
Modeling Modeling Modeling

Pierre-Alain Muller1, Frédéric Fondement1, Benoît Baudry2, Benoît Combemale3

1 Université de Haute-Alsace
Mulhouse, France

{pierre-alain.muller, frederic.fondement}@uha.fr
2 INRIA Rennes Bretagne-Atlantique

Rennes, France
benoit.baudry@inria.fr

3 Université de Rennes 1
Rennes, France

benoit.combemale@irisa.fr

Abstract. Model-driven engineering and model-based approaches have
permeated all branches of software engineering to the point that it seems that
we are using models, as Molière’s Monsieur Jourdain was using prose, without
knowing it. At the heart of modeling, there is a relation that we establish to
represent something by something else. In this paper we review various
definitions of models and relations between them. Then, we define a canonical
set of relations that can be used to express various kinds of representation
relations and we propose a graphical concrete syntax to represent these
relations. We also define a structural definition for this language in the form of
a metamodel and a formal interpretation using Prolog. Hence, this paper is a
contribution towards a theory of modeling.

1. Introduction

Many articles have already been written about modeling, offering definitions at
various levels of abstraction, introducing conceptual frameworks or pragmatic tools,
describing languages or environments, discussing practices and processes. It is
amazing to observe in many calls for papers how modeling is now permeating all
fields of software engineering. It looks like a lot of people are using models, as
Monsieur Jourdain [1] was using prose, without knowing it.

While much has already been written on this topic, there is however neither precise
description about what we do when we model, nor explicit description of the relations
among modeling artifacts. Therefore we propose to focus on the very heart of
modeling, particularly on the relation that we establish to represent something by
something else, when we say that we model. Interestingly, the nature of these
(some)things does not have to be defined for thinking about the relations between
them. We will show how we can focus on the nature of relations, or on the patterns of
relations between these things.

In this paper, we emphasize the major importance of the intentional nature of
modeling and introduce intention as a first-class property of the representation

relation between two things used in a modeling process. In this, we relate to Rabelais’
famous words about scientific knowledge: “science without conscience is the soul’s
perdition” [2]. A similar remark is made more recently in the IT domain, by
Rothenberg [3]: “It is widely recognized that the purpose of a model must be
understood before the model can be discussed”. These quotes emphasize the
paramount importance to distinguish between information contained by models (to be
considered as absolute facts) and the intention of models (to be considered as relative
to the purpose models were made for). This means for instance, that information that
was created with some intention in mind can later be reused for some other intention.

This work is a contribution towards a theory of modeling. Whilst focused on
modeling in software development and model management, the presented material
may apply to models in general, and in other disciplines. We define a canonical set of
relations that represent different intentions when representing a thing with another
thing in a modeling process. This canonical set contains 5 kinds of representation
relations that may be refined with nature (analytical / synthetical) and causality
(correctness / validity). The initial purpose for the definition of these relations and an
associated graphical syntax is to ease and structure reasoning about modeling. In
particular it is essentially meant as a language for exchanging ideas when talking
around a modeling task. Since we would like this language to be mostly used for
communicating and debating about the nature of modeling, it has to be flexible but it
also needs a precise definition. This paper extends our work published in
MODELS’09 [4] with a formal interpretation of the composition laws between
representation relations and a metamodel for the modeling modeling language.

The paper proceeds as follows: after this introduction, section 2 (related works)
summarizes what several authors have said about models, section 3 defines a set of
primitive representation relations based on the analysis of these various points of
views. Section 4 introduces a metamodel for our language and section 5 discusses
possible uses of this metamodel. Section 6 illustrates the use of the notation via
several examples excerpted from the software engineering field. Section 7 draws
some final conclusions and outlines future works.

2. Related works

Much has already been written on modeling. In this section we will examine
related works, and start to classify what authors have said about models. The
following table contains a summary of model definitions, even if Jochen Ludewig
states in [5] that “nobody can just define what a model is, and expect that other people
will accept this definition; endless discussions have proven that there is no consistent
common understanding of models”.

Bézivin “A model is a simplification of a system built with an intended goal

in mind. The model should be able to answer questions in place of
the actual system.” [6]

Brown “Models provide abstractions of a physical system that allow
engineers to reason about that system by ignoring extraneous details
while focusing on the relevant ones.” [7]

Jackson “Here the word ‘Model’ means a part of the Machine’s local
storage or database that it keeps in a more or less synchronised
correspondence with a part of the Problem Domain. The Model can
then act as a surrogate for the Problem Domain, providing
information to the Machine that can not be conveniently obtained
from the Problem Domain itself when it is needed.	 ”	 [8]

Kuehne “A model is an abstraction of a (real or language based) system
allowing predictions or inferences to be made.” [9]

Ludewig “Models help in developing artefacts by providing information
about the consequences of building those artefacts before they are
actually made.” [5]

OMG “A model of a system is a description or specification of that system
and its environment for some certain purpose.” [10]

Seidewitz “A model is a set of statements about some system under study
(SUS).” [11]	

Selic “Engineering	 models	 aim	 to	 reduce	 risk	 by	 helping	 us	 better	
understand	 both	 a	 complex	 problem	 and	 its	 potential	 solutions	
before	 undertaking	 the	 expense	 and	 effort	 of	 a	 full	
implementation.”	 [12]	

Steinmüller A	 model	 is	 information:	 on	 something	 (content,	 meaning),	
created	 by	 someone	 (sender),	 for	 somebody	 (receiver),	 for	 some	
purpose	 (usage	 context).	 [13]	

Table 1: Summary of model definitions

Features of models

According	 to	 Stachowiak	 [14]	 a	 model	 needs	 to	 posses	 the	 following	 three	
features:	

- Mapping feature. A model is based on an original.
- Reduction feature. A model only reflects a (relevant) selection of an

original’s properties
- Pragmatic feature. A model needs to be usable in place of an original with

respect to some purpose.
According to Bran Selic [12] an engineering model must posses the following five

characteristics:
- Abstraction. A model is always a reduced rendering of the system that it

represents.
- Understandability. A model must remain in a form that directly appeals to

our intuition.
- Accuracy. A model must provide a true-to-life representation of the modeled

system’s features of interest.
- Predictiveness. A model must correctly predict the interesting but nonobvious

properties of the modeled system.
- Inexpensiveness. A model must be significantly cheaper to construct and

analyse than the modeled system.

Different kinds of models

Ed Seidewitz classifies models in two categories: descriptions and specifications.
“A model may be used to describe a SUS (System Under Study). In this case, the
model is considered correct if all statements made in the model are true for the SUS.
Alternatively, a model may be used as a specification for a SUS, or for a class of
SUS. In this case, a specific SUS is considered valid relative to this specification if no
statement in the model is false for the SUS.” [11].

Jean-Marie Favre, reminds us that systems have the truth, not models: “Making the
distinction between specification models and descriptive models is useful to express
who, of the model or the system, has the truth” [15]. Jochen Ludewig further states
that in order to make our models more useful we have to compare them with reality:
“The reality is always right and the model is always wrong” [5]. This is also
acknowledged by Michael Jackson: “The model is not the reality” [8]. Wolfgang
Hesse, stresses the fact that in software engineering models often play a double role:
they may be either prescriptive or descriptive, depending on whether it is there earlier
or later than its original [16]. He coins this the Janus View. This is close to the
opinion of Bran Selic, in [12] where he states that the models may be developed as a
precursor to implementing the physical system, or they may be derived from an
existing system or a system in development as an aid to understanding its behavior.

Kuehne, going back to Peirce’s (1839-1914) seminal work about semiotic, also
distinguishes between token and type models [9]. He gives the following definitions:

- Token models. “Elements of a token model capture singular (as opposed to
universal) aspects of the original’s elements, i.e., they model individual
properties of the elements in the system.”

- Type models. “Most models used in model driven engineering are type
models. In contrast to token models, type models capture the universal	 aspects
of a system’s elements by means of classification.”

Another classification of models is provided by Mellor and his colleagues [17],
taking yet another perspective on models. The distinction is made between three kinds
of models, depending on their level of precision. A model can be considered as a
Sketch, as a Blueprint, or as an Executable. Fowler [18] suggests a similar distinction
based on three levels of models, namely Conceptual Models, Specification Models
and Implementation Models.

Rothenberg [3] distinguishes between two purposes for models: descriptive models
that are build to describe or explain the world and prescriptive models built to
discover and prescribe optimal solutions. The author identifies a number of possible
usages for models: projection, prediction, allocation and derivation, as well as
hypothesis testing, experimentation, and explanation.

Definition of relations between models

Bézivin identifies two fundamental relations coined RepresentationOf and
ConformantTo [19]. Jean-Marie Favre shows in [20] that the ConformantTo relation
is actually a short-cut for a pattern of RepresentationOf and ElementOf relations. In
Jean-Marie Favre’s view (called mega-model), further expressed in [21], all MDE

artifacts can be described with 4 (+1 derived) basic relations (RepresentationOf,
ElementOf, DecomposedIn, IsTransformedIn, and the derived ConformsTo).

Ed Seidewitz also identifies two relations [11], named interpretation (the
relationship of the model to the thing being modeled) and theory of the modeling
language (the relationship of a given model to other models derivable from it).

3. Towards a model of modeling

In this section we will define a model of modeling along with a notation to
represent relations between modeling artifacts. By a model of modeling we designate
a representation of what we manipulate when we use modeling techniques. When
modeling, we essentially build things that represent other things with a particular
intention. The following proposal for modeling modeling thus proposes to capture
different relations between things that we manipulate when modeling. In particular it
focuses on modeling artifacts and does not deal with the definition of these artifacts.
The relation between models and metamodels is thus outside the scope of this work.
Our target domain is software development; therefore, all our examples will be drawn
from the software engineering field.

We will use a very simple language to build this representation, based on “things”
and “arrows” between them, such as the “objects” and “morphisms” found in
Category Theory [22]. Things can be anything (this includes what other authors have
called models and systems), and nothing has to be known about the internal structure
of these things (which therefore do not have to be collections of “elements”).
Conversely, arrows do not need to be functions between sets (thus arrows cannot be
applied to “elements” but only composed with other arrows).

We do not want to come up with a brand new interpretation of what a model is. In
our mind, the model of modeling that we are defining should reflect (or encompass)
the various points of view, which have already been expressed by the authors cited in
the related works. To this end, we will first analyze these points of view, and next use
our simple notation to synthesize them all into one single representation.

Let’s start by modeling the fact that we have things which represent others things.
As stated by Bran Selic [12], we first have to find a tradeoff between abstraction and
understandability; therefore we will depart from the single System class view of Jean-
Marie Favre [23], and distinguish between a source thing (that many authors call the
model) and a target thing (called original by Stachowiak [14]), although we
understand that being a source thing or a target thing is relative to a given arrow, and
does not imply anything about a given thing. This is represented in Figure 1, where
the source is named X, the target Y, and the RepresentationOf relation μ.

We are using on purpose a very simple graphical concrete syntax for representing
modeling relations. Our notation is based on arrows, and is intended to be easy to
draw by hand (on blackboard and napkins). We also follow a naming convention: we
use upper-case roman letters for the name of "things" and Greek letters for relations.

Figure 1: X is a representation of Y

Intention

Neither things nor representations of things are built in isolation. As said by
Steinmüller, both exist for a given purpose, exhibit properties, are built for some
given stakeholders [13].

Table 2: Variations of the µ-relation, and graphical notation

Kind Intention Description Notation

different

X and Y have totally
different intentions. This
usually denotes a shift in
viewpoints.

share

X and Y share some
intention. X and Y can be
partially represented by
each other.
The representation is both
partial and extended.

sub

The intention of X is a part
of Y’s intention.
Everything which holds
for X makes sense in the
context of Y. Y can be
partially represented by X.

same

X and Y share the same
intention. They can
represent each other. This
usually denotes a shift in
linguistic conformance.

super

X covers the intention of
Y; X can represent Y, but
X has additional
properties. It is an
extended representation.

We can think about this as the intention of a thing. Intentional modeling [24]
answers questions such as who and why, not what. The intention of a thing thus
represents the reason why someone would be using that thing, in which context, and
what are the expectations vs. that thing. It should be seen as a mixture of
requirements, behavior, properties, and constraints, either satisfied or maintained by
the thing.

It is important to notice that intentional modeling must not be confused with
modeling in intension1. Intention (with a ‘t’) refers to the reason why a thing is made

1 http://www.cse.buffalo.edu/~rapaport/intensional.html

I(X) I(Y)

I(X)

I(X) I(Y)

I(X) I(Y)

I(X) I(Y)

I(Y)

or the mental purpose a modeler wants to achieve when building a representation of a
thing. On the other hand, modeling in intension (with an ‘s’) aims at capturing the set
of properties that are shared by all elements contained in a representation of a thing.
For example, in set theory, a set is defined in intension if it is defined as the properties
satisfied by all elements in the set. This can be opposed to an extensional definition of
the set, which consists in enumerating all elements in the set.

As already said earlier, the “category theory kind” of thinking that we take in this
paper does not require a description of the internals of the modeling artifacts. Hence,
it is enough to say that artifacts have an intention. The intentional flavor of models
has also been used by Kuehne [25] in his description of metamodeling and by Gasevic
et al. in their extension of Favre's megamodel [26]. The consequences of intentional
thinking applied to modeling can be understood and represented using Venn diagrams
[27]. Table 2 summarizes 5 kinds of µ-relations and associated notation.

All authors agree to say that the power of models stems from the fact they can be
used in place of what they model, at least for some given purposes. This is what
Stachowiak	 [24]	 calls the pragmatic feature of models. In practice it is convenient to
work with a subset of the intention, and to consider that the μ-relation is a complete
representation of that given subset: hence the μ/I notation below, which means that X
is a representation of Y (for a given subset of the intention). The I sign can then be
used elsewhere in a diagram, to show that a given pattern holds for that subset of the
intention. If intention is constant throughout the diagram, it can be omitted as a
notation shortcut.

Table 3: Notation shortcut. X is a complete representation of Y, for a given
subset of the intention (in a given context)

Analytical vs. synthetical nature of representations

As seen earlier, several authors make a distinction between analytical models and
synthetical models (respectively descriptive and specification models in the sense of
Seidewitz [11] and Favre [23]).

An analytical representation relation states that the source expresses something
about the target. We define the analytical representation (represented µα) as:

 where Tα is a relation such as X can be derived (or abstracted) from R(Y), with R

being a representation of X (including the Identity). In model-driven parlance Tα
could denote a model transformation. Interestingly, intentions of source and target do

X

X

Y

Y
X1 Y

X2

I(Y)

not necessarily have to overlap (notice that for convenience we use here a simple
arrow as a placeholder for the different kinds of representation relations that we have
defined in table 2). In terms of truth (as coined by Favre), truth is held by the target in
case of µα representation.

A synthetical representation relation explains that the target is generated from the
source. We define the synthetical representation (represented μγ) as:

where Tγ is a relation such as Y can be derived (or generated) from R(X), with R

being a representation of X (including the Identity). In model-driven parlance Tγ
could again denote a model transformation. In terms of truth, truth is held by the
source in case of μγ representation. If we talk in terms of intentions, this means that
the intention of Y can be derived (synthesized) from the intention of X, or at least be
driven by the intention of X, as Y is actually the result of Tγ applied to X. Quantifying
the respective contributions of X and Tγ to the synthesis of Y is out of the scope of
this paper.

 However, if one wants to represent that the transformation significantly
contributes to the target's intention, it is possible to use an explicit representation such
as in Figure 2. Y is partially generated from X (for the S part of the intention). The
complement (the S' part) is provided by Tγ. This could typically be used to represent
that X is a PIM (Platform Independent Model), and Y a PSM (Platform Specific
Model), with the specifics of the platform being introduced in Y by the Tγ
transformation.

Figure 2: Explicit representation of the contribution of the transformation
used to generate Y from X

Causality

Causality addresses the synchronization concern raised by Michael Jackson [8]; it
expresses both when the µ-relation is established, and how (if ever) it is maintained
over time. Causality is either continuous (the relation is always enforced) or discrete
(the relation is enforced at some given points in time). Causality is also tightly
coupled with the truth of Favre [15]; actually, causality is a concern about whether a
representation is still meaningful when the truth has changed. Going back to the
definition of correctness and validity given by Ed Seidewitz [11], causality states:

• for an analytical representation, when X is correct wrt. Y.

X Y

S

Tγ | Y = Tγ (X)

S’

• for a synthetical representation, when Y is valid wrt. X.

For computer based systems, causality is typically discrete, and making the models

meaningful requires adherence to results of information theory such as Nyquist-
Shannon sampling theorem [28]. Causality can be used to re-visit the definition given
by Wolfgang Hesse, who makes an amalgam between analytical/synthetical
representation, and earlier/later existence, when he proposes to distinguish between
descriptive and prescriptive “depending on whether it is (the model) there earlier or
later than its original” [16]. A way to lift this ambiguity is to separate clearly between
nature (analytical/synthetical) and causality (correctness/validity) of the
representation relation. In Figure 3 the model is a causal analytical representation of
the system. If the system changes, the causal μα relation implies that the model is
updated. In turn, as the model is also a causal μγ representation of the program, the
program is updated to remain an analytical representation of the system.

Figure 3: Causality implies maintaining the representations over time

Transitivity

Transitivity addresses the composition properties of similar µ-relations.
Transitivity is realized when the intention of a composed µ*-relation contains the
intention of a µ-relation. If transitivity holds, then it is possible to use the model of a
model of a thing, in place of the model of that thing.

We used Prolog in order to reason about the recursive transitivity between μ
relations, and benefit from its inference abilities. In our implementation, we
distinguish two predicates for the representation relation: a direct one (called
directrepresentation) that specifies an explicit and direct representation
between two things (i.e., a μ-relation), and a potentially transitive one (called
represents) between two things (i.e., a μ *-relation). The representation kind of the
latter can be inferred by transitivity from a sequence of μ -relation using the first one.

We have formally specified transitivity rules between representation kinds as
Prolog clauses in order to infer the representation kind between two things that are
related through n direct representations.

Table 4: Composition law for representations

We have identified three main regular clauses (that we expressed as Prolog rules)
in a sequence μ* of μ-relations:

1. if all μ-relations in μ* are of the same kind K then, the composed μ*-relation
is of the same kind K. There is one exception to this rule: when all relations
are of kind share, the composed μ*-relation can be of kind share or
different.

2. if a μ-relation of kind same (X and Y share the exact same intention) appears
in μ*, then it has no impact on the kind of the composed μ*-relation.

3. if a μ-relation of kind different (X and Y share absolutely no intention)
appears in μ*, then the kind of the composed μ*-relation is different.
There is one exception to this rule: when all relations in μ* are of kind
different then the composed μ*-relation can be of any kind.

All μ* sequences that don’t fall in one of these cases have to be dealt with separate
clauses. These cases are expressed as 12 specific Prolog rules.

Using this translation of μ-relations in Prolog, we have inferred the composition
laws given in Table 4. We can remark that in some cases, there is only one possible
result for the composition of relations. For example, on the third line of Table 4, if X
is an extended representation of Y (kind allInSource) and if Y has the same
intention as Z (kind same), then X is an extended representation of Z (kind
allInSource). In some cases there are 2, 3, 4 or 5 possible results when composing
relations. For example, Figure 4 (corresponding to line 11 of Table 4) illustrates the
two situations that can occur when X is an extended and partial representation of Y
(kind share) and Y is an extended and partial representation of Z (kind share). In
case a, the intention that X shares with Y does not overlap at all with the intention that
Y shares with Z, this means that X and Z have two completely different intentions
(kind different). In case b, the intention that X shares with Y overlaps with the
intention that Y shares with Z, this means that X is an extended and partial
representation of Z (kind share).

Table 5 : Computing the transitive relation between X, Y, Z

1. ?- consult('/tmp/modeling2.pl').
2. true.
3. ?- directrepresentation(x,y,share).
4. true.
5. ?- directrepresentation(y,z,share).
6. true.
7. ?- findall(Kind,represents(x,z,Kind),R).
8. R = [share, different].

These two possibilities can be automatically inferred using the Prolog clauses that

model the transitivity rules between different types of representations and the built-in
predicate findall that collects objects resulting from successful computations. Table
5 shows the console output for the previous example. First, the clauses specifying the
transitivity rules are compiled - i.e., consulted - (lines 1 &2), independently of any
specific example. Then, the predicate directrepresentation is used to specify

the concrete example2 (lines 3 & 6). Finally, the findall predicate collects all
possible kinds of representation between x and z in the list R (lines 7 & 8). "

Figure 4 –Intention overlapping when composing partial extended relations

4. Metamodel for modeling

We introduce a structural definition of modeling through the use of a metamodel
(Figure 5).

Figure 5 - Metamodel for modeling

A modeling activity (Modeling) may be named, and is characterized by a set of
named things (Thing), without any consideration of their internal structures. The only
information captured by a thing is the possible intentional representations of another
thing (RepresentationOf) corresponding to the µ-relations (contained by the
source thing).

Thus, a model of modeling may be considered as a finite directed multigraph (i.e.,
allowing multiple edges between any two different nodes) without loops (i.e.,
reflexive edges). The definition of self-representations (i.e., loops) are constrained by
the following OCL property:

context RepresentationOf inv NoLoops : self.src <> self.tgt;

2 Note that this specification could be automatically generated from the model using our
formalism

The µ-relation is mainly characterized by its intention (Intention), which
captures all or part of the intention of the source thing (src). We assume that a thing
is defined without any intention, but it is captured through its representation of
another thing. In other words, one RepresentationOf relation holds the intention of
the src with respect to the tgt (in the metamodel, src and tgt are the two roles that
a Thing can play in a RepresentationOf). This appears in the metamodel as a
represent containment reference between Thing and RepresentationOf,
whereas the representedBy reference is not a container because the target thing is
independent of the representation. Also, we allow the possibility to define a thing
without any representation of another thing (and thus unintentionally) but only to
consider its internal structure (information), as a black box in our formalism.

We also assume in our formalism a black box definition of the intention of each
representation between things (except an informal description using body). Thus, no
consideration can be made on the content of intentions, and the link with the
information of a thing (i.e., its internal structure). However, in the context of one
representation, the kind attribute allows to characterize the perimeter of the intention
of the source thing (src) compared to the intention of the target thing (tgt),
according to the Table 4.

The µ-relation (representationOf) is also characterized by its nature (nature),
used to distinguish analytical and synthetical representations. Finally, the causality of
a µ-relation is captured by the boolean attribute causality of
representationOf. We assume that the formalization of the causal relationship
appears very important (e.g., for process engineering, megamodeling, etc.) but we
consider this concern outside the scope of modeling modeling.

We have built a preliminary version of a graphical editor on the basis of this formal
structural definition of modeling. It is implemented with GMF3 and supports the
concrete syntax introduced in Section 3.

5. Practical uses of modeling modeling

We foresee at least two kinds of applications for the work presented in this paper:
an abstract one for mental purposes, and a concrete one for tool implementations.

On the abstract side, our intension based modeling approach is a mean to facilitate
reasoning and discussions about metamodels and their relations. This is how we use it
in this paper, for instance in Figure 12, we show that the structure of a Java program
can either be analyzed from the model, or from the program itself, which basically
means that the intention of ‘understanding the structure of that program’ can be
shared between the model and the program. The figure also shows that a UML class
diagram and a Java skeleton can be two different models of a thing, while being both
written in order to represent, analyze and understand the structure of that thing.

On the concrete side, tools - such as model (metamodel) repositories - could be
extended by the intentional modeling elements represented in figure 5, so as to
capture, maintain and check, intentional properties expressed against the artefacts

3 The Eclipse Graphical Modeling Framework, cf. http://www.eclipse.org/modeling/gmf/

manipulated by these tools. As an example, let us consider expressing intentional
constraints over aspect weaving within a model repository.

The model in Figure 6 can be seen as the specification of a constraint that the
model repository may enforce. This constraint states that the order of aspect weaving
(respectively weaving either first Aspect1 and then Aspect2 into the Base, or the
inverse, first Aspect2 and next Aspect1) shall not affect the resulting intention. M’1
and M’2 have the same intention, this is stated by the two enclosing same arrows.

M1 and M2 are built as extensions of the Base, by incorporating intention carried
respectively by Aspect1 and Aspect2. The intention of M1 (and M2) includes the
intention of the base: this is represented by a Super representation relation. The
intention of M1 (and M2) does not completely include the intention of Aspect1
(respectively Aspect2); M1 (and so M2) does not have to be an aspect (for instance, it
does not bear weaving information), this is represented by a Sub representation
relation. M1 (and M2) is then further extended by M’1 (respectively M’2). In the end,
M’1 and M’2 do have the same intention. This is stated by a Same representation
relation.

This constraint is not saying that the order in which Aspect1 and Aspect2 are
woven does not matter. It is stating that we are interested in preserving intention
during the weaving process, and that we are especially interested in the fact that the
weaving order will not affect the resulting intention. Thus, this is clearly the
specification of a constraint.

As seen earlier, a tool could check such constraint. For instance, if the content of
intentions is detailed, then it is possible to use the kind of Prolog clauses to check the
preservation of the expected property in a model repository.

Figure 6: Expressing a constraint over aspect weaving: independence of

weaving order

6. Examples

6.1. This is not a pipe

Let's examine the already classic example inspired from Magritte's painting. The
picture is a μα representation of the pipe. The picture and the pipe share some
intention. In addition, the real pipe could be used to smoke, while the picture could be
used to show the pipe remotely. This is represented by an extended partial μα
representation. In the following example, the distribution of colors plays the role of an
analytical model, providing information about the picture from which it is generated.
It does not share intention either with the picture or with the pipe (this is modeled by
the dashed arrow); however the information that it contains may be used to have an
idea of the color of the real world pipe.

This is an illustration of the point that we emphasized in the introduction. The
information contained by the picture was made with some intention in mind. The
distribution of colors was produced with a totally different intention, and the dashed
arrow reflects this.

So, the dashed arrow represents the intention of modeling. Should this intention be
different, for instance to reflect the fact that the distribution of colors could be used to
retrieve information about the real world pipe, then the arrow would be different too
(we would use a partial representation).

Figure 7: Example of μα relations

6.2. Jackson's Problem Domain and Machine

In table 1, the c) case represents the fact that the target (in our case generated)
thing contains the intention of the source thing. This is especially interesting in case
the source was itself in a μα relation with a third thing. Figure 8 shows such situation.
M stands for model, S for system, and R for representation (with the idea that R is a
computerized representation, in other words a program which implements S).

Real world object
Distribution of

colors
.jpg

Figure 8: Generated machine implementing a μα representation

This is the typical case for modeling, such as described for instance by Michael
Jackson. S is the problem domain. R is what Jackson calls the machine. The μα
relation from R to S is what Jackson calls the “‘model’ which is part of the local
storage or database that it keeps in a more or less synchronized correspondence with
a part of the problem domain” [8]. This view is also in line with Bran Selic, who
states: “the model eventually becomes the system that it was modeling” [12].

The partial μγ and the extended μα relations express the fact that R is “richer” than
M (and thus S) in terms of intention, because R contains additional information
required for execution. The intention of the model can also be seen as the intersection
of the intensions of the machine and the problem domain. The grayed part represents
the additional intension required to "implement" the intention of the problem domain.
This is what we name platform dependence in Figure 9.

Figure 9: The machine implements the subset of intention of the problem
domain, represented by the model

6.3. PIM, PSM and PDM

A PSM (Platform Specific Model) is a refinement of a PIM (Platform Independent
Model), which contains additional platform information as given by a PDM (Platform
Description Model). The Venn diagram in Figure 10 shows how all successive levels
of refinement extend the intention of the System, with platform dependent
information required for implementation. We also see how the previous example (the
triad System-Model-Representation) may be used as a meta-modeling pattern, by
replacing M (the model) by PIM and R (the representation) by PSM (PDM was left
unexpressed in the pattern).

R = The Machine

S = The Problem Domain
Model

Platfom Dependence

I (Problem Domain)

I (Model) I (Machine)

Figure 10: Refinement of PIM into PSM, with platform specific information

6.4. Host-target development

In host-target development, the same program (here the model) is compiled both for a
host machine (typically a workstation) and a target machine (typically some
embedded computer). This allows early problem detection, even before the final
hardware machine is available. Therefore, the host implementation can be considered
as a partial analytical model of the target implementation (it may also be extended by
host specific concerns).

Figure 11: The host implementation provides information about the target
implementation.

6.5. Round-trip engineering

Code skeletons are generated from UML class diagrams (represented by the μγ).
Then, developers extend the skeletons by hand. If developers change the structure of
the final program (and therefore also the structure of the skeletons which get updated
at the same time as they live in the same file), then the class diagram has to be
changed accordingly. The UML class diagram and a Java skeleton are two different
models of a thing that share the same intention: they are both written in order to
represent, analyze and understand the structure of the thing. We model this with a

Model

Target
Implementation Host

Implementation

PSM2 PSM1 PIM System

PDM1 PDM2

I(PIM) I(PSM1)
I(PSM2)

causal μα relation between class diagrams and Java skeletons. The causal nature of the
relation implies that the model is always up-to-date.

Figure 12: Using causality to model round-trip engineering

6.6. Model-based testing

Model-based testing is performed by generating test cases that can be used to test
the program. As represented in Figure 13, the model and the program are developed
on one side while the test cases are developed separately. Then, testing consists in
checking the consistency between these two views on the system. When an
inconsistency is detected, an error has been found.

The test model is a partial representation of the system, with an additional intention
of testing (looking for errors) that is not present in the system. The test model is also a
partial representation of the model that shares intentions with the model (the concepts
manipulated by these representations are the same), but again the test model has this
additional test intention. Symmetrically, the model is a representation of the system.
The model is then used to generate parts of the program.

When the test model is rich enough, test cases can be automatically synthesized
from this model, according to a test adequacy criterion. Thus there exists a μγ relation
between these things. This particular relation also implies that the μα relation between
the test model and the system is propagated to the test cases that are thus also
representations of the system.

The last interesting relationship that appears on the figure is that test cases are
representations of the program since they can provide information to analyze the
presence of errors in the program. However, these two things do not share any
intention since test cases aim at detecting errors in the program while the program
aims at providing functionalities to some user.

Java
Skeleton

Java
Program

Class
Diagram

Figure 13: Model-based testing

6.7. Eclipse EMF

This example is drawn from the tutorial T38 "Introduction to the Eclipse Modeling
Framework" delivered at OOPSLA'06. The tutorial includes generating a working
graphical editor to create and manipulate instances of a UML model. The editor is
made of three generated Java projects (respectively Model, Edit, and Editor). The
process starts with an XML file that contains a schema, which represents a purchase
order system. The various modeling artifacts are represented in Figure 14.

The XML schema (.xsd file) is a μα representation of the system (wrt. a given
intention I). The schema is used to generate an EMF model (.ecore file). The model
and the schema share the same intention I, as shown by μα/I relations. The model is
then used to generate a generation model (.genmodel), which is also in a μα relation
with the system. The .genmodel contains additional information (wrt. the model) to
drive the code generation process; therefore it is the target of a partial μγ relation.
Three Java projects are generated from the generation model: model, edit, and editor.
Edit.java is a Java projection of the model, thus it is a μα/I representation of the
system as well. Edit.java contains general editing mechanisms (not dependent on the
graphical user interface) and uses the java projection of the model (represented with
another μα relation). Finally, Editor.java provides end-user editing facilities to
visualize models, using a tree-based explorator.

Model Program

System

Test
Cases

Test
Model

Modeling

Modeling Modeling Modeling

Modeling Modeling

Figure 14: Purchase order Eclipse EMF tutorial

6.8. Modeling Modeling Modeling

This paper is entitled “modeling modeling modelling”. This is to reflect the fact
that the presented work is about building a formal model (F in the picture) of a
language (L in the picture), which in turn is a representation for a set of models of
systems (M and S in the picture). This journal paper (modelling modeling modeling)
extends the conference paper (modeling modeling) by a third level of modelling.
Hence, this third modeling is the contribution of this paper.

Figure 15: Modeling modeling modeling

7. Conclusion

This work analyzes various definitions of models, as found in the related works,
and proposes a modeling language which can be used as a foundation to represent the
various representation relations between models, metamodels and languages.

Our language focuses on representation relations between modeling artifacts,
without actually trying to understand the nature of these artifacts. Ignoring the details
of their internal structure appears to be very effective because it magnifies the fact
that modeling is a matter of relations and roles, and not intrinsic to the artifacts.

Purchase
Order System

.xsd .ecore

Model.java

Edit.java

Editor.java

.genmodel

We have identified 5 kinds of representation relation (based on their intention), two
natures (analytical and synthetical), and taken causal dependencies and transitivity
into account. We have also introduced a formal definition of the domain of modeling
modeling as well as precise semantics for relations between things that are
manipulated when modeling. We have illustrated our approach with several simple
examples, drawn from the software engineering domain.

From a practical point of view, we hope that this step toward a better
understanding of representation relations will serve as a basis for intention-aware
metamodeling tools, in the same way as relational algebra triggered the development
of efficient databases. One step in that direction would consist in formally capturing
the operational semantics of the modeling modeling language.

Acknowledgements

This paper is the result of numerous informal discussions we have had with so
many people that it is almost impossible to enumerate them all here. We would like to
especially thank a few of them: including Jean-Marie Favre, Thomas Kuehne, Colin
Atkinson, Marc Pantel, Christophe Gaston, and Régis Fleurquin. We would also like
to acknowledge the invaluable comments of anonymous reviewers of an earlier
version of this paper.

8. References

1. Molière, Le Bourgeois gentilhomme. 1607
2. Rabelais, F., Les horribles et épouvantables faits et prouesses du très

renommé Pantagruel Roi des Dipsodes, fils du Grand Géant Gargantua.
1532

3. Rothenberg, J., The nature of modeling, in AI, Simulation and Modeling,
L.E. Widman, K.A. Loparo, and N.R. Nielsen, Editors. 1989, John Wiley &
Sons. p. 75−92.

4. Muller, P.-A., F. Fondement, and B. Baudry. Modeling Modeling. in
Proceedings of MODELS'09. 2009. Denver, CO, USA: p. 2-16.

5. Ludewig, J., Models in software engineering - an introduction. SoSyM,
2003. 2(3): p. 5-14.

6. Bézivin, J. and O. Gerbé, Towards a Precise Definition of the OMG/MDA
Framework, in ASE, Automated Software Engineering. 2001.

7. Brown, A.W., Model driven architecture: Principles and practice. SoSyM,
2004. 3(3): p. 314-327.

8. Jackson, M., Some Basic Tenets of Description. Software and Systems
Modeling, 2002. 1(1): p. 5-9.

9. Kühne, T., Matters of (meta-) modeling. SoSyM, 2006. 5(4).
10. OMG. Model Driven Architecture. 2003 [cited 2006; Available from:

http://www.omg.org/mda/
11. Seidewitz, E., What models means. IEEE Software, 2003. 20(5): p. 26-32.
12. Selic, B., The pragmatics of Model-Driven Development. IEEE Software,

2003. 20(5): p. 19-25.

13. Steinmüller, W., Informationstechnologie und Gesellschaft: Einführung in
dieAngewandte Informatik. 1993, Darmstadt: Wissenschaftliche
Buchgesellschaft.

14. Stachowiak, H., Allgemeine Modelltheorie. 1973: Springer, Wien.
15. Favre, J.-M., Foundations of Model (Driven) (Reverse) Engineering :

Models - Episode I: Stories of The Fidus Papyrus and of The Solarus, in
Dagstuhl Seminar 04101 on "Language Engineering for Model-Driven
Software Development". 2004: Dagsthul, Germany.

16. Hesse, W., More matters on (meta-)modeling: remarks on Kühne's
"matters". SoSyM, 2006. 5(4): p. 387-394.

17. Mellor, S.J., K. Scott, A. Uhl, and D. Weise, MDA Distilled: Principle of
Model Driven Architecture. 2004: Addison Wesley.

18. Fowler, M., K. Scott, and G. Booch, UML distilled. Object Oriented series.
1999: Addison-Wesley.

19. Bézivin, J., In Search of a Basic Principle for Model-Driven Engineering.
Novatica Journal, 2004. Special Issue March-April 2004.

20. Favre, J.-M., Foundations of the Meta-pyramids: Languages and
Metamodels - Episode II, Story of Thotus the Baboon, in Dagstuhl Seminar
04101 on Language Engineering for Model-Driven Software Development.
2004: Dagsthul, Germany.

21. Favre, J.-M. Towards a Megamodel to Model Software Evolution Through
Software Transformation. in Proceedings of Workshop on Software
Evolution through Transformation, SETRA 2004. Rome, Italy: p.

22. Fokkinga, M.M., A Gentle Introduction to Category Theory - The
calculational approach. 1994: University of Twente.

23. Favre, J.-M., Foundations of Model (Driven) (Reverse) Engineering: Models
- Episode I: Stories of The Fidus Papyrus and of The Solarus. 2004,
Dagstuhl Seminar 04101 on "Language Engineering for Model-Driven
Software Development: Dagsthul, Germany.

24. Yu, E. and J. Mylopoulos. Understanding "Why" in Software Process
Modelling, Analysis, and Design. in Proceedings of 16th International
Conference on Software Engineering (ICSE). 1994. Sorrento, Italy: p. 159-
168.

25. Kuehne, T., Matters of (Meta-) Modeling. Software and Systems Modeling,
2006. 5(4): p. 369-385.

26. Gasevic, D., N. Kaviani, and M. Hatala. On Metamodeling in Megamodels.
in Proceedings of MODELS'07. 2007: p. 91-105.

27. Venn, J., On the Diagrammatic and Mechanical Representation of
Propositions and Reasonings. Dublin Philosophical Magazine and Journal of
Science 1880. 9(59): p. 1-18.

28. Shannon, C.E., Communication in the presence of noise. Proc. Institute of
Radio Engineers, 1949. 37(1): p. 10-21.

