Softw Syst Model (2010) 9:403-424
DOI 10.1007/s10270-009-0144-1

REGULAR PAPER

Supporting fine-grained generative model-driven evolution

Theo Dirk Meijler - Jan Pettersen Nytun -
Andreas Prinz - Hans Wortmann

Received: 27 August 2007 / Revised: 13 March 2009 / Accepted: 14 September 2009 / Published online: 9 January 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract In the standard generative Model-driven Archi-
tecture (MDA), adapting the models of an existing system
requires re-generation and restarting of that system. This is
due to a strong separation between the modeling environment
and the runtime environment. Certain current approaches
remove this separation, allowing a system to be changed
smoothly when the model changes. These approaches are,
however, based on interpretation of modeling information
rather than on generation, as in MDA. This paper describes an
architecture that supports fine-grained evolution combined
with generative model-driven development. Fine-grained
changes are applied in a generative model-driven way to a
system that has itself been developed in this way. To achieve
this, model changes must be propagated correctly toward
impacted elements. The impact of a model change flows
along three dimensions: implementation, data (instances),
and modeled dependencies. These three dimensions are
explicitly represented in an integrated modeling-runtime
environment to enable traceability. This implies a fundamen-
tal rethinking of MDA.

Keywords Evolution - Model-driven development -
Generative development - Interpretive development

Communicated by Dr. Betty Cheng.

T. D. Meijler ()
SAP Research, CEC Dresden, Dresden, Germany
e-mail: theo.dirk.meijler@sap.com

J. P. Nytun - A. Prinz
Faculty of Engineering and Science,
University of Agder, Agder, Norway

H. Wortmann
Faculty of Management and Organization,
University of Groningen, Groningen, The Netherlands

1 Introduction

Modern system development introduces a higher abstrac-
tion level using models. Modeling is a form of software
description that is often closer to the domain expert than
code. The domain expert is able to describe concepts and
their relationships in a visual and intuitive form, for exam-
ple, by using UML or a domain-specific modeling language.
Development using models is called model-driven develop-
ment (MDD); OMG has defined its model-driven architec-
ture (MDA) [1] to support MDD. In various publications
[1,2], MDD is hailed as promising to allow mapping models
to different implementation platforms and to permit an eas-
ier adaptability of the models because of its higher abstrac-
tion level, thus improving model longevity when compared
to code, and producing better implementation independence
and a shorter time-to-market. Moreover, verification early
in the development process becomes possible [3]. Various
successes have been reported on the OMG website [4].

Apart from the higher level of abstraction, the evolution of
systems has become an important issue. Large systems, espe-
cially enterprise systems, must be able to evolve constantly
[5,6]. These systems must be adapted to changing circum-
stances, new products, new laws and changing organizational
structures.

One important form of system evolution is that supported
by reuse techniques where software components can be added
or replaced. Component-based approaches such as SOA [7]
use composition languages such as BPMN [8] or BPEL [9]
to support large-scale software evolution.

The question is, How can reuse-based evolution be com-
bined with the power of generative MDD [3]? The idea behind
this combination goes as follows: A model of a reusable part
of a system (a partial model) can be added or replaced such
that:

@ Springer

404

T. D. Meijler et al.

e The impact of a replacement can be detected at the model
abstraction level of other parts of the system, which may
lead to other model changes

e The impacted part of the system’s realization that must
be re-generated can be kept as small as possible

e The impact on existing data instances, which are impor-
tant assets of enterprises in such large-scale systems, can
be detected

e The impact on instances that must correspondingly be
upgraded can be kept as small as possible.

This paper will focus specifically on adding or replacing
Model Classes, which are partial models that are at the gran-
ularity of classes (in the sense of Object-oriented systems),
and on evolving a system correspondingly. Making this a
possibility is the main contribution of this paper.

To support such fine-grained generative model-driven evo-
lution, this paper will assert that three dimensions of relations
must be explicitly maintained:

1. From model to realization: to trace the impact of models
on realization

2. From models to data instances: to trace the impact of
models on these instances

3. Between models, such that model dependencies can be
traced.

The solution presented in this paper is a new hybrid app-
roach to MDD, which combines certain essential ideas from
interpretive development (such as those described by Riehle
et al. [10] and Atkinson and Kuehne [11]) with generative
development. In this way, it combines the advantages of
interpretative development, supporting relative fine-grained
partial model changes, with the advantages of generative
development, supporting consistency checking and a more
efficient execution.

This approach has been realized and applied in a large
research project on MDD called “Nucleus,” which was a
research project of a large Enterprise Resource Provider
(ERP) vendor that started even before the MDA was pro-
posed [12]. Using this approach, two large beta applications
have been realized in an incremental model-driven fashion in
the area of product lifecycle management for airplane motors
and large paper factories, respectively (see also Sect. 5). This
paper can, therefore, be seen as describing some fundamen-
tal concepts of the Nucleus Modeling Framework (NMF)
resulting from this research project. However, the terminol-
ogy and explanation in this paper have been tailored to the
current MDA literature.

This paper is structured further as follows: In Sect. 2,
the meaning of generative development as in the MDA
will be explained further, and contrasted with interpretive

@ Springer

approaches. This is fundamental for the rest of the paper.
Furthermore, the advantages and disadvantages of both
approaches will be discussed to see why a hybrid approach
may improve both concepts. In Sect. 3, two simple use-
cases will be described, which correspond to the addition and
replacement of a model class. These will be used throughout
the paper to explain the NMF. From these use-cases, mini-
mal requirements will be derived as guidelines for carrying
out fine-grained evolution within generative model-driven
development. Section 3 will also detail known limitations of
the approach and define the scope of this paper. Section 4
will describe the main principles of the NMF. Section 5 will
describe how the NMF fits in the larger Nucleus project,
and will give a more detailed account of how the approach
has been applied. Section 6 will present a discussion. As
the NMF is radically different in some aspects from other
modeling approaches, the soundness of its principles will
be discussed. We will also discuss whether the requirements
derived in Sect. 3 have been fulfilled. In Sect. 7, related work
will be presented and discussed. In Sect. 8, a conclusion will
be given.

2 Setting the stage: generative versus interpretive

As an introduction to the rest of this paper, the intricate rela-
tionship between generative and interpretive approaches to
MDD needs to be explained. To compare generative develop-
ment with interpretive development, it is necessary to under-
stand the meaning of generative MDD; this issue will be taken
up in Sect. 2.1. Generative MDD itself builds upon inter-
pretive technologies at lower-level forms of abstraction (not
model-driven); this will also be treated in Sect. 2.1. Finally,
interpretive MDD is an alternative to generative MDD. In
Sect. 2.2 an explanation will be given as to why generative
MDD can potentially have important advantages as com-
pared with interpretive MDD.

2.1 Relating generative and interpretive approaches

Since the MDA is the de-facto standard of generative MDD,
we will discuss generative MDD by describing the MDA.
Figure 1c illustrates one of the main principles of the MDA:
An application is built by making a platform-independent
model (PIM). A PIM describes the high-level logical struc-
ture of the problem domain without concerning itself with
specific software platforms. When seen as a description, the
PIM exists in a modeling environment and conforms to a
supported language; for example, a PIM described in UML
is typically object-oriented and the behavior of objects might
be expressed in state charts.

The PIM is subsequently mapped to an application which
is runnable on a specific software platform. Since one of the

Supporting fine-grained generative model-driven evolution 405
Fig. 1 Notation a-b and
Mapping of PIM to PSM c—f Relations
Meaning Notation Stereotypes
association Meaning Notation
generalization < conceptual model «conceptual»
class
realization S implementation «implementation-
instance of < model class model»
physical instance of Implementation «implementation»
class
logical instance of «logicallnstanceOf»

| PIM |<}-- PSM

Q-- oo -

PSM

VirtualMachine VirtualMachine
C
Conceptual __| Implementation __| Source __| Object
Model <t Model <t Code <t Code
d
Conceptual <3-- Implementation - Imple- Conceptual < Imple-
Model Model mentation Model “’| mentation
e f

major purposes of the MDA is to allow for relatively sim-
ple mappings to different software platforms, this mapping
is done in a series of transformation steps, from a PIM to a
Platform-specific Model (PSM) and on to code. Going from
a PIM to a platform is a realization/implementation of the
PIM; we call this the implementation dimension. In Fig. 1c
this dimension is modeled by a UML realization relationship
(see Fig. la, b for notation), which also implies a depen-
dency. The figure shows only one sequence from PIM to
“final” PSM—for instance, Java byte code—but for different
platforms different sequences can be followed in parallel.
Thus, Fig. 1c only shows parts of a possibly more complex
picture.

Figure 1d shows our approach: The PIM is called the
Conceptual Model; it is mapped to a more platform-
specific model called the Implementation Model. Java is our
target platform and the Implementation Model is mapped
to Java source code, which is compiled to Java byte code.
In the coming discussions it will not be necessary to con-
sider all the elements of Fig. 1d; Fig. le shows a simplified
view where source and object code together are seen as the

implementation (i.e., the developer does not edit Java byte
code). Because realization is transitive, we have in some
cases simplified further and only used the elements shown
in Fig. If. The stereotypes given in Fig. 1b match the ele-
ments of Fig. le and will be used in later figures.

The mappings from PIM to PSM and from one PSM to
another PSM are steps that generate models and software.
Consequently, the MDA approach is essentially generative,
but generated code other than machine code must still be
interpreted by some virtual machine; thus interpretive tech-
nologies are also applied here.

In a situation as described in Fig. 1c, the internals of the
interpreter are typically not the concern of the developer
and hence the developer sees the interpreter as being able to
understand the PSM (e.g., Java byte code). The interpreter,
in our case a JVM, in a sense defines where the job of the
developer “stops” and the runtime environment “takes over”;
the JVM appears as a black box.

The level of abstraction provided by a virtual machine to
provide further generation steps is fundamentally an arbitrary
choice. One might imagine a VM that interprets Java source

@ Springer

406

T. D. Meijler et al.

Runtime
Environment

Modeling & Runtime
Environment

.

Ll
.
a

Modeling
Environment

||| Source-]| Object
< Code < Code
N

Program
Editor

Modeling & Runtime Environment

Conceptual _| Implementation |___
Model Model Implementation
A <. A

|
f -~ Ll
i «logicallnstanceOf» ~~~_ _ i
i

e
«logicallnstanceOf»

C

Fig. 2 Interpretative (a) Generative, (b) and (c) a hybrid approach

code “directly,” and one might argue that such an interpreter
is more interpretive than the standard JVM, since it operates
at a higher level of abstraction.

When referring to an interpretive approach in this paper,
we will limit ourselves to an approach where the PIM is
interpreted and there is no additional execution language;
in effect, the modeling language is the execution language.
Interpretive approaches are described by Riehle et. al. [10],
Atkinson and Kiihne [11], Mellor and Balcer [13] and others.

In contrast, a generative approach involves at least one
generative step. Figure 2b gives a typical example: The model
(e.g., aPIM) is mapped to source code which can be adjusted
by the developer; source code is compiled to object code and
the developer must start or restart the application to experi-
ence the changes.

Figure 2a shows the situation for an interpretive approach
where the modeling and runtime environment are the same.
An object-oriented modeling language typically offers a way
to model classes and instances of the classes; this is dem-
onstrated in Fig. 2a (the instances of the classes constitute
the data). Since the modeling and runtime environment are
the same, both classes and class instances are explicitly or
implicitly manipulated at runtime; in this respect, it is related
to meta-programming [14].

Figure 2b shows the generative approach where the devel-
oper relates two languages: the modeling language (e.g.,
UML) and the programming language. The developer does
not edit the target code of the compilation, and debuggers
communicate with the developer on the level of the pro-
gramming language. In the subsequent section, these two
approaches will be compared.

The approach presented in this paper is a hybrid app-
roach in which certain essential ideas from interpretive app-
roaches have been combined with generative development.
Figure 2c¢ shows that in this approach modeling and runtime

@ Springer

environment are also integrated, where modeled classes are
explicitly represented, and actual data objects can be directly
related to their modeled classes through the «logical-
InstanceOf>» relation.

2.2 Comparing generative and interpretive approaches

When comparing generative and interpretive approaches, the
following observations can be made:

e Sinceaninterpreter executes statements line by line, inter-
preters principally make the replacement of any set of
lines possible, and thus, they allow a system to be adapted
as long as none of these lines is currently being executed.
In other words, interpreters fundamentally support evo-
Iution in the sense that even a small model change is
immediately visible.

e The advantage of generative approaches is that they can
lead to faster execution [15,16] and better error preven-
tion (e.g., if statically typed [17]). Moreover, in the gen-
eration step, an optimal target language can be selected,
for instance, a language for process execution (such as
BPEL), or a language for query execution such as SQL.

e Related to that, interpreted approaches tend to use their
own data storage, for example, tables consisting of tuples
for each property value, including minimally the prop-
erty type and property value [18]. This is more inefficient
with respect to storage space, since for generated types
all single-valued property values can be stored in one
tuple. Moreover, tables can only be queried from within
the interpreter environment.

e A modeling language interpreter may itself be imple-
mented in some programming language (e.g., Java, Lisp)
that offers an execution platform. By contrast, in a gener-
ative approach, the set of used target languages together
forms the execution platform. The execution platform
of an interpreter can be adapted by porting the inter-
preter to a different execution platform, for instance, port-
ing the interpreter from a Java implementation to a C#
implementation. The execution platform of a generative
approach can be adapted by selecting a different genera-
tor. Moreover, new platforms can be supported by adding
new generators; this is often less laborious than porting
an interpreter to a new platform. Thus, with respect to
portability to different execution platforms, the genera-
tive approach is potentially simpler and less error-prone
than the interpretive approach.

Since generative approaches distinguish between the
programming language and the execution language, a dis-
tinction in granularity will appear between the changed state-
ments in the programming language and the generatively
changed statements in the execution language. In modeling

Supporting fine-grained generative model-driven evolution

407

environments, this can even lead to “big-bang” development
approaches where replacement of some model parts can lead
to the full replacement of a runtime system or a component.

In interpreted approaches, changes can be applied ad hoc,
easily leading to errors due to dependencies. For example,
when removing a certain method, runtime errors can occur
when a dependent class still invokes such a method. A gen-
eration or compilation step can be used to detect such errors.

Given this comparison, a hybrid approach is warranted
that combines the advantages of the execution efficiency, por-
tability support, and inconsistency checking of generative
approaches with the possibility of fine-grained partial model
replacement (and thus better support for evolution) of inter-
pretive approaches.

The hybrid approach presented in this paper is similar to
an interpreted approach in the sense that it supports fine-
grained replacements. It is generative in the sense that the
replacement corresponds to class models and their generated
code. Figure 2c shows that the presented hybrid approach
integrates the modeling environment and runtime environ-
ment as in interpretive approaches. From this figure it can be
seen that the improved support for fine-grained evolution will
come at a price: the approach includes a preferred runtime
(in our case Java-based) platform in which the integrated
environment is realized. The possibility to generate differ-
ent software platforms from one model, as explained for the
MDA, is in principle still possible; however, by generating a
platform other than the preferred one, fine-grained evolution
will no longer be supported.

3 Use-cases, requirements and limitations

In this section, requirements for fine-grained generative
model-driven evolution will be derived using two simple
use-cases which correspond to the addition and replacement
of a class model. One such use-case comprises the addition
of a model class; another use-case comprises the replace-
ment of a model class by another model class. The idea is
that these are the most essential “change operations” that
are urgently needed. Many larger system-restructuring oper-
ations are based on these essential operations. Larger sys-
tem-restructuring operations that include class removals or
other fundamental changes, such as class merges, require
more advanced mechanisms, since there is no straightfor-
ward (automatable) way to associate existing instances with
a fundamentally new set of classes. Such advanced mecha-
nisms are the subject of further study.

3.1 Use-cases

Suppose a company has purchased a brand-new system for
handling their customer relations. This system features

a model-driven approach that allows for continuous exten-
sion by adding new classes. In the initial system, relatively
general concepts were modeled and implemented, such as
Customer. The initial system was implemented in Java.

3.1.1 Terminology

Since the subject of this paper is evolutionary MDD, partial
models of the system and the corresponding reality, such
as the model of the class Customer plus its corresponding
implementation, are of interest. Since we will be distinguish-
ing explicitly between a partial model of a single class and the
implementation of that class in the runtime system in what
follows, we will use the terms “model class” and “implemen-
tation class” for these, respectively. A distinction will also be
made between a model class that is closer to a model of the
concept (such as Customer) and a model class that is closer
to a model of the implementation. This distinction is similar
to the PIM/PSM distinction for single modeled classes. The
first modeled class will be called the Conceptual Model Class
(CMC), the second the Implementation Model Class (IMC)
(see stereotypes in Fig. 1b).

If one considers a type to be “a specification of the general
structure and behavior of a domain of objects without pro-
viding a physical implementation,” [19], then what we call
a CMC starts out as a type (which cannot be instantiated)
and is made a class by adding an implementation that allows
instantiation.

Using these terms, the initial system encompasses the
model class and implementation class Customer. The
example encompasses two use-cases.

3.1.2 Use-case 1: extension

The company has a need to extend the system to include
the extraclass Premium Customer. A premium customer
has specific rights, such as buying goods on credit and obtain-
ing special discounts. Moreover, special information is main-
tained about a premium customer, such as a description of
his/her main interests.

Enabling evolution means that the company is enabled to
model this new Premium Customer class and to develop
the corresponding implementation without touching the rest
of the system. The company leads the model class through
a development process; this includes adding further details
about the corresponding class, such as possibly adding hand-
written Java code. Thus, an implementation class is created
for this Premium Customer model class, which can be
separately compiled and added to the existing system.

Figure 3 describes a generative extension in the form
of a picture story. Picture (1) of the figure presents the
Customer model class, the corresponding implementation
class, and the possible instances; for example, data about

@ Springer

408 T. D. Meijler et al.
ol i ; Model of C < Implementation of
(1) . mplementation o odel of Customer’ <}-----------------oooommoooo- Customer’ Class
Model of Customer <} -----------------c-mommmmnnn . P =
us ‘f<} Customer Class L \/“*»‘\ Implementation of A
‘‘‘‘‘ - Model of Cusgomer Rt . . '
BRI ! el Customer Class '
«ogical- " TTT=-ol I dogical- T ==<__ H
InstanceOf» Instances (Data) Model of InstanceOf> "~ Instances’ (Data)
Premium Customer’ dogical-
2 Implementation of . neeOf
@ Model of Customer <}--===========zzzzccccooooooe Czetomer Class Model of InstanceOb> Instances (Data)
) > Premium Customer
«logical-
Model of Premium Customer InstanceOf» Instances (Data) Fig. 4 A simple use-case of generative adaptation
3) Implementation of corresponding adaptation of the implementation is regarded

Model of Customer <}----=------oncmmmmmmamcaoaaas Customer Class

Model of Premium Customer <J--=--=-=-==-=-=---- Implementatlon of
Premium Customer Class

Implementation of

) Model of CUStOmMEr < e e
Model of Customer <} Customer Class

Implementation of
Premium Customer Class

dogical- T TTTee-oL

i
InstanceOf» Instances (Data)

Fig. 3 Picture story of generative extension

specific customers in the existing system in model-driven
terms. The relationships displayed imply that the implemen-
tation and the instance data are considered to be dependent
on the model class.

Picture (2) of the figure presents a modeled extension
of the system. A new class for Premium Customer is
modeled. The Premium Customer model class models
a subclass relationship with the Customer model class.
The Premium Customer model class may introduce new
properties and behavior such as the propertymain inter-
est. The fact that the existing instances of the class
Customer are grayed out indicates that these instances are
not impacted by the extension with a new model class.

Picture (3) of the figure presents the generation of the
implementation class Premium Customer. This gener-
ated implementation class has to be related to the other imple-
mentation artifacts in the existing system. In particular, it
needs to become a subclass of the implementation class
Customer.

Picture (4) of the figure represents the situation
where, after the extension with the new class Premium
Customer, new instances for this class may be instantiated.

The given example conforms to the open/closed principle
as first introduced by Bertrand Meyer [20]: software entities
(e.g., classes, modules, and functions) should be open for
extension but closed for modification. In our case, the exten-
sion is done by modeling a new subclass and only the newly
modeled subclass needs to be considered (e.g., tested).

Use-case 1 is called an extension. In model-driven evo-
lution, not every addition of modeled information with a

@ Springer

as an extension. It is only an extension when the rest of the
implemented system is not impacted. Here no other model
classes or implementation classes are impacted, nor are any
existing instances impacted. The addition of new properties
or behaviors to an existing class is, therefore, not considered
as an extension but as an adaptation. This will be treated in
the subsequent use-case.

3.1.3 Use-case 2: adaptation and replacement

Figure 4 characterizes a use-case of model-driven genera-
tive adaptation and corresponding replacement. The use-case
starts at the final state of the use-case just described. In this
second use-case, the property main interest has been
added to the Customer model class. As a result, the cor-
responding implementation class and the existing customer
instances must be updated. To prevent a double implementa-
tion the developer may also want to remove this property in
the Premium Customer model class and implementation
class.! Note that the impact is recursive: the change in the
model of the dependent class may again have an impact on its
implementation class, instances, and dependent classes (this
is not explicitly shown in the figure).

Figure 4, moreover, shows how adaptation leads to repla-
cement. The new Customer model class (Customer’)
with the new modeled property main interest replaces
the old Customer model class. The implementation class
Customer’ Class will replace the implementation class
Customer Class. Similarly, the new instances (Instan-
ces’) of the Customer’ Class — with the main interest
property now filled in—will replace the old instances. Con-
ceptually, the values of other properties in the new instances
will be the same as in the old instances although the imple-
mentation could be changed. Also, the new model class of
Premium Customer i.e., Premium Customer’ will
replace the old model class. This will again lead to replace-
ment of the corresponding implementation class, data, and
dependent model classes (when available). Thus, the replace-
ment process is recursive along the lines of dependency.

1" As will be detailed in Sect. 3.3, no special support is offered to the
developer so that he/she will know what the impact of the change of the
Customer Model class will be on the Premium Customer Model
class.

Supporting fine-grained generative model-driven evolution

409

3.2 Deriving requirements

In this section a set of requirements will be derived for
enabling fine-grained evolution, as inspired by the use-cases
of Sect. 3.1. These use-cases introduce major starting points
that will be used throughout this paper:

e Extending upon or improving upon a model of a certain
enterprise system can be seen as introducing a new model
class or replacing a model class by a new partial model.
Removing a model class will not be covered.

e Any system change is seen as a change in a set of model
classes and their corresponding implementation classes.
Even independently defined behavior, such as an activity,
is identified through a model class and a class [21]. Thus,
a change is modeled as a replacement of certain model
classes. Changes such as data storage and the user inter-
face are regarded as secondary, since they will be based
on the changes in the model classes and implementation
classes. The same can be true for component interfaces
[22] where each class is mapped to a software component.

The principle of viewing changes in terms of changes to
classes corresponds to describing and implementing systems
in terms of objects [23]. The principle of viewing adaptation
as replacement is consistent with the way change is han-
dled in version management systems [24]. Replacement can,
therefore, be viewed as going from an older version to a
newer version. Such replacement will lead to an impact that
must be managed and that may also lead to newer versions
of other entities (model classes, implementation classes and
instances).

As will be seen in the following, the requirements that
enable adaptation through replacement encompass the
requirements enabling extension. To derive these require-
ments, Use-case 2 will first be described in abstract terms,
ignoring the precise names of the classes and their relation-
ships.

Figure 5 presents Use-case 2 in abstract terms. It can be
described as follows:

e Let Mc denote a model class that is replaced by model
class Mc ' (e.g., adding a property).

e The corresponding implementation class is called Ic;
after the replacement of Mc, Ic will be replaced by Ic’.

e Mc itself models the reuse or specialization of another
model class Ms. The implementation class Is is the
implementation of Ms. Ic’ must again inherit from Is.

e Corresponding toMc and I c are the data objects Dc. Each
data object Dc must be replaced by Dc’.

e The model class Md models a dependency with Mc; thus,
Md has to be replaced by Md ‘. This replacement will be

/ «logical- Tl
/ InstanceOf»

/ «logical- De
Md’ InstanceOf»

Md

Fig. 5 Abstract characterization of generative adaptation

done for all dependent partial models. This is a recursive
process, proceeding with the replacement of Md by Md ",
Id by Id’ and Dd with DA’, and so on.

In order to support this abstract use-case of the adaptation
of Mc to Mc ', the following requirements must be fulfilled:

(a) Being able to replace the implementation class Ic by
the implementation class Ic’ and hook up Ic’ with
the implementation of the rest of the system. This means
that Tc’ must faithfully implement its (inheritance)
relationship to Is (as indicated in Fig. 5 by an arrow
from Ic’ to Is).

(b) Enable the runtime system to start using and, especially,
to instantiate the new/ replaced class.

(c) Being able to find the instances (data objects) Dc and
replace them by Dc ’.

(d) Being able to find the dependent model classes Md and
replace them by Md ' .

In a case where Mc ’ does not replace Mc but Mc ’ is newly
introduced, we speak of extension. In that case, only Require-
ments (a) and (b) above are relevant. Thus, the requirements
enabling adaptation through replacement do encompass the
requirements enabling extension.

The Requirements (a), (b), (c), and (d) can be summarized
as follows. To enable the generative replacement of model
classes, impact management of such replacement must be
supported along three dimensions:

e Along the implementation dimension: as covered by
Requirements (a) and (b).

e Alongthe instantiation dimension: as covered by Require-
ment (¢).

e Along the modeled dependency dimension: as covered
by Requirement (d).

@ Springer

410

T. D. Meijler et al.

3.3 Scoping issues and limitations of this paper

As mentioned in the introduction, this paper focuses on the
(technical) replacement of model classes in an existing model
of a system. One limitation of our approach is that it treats
only those forms of evolution where the class structure is not
broken; thus, class removal is not supported. This is espe-
cially due to Requirement (c) in Sect. 3.2, since re-assigning
existing instances to classes in case of removal is not straight-
forward, and therefore no solution is offered for this situation.

Many aspects that are also of relevance to model-driven
software evolution, and software evolution in general in a
wider sense, are beyond the scope of this paper, but could
be used in combination with our approach. These are aspects
such as

e How to go from changed use-cases to adapted models
(see e.g., [25]).

e How to re-engineer a system [26] and even how to pre-
cisely determine the impact of a change, given that an
infrastructure as described is available.

This paper (as is the case for NMF) focuses on func-
tional and non-crosscutting changes. These are changes for
non-crosscutting concerns, which can be contrasted with
crosscutting concerns as defined in the literature on aspect
orientation [27]. Crosscutting concerns can only be realized
across the normal modular implementation of software sys-
tems. An example of what is not covered in this paper is
the introduction of an improved form of caching, such that
database retrieval can be minimized.

Furthermore, this paper focuses on enabling the identifi-
cation of impacted elements and their replacement and not
on determining the precise impact of the change on these ele-
ments. As shown in Use-case 2, what is covered is the poten-
tial impact of the addition of a property to the model class
Customer on the model class Premium Customer.
What is not covered for this use-case is the explicit support
indicating that the addition of the property main inter-
est may lead to a removal of the same property on the
Premium Customer modelclass. Thisiscovered by other
approaches [28,29]. Again, such approaches could be com-
bined with ours.

A scope limitation of this paper is related to meta-
modeling. Meta-models are used in order to formally describe
the model structures and relationships allowed in a modeling
environment. Meta-modeling plays an important role in the
NMF, because it is used to describe how relationships—and
thus tracing—between models, and between models and the
rest of the system, can be realized. However, due to size lim-
itations, meta-modeling has not been covered in full in this

paper.

@ Springer

Large-scale enterprise systems are often built as decou-
pled multi-tier architectures [30], for example, consisting of
a Ul tier, a business logic tier and a data persistence tier. Each
of the tiers uses different technologies. For instance, a front
tier may use an XML-based browser technology. A business
logic tier may use process modeling and execution, and busi-
ness objects implemented using programming languages. In
the data persistency tier data are stored and accessed using
database technology. In such a multi-tier architecture a model
can be used to keep the different layers consistent [30]. This
same principle has been used in Nucleus. Again, this part of
the NMF cannot be discussed here due to space limitations.

Given such a three-tiered approach, three different imple-
mentation aspects will be generated from a Conceptual
Model: the logic aspect, the user interface aspect, and the
data persistence aspect. This paper will only focus on the
relationship between the conceptual model and one specific
implementation aspect, namely the business logic. This paper
does not cover mapping to component approaches, such as
service-oriented architecture.

Finally, the scope of modeling in the NMF software is
worth mentioning here. In the NMF, the conceptual model
plays a central role and it generates to Java. However, the
system is not completely described by models. The main
elements of the system, such as its classes, attributes, and
relationships, are modeled. For some behavioral aspects,
namely workflow activities, so-called “yisitors”? and code
generators themselves, Domain-Specific Modeling Langua-
ges (DSMLs) are successfully applied [31], but, for other
forms of behavior, Java methods are implemented by hand.
The underlying reasoning is that creating a DSML only pays
off when there are sufficient occurrences where it can be
applied and if and when these occurrences lend themselves to
expression in some language due to their similarities. Using
modeling instead of Java for all other behavior descriptions
requires behavioral models at a level of detail that makes the
models just as complex as the code and, therefore, does not
contribute to programming productivity.

4 Principles of the nucleus modeling framework

This section will summarize the basic principles of the
Nucleus Modeling Framework (NMF). As based on the
requirements described in Sect. 3.2, the NMF is based on
adding or replacing model classes and, from there, supports
traceability across three dimensions: Implementation, Instan-
tiation and Model Dependency. This starting point is charac-
terized in Fig. 6 by placing a main Conceptual Model Class
(CMC) as the corner of the three dimensions of the NMF;

2 Models of visitor [38] behavior are somewhat similar to behavior
specifications used in attribute grammars.

Supporting fine-grained generative model-driven evolution

411

Dependencies

CMC

Implementation

Instantiation

Fig. 6 The conceptual model class (CMC) and the three dimensions
of traceability

subsequent subsections will extend this picture. In the follow-
ing subsections, the support for identification and replace-
ment along these dimensions will be detailed further.

4.1 Representing the model class as an object

Tracing replacements of partial models (model classes) with
the corresponding partial replacements of the implementa-
tion and of the instances in the runtime system (i.e., traceabil-
ity along the Implementation and Instantiation dimensions)
implies that replacements of the partial models are, so to
speak, shadowed in the runtime system. Riehle et. al. [10] call
this kind of shadowing “causal connectedness” between the
modeling environment and the runtime environment.? This
must clearly lead to some form of integration between the
modeling environment and the runtime environment [10,11,
32]. The NMF carries out a full integration, in the sense that
all model classes are represented as runtime objects. This
full integration is especially useful in supporting traceabil-
ity along the instantiation dimension between model class
and instance, in order to fulfill requirement c) in Sect. 3.2.
Thus, the CMC in Fig. 6 is really represented as an “object”
corresponding to standard object-oriented principles [33].
We will introduce some basic terminology before we dis-
cuss in further detail the representation of model classes as
objects. An “object” is—corresponding to standard object-
oriented principles [33]—an entity in a computer information
system with behavior that can be invoked through messages,
leading to method invocations. Methods can be invoked to
access an object’s state information and adapt it. Moreover,

3 Causal connectedness has been defined by D. Riehle et. al. [10] as
follows: “A modeling level is causally connected with the next higher
modeling level, if the lower level conforms to the higher level and if
changes in the higher lead to according changes in the lower level.” The
runtime system is seen as Level 0, the modeling system as Level 1.

special-purpose methods can be invoked; for example, for a
customer object, a method can be invoked to ask for the
customer’s closest branch office or shop.

An object can have one or more descriptive entities called
classes. The object will have an instantiation relationship
with the class from which it was instantiated. This relation-
ship is often called instanceOf (the instanceOf relationship
comes in several flavors [34]).

Representing a model class as a runtime object means
several things:

e The model class object represents the modeling informa-
tion, for instance, details of the PremiumCustomer
class.

e The model class object can be accessed and modified
in order to develop a complete model. The model class
object may understand method invocations such as “check
model” and “generate code.”

A model class describes different aspects of its instances
such as the properties and relationships, but also its behavior
implementations. That a model class can be represented by
an object is best shown with two UML representations of the
model class in the NMF. In Fig. 7 the CMC for Customer is
represented as a class diagram; in Fig. 8 this same information
is represented as an instance (or object) diagram. The model
class contains various stereotypes, for example, «xconcep-
tual» and «property» and tagged values such as
{implementationModel = CustomerImpl}. The
precise meaning of these stereotypes is not of relevance at
this point.

Setting aside the precise semantics of the aforementioned
stereotypes, a comparison of Figs. 7 and 8 shows how stereo-
types are being used [35]. A stereotype in the class diagram
in Fig. 7 corresponds to the type of the corresponding object
in Fig. 8. For example, the stereotypes «conceptual»
and «property» correspond to the implementation clas-
ses CConceptual and CProperty of the corresponding
objects in Fig. 8.* Not all details of Fig. 7 are represented in
Fig. 8, to prevent clutter; the tagged values and the parameters
of the buyProduct operations, for instance, are omitted.

4.2 Representing the implementation dimension

A partial model replacement must lead to a corresponding
replacement of the implementation. This is the first part of
Requirement a), found in Sect. 3.2. This is supported by the
implementation dimension as will be discussed in this sub-
section. As mentioned in Sect. 3.3, this section only treats the

4 These classes are implementations for certain metamodel classes:
Conceptual Model Class and Property.

@ Springer

412

T. D. Meijler et al.

Fig. 7 Model presentation

«conceptual»
of a CMC

Customer

{implementationModel= Customerimpl}

«conceptual»

Employee

{implementationModel= Employeelmpl}

Representative

«conceptual»

PremiumCustomer
{implementationModel= PremiumCustomerimpl }

«property» +premiumPoints: Integer {readOnly} _1
«property» +maininterest: String

+buyProduct (in product : Product){sequential}

Fig. 8 Object representation
of a CMC

Customer : CConceptual

name = “Customer”

+supertype

buyProduct : COperation
name “buyProduct”

+subtype

PremiumCustomer : CConceptual

name

“PremiumCustomer”

N

N

representative : CAssociation

premiumPoints : CProperty
name “premiumPoints”

relationship between a CMC and the “logic” implementation
aspect. Other implementation aspects that are also derived
from a CMC are the user interface and the data persistence
aspects.

The implementation dimension for each implementation
aspect, specifically the logic aspect as described in this paper,
isrepresented by three kinds of elements (see Fig. 9). The first
element is the CMC (e.g., Premium Customer CMC)
which is an implementation-independent model, similar to a
“Platform-independent Model” (PIM) in the MDA [1]. This
CMC is the basis for the other implementation aspects as
well and includes those aspects of a class that are common to
those different implementation aspects. The second element
is the Implementation Model Class IMC (which is similar
to a “Platform-specific Model” [PSM] in the MDA), which

@ Springer

name “representative”

maininterest : CProperty

name = “maininterest”
Employee . CConceptual
name = “Employee”
Dependencies
N
CMC IMC

% IC]
— Implementatior

Instantiation

Fig. 9 The implementation dimension

Supporting fine-grained generative model-driven evolution

413

Fig. 10 IMC of

. «implementationModel»
PremiumCustomer for Java Customerimpl

{generator = JavaGenerator} 1

«implementationModel»
Employeelmpl

{generator = JavaGenerator,

implementationinterface = IEmployee}

«implementationModel»
PremiumCustomerimpl
{generator = JavaGenerator,
implementation = CPremiumCustomer,
implementationinterface = IPremiumCustomer, 1
package = com.nucleus.app.customer}

-m_premiumPoints : int
-m_maininterest : String100Domain

+getPremiumPoints() : int
+getMaininterest() : String100Domain

+getRepresentative() : IEmployee

+buyProduct(in a_product : IProduct)

+setMaininterest(in a_mainlnterest : String100Domain)

+setRepresentative(in associatedRepresentative : IEmployee)

models specific information about the corresponding imple-
mentation class. In principle, this could be done in multiple
stages of refinement, corresponding to different degrees of
platform dependence or independence (see also [36]), but for
simplicity’s sake only one refinement stage has been used
in Nucleus. For mapping to a Java platform, such an IMC
describes fields and methods of Java classes. The last ele-
ment of the implementation dimension is the implementation
class itself, which, in the case of a Java platform, consists of
a Java class and a Java interface. For classes that are under
development, both the Java code will be available and, after
compilation, the byte code as well. In certain cases, namely
when reusing classes developed by third parties, code may
not be available but only binaries (Java byte code).

As represented by the thin line in Fig. 9, the implemen-
tation traceability in the NMF is realized through forward
references: from CMC to IMC and from IMC to IC. Using
these forward references, a replacement of the CMC will
lead to a corresponding replacement of the IMC and, subse-
quently, of the implementation class. This will be discussed
in further detail using the use-case example.

Figure 7 presents the CMC of the class Premium Cus-
tomer as indicated by the stereotype «conceptual».
Properties of premium customers are premiumPoints and
mainInterest as indicated by the stereotype «prop-
erty> (similar to the property concept for EJB applications
[37]). Properties can either allow the reading of a property
value only, or both the reading and writing of a property
value. The UML readOnly property-string is used to indi-
cate this (see Fig. 7); if omitted, then both read and write are
allowed. The value of the premiumPoints property can
only be read. The CMC does not indicate how such proper-
ties will be implemented. The CMC refers to the IMC using
the tagged value {implementationModel = Premi-
umCustomerImpl}.

Figure 10 presents an IMC PremiumCustomerImpl
for the implementation class Premium Customer. This
model is again represented as a runtime object, describing
the implementation of the class Premium Customer asa
Java-class implementation. For each property of the
CMCPremium Customer (e.g.,the property premium-
Points as presented in Fig. 7) a corresponding Java field is
defined and, where appropriate, also a setter and getter will
be defined. In our case the getter getPremiumPoints
is defined since the property premiumPoints has been
defined as readable in the CMC. The IMC can, in large part,
be generated from the CMC.

The IMC is used in two ways in the NMF:

e It offers mapping information on how CMCs must be
mapped to an implementation. This is needed since there
is no default mapping from names of CMCs to names
and locations of implementation classes. For example, the
tags implementation, implementation Int-
erface and package are used to refer to the imple-
mentation class name, interface name and package. This
information must be added by hand by a developer.

e It offers information about which generator to use when
an implementation class is to be generated. The IMC for
Premium Customer as presented in Fig. 10 has the
tag {generator = JavaGenerator}, whichindi-
cates that the Java-class generation will be applied.

Figure 11 presents one page of a Java class that may be
generated from the PremiumCustomer Impl model class
as presented in Fig. 10. The Java-class file may be further
filled in by a developer to implement specific logic; in this
page no specific code has been added.

An important function of this forward reference is that the
replacement of a CMC leads also to the replacement of the

@ Springer

414

T. D. Meijler et al.

/*
file :
*/
package com.nucleus.app.customer;

import com.nucleus.app.product.IXAppProduct;
import com.nucleus.efc.enterprise.IXEafEmployee
import
com.nucleus.efc.kernel.common.IXMfInstanceType;
import com.nucleus.sys.dom.string.Stringl00Domain;
/**

* PremiumCustomer. A customer who is set apart,
since (s)he is a
regular

* buyer, and shows special interest in the
products of the company

* @author Nucleus APP, Theo Dirk Meijler

* @version 1.0

*/
public class CXAppPremiumCustomer extends
CXAppCustomer implements

IXAppPremiumCustomer

/**

* The amount of premium points earned by this
customer.

* @generated

*/
private int m_premiumPoints = 0;

/**

* The main interest of this customer.

* @generated

*/
private StringlOODomain m mainInterest = null;
/**

* field for the Representative association

* @generated

*/
private IXEafEmployee m_representative;

/**

* Initializer of type 'PremiumCustomer Type'.

* @param a_type The type of this object.

* @generated

*/
public void

initXAppPremiumCustomer (IXMfInstanceType a_type)

{
}

@ (#) CXAppPremiumCustomer. java

initBMfInstancel (a_type) ;

Fig. 11 One Page of the CPremiumCustomer Java Class

IMC, and to a replacement of the corresponding implemen-
tation class. This is the first step towards fulfilling Require-
ment a) in Sect. 3.2: a partial model replacement can lead to
a corresponding replacement of a specific part of the imple-
mentation. It should be noted that forward references are
possible due to the concept of a preferred implementation
platform as already mentioned in Sect. 2.2: the referred IMC
corresponds to this preferred platform (i.e., it is that imple-
mentation platform in which the modeling environment itself
is implemented).

4.3 Representing the instantiation dimension

In the instantiation dimension, two main requirements, as dis-
cussed in Sect. 3.2, are relevant: How to instantiate (create

@ Springer

new data objects) for newly modeled classes (Requirement
(b)); and how to keep track of the relationship between a data
object and the model class that created it, such that impacted
data objects (i.e., the instances) can be identified when the
model class is changed (Requirement (c)). The two principles
that support these requirements in the NMF will be discussed
in the subsections that follow.

4.3.1 Instantiation: the CMC object as a factory

According to Sect. 4.2, a CMC refers to a single IMC, which
again refers to an Implementation Class. Thus, indirectly,
once the complete development process for such a model
has been completed, for a CMC (of a class) the correspond-
ing implementation class is known. This is used to enable
the use of the CMC as a factory object. The CMC object
can be requested to create instances. Note that the factory
pattern is used [38]. A CMC object will create an instance
by finding out through the corresponding IMC which class
must be instantiated. Thus, by instantiating the CMC object
Premium Customer, an object will be an instance of the
implementation class CPremiumCustomer due to the fact
that the IMC of Premium Customer refers to the imple-
mentation class CPremiumCustomer.

Through this factory mechanism, a CMC can be added or
replaced, and subsequently used and instantiated in the run-
time system. In other words, Requirement b) of Sect. 3.2 can
be fulfilled. The set of CMC objects for which an implemen-
tation has been generated represents the catalogue of classes
that can be instantiated.

4.3.2 Logical vs. physical instantiation

When instantiating the CMC a data object is created as des-
cribed in the previous subsection. In principle, this object
is now both an instance of the CMC and of the Implemen-
tation Class. To enable the traceability between CMC and
its instances as demanded by Requirement c) of Sect. 3.2,
the instantiation relationship between the data object and the
CMC object is explicitly represented as an object-to-object
relationship.

The result is a double instantiation as is symbolically pre-
sented in Fig. 12, by means of the thin arrows from DO
to CMC and from DO to IC. Figure 13 presents the dou-
ble instantiation for the example. In agreement with [11,32],
these two relationships are called logical instantiation and
physical instantiation (in the other figures, this relationship
is shown without any stereotype). The relationship between
the instance and its CMC is a logical instantiation relation-
ship, since the CMC logically describes the instance. The
generated implementation class is “physically” used to carry
out the instantiation and, consequently, there is a physical
instantiation relationship between this class and the instance.

Supporting fine-grained generative model-driven evolution

415

Dependencies

cme ic
/1

Implementatiq

=}

DO

Instantiation

Fig. 12 The instantiation dimension: The data object (DO)

Since the CMC is represented as an object (as also shown in
Fig. 13) the logical relationship can be explicitly represented.

4.4 Representing the modeled dependency dimension

In the modeled dependency dimension, we will consider a
dependent CMC (dCMC), which is dependent on the CMC.
In a similar way, its generated class dIMC and dIC also
depend on IMC and IC, respectively, as indicated in Fig. 14.

Specialization is a special case of dependency (see also
Requirement a) of Sect. 3.2). This can be used to further
explain Fig. 15 by taking specialization as an example. The
following rule applies for specialization. When a CMC
(e.g., Premium Customer) is a specialization and, there-
fore, dependent on another CMC (i.e., Customer), then
this specialization must be translated according to the Imple-
mentation (i.e., the Implementation CPremiumCustomer
must be a specialization of CCustomer).

For the NMF, we have identified the four basic modeled
dependencies possible between CMCs:

1. Generalization/specialization relationships as described
above.

2. Modeled Associations which must be translated into
associations of the corresponding implementation clas-
ses.

Fig. 13 Physical instantiation
vs. logical instantiation in the
NMF

Represented as Java objects

3. The “Instantiates” dependency. Sometimes instances of
a CMC A can create instances of another CMC B, for
example, if A is a composition of B. This dependency is
explicitly represented as a relationship between CMCs.
At runtime the CMC B is indeed requested to instantiate
itself, such that instantiation of B is model-driven and
not pre-fixed in the code.

4. Finally, there can be a “used model class” dependency.
This relationship corresponds to those interactions bet-
ween objects through method invocations that are not
already represented in Point 2 above. In Java such depen-
dencies will be translated to imports.

By explicitly representing these dependencies, not only
Requirement (a) of Sect. 3.2 can be fulfilled, but also Require-
ment (d). The dependencies mentioned above can be used to
trace model classes that are impacted by a replacement.

4.5 Managing the development process: the CMC object
lifecycle

Another essential feature for supporting fine-grained evolu-
tion in the NMF is the lifecycle. In Nucleus each CMC Object
has a so-called “lifecycle.” This lifecycle defines a (prin-
cipally progressive) set of states that a CMC Object goes
through on its way to having an implementation class and
thus being “in production,” that is, such that it can be used
and instantiated in the running system. This lifecycle has the
following main functions:

e It guides the developer through the steps that must be
taken to get the CMC into production. State transitions
can be guarded by checks, for example, checking that
a CMC has been correctly defined (e.g., that there are
no specialization cycles). State transitions also include
actions such as code generation or compilation and link-
ing.

e It guards against potential inconsistencies between the
CMC and corresponding instances. At the maturity stage
of its lifecycle, a CMC has been taken into production and
it will have instances in the running system. The state in

Represented as Java class object

«conceptual»

«implementationModel» «implementation»

PremiumCustomer:

PremiumCustomerimpl: CPremiumCustomer:

A

«logicallnstanceOf»

customer123 :CPremiumCustomer

«physicallnstanceOf»

@ Springer

416

T. D. Meijler et al.

Dependencies
ca amo) dic

cMe ,
/ Implementatio

=

Instantiation

Fig. 14 The dependency dimension and the implementation dimen-
sion

Represented as Java objects Represented as Java class objects

«conceptual» «implementation»
Customer: CCustomer:

| i

«conceptual» «implementation»
PremiumCustomer: CPremiumCustomer:

Fig. 15 The subclass relationship of CMCs is generated into the sub-
class relationship of the implementation classes

the lifecycle enforces the fact that such a CMC cannot be
changed any more, since that will corrupt the instances.
The only way to adapt the CMC is to create a new ver-
sion of it (see Sect. 3.2). Instances of the old version can
be moved to the new version once the new version is in
production; in fact, this involves creating new versions of
the instances as well. The lifecycle also includes a state in
the development process in which a CMC can be tested;
in this life-state the CMC can have instances, but can still
be changed without requiring a new version. If the CMC
is changed in this state it goes backwards in its lifecycle
and its current (test) instances are removed.

e It guards against potential inconsistencies between the
CMC and the implementation class. Similar to the above,
the blocking of the model class in its production state
ensures that the CMC cannot become inconsistent with its
implementation class. During the testing phase, changes
can be applied by bringing the CMC back to an earlier
state of its lifecycle. In such a “backward” state transition,
the current implementation class will be removed, and in
a subsequent forward state transition the new implemen-
tation class will again be written.

@ Springer

App | App | App | App | App| App
Product Lifecycle Management

Enterprise Foundation Concepts
(code generated)

Nucleus Modeling Framework (NMF)

(self-descriptive models, code partially generated)

Fig. 16 Overview of Nucleus

5 Implementation of the NMF in nucleus

Figure 16 gives an overview of Nucleus in the form of a
layering of subsystems that build on top of each other. This
layering encompasses both runtime layering where one layer
reuses another at runtime, as well as static reuse where one
layer specializes another. These layers will be discussed from
bottom to top. The bottom platform layer offers the func-
tionality essential for supporting fine-grained evolution as
described in this paper. In the subsequent layers function-
ality is added. This is done in model-driven fashion; thus
the principles of this paper are applied. At the end of this
section some further quantitative information will be given
about Nucleus and the application of the three traceability
dimensions.

One essential part of the platform layer is the persis-
tence subsystem. The Nucleus persistence subsystem stores
objects in a relational database using an object-to-relational
mapping. All CMCs and IMCs (modeling information), and
instances are stored here. This includes all traceability infor-
mation such as the logical instantiation relationship between
classes and instances. The persistence subsystem also pro-
vides essential support for the versioning (mentioned in
Sect. 3.2) both of classes and of instances. The adaptabil-
ity described in this paper is based on dynamic class load-
ing in Java [39]. In the persistence subsystem a special Java
class loader is used. It is used to retrieve the runtime imple-
mentation class of an instance stored in the database, such
that the retrieved instance can indeed be associated with the
right physical and logical class. For this purpose, the persis-
tence subsystem stores these associations. When a CMC is
replaced by means of a new version, it gets its own associated
implementation class.

The platform provides support for browser-based user
interfaces in which CMCs and instances alike can be edited.
Figure 17 gives a screenshot of the Enterprise Application
Modeler. The screenshot presents some of the many CMCs
and their relationships. Note that Nucleus uses one user inter-
face to represent and manipulate both CMCs and instances.

The Nucleus modeling framework (NMF), which is the
second layer in Fig. 16, builds on top of the platform to

Supporting fine-grained generative model-driven evolution

417

Fig. 17 Screenshot from the
enterprise application modeler

A Enterprise Application Modeler 0.1
File Edt View Window Help

DEE & ¥R v o~

oo e

&%, ActivityFramework A
%, ContactTypes
- %, ControlSelectionTypes

Q + %&ﬁ %E n -"lﬁFa_.qiiScreen

% LegalPersonType
T MNaturalPersonRoleType
% NaturalPersonType

T OrganizationalUnitRoleType

2, OrganizationallJrit T ype
OwnerRoleType
OwnershipRelationshipT ype

Q. PersonType

§ PositiorHeldRoleType

%, PositionType

'i PropertyRoleType
ScopedTypeRoleType
ScopeOwnerRoleType
ScopeRelationshipT ype
SubordinateRoleType
SuperiorRoleType

GraphE lementT ypes

ﬁ.:'ﬂ L B R € S B I B B 5 B e R e R £ R S R Y R S R R O R R SR R SR

B

l:: % g:::; : Property 5 [B0.00.HumanT ype. 0]
% Demadctivities Pt gml
= '?,‘Eeﬂem'ise
® DirectSupervisionRelationshipT ype
@ § EmployesRoleType BB -
EmployerRoleType # % InstanceTypeRole
EmploymentFelationshipT ype # % ExentTypeRole
EnterpriseAsOiganzationallritR ole # 9 EsentTypeRole
Enterprise0rganizationall) nith elatio # % EstertTypeRole
2. EnterpriseType # % ConstructorD efinitionCollectoR ole
HumandsN aturalPersonRoleT ype #- 9% SubTypeRole
HumarHoldsPositionRoleType [+ % PropertyDefinitionCollectorRole
HumanM aturalPersonfelationshipT, & ® BehavioDefintionCollectorRiole
HumarPositionR elationshipT ype # % COMMappedTypeRole
1 HumanType # ¥ VersionedTypeRole
=9
Z J
IR o

§ OrganizationallnitAsE nterpriseRiole

-

BaseViewDefinitionCollectorRlole
BuidGroupMemberFole
InstanceRole

define essential aspects of models in a model-driven fashion.
The NMF includes a self-descriptive meta-model that defines
how CMCs and IMCs are modeled in Nucleus. This meta-
model thus consists of meta-CMCs and IMCs that define,
for instance, the existence of a lifecycle for each CMC (see
Sect. 4.5). The meta-model of Nucleus also defines how rela-
tionships between CMCs are specified. Nucleus allows for
n:m association relationships where modeled relationships
are represented as CMCs themselves. Due to such® n:m asso-
ciation relationships, instances can play various roles in a
relationship; therefore, also roles are modeled as represented
by CMC:s. Details of this meta-model are beyond the scope
of this paper.

Enterprise foundation concepts (EFCs) (the next layer up
in Fig. 16) are those CMCs, and groups of CMCs and their
relationships, that are essential for creating large Enterprise
Applications. The screenshot of Fig. 17 presents a subset of
the EFCs that were created. Examples of EFCs are (shown
as XxType® in the figure):

5 In Nucleus the term “type” was used instead of Model Class.

Enterprise

Person (can be a legal or a natural person)
Human

Position

Examples of modeled relationships are (shown as YyRe-
lationshipType® in the figure):

e Human holds Position Relationship model
class
e Position supervises Position model class

Examples of modeled roles are (shown as ZzRoleType® in
the figure):

e Employee Role model class
e Employer Role model class

In the figure a window is moreover shown that represents
details for the CMC Human (Shown as HumanType) with its
possible roles.

@ Springer

418

T. D. Meijler et al.

Product Lifecycle® Management (abbreviated as e-PLM)
was the first application domain of the Nucleus stack. It spe-
cializes the various EFC concepts so as to create model clas-
ses that are specific to the area of managing the lifecycle of
large (physical) products.

Applications further specialize the application domain for
specific customer usage. Nucleus has been successfully
applied in two beta applications. One application supported
the full product data management of airplane motors; this
included all possible configurations and the corresponding
product change management. Another supported the collab-
orative project management for large machines for paper pro-
duction.

The mechanisms of fine-grained model-driven evolution,
as subdivided into the three dimensions, have been applied
as follows:

e The extension mechanism, which represents the model
to model dimension, has been applied to build EFCs on
top of NMF, ePLM on top of EFCs, and, once again, the
definition of applications on top of ePLM include more
application-specific CMCs reusing existing CMCs. From
the authors’ point of view, this was essential in order to
create multiple real, large-scale software systems such as
the two beta applications. To give an idea of the size, 218
Java classes and 262 interfaces were generated from the
NMF CMCs, and IMCs. From the EFCs, 191 Java classes
and 212 interfaces were generated. In the latest version of
Nucleus, identifying modeled dependencies is possible,
since all dependencies in Nucleus are explicitly modeled
and explicitly represented, but no specific proactive sup-
port is provided for this.

e The model to implementation dimension has been used
extensively in order to enable implementations to be
replaced in a fine granular manner.

e Relating a model replacement (a new version of a model)
to a corresponding upgrade of the instances, again in
terms of new versions of these instances, has become
possible, but is not widely used.

In spite of this, the Nucleus approach has never lived up to
its full promise. The project was discontinued 7 years after it
began. As a result of this discontinuation, the software is no
longer available. There are several reasons for this discontin-
uation: Building the platform itself was a large undertaking
which took about 100 man-years of effort; the incremental
modeling of Nucleus could only function in a complete plat-
form, with the promise that it might lead to an ever-acceler-
ating development speed. But once the platform was able to

6 The term lifecycle should not be confused with the lifecycle of model
class objects introduced earlier.

@ Springer

be used in this way, the project was bought by another orga-
nization that was not able to integrate it into its portfolio.

As a result of this effort, the Nucleus product consists, in
a large part, of a proprietary platform, with a correspond-
ing burden for maintenance. This is another reason why it
has not been continued. Nucleus has been mentioned by
Forrester [12].”

6 Discussion

The principles introduced in this paper raise various issues:

1. Strict meta-modeling [40] is often regarded as an impor-
tant principle of MDD. It allows for only one way of
instantiation. How can the fact that an instance has mul-
tiple ways of instantiation, a logical way and a physical
way, relate to this?

2. One of the important targets of MDD in general and
the MDA in particular is to allow for implementation-
independent modeling, enabling models to be mapped
to different implementation platforms. Given that this
architecture requires that the modeling tool and the run-
time tool be implemented in one and the same runtime
platform, can implementation independence still be
maintained?

3. Can the requirements of Sect. 3.2 be fulfilled and to what
extent?

These issues will be discussed in more detail below.

6.1 Strict meta-modeling

In [40] Atkinson and Kuhne define strict meta-modeling as
follows:

“In an n-level modeling architecture, MO, M1 ... Mn—1,
every element of an Mm-level model must be an instance-of
exactly one element of an Mm + 1-level model, for all m <
n — 1, and any relationship other than the instance-of rela-
tionship between two elements X and Y implies that level(X) =
level(Y).”

Due to the two ways of instantiation, the approach pre-
sented in this paper seems to depart from that approach. How-
ever, in the paper by Atkinson and Kiihne [11] it is shown that
a logical instantiation and a physical instantiation represent
different (basically orthogonal) concerns, since any logical
model class can theoretically still have various different pos-
sible realizations. Any instance can have both a logical and a

7 1t is mentioned under the name “Xebic,” which is the spin-off
company of the research project that started the development.

Supporting fine-grained generative model-driven evolution

419

physical class. Thus, the strict meta-modeling principle does
not cover the fact that different modeling elements can repre-
sent different aspects that allow for multiple types. A relevant
clue for this is that the classes will complement each other
and will not contradict. A generated class is the refinement
of the other.

It may be considered even more critical that in the NMF
the levels are mixed: model classes are all represented as
objects and thus model classes of different meta-levels all
live in the same environment. However, this situation does
not fundamentally break the rule: each and every model class
can be related to one level such that the strict situation can
be reached again.

6.2 Implementation independence

As indicated by the MDA user’s guide [1], one of the major
targets is to enable PIM-like models to be mapped to differ-
ent implementation platforms. Thus, implementation inde-
pendence is one important goal of the MDA. Evolution in
the NMF is only supported for the preferred platform, that
is, when code generation is done for classes and instances
that live in the same platform as the (as objects represented)
model classes. This has been shown to be relevant for the
NMF principles described in Sects. 4.2 and 4.3. Thus, NMF
seems to jeopardize implementation independence.

The following counterpoints can be made to this argument:

1. The NMF environment itself can be (and has been) ported
to different execution platforms. Thus, fine-grained evo-
lution can be supported on all execution platforms on
which the NMF has been implemented.®

2. Generation to platforms in which NMF has not been
implemented is still possible; for such platforms the fea-
ture of fine-grained evolution is merely lost.

3. Another possibility of the NMF is to use special “proxy
objects” that can execute method requests on behalf of
normal objects and to translate these requests to some
other runtime environment, as, for example, translating
requests to webservice invocations.

Still, it is true that in this respect the NMF is closer to inter-
preted approaches and has the corresponding portability
problems, as mentioned in Sect. 2.2, as “normal” gener-
ative approaches do. It turns out that there is a trade-off
between requirements with respect to fine-grained evolution
and requirements with respect to ease of portability.

8 The NMF implementation has been ported from a Java environment
to a C# environment in half a man year.

6.3 Fulfilling the requirements and improving
on interpreted approaches

The NMF fulfills the requirements of Sect. 3.2 in the follow-
ing ways:

e Requirement a): Section 4.2 describes how a model class
for which the development process has been finished
refers toits class. Sect. 4.4 describes how modeled depen-
dencies are translated to corresponding relationships in
the implementation. Together these mechanisms ensure
that the class of a new or replaced model class will be
correctly hooked up with the other pre-existing classes,
thus with the implementation of the rest of the system.

e Requirement b): Through the mechanism described in
Sect. 4.1, a model class is represented in runtime as an
object; in fact, the modeling environment and runtime
environment are integrated, similar to interpreted
approaches. Moreover, as described in Sect. 4.2, the
model class will also refer to its implementation once
the development process is finished. As a result, a newly
introduced and developed model class is a factory object
which can be instantiated.

e Requirement c): Through the runtime representation of
model classes as objects and the explicit representation
of the relationship between a model-class object and its
instances (the logical instance of relationship) as
described in Sect. 4.3, dependent data objects, i.e.
instances, can be traced.

e Requirement d): Model classes are explicitly represented
as objects; relationships between model classes are also
explicitly represented. Thus, tracing dependencies is
supported in principle. This is, however, clearly not an
outstanding property of the NMF. Any modeling envi-
ronment will use some form of explicit internal repre-
sentation of modeling elements and support some form
of traceability in this dimension. Of course, such trace-
ability requires representing dependencies (e.g., invoca-
tion relationships between model classes) as explicitly as
possible.

7 Related work

7.1 Integrating component-based development
with model-based development

In their paper, Tongren et. al. [3] describe how model-driven
development (MDD) and component-based development
(CBD) are complementary and need each other. One example
of such an integration is where components have been devel-
oped through MDD, but are glued together with CBD. On
the other hand, gluing together components requires mod-
els. According to them, a complete integration must still be

@ Springer

420

T. D. Meijler et al.

achieved. The NMF provides a contribution here, since it
supports the model-driven maintenance of a complete sys-
tem, mapping each business type of the NMF to one small
component (see also [41]), but other mappings are also possi-
ble, see [22]. Interestingly, models in the NMF use a similar
versioning to that of components [42] and thus reflect the
versioning of components.

7.2 Interpreted approaches

Interpreted model-driven approaches are described, among
others, by Riehle et. al. [10], and Atkinson and Kiihne [11,
32]. As described in Sects. 2.1 and 2.2, interpreted model-
driven approaches support direct adaptations of the models,
leading to corresponding direct adaptation of the runtime
system and are, in this respect, closer to adaptive MDD than
generative approaches. Still, as also described in Sect. 2.2,
these approaches do not support evolution very well, due to
the resulting brittleness where all kinds of dependencies are
easily corrupted. The NMF addresses such brittleness as a
result of its explicit versioning and its use of a lifecycle that
blocks direct adaptation once instances have been created.

Still, the NMF reuses various concepts from these
approaches:

e The integration between modeling environment and run-
time environment, such that the modeled system main-
tains its own models;

e The representation of partial models as objects, as a con-
sequence;

e The distinction between logical and physical instantia-
tion.

Thus, the NMF can be seen as a hybrid approach, com-
bining essential aspects of these interpretive approaches with
code generation. The innovation of the NMF with respect to
these concepts is that it generates the class of a model class
“dynamically” instead of using a pre-fixed set of classes that
implement the interpreter.

Similar to the work of Riehle, as well as Atkinson and
Kiihne, our work also has roots in original work on reflec-
tion, such as that by Pattie Maes [43]. Reflection is the ability
of a system to reason about and act upon itself by means of a
powerful self-representation. Clearly our approach is reflec-
tive in this sense. Again, however, the reflective approaches
we know of are interpretive by nature.

7.3 Model-driven program transformation
Gray et al. [44] describe another approach to supporting

model-driven evolution, which they call model-driven pro-
gram translation. In this approach, model evolution trans-

@ Springer

lates to changes in code transformation software. The code
transformation software processes the original source code.
This approach allows deltas to be mapped to deltas in the
final code. Similar to the approach presented in this paper,
certain model elements correspond to certain components in
the source. These components are much bigger than just sin-
gle classes, as presented in this paper. Their approach does
not cover the impact on instances, however, which is a rele-
vant part of the presented approach. Moreover, adding new
components does seem to be integrated in the transforma-
tional approach, since it processes existing components.

7.4 The type object pattern

There is a direct relationship between this work and the
so-called type object pattern [18,45]. The type object pattern
is also known as the adaptive object pattern. The integration
between modeling environment and runtime environment is
based on this pattern.

The work of Razavi et al. [46] is especially relevant, as
they have integrated the type object pattern into well-known
languages such as CLOS that support meta classes. This
approach may well improve on some of the disadvantages of
interpreted approaches such as those mentioned in Sect. 2.2,
especially with respect to non-functional aspects such as
performance and storage. However, the potential danger of
ad-hoc changes, and the portability problem seem to remain.

7.5 The virtual machine principle

Fine-grained evolution is not a new feature. In the Java virtual
machine especially, which is based on the Smalltalk virtual
machine, evolution is supported [47]. As in our approach,
in these approaches one can see that class relationships are
explicitly represented and can be mapped to byte-code rela-
tionships.

7.6 Formalization of incremental development

More fundamentally, this work can be seen as an application
of the theory on incremental computation [48], and the sup-
port for that through function caching [49]. Roughly stated,
the approach of [49] is to allow results of functions—in this
case the transformation function from source model to target
model or implementation—to be cached, so that new inputs
can be incrementally translated to the output. In this case,
the output of the translation of the new type is incrementally
added to the “cached” output of the previous translation.

7.7 Impact calculation

Work has been done on calculating both model to model
impact [28,29] (see also [50]), as well as calculating data

Supporting fine-grained generative model-driven evolution

421

impact [51]. In fact, that kind of work is complementary to
the work presented in this paper.

7.8 Generative programming and product lines

The approach of Czarnecki [52,53] which is pretty much
related to Generative Programming, is also relevant here. The
idea is to describe a product line instead of a single product
and provide code/instructions on how to assemble the pieces.
It does not, however, handle the issue of evolution. A similar
approach is GenVoca [54], which is an advanced architecture
providing lots of support for reuse and suchlike. It is based
on mathematics, and specifically geared towards software
changes. Nevertheless, all changes happen at the model level
and before the generation, everything is known.

7.9 Other approaches to model-driven evolution

Other authors have done work on supporting evolution
through MDD. Favre and NGuyen [55] theoretically discuss
and model all possible evolution steps in MDD. However,
their work is not explicitly directed at incorporating incre-
mental evolvability in the development process. Hearnden et
al. [56] also analyze dependencies in MDD. Again, a direct
link with tooling is not made. Birken [57,58] describes pat-
terns for enabling evolution, especially those based on trace-
ability. This approach is directed at improving the design
and design practices so as to improve evolvability; it is not
directed so much at offering technical solutions as part of the
modeling architecture itself.

7.10 Adaptive systems

Adaptive Systems is a wide area [57,58] that is related to this
paper. Adaptive Systems are defined as Systems that can be
adapted to accommodate resource variability, changing user-
needs and system faults [59]. Specific adaptive approaches
lie in the area of architectural adaptability [59,60] where
(architectural) models and generative approaches play a role.
Our approach combines generation with (instantiable) class
models, which is not covered by such approaches. Other
adaptation approaches enable adding new software
“patches”, e.g., function or function versions [61,62], but
these are changes at the code level, not at the model level;
moreover, the addition of properties and corresponding
impact on instances is not treated. In [57,58] an overview
of mechanisms is given for run-time (self-) adaptive sys-
tems. On basis of a set of fundamental topics a taxonomy of
mechanisms is provided. Of the described mechanisms, only
Aspect-oriented Programming is based on generative tech-
niques; however, the combination between generation and
(model-driven) abstraction is not mentioned in the paper.

8 Conclusion and further work

Evolving large-scale systems is a complex undertaking due
to the many dependencies [25]. It can be difficult, therefore,
to handle the impact of a change. Especially for large-scale
enterprise systems, evolvability is a very important quality,
due to the great dynamicity of the enterprises that must be
supported by these systems [6]. Model-driven approaches to
software development should, in principle, be very suitable
for supporting such evolvability, since models can precisely
and formally describe dependencies [25].

Standard environments for MDD, however, have a strong
separation between modeling environment and runtime envi-
ronment [10]. As a result, they are insufficiently directed
toward evolving very large-scale systems. Letting each model
change lead to a complete regeneration of a system is not fea-
sible and sometimes not even possible (i.e., reusing a mod-
eled component where code is not available). Regenerating
only smaller parts of a system (components or frameworks) in
isolation can cancel out the advantages of using MDD, since
the relationships with the rest of the system are not taken
into account. Moreover, due to the separation between mod-
eling environment and runtime environment, the impact of
model changes on existing data is difficult to support. How-
ever, these data are an essential part of the system, especially
in enterprise systems.

This paper describes an integrated modeling-runtime
environment that forms the basis for enabling fine-grained
evolution of large-scale enterprise systems using generative
techniques. This integration means that the runtime system
maintains its own models and can, therefore, be locally
adapted, without missing impact information. The integra-
tion between modeling and runtime, moreover, ensures that
all dimensions of possible impacts of a change can be traced:
(1) between models and dependent models; (2) between
models and implementation; and (3) between models and
instances, the data. The integration of modeling and runtime
comes at a cost, however, as it is traded off against a dimin-
ished support for platform independence. Fine-grained evo-
lution is only supported for the “preferred platform” in which
the integrated environment is realized, similar to interpretive
approaches that are more strongly bound to those platforms
for which an interpreter is available.

The NMF is a hybrid approach that combines code gener-
ation with certain ideas from interpreted approaches such as
those described by Riehle et al. [10], and Atkinson and Kiihne
[11,32]. In comparison with these approaches, it adds the
dimension of implementation and generation, and removes
the brittleness that comes with the possibility of being able
to directly implement a change in the model. The NMF
embodies the main concepts of a large research project called
Nucleus. Since the NMF was originally developed in a com-
mercial setting, many other aspects surrounding the NMF

@ Springer

422

T. D. Meijler et al.

must still be reported on, and this, therefore, constitutes future
work. Some examples of this are the evolution of database
schemas and the evolution of user interface aspects. The NMF
does not explicitly support the removal of model classes.
However, it does allow for replacing groups of model clas-
ses with corresponding new versions and, on top of this, a
mechanism may yet be offered to restructure the data corre-
spondingly. This will also be the subject of further study.

Acknowledgments The authors wish to thank the Baan Nucleus, and
their successors from the Xebic team, for their work on Nucleus. The
authors would also like thank all those who supported the writing of this
paper, such as Marieke Vreugdenhil, Douwe Postmus, Ashwin Ittoo and
many others.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Mukerji, J., Miller, J. (eds.): MDA Guide Version 1.0.1. Techni-
cal report, Object Management Group. http://www.omg.org/docs/
omg/03-06-01.pdf (2003)

2. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wes-
ley, Reading (2003)

3. Torngren, M., Chen, D., Crnkovic, I.: Component-based vs. model-
based development: a comparison in the context of vehicular
embedded systems. In: Proceedings of the 31st EUROMICRO
Conference on Software Engineering and Advanced Applications,
Porto, Portugal, pp. 432-441 (2005)

4. OMG MDA success stories. http://www.omg.org/mda/products_
success.htm

5. Knoll, K., Jarvenpaa, S.L.: Information technology alignment or
“fit” in highly turbulent environments: the concept of flexibility. In:
Proceedings of the 1994 Computer Personnel Research Conference
on Reinventing IS: Managing Information Technology in Changing
Organizations, Alexandria, Virginia, USA, pp. 1-14 (1994)

6. Lehman, M.M., Ramil, J.F.: Evolution in software and related areas.
In: Proceedings of the 4th International Workshop on Principles of
Software Evolution, Vienna, Austria, pp. 1-16 (2001)

7. Papazoglou, M.P., van den Heuvel, W.J.: Service oriented archi-
tectures: approaches, technologies and research issues. VLDB J.
16(3), 389-415 (2007)

8. White, S.: Business process modeling notation (BPMN). Version
1.0—May 3, 2004. http://BPMlIL.org (2004)

9. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J.,
Leymann, F,, Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, L.,
Weerawarana, S.: Business process execution language for web
services, version 1.1. BEA Systems, IBM Corporation, Microsoft
Corporation, SAP AG, Siebel Systems. (2003)

10. Riehle, D., Fraleigh, S., Bucka-Lassen, D., Omorogbe, N.: The
architecture of a UML virtual machine. In: Proceedings of the
2001 Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA’01), Tampa Bay, Florida,
USA, pp. 327-341 (2001)

11. Atkinson, C., Kiihne, T.: Rearchitecting the UML infrastruc-
ture. ACM Trans. Model. Comput. Simul. 12(4), 290-321 (2002)

12. Homs, C., Metcalfe, D., Nordan, M. M., Radjou, N.: Troubled
invensys: Dispose of fading baan, In: Forrester brief, August 21,
(2002)

@ Springer

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for
Model-Driven Architecture. Addison-Wesley, Reading (2002)
Visser, E.: Meta-programming with concrete object syntax. In:
Batory, D., Consel, C., Taha, W. (eds.) Generative Programming
and Component Engineering (GPCE 2002), LNCS 2487, pp. 299—
315. Springer, Pittsburgh (2002)

Aho, A., Lam, M., Sethi, R., Ullman, J.: Compilers, Princi-
ples, Techniques and Tools, 2nd edn. Pearson Education. Addison
Wesley, Reading (2007)

Watt, D., Brown, D.: Programming Language Processors in
Java. Prentice-Hall, Englewood Cliffs (2000)

Benjamin, C.: Pierce, Types and Programming Languages. MIT
Press, Cambridge (2002)

Yoder, J.W., Balaguer, F., Johnson, R.: Architecture and design
of adaptive object-models. ACM SIGPLAN Notices 36(12), 50—
60 (2001)

Rumbaugh, J., Jacobson, 1., Booch, G.: The Unified Model Lan-
guage Reference Manual, 2nd edn. Pearson Education Inc, Upper
Saddle River (2005)

Meyer, B.: Object-Oriented Software Construction, st edn.
Prentice-Hall, Englewood Cliffs (1988)

Unified modeling language: Superstructure, version 2.1.2. http://
www.omg.org/cgi-bin/doc?formal/07-11-02

Pernici, B., Mecella, M., Batini, C.: Conceptual modeling and soft-
ware components reuse: towards the unification. In: Solvberg, A.,
Brinkkemper, S., Lindencrona, E. (eds.) Information Systems
Engineering: State of the Art and Research Themes, pp. 209-220.
Springer, London (2000)

Maciaszek, L.A.: Requirements Analysis and System Design:
Developing Information Systems with UML. Addison-Wesley,
Reading (2005)

Ducasse, S., Girba, T., Favre, J.M.: Modeling software evolution
by treating history as a first class entity. In: Proceedings of the
‘Workshop on Software Evolution Through Transformation (SETra
2004), Rome, Italy, pp. 75-86 (2004)

France, R., Bieman, J.M.: Multi-view software evolution: a
UML-based framework for evolving object-oriented software.
In: Proceedings of the 17th IEEE International Conference on
Software Maintenance (ICSM’01), Florence, Italy, pp. 386-395
(2001)

Mens, T., Tourwé, T.: A Survey of software refactoring. IEEE
Trans. Softw. Eng. 30(2), 126-139 (2004)

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.,
Loingtier, J., Irwin, J.: Aspect-oriented programming. ECOOP 97,
pp- 220-242 (1997)

Mens, T., D’Hondt, T.: Automating support for software evolution
in UML. Autom. Softw. Eng. 7(1), 39-59 (2000)

Steyaert, P., Lucas, C., Mens, K., D’Hondt, T.: Reuse contracts:
managing the evolution of reusable assets. In: Proceedings of the
11th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’96), San
Jose, California, USA, pp. 268-285 (1996)

Frankel, D.S.: Model Driven Architecture: Applying MDA to
Enterprise Computing. Wiley, New York (2003)

Cook, S.: Domain-specific modeling and model driven architec-
ture. MDA J. pp. 1-10 (2004)

Atkinson, C., Kiihne, T.: Model-driven development: a metamod-
eling foundation. IEEE Softw. 20(5), 3641 (2003)

Stefik, M., Bobrow, D.: Object-oriented programming: themes and
variations.. Al Mag. 6(4), 40-62 (1986)

Ivan, K., Jean, B., Frédéric J., Patrick, V.: Model-based DSL frame-
works, OOPSLA companion, pp. 602-616 (2006)
Henderson-Sellers, B.: The use of subtype and stereotypes in the
UML model. J. Database Manag. 13(2), 43-50 (2002)

Atkinson, C., Kiihne, T.: A generalized notion of platforms for
model driven development. In: Beydeda, S., Book, M., Gruhn, V.

http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/mda/products_success.htm
http://www.omg.org/mda/products_success.htm
http://BPMI.org
http://www.omg.org/cgi-bin/doc?formal/07-11-02
http://www.omg.org/cgi-bin/doc?formal/07-11-02

Supporting fine-grained generative model-driven evolution

423

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

(eds.) Model-Driven Software Development, pp. 119-136.
Springer, Berlin (2005)

D’Souza, D., Sane, A., Birchenough, A.: First class extensibility for
UML—packaging of profiles, stereotypes, patterns. In: Proceed-
ings of the 2nd International Conference on the Unified Modeling
Language (UML’99), Fort Collins, USA, pp. 265-277 (1999)
Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wes-
ley, Reading (1995)

Liang, S., Bracha, G.: Dynamic class loading in the Java Virtual
Machine. OOPSLA, pp. 36—44 (1998)

Atkinson, C., Kiihne, T.: Profiles in a strict metamodeling frame-
work. Sci. Comput. Program. 44(1), 5-22 (2002)

Meijler, T.D., Kruithof, G.H., van Beest, N.S.: Top down versus bot-
tom up in service-oriented integration: An MDA-based solution for
minimizing technology coupling. In: Proceedings of the 4th Inter-
national Conference in Service-Oriented Computing, Chicago, IL,
USA, pp. 484-489 (2006)

Stuckenholz, A.: Component evolution and versioning state
of the art. ACM SIGSOFT Softw. Eng. Notes 30(1), 1-13
(2005)

Maes, P.: Concepts and experiments in computational reflec-
tion. ACM SIGPLAN Notices 22(12), 147-155 (1987)

Gray, J.G., Zhang, J., Lin, Y., Roychoudhury, S., Wu, H., Sudar-
san, R., Gokhale, A.S., Neema, S. Shi, F., Bapty, T.: Model-driven
program transformation of a large avionics framework. Generative
Programming and Component Engineering (GPCE 2004) LNCS.
32(86), 361-378 (2004)

Yoder, J.W., Johnson, R.: The adaptive object-model architectural
style. In: Proceedings of the IFIP 17th World Computer Congress—
TC2 Stream. 3rd IEEE/IFIP Conference on Software Architec-
ture: System Design, Development and Maintenance, Montreal,
Quebec, Canada, pp. 3-27 (2002)

Razavi, R., Bouraqgadi, N., Yoder, J.W., Perrot, J.F., Johnson, R.:
Language support for adaptive object-models using metaclass-
es. Comput. Lang. Syst. Stru. 31(3—4), 199-218 (2005)
Goldberg, A., Robson, D.: Smalltalk-80: The Language and Its
Implementation. Addison-Wesley, Reading (1983)

Sundaresh, R.S., Hudak, P.: A theory of incremental computation
and its application. In: Proceedings of the 18th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
Orlando, Florida, USA, pp. 1-13 (1991)

Pugh, W., Teitelbaum, T.: Incremental computation via function
caching. In: Proceedings of the 16th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming languages, Austin,
Texas, USA, pp. 315-328 (1989)

Sprinkle, J., Karsai, G.: A domain-specific visual language for
domain model evolution. J. Vis. Lang. Comput. 15(3—4), 291-307
(2004)

Monk, S., Sommerville, I.: Schema evolution in OODBs using class
versioning. ACM SIGMOD Record. 22(3), 16-22 (1993)
Krzysztof, C., Michal, A., Chang, H., Peter, K., Sean, L., Krzysz-
tof, P.: Model-driven software product lines. OOPSLA Companion:
126-127 (2005)

Krzysztof, C.: Software reuse and evolution with generative tech-
niques. Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering (ASE’07), p. 575
(2007)

Don, S.B., Clay, J., Bob, M., Dale, V.H.: Achieving extensibility
through product-lines and domain-specific languages: a case study.
ICSR 2000, LNCS. 18(44), 117-136 (2000)

Favre, .M., Nguyen, T.: Towards a megamodel to model software
evolution through software transformation. Electron. Notes Theor.
Comput. Sci. 127(3), 59-74 (2005)

Hearnden, D., Bailes, P., Lawley, M., Raymond, K.: Automating
software evolution. In: Proceedings of the 7th International Work-

57.

58.

59.

60.

61.

62.

shop on Principles of Software Evolution, Kyoto, Japan, pp. 95-100
(2004)

Berkem, B.: How to increase your business reactivity with
UML/MDA? J. Obj. Technol. 2(6), 117-138 (2003)

McKinley, P.K., Masoud, S., Kasten, E.P., Cheng, B.H.C.: Com-
posing adaptive software. IEEE Comput. 37(4), 56-64 (2004)
Garlan, D., Cheng, S.W., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-Based Self-Adaptation with Reusable Infrastructure.
IEEE Comput. 37(10), 46-54 (2004)

Oreizy, P., Gorlick, M.M., Taylor, R. N., Heimbigner, D., Johnson,
G., Medvidovic, N., Quilici A., Rosenblum, D.S., Wolf, A. L.: An
architecture-based approach to self-adaptive software. IEEE Intell.
Syst. 14(3), 54-62 (1999)

Sadjadi, S.M., Trigoso, F.: Trap Net: a realization of transparent
shaping in net. Int. J. Softw. Eng. Knowl. Eng. 19(4), 507-528
(2009)

Stachour, P., Collier-Brown, D.: You don’t know Jack about soft-
ware maintenance.Commun. ACM 52(11), (2009)

Author Biographies

Theo Dirk Meijler is currently
senior researcher at SAP. He
studied at the Technical Univer-
sity of Delft, The Netherlands.
He received his Ph.D. at the
Erasmus University Rotterdam.
He has worked as post-doc and
lecturer at academic institutions
in Switzerland (Berne) and the
Netherlands (Groningen) and as
senior engineer at the research
department of Baan and Xebic.
His main interests are adaptable
service-based systems, currently
focusing on run-time adaptable

systems for workflow, business processes, and choreography-based
coordination.

Jan Pettersen Nytun has since
1984 been holding several posi-
tions at academic and industrial
institutions in Norway. He stud-
ied computer science and mathe-
matics at the University of Oslo,
and received his M.Sc. in com-
puter science (1990). He has
been employed at UiA since
1994 and he is currently work-
ing on a Ph.D. in computer sci-
ence at UiO. The Ph.D. work
focus on modeling of consis-
tency and multi-model architec-
tures. His research interests and

competence include object-orientation, modeling, and programming
languages.

@ Springer

424

T. D. Meijler et al.

guages, and formal methods. Prof. Pri

Andreas Prinz was appointed
head of ICT at UiA in 2007. He
studied mathematics and com-
puter science at the Humboldt-
University in Berlin, Germany,
and received his M.Sc. in math-
ematics (1988) and Ph.D. (1990)
in computer science there. From
1990 to 2007 he had several posi-
tions at academic and industrial
institutions in Germany, Austra-
lia and Norway. His research
interests and competence include
systems engineering with par-
ticular focus on modeling, lan-

nz has worked in several projects

dealing with the development of modern ICT systems using advanced

technology.

@ Springer

Hans Wortmann (1950) is full
professor in Information Man-
agement at the Faculty of Orga-
nization and Management within
the University of Groningen
(RuG). His special field of inter-
est is in enterprise informa-
tion systems. He is chairing
a platform in The Netherlands
om Software-as-a-Service. He is
Editor-in-Chief of the applied
scientific journal Computers in
Industry. Before joining RuG,
Hans Wortmann was employed
at Baan Company, a leading ven-
dor of standard enterprise software, as Vice President in charge of
R&D. Before joining Baan, Hans served as a full professor in industrial
information systems at Eindhoven University of Technology (TUE). In
this role, Hans gained much experience with enterprise modeling and
enterprise systems. He advised many companies in various industrial
branches on selection and implementation of information systems in
enterprises. He received his Ph.D. in Engineering at TUE in 1981.

	Supporting fine-grained generative model-driven evolution
	Abstract
	1 Introduction
	2 Setting the stage: generative versus interpretive
	2.1 Relating generative and interpretive approaches
	2.2 Comparing generative and interpretive approaches

	3 Use-cases, requirements and limitations
	3.1 Use-cases
	3.1.1 Terminology
	3.1.2 Use-case 1: extension
	3.1.3 Use-case 2: adaptation and replacement

	3.2 Deriving requirements
	3.3 Scoping issues and limitations of this paper

	4 Principles of the nucleus modeling framework
	4.1 Representing the model class as an object
	4.2 Representing the implementation dimension
	4.3 Representing the instantiation dimension
	4.3.1 Instantiation: the CMC object as a factory
	4.3.2 Logical vs. physical instantiation

	4.4 Representing the modeled dependency dimension
	4.5 Managing the development process: the CMC object lifecycle

	5 Implementation of the NMF in nucleus
	6 Discussion
	6.1 Strict meta-modeling
	6.2 Implementation independence
	6.3 Fulfilling the requirements and improvingon interpreted approaches

	7 Related work
	7.1 Integrating component-based developmentwith model-based development
	7.2 Interpreted approaches
	7.3 Model-driven program transformation
	7.4 The type object pattern
	7.5 The virtual machine principle
	7.6 Formalization of incremental development
	7.7 Impact calculation
	7.8 Generative programming and product lines
	7.9 Other approaches to model-driven evolution
	7.10 Adaptive systems

	8 Conclusion and further work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

