CDs while another does not have this feature. However,
all the DVD players of the DVD Player product line must have the Play
DVD feature. Also, it is possible to have a DVD player that is able to handle
several DVDs simultaneously.

Product
family

Mandatory Optional Commonalities

MP3 Player – Play MP3 files – Record MP3 files

– Audio equaliser
– Dolby surround

(advanced audio
features)

DVD Player – Play DVD – Play music CD
– View pictures

from picture CD
– Burn CD
– Handle additional

DVDs

Hard Disk
Recorder

– MP3 player
– organise MP3 files

Table 1 Commonalities and variability of a set of product lines

We see that there are different models of DVD Players. For example there is
one that is able to play music CDs and one that does not have this feature.
But how many different models are actually described in Table 1? And
what are the properties/features of these products? Later on we will give
the answers to these two questions. We will develop a model that gives us
all combinations of features; with its help we will be able to envision new
products. Vice versa, the model will allow us to calculate the commonalities
of a given set of products.

3 Product Family Algebra

In this section, we introduce the foundations of our approach. Mathemati-
cally, it is based on semirings, hence we will first present these. After that we
show the connection to the well established area of feature-oriented domain
analysis (FODA). Finally, we will give precise definitions of some character-
istic notions around product families.

4

3.1 Semirings

Definition 3.1 A semiring is a quintuple (S,+, 0, ·, 1) such that (S,+, 0) is
a commutative monoid and (S, ·, 1) is a monoid such that · distributes over
+ and 0 is an annihilator, i.e., 0 ·a = 0 = a ·0. The semiring is commutative
if · is commutative and it is idempotent if + is idempotent, i.e., a+a = a. In
the latter case the relation a ≤ b ⇐⇒df a+ b = b is a partial order, i.e., a
reflexive, antisymmetric and transitive relation, called the natural order on
S. It has 0 as its least element. Moreover, + and · are isotone with respect
to ≤.

An important example of an idempotent (but not commutative) semiring
is REL, the algebra of binary relations over a set under union and relational
composition.

Note that multiplication is not assumed to be commutative or idem-
potent; hence, unlike addition, it does not induce a partial order. Also, no
absorption laws between addition and multiplication are assumed, so that in
general there is no lattice structure on a semiring. However, an idempotent
semiring induces an upper semilattice in which addition coincides with the
supremum operator. More details about (idempotent) semirings and exam-
ples of their relevance to computer science can be found, e.g., in [15,10]. In
the present paper, addition + can be interpreted as a choice between families
of products (or, equivalently, as their union), and multiplication · as their
composition or mandatory presence. The element 0 represents the empty
family of products while 1 represents a family consisting just of a single
pseudo-product with no features. Consequently, the term opt[a] =df a+ 1
denotes a product family that offers a choice between the products in a and
the empty product; hence it will be used to express optionality of a-products.
Optionality of a list of products p1, . . . , pn is denoted by

opt[p1, . . . , pn] =df (1 + p1) · · · (1 + pn),

a choice allowing any subset of the products p1, . . . , pn (or none of them).
The natural order ≤ is the abstract counterpart of the inclusion order

⊆ between sets (e.g. sets of products).

3.2 From FODA to Feature Algebra

To further clarify the relevance and usefulness of the semiring approach we
link it to the probably most prominent and widespread tool, viz. Feature-
Oriented Domain Analysis (FODA) [24]. It uses feature models to give
the mandatory, optional and alternative concepts within a domain [24,33].
These are closely related to our work and are given by feature diagrams com-
bined with a domain dictionary . Feature diagrams are basically OR/AND
trees that can capture the commonalities and mandatory features as well
as the optional ones of a feature algebra. The leaf nodes contain the basic

5

features of the describes product family. In the domain dictionary each basic
feature is specified.

We will now show that OR/AND trees correspond very directly to al-
gebraic terms over the semiring operations. We assume that every basic
feature is denoted by a constant, such as transmission, horsepower or
aircondition when we want to specify a family of cars. The translation
rules for the basic parts of an OR/AND tree into an algebraic term are
given in Table 2.

Base construct Description Algebraic counterpart
(feature diagram)

A , A mandatory and
optional feature

A and opt[A], resp.

A B , A B etc. multiple features A ·B, A · opt[B], etc.

A B alternative features A+B

A B or-group A+B +A ·B

Table 2 FODA feature diagrams and their corresponding algebraic terms

Using these rules every feature diagram can be transformed into an algebraic
expression using a bottom-up traversal. This recursive method translates
each subtree into an algebraic expression, starting from the leaf nodes going
up to the root. The result is unique up to commutativity and associativity
of the semiring operators.

Example 3.2 The standard example of a feature diagram describes fea-
tures of a car and was originally introduced in [24]. The feature diagram as
well as a stepwise bottom up transformation into an algebraic term is given
in Figure 1. ut

It is evident that the term representation is much more compact than
the tree representation. The converse direction (building a tree from a given
algebraic term) is straightforward, too.

Feature diagrams may additionally be equipped with composition rules,
like exclusions. These requirements are also called cross-tree constraints. We
will show in Section 7 how to model such constraints.

To model requirements like “air condition requires horsepower> 100 HP”,
one can just use more refined basic features.

6

arhorsepowertransmission aironditionmanual automati #arhorsepowermanual+automati airondition#ar(manual+ automati) � horsepower airondition#ar = (manual+ automati) � horsepower � opt[airondition℄
Fig. 1 Step-wise transformation

3.3 Set and Bag Models of Semirings

To further illustrate the roles of the semiring operations we construct a
concrete model that consists of sets of products, each of which, in turn, is
a set of basic features.

Let IF be a set of arbitrary elements that we call features. Then we
call a collection (set) of features a product . The set of all possible products
is IP =df P(IF), the power set or set of all subsets of IF. A collection of
products (an element of P(IP)) is called product family . A special family is
1 = {∅} consisting just of the empty product that has no features. Note that

7

according to this general definition the members of a product family need
not have common features. Commonalities will be discussed in Section 3.7.

Example 3.3 For example, looking at the DVD example of Table 1, an
MP3 player is a product with the features play MP3 files, record MP3
files, audio equaliser and so on. To shorten expressions we use the
following abbreviations.

Play MP3 files p mp3
Record MP3 files r mp3
Audio equaliser a eq
Dolby surround dbs
Burn CD b cd
Additional DVDs a dvd

Then we can describe the MP3 players algebraically as

mp3 player = p mp3 · opt[r mp3] · a eq · dbs .

This expression matches Table 1 as follows: the features p mp3, a eq and
dbs are classified as mandatory or as common to all products (implicitly
mandatory). Therefore, in the above expression defining mp3 player, they
are combined using the · operator. The feature r mp3 is classified as optional
in Table 1 and it is expressed above by including the term opt[r mp3]. ut

We now formally define the operation · of our set model which is a
composition or merging operator on products:

· : P(IP)× P(IP)→ P(IP)
P ·Q =df {p ∪ q : p ∈ P, q ∈ Q} .

The operation + offers a choice between products of different families:

+ : P(IP)× P(IP)→ P(IP)
P +Q =df P ∪Q ,

It is easily checked that with these definitions the structure

IPFS =df (P(IP),+, ∅, ·, {∅})

forms a commutative idempotent semiring, called the set-based model over
IF. It does not allow multiple occurrences of the same feature in a product.
If duplication of features is desired, one can use an analogous model that
employs multisets (also called bags) of features as products. This bag-based
model over IF forms also a commutative idempotent semiring and is denoted
by IPFB.

Let us also give a small example of the use of the semiring laws. It is
required that · distributes through +. Using this and neutrality of 1 we can
rewrite the expression for mp3 player into

p mp3 · r mp3 · a eq · dbs + p mp3 · a eq · dbs ,

8

which clearly exhibits that mp3 player is a family consisting of exactly two
products. Similarly one can determine the number of products inside the
family dvd player. Conversely, using commutativity of · , we can rearrange
the expression for mp3 player into

p mp3 · a eq · dbs · (r mp3 + 1) ;

this form lists the commonality of the products at the beginning and then
gives the variability which in this case is just an optional MP3 recorder. This
means that the MP3 player can be described as p mp3·a eq·dbs·opt[r mp3].

Using product algebraic terms offers an abstraction from set-theory. On
one hand it provides a common structure that subsumes IPFB and IPFS and
on the other hand it avoids many set-theoretic notations, like accumulations
of braces, and emphasises the relevant aspects like commonalities.

3.4 Products, Features and Product Feature Algebras

In the literature, terms like product family and subfamily lack exact defini-
tions. We now show how to achieve this using semiring terminology.

Intuitively, a single product cannot be decomposed using the choice op-
erator +. In other terms, it does not offer optional or alternative parts. Let
us characterise this formally.

Definition 3.4 Assume a commutative idempotent semiring A. An ele-
ment a ∈ A is called a product if it satisfies the following laws:

∀ b : b ≤ a =⇒ (b = 0 ∨ b = a) , (1)
∀ b, c : a ≤ b+ c =⇒ (a ≤ b ∨ a ≤ c) . (2)

In particular, 0 is a product.1 A product a is proper if a 6= 0.

Implication (1) indicates that a product must not have non-trivial sub-
families, i.e., its only subfamilies are the empty one and the product itself.
Mathematically such elements are called atoms. The second formula (2)
states that if a is a subfamily of the family formed by two families b and c,
it must be a subfamily of one of them. In mathematics this property is also
known as primeness. As a consequence of both requirements we have that a
product a is irreducible, i.e., that no product can be split into two different
proper products. In signs this reads ∀ b, c : a = b+ c =⇒ (a = b ∨ a = c).

In IPFS and IPFB an element is a product if and only if it contains only
one element, i.e., it is a singleton set. With respect to our running example,
the MP3-Player family p mp3 · a eq · dbs is a product, whereas the family
p mp3 · (r mp3 + 1) · a eq · dbs is not — it can be decomposed into the two
products p mp3 · a eq · dbs and p mp3 · r mp3 · a eq · dbs.

1 To avoid tedious case analyses we deviate here slightly from the definition
in [17], where we explicitly excluded 0 from being a product.

9

Furthermore, in IPFS and IPFB the neutral element 1 = {∅} satisfies (1)
and (2) and hence is a product. However, in general semirings this need not
be the case.

Analogously to Definition 3.4, features can be defined as indecomposable
elements, but this time w.r.t. multiplication rather than addition.

Definition 3.5 An element a is called a feature if it is a proper product
different from 1 satisfying the following laws:

∀ b : b | a =⇒ b = 1 ∨ b = a , (3)
∀ b, c : a | (b · c) =⇒ (a | b ∨ a | c) , (4)

where the divisibility relation | is given by x | y ⇐⇒df ∃ z : y = x · z.

As for products, implications (3) and (4) state that no feature can be decom-
posed into two non-trivial features. In particular, implication (3) states that
for every product family b, if we have b as mandatory for the construction
of a (i.e., ∃ c : a = b · c, which indicates as well that b divides a), it implies
that either b is the special product 1 or b is identical to a. (4) states that
for every product families b and c, if we have a as mandatory to forming
b · c, it implies that either a is mandatory to forming b or it mandatory to
forming c. To illustrate this definition, we use again our running example.
The product (family) a eq · dbs is not a feature since it is made up from
the features a eq and dbs. Again these laws axiomatise an element a to be
irreducible and prime, this time with respect to multiplication.

Therefore, from a mathematical point of view, the characteristics of
products and features are similar and well known. A uniform treatment of
both notions is given in the Appendix of [18], where also the order-theoretic
background is discussed.

It should also be noted that we can represent the multiset model iso-
morphically in the following way: view a natural number as the multiset of
its prime factors. Now number the (atomic) features by primes and repre-
sent a product of features as the corresponding natural number. The above
definition of features is just a generalisation of the property of primality, so
that things fit well together.

We now are in the position to give our main definition.

Definition 3.6 A product family algebra is an idempotent and commuta-
tive semiring in which 1 is a product. Its elements are called product families
or briefly families. A family g is a subfamily of family f iff g ≤ f , where ≤
is the natural semiring order.

Lemma 3.7 Both IPFS and IPFBare product family algebras.

Since variants of semirings have already successfully been combined with
automated theorem provers [21,22], we implemented product family algebra
axiomatically in the first-order theorem prover Prover9 and the counterex-
ample generator Mace4 [27]. The encoding can be found in Appendix C.

10

Using this encoding we can prove all the presented theorems and lemmas
fully automatically. For the sake of readability we do not display the in-
put/output files and machine proofs. They all can be found at a web site [16].
Proofs by hand can be found in Appendix A.

3.5 Feature-Generated Algebras

For practical reasons it is useful to assume that every product is built from
a given set of features, as in IPFS and IPFB. Vice versa this means that
every product can again be split into its features. To express this behaviour
mathematically, we introduce the notion of feature-generated algebras.

Definition 3.8 A product family algebra is feature-generated if every ele-
ment is a finite sum of finite products of features, where a product of features
is a composition f1 · · · fm of features that itself is a product, and the multi-
plication of two products of features is a product of features again. In this
case, single features are the “smallest” components from which products
and product lines are built. The size of element a is the minimum number
n such that a = p1 + · · ·+ pn for suitable products pi of features.

The condition that the set of products of features should be closed under
multiplication ensures that irreducible elements do not become reducible by
combining them.

Lemma 3.9 The set and bag models over a finite set IF of basic features
are feature-generated; in both cases the size of a family is its cardinality.

Example 3.10 The size of mp3 player = p mp3 · (r mp3+ 1) · a eq · dbs is
two. ut

In a feature-generated algebra the natural order can be expressed as an
inclusion between generating sets:

Lemma 3.11 Consider proper products p1, . . . , pm and products q1, . . . , qn
in a feature-generated algebra. Then p1 + · · · + pm ≤ q1 + · · · + qn iff
{p1, . . . , pm} ⊆ {q1, . . . , qn}.

This implies that in a feature generated product family algebra the set
of generating proper products of every element is unique:

Lemma 3.12 Suppose that in a feature-generated algebra we have p1+· · ·+
pm = q1 + · · · qn for proper products p1, . . . , pm and q1, . . . , qn. Then m = n
and {p1, . . . , pm} = {q1, . . . , qn}.

As we have seen, the representation of the elements in sum-of-products
form corresponds to OR/AND trees of features [29]. It may also be viewed
as a commutative variant of the well known Backus-Naur form of gram-
mars where + corresponds to the variant stroke | and · to commutative
juxtaposition. It yields the following fundamental

11

Principle of Family Induction Assume a feature-generated algebra A
and a predicate P on A. If P (p) holds for all products p ∈ A (induction
base) and is preserved by addition, i.e., satisfies P (b) ∧ P (c) ⇒ P (b + c)
(induction step) then P (a) holds for all a ∈ A.

The soundness of this principle is shown by a straightforward induction
on the size of the elements of A. Note that the induction base also requires
establishing P (0), since 0 is an (improper) product.

3.6 Refinement of Product Families

Often new product families are derived from existing ones by adding fea-
tures. In this section we develop a corresponding comparison relation be-
tween product families. We motivate this by an extension of the MP3 Player
example.

Example 3.13 We look again at the electronics company of Section 2. For
the moment we are only interested in the two product families dvd player
and mp3 player.

dvd player = p dvd · a eq · dbs · opt[p mp3] ,
mp3 player = p mp3 · a eq · dbs · opt[r mp3] .

To find all common parts we look at the sum of the two products and by a
simple calculation using distributivity obtain

dvd player + mp3 player =
(p dvd · opt[p mp3] + p mp3 · opt[r mp3]) · a eq · dbs .

Next, we define an “older” product family of DVD players that does not
have the capability for Dolby surround:

old dvd player = p dvd · opt[p mp3] · a eq .

Since each product (or member) of dvd player has at least the same features
as a product of old dvd player, we say that dvd player is a refinement of
old dvd player. ut

For this kind of situation we introduce the relation a v b between ele-
ments a, b of a product family algebra. Informally, a v b means that every
product in a has (at least) all the features of some product in b, but possibly
additional ones, or, conversely, that a is a specialisation of b, which explains
the notation a v b.

Definition 3.14 Formally, the refinement relation is defined as

a v b ⇐⇒df ∃ c : a ≤ b · c ;

it is a preorder, i.e., it is reflexive and transitive.

12

Lemma 3.15 Divisibility implies refinement: b | a =⇒ a v b.

The reverse implication need not hold for the following reason: b | a
means that all products of b can (uniformly) be extended to products of
a, whereas a v b allows that some products of b may be disregarded in the
extension. However, if the refined element is a product p there is nothing to
disregard unless one wants to end up with the empty product family, and
hence p has to be contained in every product of a so that in this case also
p divides a:

Lemma 3.16 Let a, p be elements of a feature-generated algebra such that p
is a product. Then refinement and divisibility coincide, i.e., a v p ⇐⇒ p | a.

Because of this lemma, in such algebras we may pronounce a v p as “a
has p (as a subproduct)”.

We list a few useful properties of the refinement relation.

Lemma 3.17 Let a, b, c be elements of a product family algebra. Then

(a) a ≤ b =⇒ a v b.
(b) a · b v b.
(c) a v a+ b.
(d) a v b =⇒ a+ c v b+ c.
(e) a v b =⇒ a · c v b · c.
(f) a v 0 ⇐⇒ a ≤ 0.
(g) 0 v a v 1.

In IPFS and IPFB, Part (b) describes the situation that adding features
(multiplying by an element in our algebra) refines products. Part (c) offers
an alternative product on the right hand side. Part (d) and Part (e) are
standard isotony laws. Part (g) says that the empty set of products 0 refines
all families — all its products indeed have at least as many features as some
product in a. Moreover, Part (g) reflects that the product without any
features (which is represented by 1) is refined by any family.

Next we give rules for splitting refinements that involve sums.

Lemma 3.18 Let a, b, c, p be elements of a product family algebra such that
p is a product.

(a) a+ b v c ⇐⇒ a v c ∧ b v c.
(b) p v a+ b ⇐⇒ p v a ∨ p v b.

Part (a) means that a choice refines an element if and only if both parts
do. Part (b) say that a product refines a choice if it refines either of the parts.
One half of this follows for general elements from Part (c) of Lemma 3.17,
the other from irreducibility of products.

If the algebra contains a greatest element the refinement relation can be
represented without an existential quantification:

13

Lemma 3.19 If a product family algebra contains a ≤-greatest element >,
we have

a v b ⇐⇒ a ≤ b · > ⇐⇒ a · > ≤ b · > .

E.g., in IPFS and IPFB the greatest element is the product family that
contains every product built from the features of IF. In IPFS that is > =
P(IP).

3.7 Further Notions and Properties

We now show how in principle the notion of a product line, i.e., a family with
at least one common feature, can be formalised in product family algebra.
We do this for the case of at least one common feature in a family; more
liberal notions can be defined analogously.

Definition 3.20 An f -carrying family a is a family in which all products
share at least one common feature f , i.e, there are a feature f and products
p1, . . . , pn such that a = f · (p1 + · · ·+ pn).

Of course, the f -carrying family a may have more common features than
just f ; they could be extracted from the sum by distributivity. But in our
definition we wanted to emphasise that there is at least one. It is obvious
that then each subfamily of a forms an f -carrying family again, since it,
too, has f as a common feature.

To get a measure for similarity we give the following definitions:

Definition 3.21 Assume a set IF of features and k ∈ IN.

(a) The set of all products with at most k features is defined by
IF≤k =df {x1 · · ·xn : k ∈ IN, n ≤ k, xi ∈ IF

}
.

(b) A family a1 is k-near to the family a2, if
∃ g 6= 0 : ∃x, y ∈ IF≤k : x 6= y ∧ a1 = x · g ∧ a2 = y · g.

Part (b) describes the situation where the product families a1 and a2 differ
in at most k features. Since every product is also a product family (which has
only one member), we also have a notion for measure similarity of products.

Example 3.22 We resume the product line of Section 2 and Example 3.3.
Assume two products: an MP3 player defined as p mp3 · a eq · dbs and an
MP3 recorder given by p mp3 ·r mp3 ·a eq. As above we can find all common
parts by factoring out:

p mp3 · a eq · (dbs + r mp3) .

Thus the common parts are p mp3 · a eq. In particular, the player and the
recorder are 1-near. ut

14

Finally, we discuss the case of a finite set IF of features. Then we have
an additional special element in IPFS, which is characterised by

Π =df {IF} .

This element contains only one product, namely the product that has all
possible features. From an intuitive perspective, it is the “greatest” product.
and hence refines every other product. In this case we have a · Π = Π if
a 6= 0. Then, by setting c = Π in the definition of the refinement relation
v in Section 3 we get

Π v a if a 6= 0 .

In general, we call an element z 6= 0 with a·z = z (= z·a by commutativity)
for all a ∈ S\{0} a weak zero, since it annihilates almost all elements.

Lemma 3.23

(a) A weak zero is unique if it exists.
(b) A weak zero z refines everything except 0, i.e., z v a ⇐⇒ a 6= 0.
(c) If z is a weak zero then a v z ⇐⇒ a ≤ z.

Note that in IPFB there is no weak zero, since multiple occurrences of
features are allowed.

4 A Prototype Implementation in Haskell

To check the adequacy of our definitions we have written a prototype im-
plementation of the IPFB model2 in the functional programming language
Haskell. Features are simply encoded as strings. Bags are represented as
ordered lists and · as bag union by merging. Sets of bags are implemented
as repetition-free ordered lists and + as repetition-removing merge.

This prototype can normalise algebraic expressions over features into a
sum-of-products-form. A small pretty-printing facility allows us to display
the results as the sequence of all products described by such an expression.
We have also implemented the refinement relation.

Example 4.1 We extend products of the electronics company of Section 9
by some more features.

-- basic features:
p_mp3 = bf "play MP3 files"
r_mp3 = bf "record MP3 files"
o_mp3 = bf "organise MP3 files"
p_dvd = bf "play DVD"
p_cd = bf "play CD"

2 The program and a short description can be found at
http://www.informatik.uni-augsburg.de/forschung/reports.

15

v_cd = bf "view picture CD"
b_cd = bf "burn CD"
a_cd = bf "play additional CD"
a_eq = bf "audio equaliser"
dbs = bf "dolby surround"

-- composed features
mp3_player = p_mp3 .*. (opt[r_mp3])
dvd_player = p_dvd .*. (opt[p_cd, v_cd, b_cd, a_cd])
hd = opt[mp3_player, o_mp3]

--whole product line
p_line = a_eq .*. dbs .*.

(mp3_player .+. dvd_player .+. hd)

In the above code, we are using the Haskell notation of our implemen-
tation, i.e., .*. and .+. denote multiplication and addition, respectively.

The product line contains 22 products, printed out as follows:

===

Common Parts

audio equaliser

dolby surround

===

Variability

burn CD

play CD

play DVD

play additional CD

burn CD

play CD

play DVD

play additional CD

view picture CD

burn CD

...

The common parts are audio equaliser and dolby surround. Besides these
parts, the first product has the capabilities of burning and playing CDs,
playing DVDs and last it can handle an additional CD. The second product
has all the features of the first one (including the common ones). As an
add-on it is also able to handle picture CDs. ut

16

5 A More Complex Product Family

The DVD/CD example of Section 2 was chosen for its simplicity to illustrate
basic notions. We now define a family of products that exhibits a more so-
phisticated structure of its subfamilies. It emphasises the fact that products
can be defined from more than one perspective. Within a given perspec-
tive, subfamilies are defined based on other subfamilies. The example is
borrowed from [38] where it is used to illustrate a set-theoretic approach
to reasoning about domains of what is called n-dimensional and hierarchi-
cal product families3. It consists of a product family of mobile robots that
reflect different hardware platforms and several different behaviours. The
robot family is constructed using two hardware platforms: a Pioneer plat-
form and a logo-bot platform. The behaviour of the robots ranges from a
random exploration of an area to a more or less sophisticated navigation
inside an area that is cluttered with obstacles. More details about the case
study can be found in Thompson et al. [37], where the platforms are thor-
oughly described. The full specification in terms of our Haskell prototype
can be found in Appendix B.

We briefly explain the main parts of the robots’ behaviours. The robot
family includes three product lines: Basic Platform, Enhanced Obstacle
Detection and Environmental Vision. All the members of the Basic Plat-
form share the following features:

– basic means of locomotion that could be treads, wheels, or legs;
– ability to turn by an angle α from the initial heading;
– ability to move forward;
– ability to move backward;
– ability to stay inactive.

The variability among the members of a product line is in part due to the use
of a variety of hardware. For instance, if we take the robotic collision sensors
that protect robots from being damaged when they approach an obstruction
or contact, then we obtain members with different sensing technologies. In
our case, there are three main methods to sense contact with an obstruction:
pneumatic, mechanical and a combination of mechanical and pneumatic. A
member of the Basic Platform can have more than one collision sensor
of different types. The optional features of the members of Basic Platform
concern their locomotion abilities as well as their locomotion means (treads,
wheels or legs).

For instance, in the robot example the subfamily Enhanced Obstacle
Detection is constructed on top of basic platform subfamily. For more details
we refer the reader to [37,18]. The specification of the robot family is given
in Tables 3 and 4.

3 Thompson and Heimdahl [38] say that a product family is multi-dimensional
if a hierarchical decomposition is not sufficient to capture its structure. In other
terms, it needs to be specified from n perspectives: one family-hierarchy per per-
spective/view such as software or hardware. A dimension can be perceived as a
view in our context.

17

P
ro

d
u
ct

li
n
e

M
a
n
d
a
to

ry
O

p
ti

o
n
a
l

C
o
m

m
o
n
a
li
ti

es

B
a
si

c
P

la
tf

o
rm

–
S
p

ee
d

o
f

lo
co

m
o
ti

o
n

-
L

im
it

ed
to

lo
w

sp
ee

d
o
f

lo
co

m
o
ti

o
n

-
E

x
te

n
d
ed

to
h
ig

h
t

to
h
ig

h
sp

ee
d

o
f

lo
co

m
o
ti

o
n

–
L

o
co

m
o
ti

o
n

co
n
tr

o
l

sy
st

em
-

B
a
si

c
co

n
tr

o
l

(o
n
ly

o
n

o
r

o
ff

)
-

D
ig

it
a
l

va
lu

ed
in

d
ic

a
ti

o
n

o
f

lo
co

m
o
ti

o
n

sp
ee

d
a
n
d

d
ir

ec
ti

o
n

–
P

la
tf

o
rm

si
ze

-
S
m

a
ll

-
M

ed
iu

m
-

L
a
rg

e
–

T
y
p

e
o
f

co
ll
is

io
n

se
n
so

rs
-

P
n
eu

m
a
ti

c
-

M
ec

h
a
n
ic

a
l

-
C

o
m

b
in

a
ti

o
n

o
f

m
ec

h
a
n
ic

a
l

a
n
d

p
n
eu

m
a
ti

c
–

N
u
m

b
er

o
f

co
ll
is

io
n

se
n
so

rs
-

b
et

w
ee

n
0

a
n
d

3
fo

r
a

sm
a
ll

p
la

tf
o
rm

-
b

et
w

ee
n

0
a
n
d

7
fo

r
a

m
ed

iu
m

p
la

tf
o
rm

-
b

et
w

ee
n

0
a
n
d

1
1

fo
r

a
la

rg
e

p
la

tf
o
rm

–
B

a
si

c
m

ea
n
s

o
f

lo
co

m
o
ti

o
n

th
a
t

co
u
ld

b
e

tr
ea

d
s
,

w
h

ee
ls

,
o
r

le
gs

–
A

b
il
it

y
to

tu
rn

a
n

a
n
g
le
α

fr
o
m

th
e

in
it

ia
l

h
ea

d
in

g
–

A
b
il
it

y
to

m
ov

e
fo

rw
a
rd

–
A

b
il
it

y
to

m
ov

e
b
a
ck

w
a
rd

–
A

b
il
it

y
to

st
ay

in
a
ct

iv
e

E
n
h
a
n
ce

d
O

b
st

a
-

cl
e

D
et

ec
ti

o
n

–
B

a
si

c
P

la
tf

o
rm

w
it

h
a

t
le

a
st

o
n

e
co

ll
is

io
n

se
n
so

r

–
T

y
p

e
o
f

ra
n
g
e

fi
n
d
er

-
S
m

a
ll

U
lt

ra
so

n
ic

R
a
n
g
e

F
in

d
er

-
L

ow
-c

o
st

U
lt

ra
so

n
ic

R
a
n
g
er

-
C

o
m

p
a
ct

H
ig

h
P

er
fo

rm
a
n
ce

U
lt

ra
so

n
ic

R
a
n
g
er

–
N

u
m

b
er

o
f

ra
n
g
e

fi
n
d
er

s
-

b
et

w
ee

n
0

a
n
d

1
fo

r
a

sm
a
ll

p
la

tf
o
rm

-
b

et
w

ee
n

0
a
n
d

2
fo

r
a

m
ed

iu
m

p
la

tf
o
rm

-
b

et
w

ee
n

0
a
n
d

3
fo

r
a

la
rg

e
p
la

tf
o
rm

–
O

n
e

ra
n
g
e

fi
n
d
er

E
n
v
ir

o
n
m

en
ta

l
V

is
io

n
–

E
n
h
a
n
ce

d
O

b
-

st
a
cl

e
D

et
ec

ti
o
n

–
E

n
v
ir

o
n
m

en
ta

l
v
is

io
n

sy
st

em
-

B
a
ck

a
n
d

w
h
it

e
v
is

io
n

-
P

ri
m

a
ry

co
lo

u
r

v
is

io
n

–
S
en

so
r

ca
p
a
b
le

o
f

d
et

er
m

in
in

g
th

e
co

lo
u
r

o
f

o
b

je
ct

s
in

th
e

ro
b

o
t’

s
en

v
ir

o
n
m

en
t

Table 3 Commonalities and variability of a robot family (a hardware perspective)

18

P
ro

d
u
ct

li
n
e

M
a
n
d
a
to

ry
O

p
ti

o
n
a
l

C
o
m

m
o
n
a
li
ti

es

R
a
n
d
o
m

E
x
p
lo

ra
ti

o
n

–
A

tt
em

p
t

to
av

o
id

co
ll
id

in
g

w
it

h
o
b
st

a
cl

es

–
O

b
st

a
cl

e
d
et

ec
ti

o
n

fo
r

tr
ea

d
s-

m
o
d
e

o
f

lo
co

m
o
ti

o
n

–
O

b
st

a
cl

e
d
et

ec
ti

o
n

fo
r

w
h
ee

ls
-m

o
d
e

o
f

lo
co

m
o
ti

o
n

–
O

b
st

a
cl

e
d
et

ec
ti

o
n

fo
r

le
g
s-

m
o
d
e

o
f

lo
co

m
o
ti

o
n

–
T

w
o

su
cc

es
si

v
e

co
ll
is

io
n

re
co

v
er

y
(c

a
n

to
le

ra
te

a
n
o
th

er
co

ll
is

io
n

d
u
ri

n
g

th
e

re
co

v
er

y
fr

o
m

a
p
re

v
io

u
s

co
ll
is

io
n
)

–
T

h
re

e
su

cc
es

si
v
e

co
ll
is

io
n

re
co

v
er

y
–

D
ic

ta
te

d
n
o
rm

a
l

b
eh

av
io

u
r

in
th

e
a
b
se

n
ce

o
f

a
n

o
b
st

a
cl

e

–
A

v
o
id

co
ll
id

in
g

–
F

ir
st

co
ll
is

io
n

re
co

v
er

y
–

N
o
rm

a
l

b
eh

av
io

u
r

in
th

e
a
b
se

n
ce

o
f

a
n

o
b
st

a
cl

e,
co

ll
is

io
n
,

o
r

a
n
y

o
th

er
sp

ec
ifi

ed
b

eh
av

io
u
r

(m
ov

e
fo

rw
a
rd

a
t

m
a
x
im

u
m

sp
ee

d
)

R
a
n
d
o
m

E
x
p
lo

-
ra

ti
o
n

w
it

h
A

b
il
it

y
to

N
eg

o
ti

a
te

D
o
o
rs

–
R

a
n
d
o
m

ex
p
lo

-
ra

ti
o
n

–
N

av
ig

a
te

th
ro

u
g
h

d
o
o
rs

–
S
m

a
ll

p
la

tf
o
rm

n
av

ig
a
ti

o
n

th
ro

u
g
h

a
d
o
o
r

–
M

ed
iu

m
p
la

tf
o
rm

n
av

ig
a
ti

o
n

th
ro

u
g
h

a
d
o
o
r

–
L

a
rg

e
p
la

tf
o
rm

n
av

ig
a
ti

o
n

th
ro

u
g
h

a
d
o
o
r

–
L

o
ca

te
d
o
o
rs

in
it

s
en

v
ir

o
n
m

en
t

R
a
n
d
o
m

E
x
p
lo

-
ra

ti
o
n

w
it

h
A

b
il
it

y
to

S
ig

n
a
l

E
n
co

u
n
te

r
o
f

O
b

je
ct

s
w

it
h

P
a
rt

ic
u
la

r
C

o
lo

r

–
R

a
n
d
o
m

ex
p
lo

-
ra

ti
o
n

–
E

n
v
ir

o
n
m

en
ta

l
v
is

io
n

–
D

et
ec

t
a
n

o
b

je
ct

o
f

a
sp

ec
ifi

ed
co

lo
u
r

Table 4 Commonalities and variability of a robot family (a behaviour perspec-
tive) 19

6 Building Product Families and Generating Desirable Products

In this section we show the use of product family algebra in finding common
features, building up product families, finding new products and excluding
undesirable feature combinations.

We first address the issue of finding the commonalities of a given set
of products. This is a very relevant issue since the identification of com-
mon artefacts within systems (e.g. chips, software modules, etc.) enhances
hardware/software re-use. If we look at product family algebras like IPFS
and IPFB we can formalise this problem as finding “the greatest common
divisor” or to factor out the features common to all given products. This
relation to “classical” algorithms again shows an advantage of using an
algebraic approach. Solving gcd (greatest common divisor) is well known,
easy and efficient4, whereas finding commonalities using diagrams is more
complex.

Such calculations can easily be done by our prototype. Of course one can
calculate the common parts of any set of products. If there is at least one
common feature, all the products form a product line. After factoring out
the common parts, we can iterate this procedure for a subset of the given
products and find again common parts. In this way we can form f -carrying
subfamilies. Hence, using the algebraic rules in different directions, we can
both structure and generate product families and product lines.

Starting with a set of features, we can create new products just by
combining these features in all possible ways. This can easily be automated.
For example, using our prototype from Section 4, we calculate that the Basic
Platform consists of 13635 products.

However, there are products with combinations of features that are im-
possible or undesirable. For example, it is unreasonable to have a robot
that has both wheels and legs as basic means of locomotion. This require-
ment can be coded in product family algebra by postulating the additional
equation

wheels · legs = 0 .

This exclusion functionality is also implemented in our prototype. For the
robot example all the required exclusion postulates are

excludes = treads .*. wheels
.+. treads .*. legs
.+. wheels .*. legs
.+. limited_spd .*. extended_spd
.+. basic_ctrl .*. digital_ctrl
.+. small_pltfrm .*. large_pltfrm
.+. small_pltfrm .*. medium_pltfrm
.+. medium_pltfrm .*. large_pltfrm

4 A standard algorithmic result is gcd(m,n) ∈ O(ln(n)) for natural numbers m
and n. When using the IPFB-isomorphic model of natural numbers as described
at Page 10, this result directly transfers to our setting.

20

.+. small_pltfrm .*. c_sensor .^. 4

.+. medium_pltfrm .*. c_sensor .^. 5

.+. large_pltfrm .*. c_sensor .^. 6

Here .^. is the power operator. For example “c sensor .^. 4” is an abbrevi-
ation for the term c sensor ·c sensor ·c sensor ·c sensor. Due to the fact
that 0 is an annihilator for ·, the last line excludes large platforms with more
than 5 collision sensors. We refer the reader to Appendix B for the speci-
fication of the robot family. Altogether we are left with a Basic Platform
consisting of 1539 products; this means a reduction by about 90%.

In the next section we will discuss exclusion in a more general setting.

7 Requirements: Implications and Exclusions

When the specification of a product or a family of products is tackled by
adopting a multi-view approach, constraints on the integration of the views
need to be elicited as well. These constraints very often link the presence
of a feature in a partial description in one view to that of another feature
in the same or another view. They can link subproducts or subfamilies as
well. A common informal formulation of these constraints reads as follows:

“If a member of a product family has property p1

it must also have property p2” or
“If a member of a product family has property p1

it must not have property p2”.

An example for the latter type was already given in the previous section,
where we excluded robots with wheels and legs from our production pipeline.

To formulate such integration constraints in our algebra we introduce
the following requirement relation a

e→ b for elements a, b and e. Informally,
a

e→ b means that if e has a then it also has b, or, in other words, that a
implies b within e, whence our notation.

Definition 7.1 Assume a feature-generated algebra. For elements a, b, c, d
and product p we define, in a family-induction style,

a
p→ b ⇐⇒df (p v a =⇒ p v b) ,

a
c+d→ b ⇐⇒df a

c→ b ∧ a d→ b .

Now a
e→ b is well defined for all e, since by assumption e can be written

as a finite sum of products. If a and b are products then a
e→ b coincides

with a e→ l where l is the least common multiple of a and b. In the bag model
the least common multiple of two bags p and q is the “smallest” bag refined
by p and q. For example, assume the features wheel and axis. Then the
least common multiple of wheel4 ·axis and wheel3 ·axis2 is wheel4 ·axis2

(where an denotes the nth power of a). The requirement that in a product
line a two wheels need an axis is expressed by wheel2 a→ axis. Later on,
we present more examples of the requirement relation.

We now establish some connections between our various relations.

21

Lemma 7.2 Let a, b, c, d be elements of a feature-generated algebra.

(a) a→ is a preorder.
(b) Let b v c, then c

a→ d =⇒ b
a→ d and d a→ b =⇒ d

a→ c.
In particular, b v c =⇒ b

a→ c.
(c) Let b ≤ c, then c

a→ d =⇒ b
a→ d and d a→ b =⇒ d

a→ c.

Lemma 7.3 Let a, b, c, d, p be elements of a feature-generated algebra.

(a) b
a→ b+ c.

(b) b · c a→ b.
(c) b

a→ c =⇒ b
a→ c+ d.

(d) b
a→ d =⇒ b · c a→ d.

(e) If p is a product, then b
p→ c =⇒ b+ d

p→ c+ d.
(f) a

e→ b ∧ c e→ d =⇒ a · c e→ b ∧ a · c e→ d.
(g) a+ b

e→ c ⇐⇒ a
e→ c ∧ b e→ c.

Let us explain these properties informally. Part (a) means that if a family a
has b then it also has a realisation of the choice between between b and an
arbitrary c. According to Part (b), if a family a has b·c, i.e., both b and c are
mandatory for a, then it has to have b (and also c, since · is commutative).
Parts (c), (d) and (e) allow embedding already derived feature implications
into larger contexts. Part (f) means that mandatory inclusion of two families
implies all families that are implied by the included ones separately. Finally,
Part (g) expresses that a choice guarantees a feature if and only if both its
parts do.

Before looking at the multi-view reconciliation problem we will give some
small examples of how the above relation can be used.

Example 7.4 In the remainder we assume that a vehicle is built up from
the components (features) speed indicator, steering wheel, wheel, axis,
engine, standard transmission and automatic transmission.

– The requirement engine car−→ speed indicator enforces that every mo-
tor vehicle of the family car has also a speed indicator.

– By wheel ·wheel car−→ steering wheel and engine
car−→ steering wheel

we require that there is at least one steering wheel if the vehicle has at
least two wheels or one engine.

– To exclude more than one steering wheel, one can use the requirement
(steering wheel) · (steering wheel) car−→ 0.

– By (wheel ·wheel)n car−→ axisn (for all n ∈ IN) we enforce that each pair
of wheels can be connected by its own axis.

– To express that a car has to have an even number of wheels we can use
wheel2n+1 car−→ wheel2n+2. ut

So far we have used only requirements for products. However, our re-
quirement relation can also be used more generally. For instance, we may
wish to express the following:

22

“If a member of product family a has feature p1

it also needs to have feature p2 or p3”.
For this we may simply write p1

a−→ p2 + p3.

Example 7.5 The formula

engine
car−→ standard transmission + automatic transmission

requires a car with an engine to also have a standard transmission or an
automatic one. ut

An application of such an integration constraint occurs, e.g., when sen-
sors are used (see Section 9), because then very often several technologies
are adopted. We can have requirements demanding that either of the tech-
nologies be used. Last, but not least, one can use the product family 1
consisting just of the empty product to guarantee the existence of other
elements.

Example 7.6 The requirement 1 car−→ engine enforces that each car has
(at least) one engine. ut

The third item in Example 7.4 shows how to describe exclusion using
a→. While a global mutual exclusion of products p and q can be expressed
by the additional axiom p · q = 0, practically expressing exclusion using a→
is more suitable. Very often we exclude combination of features only within
a particular product (or family) a. The exclusion using a→ has scope a,
whereas p ·q = 0 does not have an explicit scope. Therefore our requirement
relation fits well with the exclusion concept of Section 5.

Finally, to express global product implication, one might define

b
∗→ c ⇐⇒df ∀ a : b a→ c . (5)

However, this relation is redundant by the following result.

Lemma 7.7 Let b, c be elements of a feature-generated algebra. Then b
∗→

c ⇐⇒ b v c, i.e., ∗→ coincides with v.
In particular, b ∗→ 0 ⇐⇒ b v 0 ⇐⇒ b = 0.

8 Multi-View Reconciliation

In this section we sketch the multi-view reconciliation problem. Later on,
we illustrate the problem with a small example. In Section 9 we will present
a larger case study.

When we approach the specification of a product family from different
perspectives these are usually somehow interdependent. When this interde-
pendence is known, how can we describe it in the form of a set of integration
constraints?

We will show that simple multiplication, i.e., the Cartesian product,
of families, combined with the requirement relation yields the desired be-
haviour. On the basis of our algebra we can tackle the feature reconciliation
problem in the following way:

23

– Take two product families a and b and a set of implication clauses of the
form c

a·b−→ d.
– Write a and b in sum-of-products form.
– Now form a · b, multiplying out and removing all products from the

resulting sum that do not respect the implication clauses.

Example 8.1 We assume a company that produces computers. In particu-
lar, it builds machines with a hard disk and a screen. Additionally, a second
screen, a printer or a scanner can be ordered. Of course, it is possible to have
more than one extension for the basic computer. Using the abbreviations
hd, scr,prn and scn, this yields the following element in product family
algebra:

hw = hd · scr · opt[scn, prn, scr] .

In fact the company produces exactly 8 different machines. Next to the
company producing hardware, we assume a software company implementing
drivers. At the moment it offers only two different software packages.

sw = hd drv · scr drv · prn drv
+ hd drv · scr drv · scn drv

The first one contains drivers for hard disks, screens and printers; the second
for hard disks, screens and scanners. The multi-view reconciliation problem
asks for all products that satisfy the following requirements:

hd
hw · sw
−−−→ hd drv

scr
hw · sw
−−−→ scr drv

prn
hw · sw
−−−→ prn drv

scn
hw · sw
−−−→ scn drv

These requirements guarantee that each hardware component has an appro-
priate driver. For this, in our Haskell implementation the function reconc
takes two product families a and b and a list of pairs (c, d) that represent
requirements c a·b−→ d and solves the multi-view reconciliation problem by
the above procedure. Hence the call

reconc hw sw
[(hd, hd drv), (scr, scr drv), (prn, prn drv), (scn, scn drv)]

determines all desired products, 8 in number.

===

Hardware Software

hard disk hard disk driver

printer printer driver

screen (2x) screen driver

24

hard disk hard disk driver

printer printer driver

screen screen driver

hard disk hard disk driver

printer driver

screen screen driver

hard disk hard disk driver

scanner driver

screen screen driver

hard disk hard disk driver

...

Let us have a closer look at the result set. First, there is no machine with
scanner and printer. This is due to the fact that there is no software package
having drivers for both components. Furthermore, there are two different
versions of the hardware product consisting of hard disk and screen(s) only.
The versions offer software for scanners and printers, resp. Such products
can be seen as hardware with an upgrade option. That means that the
customer can add a hardware component without changing the software.

ut
Symmetrically to the combination of product lines, one can extract a

view of a product family by simple projection to the respective feature set
F using a product family algebra homomorphism that sends all features
outside F to the empty product 1.

Fig. 2 FORE feature diagram corresponding to the system of Example 8.1

To illustrate again the relationship between our approach to specify
product families and the graphical feature modelling approaches, we pro-
vide in Figure 2 the graphical representation of the product family subject

25

of Example 8.1. The graphical notation used is that of FORE [11,12], an
extension of pure FODA feature diagrams (cf. Section 3.2). The root is la-
belled with the name given to the overall family. The edges are used to
progressively decompose it into smaller components. A leaf corresponds to
a feature. The features indicated with hollow circles are optional. Vertices
with black circles are considered as mandatory. The features prn drv and
scn drv are related with an xor graphical connector. Multiplicities are repre-
sented with two integers giving the lower and the upper bound. For instance,
in Figure 2, the number of screens for each product ranges between 1 and
2. Alternatively and without using multiplicity, expressing the possibility
of having at least one screen and at most two screens can be graphically
represented with one mandatory scr and another optional.

The subtree rooted at hw does not share basic features with that having
sw as root. Both subtrees give orthogonal views of the Computer family: hw
and sw. However, they are related with requires constraints represented as
dashed arrows. They express the same constraints given above. From this
simple example, we notice that to express dependences between elements of
several views, we need to represent all the views needed in a same diagram.
Therefore, for systems with several views the obtained diagram can be ex-
tremely large. Our approach allows to specify each view separately. Then,
the constraints that link several views are articulated.

9 Case Study: Driver Assisting Systems

The following case study is based on a simplified family of Driver Assist-
ing Systems (DAS). It is partially adapted from a discussion on control
problems in vehicle system design given in [30]. Applying the separation
of concerns principle, we present the family DAS from two perspectives:
a functional perspective and a sensor/actuator perspective. The first ar-
ticulates the family using the main functional features of DAS. The latter
perspective includes only the sensors and actuators needed by the family.

9.1 Functional View

The functional description is built up from the following basic functional
components (features):

26

Road sign recognition and indication rd sgn rcg,
Far Infra-Red (FIR) detection fir,
Near Infra-Red (NIR) detection nir,
Thermal imaging detection tid,
Line departure warning ldw,
Blind spot monitoring bsm,
Adaptive-Cruise-Control-(ACC-)

following control acc f c,
Emergency braking e braking,
Urban ACC (stop & go) u acc,
Automatic steering and braking aut str brk,
Automatic line keeping aut line,
Obstacle avoidance obst avd,
Obstacle warning obst wrng.

More advanced composite products are combinations of the above compo-
nents. For example, the functional description of night vision consists of
any combination of far infra-red technology (fir), near infra-red technol-
ogy (nir), or a simple thermal imaging technology (tid). However, it has
to have at least one of these features and tid is a mandatory feature of
n vision. We can express this requirement as

n vision = opt[fir, nir] · tid

The driver information and warning (driver i w) is the combination of the
three mandatory basic features rd sgn rcg, ldw and bsm, and the ability of
night vision.

driver i w = rd sgn rcg · ldw · n vision · bsm

To describe the complete product family for the driver assisting system
from the functional perspective, we use further composite components for
automatic longitude control (aut long ctrl) and automatic lateral control
(aut ltrl ctrl). The component aut long ctrl allows to automatically
adjust speed in order to maintain a proper distance between vehicles on a
same line in urban environment or on highways. It is defined in terms of
features as follows:

aut long ctrl = acc f c · opt[e braking, u acc]

The main purpose of the component aut ltrl ctrl is to automatically steer
or to assist the driver in steering the vehicle. It might include line keeping,
line change, merging, or diverging. It is defined as follows:

aut ltrl ctrl = opt[aut str brk, aut line]

The whole product line is then characterised by

p line driver assist sys =
obst wrng · opt[obst avd, driver i w] ·
opt[aut long ctrl, aut ltrl ctrl]

27

where opt[. . .] describes again optional features.
It is easy to see that this product family contains products with both FIR

and NIR technologies. From an industrial point of view, if both technologies
occur, one of them is just redundant and would only generate extra costs.
Therefore, we use the requirement

fir · nir
p line driver assist sys

−−−−−−−−−−−−−−−−→ 0 .

The reduced result res p line driver assist sys yields a size reduction
from 200 to 160 members (i.e., size reduction of 20%). In real life the early
detection of conflicting features prevents constructing dysfunctional prod-
ucts; otherwise, an immense increase of costs is incurred by attempting their
construction. Moreover, by simple algebraic calculations done automatically
by our prototype, we can list its common features.

printfeat (common res p line driver assist sys)

shows that obstacle warning (obst wrng) is the only common feature. This
result shows that (a) every product of the driver assisting system must have
such a warning system and (b) that the company can produce one single
version of such a system for all its products.

In the next subsection, we focus on another view. Instead of discussing
functional descriptions of our system we now focus on sensors and actuators.

9.2 Sensor/Actuator View

This view describes the kind of sensors and actuators needed by the family
to gather the information necessary for the above functional features and
for controlling the mechanisms of DAS products.

Similar to the functional view, we first list the basic features for the
actuator and sensor view:

Acceleration pulsator acclrt pulsator,
Acceleration-of-wheel sensor acclrt wheel,
Acceleration-of-vehicle-body sensor acclrt body,
Displacement-of-wheel sensor dis wheel,
Displacement-of-vehicle-body sensor dis body,
Brake temperature sensor brk temp,
CO2 sensor co snsr,
Position sensor position,
Load data sensor load,
ACC radar acc radar,
ACC laser acc laser,
ACC video camera acc v cam,
ACC IR camera acc ir cam,
ACC Far-IR camera acc far ir.

28

To describe the complete on-board sensor configuration we use the following
composite features:

Acceleration Sensors acclrt sensors,
Displacement Sensors dis sensors,
Adaptive Cruise Control Sensors acc sensors.

The composite feature acclrt sensors is a collection of sensors that
provide information on the acceleration of the moving (rotating) parts of
the vehicle. It is specified in terms of basic features as follows:

acclrt sensors = acclrt pulsator · acclrt wheel · acclrt body .

The composite feature dis sensors is formed by displacement sensors that
can be placed, for instance, in pairs on either side of an automotive brake
disc to dynamically monitor an assortment of performance parameters. They
accurately measure position and displacement. Hence we have

dis sensors = dis wheel · dis body

The composite feature adaptive cruise control sensors (acc sensors)
specifies the combinations of sensors that supply the system with the infor-
mation needed to automatically adjust a vehicle’s speed to maintain a safe
following distance. In the following specification of acc sensors, constraints
are put on the maximum number of occurrences of some features.

acc sensors = acc radar≤2 · opt[acc laser] · acc v cam≤4·
acc ir cam≤4 · acc far ir≤4

where for product family a and natural number n we set a≤n = (opt[a])n.
By definition of opt[.] and distributivity a≤n = 1 + a + a2 + · · · an. The
complete description of all on-board sensors then is

on board = opt[co snsr] · opt[brk temp4] ·
acclrt sensors · dis sensors ·
acc sensors · opt[position8]

Similar to the requirement constraint of the functional description view,
we have the following exclusion constraints:

acc radar · acc laser
on board
−−−−−→ 0 ,

acc far ir · acc ir cam
on board
−−−−−→ 0 .

The restricted set res on board of possible sensor configurations is about
76% smaller than the unrestricted version (reduction from 6000 to 1440).
Thus, adding simple restriction constraints can yield an immense and useful
decrease of the variety of products, which is not surprising.

29

9.3 View Reconciliation

The functional view and the sensor/actuator view now form the basis for
the multi-view reconciliation problem. For the normal behaviour of each
product, we need to provide the functional products (as given in the func-
tional view) with the sensor/actuator products needed. Thereby, we need
to link these two perspectives by setting up the following requirements:

driver i w
x−→ acclrt pulsator + co snsr + position , (6)

e braking
x−→ brk temp · position , (7)

aut str brk + aut line
x−→ dis wheel · acclrt body · load , (8)

where x is the product consisting of the two restricted product lines, i.e.,

x = res p line driver assist sys · res on board .

The driver information and warning (driver i w) needs to be fed with
streams of information collected from the system environment. This in-
formation allows making decisions, for example, on road line changing, and
detecting obstacles. For this purpose, one of the acclrt pulsator, co snsr,
or position is required. This requirement is expressed by (6) above.

In the case of an emergency braking (e braking), the sensors have to
collect the temperature of the brakes and at the same time the current
position has to be checked to react if there is an obstacle in front. Linking
driver i w to its needed sensors is given by requirement (7).

Requirement constraint (8) indicates that either one of aut str brk or
aut line calls for the mandatory presence of dis wheel, acclrt body, and
load. According to Lemma 7.3(g), requirement (8) can be written as the
conjunction of two simpler ones: aut str brk

x→ dis wheel ·acclrt body ·
load and aut line

x→ dis wheel · acclrt body · load.
Now we can use the described algorithm to solve the multi-view recon-

ciliation problem. Simple algebraic calculations done automatically by our
prototype show that reconciling the two considered view yields a general
product family with 40320 products. The full Haskell code can be found
in [19].

10 Related Work

In the literature, we find several feature-driven processes for the devel-
opment of software system families that propose models to describe the
commonalities and variabilities of a system family. For brevity, we focus
on the key processes relevant to the family description technique that we
propose: Feature-Oriented Domain Analysis (FODA) [24], Feature-Oriented
Reuse Method (FORM) [25], Featured Reuse-Driven Software Engineering
Business (FeatuRSEB) [14] and Generative Programming (GP) [8]. Other
feature modelling techniques are presented in [3].

30

Similar to feature diagrams, the authors of [33] propose the use of
weighted feature diagrams. Each feature may be annotated with a weight
giving a kind of priority assigned to it. Then they use basic concepts of
fuzzy set theory to model variability in software product lines.

FORM starts with an analysis of commonalities among applications in
a particular domain in terms of services, operating environments, domain
technologies and implementation techniques. Then a model called feature
model is constructed to capture commonalities as an OR/AND graph [29,
pages 40–41 and 99–100]. The AND nodes in this graph indicate mandatory
features and OR nodes indicate alternative features selectable for different
applications. The model is then used to derive parametrised reference archi-
tectures and appropriate re-usable components instantiable during applica-
tion development [25].

In FeatuRSEB, the feature model is represented by a graph (not neces-
sary a tree) of features. The edges are mainly UML dependence relation-
ships: composed of , optional feature and alternative relationship. The graph
enables specifying the requires and mutual exclusion constraints. The fea-
ture model in FeatuRSEB can be seen as an improvement of the model of
FODA.

GP is a software engineering paradigm based on modelling software sys-
tem families. Its feature modelling aims to capture commonalities and vari-
ation points within the family. A feature model includes a hierarchically
arranged diagram where a parent feature is composed of a combination of
some or all of its children. A vertex parent feature and its children in this
diagram can have one of the following relationships [8]:

– And : indicates that all children must be considered in the composition
of the parent feature;

– Alternative: indicates that only one child forms the parent feature;
– Or : indicates that one or more children features can be involved in the

composition of the parent feature (a cardinality (n,m) can be added
where n gives a minimum number of features and m gives the maximum
number of features that can compose the parent);

– Mandatory : indicates that children features are required;
– Optional : indicates that children features are optional.

To have a feature model, in addition to a feature diagram one needs to
provide additional information such as a short description of each feature,
constraints on feature combinations and information on the importance of
some key features.

Concerning view reconciliation, there is a wide literature on integrat-
ing non-functional requirements such as security and performance [7]. For
instance, security requires careful scrutinising of data, which could affect a
system’s performance. Also, we find approaches to resolve architectural mis-
matches resulting from integrating commercial off-the-shelf (COTS) compo-
nents. The mismatches essentially occur between the services required and
provided, when a component and its environment interact. However these

31

approaches do not directly relate to the problem we are treating in the
present paper. They tackle the reconciliation of two architectural models:
one that is forward-engineered from the requirements specification and a
second that is reverse-engineered from the COTS-based system implemen-
tation [1]. Also, a similar problem occurs when merging views of a database;
it is called the view reconciliation problem [23]. The above cases are consid-
ering the development of a single software system and not a software family.
The mismatches that we are concerned with occur at the level of the feature
model in the initial phase of the software development process before the
architectural design.

Also, the literature regarding the sequential completion method for the
development of software systems proposes a variety of solutions to the view
reconciliation problem [9,39,42]. The views considered there are partial de-
scriptions (e.g., scenarios or use-cases) of the functional requirements of
a system. To build up the overall specification of the system, these partial
views are integrated and in this process any inconsistencies among them are
detected. In [9] we find a relational approach to the integration of sequen-
tial scenarios, which are scenarios involving a single user. The integration
is possible if the scenarios are consistent (from a behaviour perspective).
Moreover, the proposed technique offers several opportunities for detect-
ing possible sources of requirement incompleteness. In [39], an approach
to scenario-based specification, integration and behaviour analysis is pro-
posed. The approach proposes a Message Sequence Charts language that
integrates existing approaches based on scenario composition by using high-
level Message Sequence Charts. Also, it presents a synthesis algorithm which
transforms scenarios into a behavioural specification in the form of Finite
Sequential Processes. The obtained specification can be analysed with the
Labeled Transition System Analyzer using model checking and animation.
In [42] an algebraic framework for view consistency in the elaboration of
functional requirements of a system is presented. Viewpoints are formalised
as pairs of a syntactic and a semantic category linked by a model functor,
while views are objects in the syntactic category. Consistency of views is
defined by a heterogeneous pullback construction. The approaches of [9,39,
42] deal with the integration of partial descriptions of the behaviour of a
single system while interacting with its environment.

Formal requirements scenarios can be related to our product family al-
gebra by providing concrete definitions for the two product family algebra
operators · and +, and providing explicit 0 and 1. For instance, the inte-
gration of features using the product is presented as a generalisation of the
work presented in [9]. It can be as well represented as a scenario composition
using high-level Message Sequence Charts (hMSCs) and then one uses the
technique proposed by Uchitel et al. [39] to analyse the obtained concrete
model.

32

11 Conclusion and Future Work

The adoption of the product family paradigm aims at recognising a reality
in software development industry noticed decades ago [31]: economical con-
straints impose a concurrent approach to software development replacing
the early sequential one. The research about software product families aims
at studying the commonalities/variability occurring among the products in
order to have a better management of system production. However, a review
of the literature reveals a wide set of notions and terms used without formal
definitions. Hence the development of a clear and simple mathematical basis
for this paradigm became necessary.

In this paper we have introduced product family algebra as an idem-
potent commutative semiring. We have given a set-based and a bag-based
model of the proposed algebra. To compare elements of our algebra, besides
the natural order defined on an idempotent semiring we use a refinement
relation and have established some of its basic properties. Then we have
given formal definitions of common terms that are intuitively used in the
literature such as product, feature, and family. We introduced as well new
notions such as that of a weak zero, and a measure for similarity among
products and families.

The proposed algebra not only allows us to express the basic notions
used by the product family paradigm community, but also enables algebraic
manipulations of families of specifications, which enhances the generation
of new knowledge about them. The notions and relationships introduced in
FODA [24], FORM [25], FeatuRSEB [14] and GP [8] and expressed with
graphical notations can easily be stated within our algebra. For instance, the
alternative is expressed using the + operator, and we write d = b · (1 +a) · c
(where b, and c are families) to express that a feature a is optional in a
family d.

In contrast to other product family specification formalisms, like FODA,
FORM, and the other extensions to FODA, there exists a large body of
theoretical results for idempotent commutative semiring and for algebraic
techniques in general with strong impact for research related to problems
of consistency, correctness, compatibility and re-usability.

Many items from the literature support the potential scalability of alge-
braic approaches in specifying industrial-scale software product families [2,
4]. However, we think that empirical substantiation of the scalability of our
approach is needed.

As a major application of our algebraic framework we have presented a
way of solving the multi-view reconciliation problem. The main ingredient
is a set of integration constraints that link features or more generally sub-
families in one view description to other features or sub-families in the same
or another view description. The integration process leads to a more accu-
rate specification of a product family by excluding the members that do not
satisfy the integration constraints. The description of a family as well as the
integration constraints are given within the same mathematical framework

33

of product family algebra. We have presented the mathematical properties
of a requirement relation that we use to express the view integration con-
straints. Several examples have shown the capabilities of this approach for
dealing with a wide class of integration constraint formulations.

The main characteristics of the proposed approach are the following:

– The conflict resolution among views is performed without modification
on the initial views. It is a direct application of the principle of separation
of concerns. Each specifier can concentrate on capturing a description
of a product family from his own view without being constrained to
conform to some other specifier’s view. In a second step one can focus the
attention on the constraints that govern the integration of the considered
views. The global view of the product family is then obtained by simple
algebraic manipulations. This approach is suitable for graceful ageing
and evolution of product family specifications: each time a view changes
the global view can be automatically re-generated.

– The mathematical background needed to specify product family views
as well as the integration constraints involves only simple concepts that
we can realistically expect all stakeholders to understand and relate to.

– Due to the simplicity of the mathematical framework, the reasoning on
product families as well as on view integration can be automated in
provers such as Prover9 [27] and prototypically implemented over some
useful models of product family algebra in Haskell.

Our product family algebra is at a high level of abstraction. From a
software perspective, a feature could be a requirement scenario/use-case
or a partial description of the functionality. Our current research aims at
investigating the derivation of the specifications of members of a family from
its abstract feature algebra specification and the specifications of each of its
features. This step would join the ongoing research efforts for formal model
driven software development techniques. The algebraic model of a family
and the specifications of the family’s features would be the initial models of
the sought transformation.

Acknowledgements: We are grateful to A. Zelend and the anonymous
referees for helpful discussions and remarks.

References

1. Paris Avgeriou and Nicolas Guelfi. Resolving architectural mismatches of
COTS through architectural reconciliation. In Lecture Notes in Computer
Science, volume 3412, pages 248–257. Springer, 2005.

2. Don Batory. The road to utopia: A future for generative programming.
Keynote presentation at the Dagstuhl Seminar for Domain Specific Program
Generation, March 2003.

3. Don Batory. Feature models, grammars, and propositional formulas. In Pro-
ceedings of the 9th International Software Product Line Conference (SPLC-
EUROPE 2005), 26-29 September 2005.

34

4. Don Batory, Roberto Lopez-Herrejon, and Jean-Philippe Martin. Generat-
ing product-lines of product-families. In Conference on Automated-Software
Engineering, September 2002.

5. Stan Bühne, Kim Lauenroth, and Klaus Pohl. Modelling requirements vari-
ability across product lines. In 13th IEEE International Requirements En-
gineering Conference, pages 41–50. IEEE Computer Society, August 29–
September 2 2005.

6. Paul Clements, Linda M. Northrop, and Linda M. Northrop. Software Product
Lines: Practices and Patterns. Addison Wesley Professional, 2002.

7. L. M. Cysneiros and J. C. S. do Prado Leite. Non-functional requirements:
From elicitation to conceptual models. IEEE Transactions on Software En-
gineering, 30(5):328–350, 2004.

8. Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming, Meth-
ods, Tools and Applications. Addison-Wesley, 2000.

9. Jules Desharnais, Marc Frappier, and Ridha Khedri. Integration of sequen-
tial scenarios. IEEE Transactions on Software Engineering, 24(9):695–708,
September 1998.

10. Jules Desharnais, Bernhard Möller, and Georg Struth. Modal Kleene algebra
and applications — A survey. Journal on Relational Methods in Computer
Science, 1:93–131, 2004.

11. Detlef Streitferdt. Family-Oriented Requirements Engineering. PhD thesis,
Technical University Ilmenau, 2004.

12. Detlef Streitferdt and Matthias Riebisch and Ilka Philippow. Details of For-
malized Relations in Feature Models Using OCL. In The 10th IEEE Inter-
national Conference and Workshop on the Engineering of Computer-Based
Systems (ECBS’03), Huntsville, AL, USA, April 2003. IEEE Computer Soci-
ety.

13. Wasif Gilani, Nabeel Hasan Naqvi, and Olaf Spinczyk. On adaptable mid-
dleware product lines. In Proceedings of the 3rd workshop on Adaptive and
reflective middleware (ARM ’04), pages 207–213. ACM, 2004.

14. Martin L. Griss, John Favaro, and Massimo d’Alessandro. Integrating feature
modeling with the RSEB. In P. Devanbu and J. Poulin, editors, Proceedings
of the 5th International Conference on Software Reuse, pages 76–85. IEEE
Computer Society, 1998.

15. Uwe Hebisch and Hanns J. Weinert. Semirings — Algebraic Theory and
Applications in Computer Science. World Scientific, 1998.

16. P. Höfner. Database for automated proofs (laws for product families).
http://www.dcs.shef.ac.uk/∼georg/ka.
(accessed March 1, 2009).

17. Peter Höfner, Ridha Khedri, and Bernhard Möller. Feature algebra. In
Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, Formal Methods,
volume 4085 of Lecture Notes in Computer Science, pages 300–315. Springer,
2006.

18. Peter Höfner, Ridha Khedri, and Bernhard Möller. Feature algebra. Technical
Report 2006-04, Institute of Computer Science, University of Augsburg, 2006.

19. Peter Höfner, Ridha Khedri, and Bernhard Möller. Algebraic view reconcil-
iation. Technical Report 2007-13, Institute of Computer Science, University
of Augsburg, 2007.

20. Peter Höfner, Ridha Khedri, and Bernhard Möller. Algebraic view reconcilia-
tion. In Software Engineering and Formal Methods, pages 85–94. IEEE Press,
2008.

35

21. Peter Höfner and Georg Struth. Automated reasoning in Kleene algebra. In
Frank Pfennig, editor, CADE 2007, volume 4603 of Lecture Notes in Artificial
Intelligence, pages 279–294. Springer, 2007.

22. Peter Höfner and Georg Struth. Can refinement be automated? Electronic
Notes in Theoretical Computer Science, 201:197–222, 2008.

23. Barry E. Jacobs. Applied Database Logic: Fundamental Issues, volume I.
Prentice-Hall, Inc., 1985.

24. Kyo C. Kang, Sholom G. Cohen, JAmes A. Hess, William E. Novak, and
A. Spencer Peterson. Feature-oriented domain analysis (FODA) feasibility
study. Technical Report CMU/SEI-90-TR-021, Carnegie Mellon Software En-
gineering Institute, Carnegie Mellon University, 1990.

25. Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moon-
hang Huh. FORM: A feature-oriented reuse method with domain-specific
reference architectures. Annals of Software Engineering, 5(1):143–168, 1998.

26. Ridha Khedri. Formal model driven approach to deal with requirements
volatility. Computing and Software Technical Reports CAS-08-03-RK, De-
partment of Computing and Software, McMaster University, 2008.

27. William McCune. Prover9 and Mace4.
http://www.prover9.org/. (accessed March 1, 2009).

28. William Nace and Philip Koopman. A product family approach to graceful
degradation. In Proceedings of the IFIP WG10.3/WG10.4/WG10.5 Interna-
tional Workshop on Distributed and Parallel Embedded Systems: Architecture
and Design of Distributed Embedded Systems, pages 131–140. Kluwer, B.V.
Deventer, The Netherlands, The Netherlands, 2000.

29. Nils J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Co.,
1980.

30. Laszlo Palkovics. Identification and control problems in vehicle system design.
Knorr-Bremse Publication, 1991.

31. David L. Parnas. On the design and development of program families. IEEE
Transactions on Software Engineering, SE2(1):1–9, 1976.

32. Claudio Riva and Christian Del Rosso. Experiences with software product
family evolution. In Sixth International Workshop on Principles of Software
Evolution (IWPSE’03), pages 161–169. IEEE Computer Society, 2003.

33. Silva Roback and Andrzej Pieczynski. Employing fuzzy logic in feature di-
agrams to model variability in software product-lines. In 10th IEEE Inter-
national Conference and Workshop on the Engineering of Computer-Based
Systems (ECBS’03), pages 305–311. IEEE Computer Society, 2003.

34. Juha Savolainen, Ian Oliver, Mike Mannion, and Hailang Zuo. Transitioning
from product line requirements to product line architecture. In Proceedings of
the 29th Annual International Computer Software and Applications Confer-
ence (COMPSAC 2005), pages 186–195. IEEE Computer Society, 26–28 July
2005.

35. Charles P. Shelton. Using architectural properties to model and measure
system-wide graceful degradation. In In Workshop on Architecting Dependable
Systems, pages 267–289. Springer, 2002.

36. Software Engineering Standards Committee of the IEEE Computer Society.
IEEE recommended practice for software requirements specifications, IEEE
Std 830-1998 (revision of IEEE std 830-1993).
http://ieeexplore.ieee.org (May 23, 2007).

37. Jeffrey M. Thompson, Mats P. Heimdahl, and Debra M. Erickson. Structuring
formal control systems specifications for reuse: Surviving hardware changes.

36

Technical Report TR 00-004, Department of Computer Science and Engineer-
ing, University of Minnesota, February 2000.

38. Jeffrey M. Thompson and Mats P.E. Heimdahl. Structuring product family
requirements for n-dimensional and hierarchical product lines. Requirements
Engineering Journal, 2002.

39. Sebastian Uchitel, Jeff Kramer, and Jeff Magee. Synthesis of behavioral mod-
els from scenarios. IEEE Transactions on Software Engineering, 29(2):99–115,
2003.

40. Andy Ju An Wang and Kai Qian. Component-Oriented Programming. Wiley,
2005.

41. David M. Weiss and Chi Tau Robert Lai. Software Product-Line Engineering:
A Family-Based Software Development Process. Addison Wesley Longman,
Inc., 1999.

42. Martin Wirsing and Alexander Knapp. View consistency in software devel-
opment. In Lecture Notes in Computer Science, volume 2941, pages 341–357.
Springer, 2004.

A Deferred Proofs

Proof of Lemma 3.11.
Since in a semiring a + b is the least upper bound of a and b w.r.t. the
natural order, we have the equivalence

a+ b ≤ c ⇐⇒ a ≤ c ∧ b ≤ c . (9)

Suppose now p1 + · · · + pm ≤ q1 + · · · + qn for distinct proper pi and
distinct proper qj . Then by (9) we have pi ≤ q1 + · · · + qn for all i. Since
the pi as products are irreducible (Formula (1)), we obtain pi ≤ q1 ∨ · · · ∨
pi ≤ qn. Since all pi are assumed to be proper and all qj are products,
atomicity of the qj (Formula (2)) tells us that this disjunction is equivalent
to pi = q1 ∨ · · · ∨ pi = qn. But this means that pi ∈ {q1, . . . , qn}. Hence
{p1, . . . , pm} ⊆ {q1, . . . , qn}.

The converse implication is trivial. ut

Proof of Lemma 3.12.
The equation p1 + · · · + pm = q1 + · · · + qn is equivalent to p1 + · · · +
pm ≤ q1 + · · · + qn ∧ q1 + · · · + qn ≤ p1 + · · · + pm. Now Lemma 3.11
shows {p1, . . . , pm} ⊆ {q1, . . . , qn} ∧ {q1, . . . , qn} ⊆ {p1, . . . , pm} which is
equivalent to the claim. ut

Proof of Lemma 3.15.
Assume a | b, say a · c = b. Then by reflexivity of ≤ also b ≤ a · c, showing
b v a. ut

Proof of Lemma 3.16.
(⇐) follows immediately from Lemma 3.15. For the converse direction, as-
sume a ≤ p·c for some element c. If a = 0 then p|a holds. Otherwise we must
have p 6= 0 and c 6= 0. In particular, p is a proper product and there are

37

sets {p1, . . . , pm} and {r1, . . . , rn} of proper products with a = p1 + · · ·+pm

and c = r1 + · · · + rn. By distributivity now the assumption a ≤ p · c is
equivalent to p1 + · · ·+ pm ≤ p · r1 + · · ·+ p · rn. By Definition 3.8 all p · ri
are products again. Let P =df {p · ri | p · ri 6= 0} be the set of all non-trivial
summands. Since p 6= 0 we must have P 6= ∅. This means that there are
indices j1, . . . , jm ∈ {1,n} with {p1, . . . , pm} = {p · rj1 , . . . p · rjm

} and
hence a = p1 + · · ·+ pm = p · rj1 + · · · p · rjm = p · (rj1 + · · · rjm) by distribu-
tivity, so that p divides a. ut

Proof of Lemma 3.17.
(a) Set c = 1 in the definition of v.
(b) a · b v b ⇐⇒ ∃ c : a · b ≤ b · c⇐ a · b ≤ b · a ⇐⇒ true .

The last step only holds if · is commutative.
(c) Immediate from a ≤ a+ b and Part (a).
(d) Suppose a v b, say a ≤ b · d. Then by isotony

a+ c ≤ b · d+ c ≤ b · d+ c+ c · d+ b = (b+ c) · (d+ 1) ,

i.e., a+ c v b+ c.
(e) By definition, isotony w.r.t. ≤ and commutativity we get

a v b ⇐⇒ ∃ d : a ≤ b · d =⇒ ∃ d : a · c ≤ b · c · d ⇐⇒ a · c v b · c.
(f) By annihilation, a v 0 ⇐⇒ ∃ c : a ≤ 0 · c ⇐⇒ a ≤ 0.
(g) Set a = 0 and b = 1, resp., in Part (b). ut

Proof of Lemma 3.18.
(a) (⇐) follows by Lemma 3.17(a) and transitivity of v.

(⇒) Assume p ≤ (a+ b) · c = a · c+ b · c. Since p is a product, we have
p ≤ a · c ∨ p ≤ b · c, which shows the claim.

(b) (⇒) Let p v a+ b, say p ≤ (a+ b) · c = a · c+ b · c. Since p is a product,
this implies p ≤ a · c ∨ p ≤ b · c, showing p v a ∨ p v b.
(⇐) follows by v-isotony (Lemma 3.17(e)) and idempotence of +. ut

Proof of Lemma 3.19.
First we show a v b ⇐⇒ a ≤ b · >.

– (⇒) a v b ⇐⇒ ∃ c : a ≤ b · c =⇒ a ≤ b · >.
– (⇐) Set c = >.

Now, we show a ≤ b · > ⇐⇒ a · > ≤ b · >.

– (⇐) By isotony and a ≤ a · >.
– (⇒) By isotony and > · > = > (which follows by > · > ≤ >). ut

Proof of Lemma 3.23.
(a) Assume y and z to be weak zeros. Then, by definition, y = y · z = z.
(b) (⇒) Assume a = 0. Then by definition of weak zero and annihilation

z = 0, which contradicts the definition of z.
(⇐) By definition z ≤ z · a if a 6= 0 and hence, z v a.

38

(c) By definition of v and weak zero,
a v z ⇐⇒ ∃ c : a ≤ z · c ⇐⇒ a ≤ 0 ∨ a ≤ z ⇐⇒ a ≤ z. ut

Proof of Lemma 7.2.
The claims are shown by family induction. We only give the induction base
cases; the induction steps are straightforward predicate logic.
(a) Reflexivity follows immediately from the definition. Transitivity holds

by transitivity of implication.
(b) Let p be a product. First we show c

p→ d =⇒ b
p→ d. Therefore we

assume b v c, c
p→ d and p v b. Then by transitivity of v we get p v c

and hence also p v d. The second claim is proved similarly.
For the third claim set d = c in the first claim or d = b in the second
claim and use reflexivity of a→.

(c) Immediate from (b) using b ≤ c =⇒ b v c. ut

Proof of Lemma 7.3.
Again the claims are shown by family induction for which we only do the
base cases.
(a) By Lemma 3.18(a) q v b implies q v b+ c by b v b+ c and transitivity

of v.
(b) Assume q v b · c, i.e., ∃ f.q ≤ b · c · f . Setting c′ =df c · f shows q v b.
(c) Immediate from Lemma 7.2(b) by c v b+ c.
(d) Immediate from Lemma 7.2(b) by b · c v b.
(e) Assume p v b+ d. Since p is a product, this implies p v b or p v d. In

the first case, p v c v c+d by b
p→ c and Lemma 3.18(b). In the second

case p v d v c+ d.
Note that this property cannot be lifted to arbitrary elements using the
sum of products form, since we use a special property of products.

(f) Immediate from Part (c).
(g) By definition of

p→, Lemma 3.18(b), predicate logic and definition of
p→

again,

(e+ f
p→ c)

⇐⇒ (p v e+ f =⇒ p v c)
⇐⇒ ((p v e =⇒ p v c) ∧ (p v f =⇒ p v c))
⇐⇒ (e

p→ c ∧ f p→ c). ut

Proof of Lemma 7.7.
(⇐) We assume b v c. Then, by Lemma 3.2(b), b a→ c for all a. By definition
this is the same as b ∗→ c.
(⇒) We use family induction on b.
Induction base, i.e., b a product: Spelling out the definition yields b

∗→
c ⇐⇒ (∀ a : b a→ c). Choosing a = b implies b b→ c which is equivalent to
b v b =⇒ b v c, since b is a product. This immediately yields the claim.
Induction step, i.e., b = e + f . We again set a = b and reason as follows,
using the definition of

e+f→ , Lemma 7.3(g), predicate logic, the induction
hypothesis and Lemma 3.18(b),

39

e+ f
e+f→ c

⇐⇒ e+ f
e→ c ∧ e+ f

f→ c

⇐⇒ e
e→ c ∧ f e→ c ∧ e f→ c ∧ f f→ c

⇐⇒ e
e→ c ∧ f f→ c

⇐⇒ e v c ∧ f v c
⇐⇒ e+ f v c. ut

B Haskell:
Code Fragments and Complete Specification of the Robot Family

In this section we present some code fragments of our prototype implemen-
tation. We show the straightforward set-based implementation and not the
more sophisticated one described on Page 10.

The main type of our implementation is AlgFamily, a pair consisting of
a tree representation of an algebraic term and the product family it denotes.

type AlgFamily = (Term, ProdFamily)

type ProdFamily = [Product] -- sum of products

type Product = [BaseFeature]

type BaseFeature = String

data Term = Zero | One | Basic BaseFeature | Sum Term Term

| Product Term Term | Excl Term Term

Using these types it is easy to implement the functions mentioned. For
example sum, multiplication and extracting common parts can be encoded
as follows:

(.+.), (.*.) :: AlgFamily -> AlgFamily -> AlgFamily

(x,xn) .+. (y,yn) = (Sum x y, sunion xn yn)

(x,xn) .*. (y,yn) =

(Product x y, mkset [[bunion bx by] | bx <- xn, by <- yn])

common :: ProdFamily -> Product

common [] = []

common pf = foldl1 binter pf

Here sunion denotes set union, bunion bag union and binter bag in-
tersection.

To encode a concrete example one can follow the code below where we
give the whole specification for the robot family example of Section 5.

------- Robot family example (Hardware perspective)

--basic features:

40

treads = bf "Moves around on treads"

wheels = bf "Moves around on wheels"

legs = bf "Moves around on legs"

basic_means_of_locomotion = treads .+. wheels .+. legs

turn = bf "Able to turn an angle from the initial heading"

move_frwrd = bf "Able to move forward"

move_bckwrd = bf "Able to move backward"

stay_idle = bf "Able to stay inactive"

limited_spd = bf "Robot limited to low speed of locomotion"

extended_spd = bf "Robot extended to high speed of locomotion"

basic_ctrl = bf "Robot with basic control (only on or off)"

digital_ctrl = bf "Robot with digital valued indication of

locomotion speed and direction"

small_pltfrm = bf "Small size platform robot"

medium_pltfrm = bf "Medium size platform robot"

large_pltfrm = bf "Large size platform robot"

c_s_pneumatic = bf "Pneumatic collision sensor"

c_s_mechanical = bf "Mechanical collision sensor"

c_s_combination = bf "Collision sensor is a combination of

mechanical and pneumatic sensors"

sur_finder = bf "Small Ultrasonic Range Finder"

lcur_finder = bf "Low-cost Ultrasonic Ranger"

chpu_finder = bf "Compact High Performance Ultrasonic Ranger"

v_s_colour_vision = bf "Sensor capable of determining the colour

of objects in the robot’s environment"

black_white_vision = bf "Black and white environmental vision"

primary_colour_vision = bf "Primary colour environmental vision"

speed_of_locomotion = limited_spd .+. extended_spd

locomotion_ctrl_sys = basic_ctrl .+. digital_ctrl

c_sensor = c_s_pneumatic .+. c_s_mechanical .+. c_s_combination

rng_finder = sur_finder .+. lcur_finder .+. chpu_finder

platform_size_snsor = small_pltfrm .*. (c_sensor .^<=. 3)

.+. medium_pltfrm .*. (c_sensor .^<=. 7)

.+. large_pltfrm .*. (c_sensor .^<=. 11)

platform_size_finder = small_pltfrm .*. (rng_finder .^<=. 1)

.+. medium_pltfrm .*. (rng_finder .^<=. 2)

.+. large_pltfrm .*. (rng_finder .^<=. 3)

41

-- product lines

basic_platform = basic_means_of_locomotion

.*. turn

.*. move_frwrd

.*. move_bckwrd

.*. stay_idle

.*. opt[speed_of_locomotion]

.*. opt[locomotion_ctrl_sys]

.*. opt[platform_size_snsor]

enhanced_obstacle_detection = basic_platform

.*. c_sensor

.*. opt[platform_size_finder]

environmental_vision = enhanced_obstacle_detection

.*. v_s_colour_vision

.*. opt[black_white_vision]

.*. opt[primary_colour_vision]

-- constraints on all the products to exclude the impossible

-- or undesirable combinations of features

excludes = treads .*. wheels

.+. treads .*. legs

.+. wheels .*. legs

.+. limited_spd .*. extended_spd

.+. basic_ctrl .*. digital_ctrl

.+. basic_ctrl .*. digital_ctrl

.+. small_pltfrm .*. large_pltfrm

.+. small_pltfrm .*. medium_pltfrm

.+. medium_pltfrm .*. large_pltfrm

.+. small_pltfrm .*. c_sensor .^. 4

.+. medium_pltfrm .*. c_sensor .^. 5

.+. large_pltfrm .*. c_sensor .^.6

C Prover9 Script

In this section we show a typical input file for the theorem prover Prover9 en-
coding product family algebra. An automatic proof attempt can be started
by prover9 -f <file> or via the graphical interface of Prover9; if that
does not succeed (within reasonable time), the companion program Mace4
can try to find a counterexample to the conjectured theorem.

op(500, infix, "+").

op(490, infix, ";").

op(700, infix, "<=").

op(700, infix, "<<").

42

% axioms of product family algebra %%%%%%%%%%%%%%%%%%

formulas(sos).

% commutative additive monoid

x + y = y + x.

x + 0 = x.

x+(y+z) = (x+y)+z.

% commutative multiplicative monoid

x;y = y;x.

x;1 = x & 1;x = x.

x;(y;z) = (x;y);z.

% annihilation laws

0;x = 0 & x;0 = 0.

% idempotence

x + x = x.

% distributivity

x;(y + z) = x;y + x;z.

(x + y);z = x;z + y;z.

% natural order

x<=y <-> x+y=y.

% refinement relation

x<<y <-> (exists z (x<=y;z)).

end_of_list.

% conjecture/theorem/lemma... %%%%%%%%%%%%%%%%%%%%%%

formulas(goals).

% theorem to be proved should be added here;

% for example reflexivity of <<

x <= y -> x << y.

end_of_list.

43

