

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:

Software & Systems Modeling 13.1 (2014): 209 – 238

DOI: http://dx.doi.org/10.1007/s10270-012-0242-3

Copyright: © 2014 Springer Berlin Heidelberg

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1007/s10270-012-0242-3

Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Domain-Specific Discrete Event Modelling and Simulation using Graph
Transformation

Juan de Lara1, Esther Guerra1, Artur Boronat2, Reiko Heckel2, Paolo Torrini2

1 Universidad Autónoma de Madrid (Spain), e-mail: {Juan.deLara, Esther.Guerra}@uam.es
2 University of Leicester (UK), e-mail: {aboronat, reiko, pt95}@mcs.le.ac.uk

Received: date / Revised version: date

Abstract Graph transformation is being increasingly
used to express the semantics of domain specific visual
languages since its graphical nature makes rules intu-
itive. However, many application domains require an ex-
plicit handling of time to accurately represent the be-
haviour of a real system and to obtain useful simula-
tion metrics in order to measure throughputs, utilization
times and average delays.

Inspired by the vast knowledge and experience ac-
cumulated by the discrete event simulation community,
we propose a novel way of adding explicit time to graph
transformation rules. In particular, we take the event
scheduling discrete simulation world view and provide
rules with the ability to schedule the occurrence of other
rules in the future. Hence, our work combines standard,
efficient techniques for discrete event simulation (based
on the handling of a future event set) and the intu-
itive, visual nature of graph transformation. Moreover,
we show how our formalism can be used to give semantics
to other timed approaches and provide an implementa-
tion on top of the rewriting logic system Maude.

Key words Graph Transformation – Discrete Event
Simulation – Domain-Specific Modelling

1 Introduction

Model-Driven Engineering (MDE) proposes the use of
models to conduct the different phases of the develop-
ment process. In this way, models – frequently described
using Domain-Specific Modelling Languages (DSMLs) –
are used to specify, simulate, test, understand and gen-
erate code for the final application. Being of higher level
of abstraction than code, they aim to increase the pro-
ductivity and quality in the development [24].

In order to express and analyse the behaviour of
models and model-based systems, Graph Transforma-
tion [15,39] (GT) is becoming increasingly popular as

GT rules are intuitive and allow the designer to use the
concrete syntax of the manipulated models. Moreover,
its formal semantics permits analysing the transforma-
tion itself [15]. For example, GT has been extensively
used to describe the operational semantics of DSMLs in
areas such as reliable messaging in service-oriented ar-
chitectures [21], web services [30], gaming [44] and man-
ufacturing [9].

When GT is used to specify the semantics of a DSML,
the rules define a simulator, and their execution accounts
for the state change of the system. This is enough for
languages with a discrete, untimed semantics, where the
time elapsed between two state changes is not important.
However, for simulation purposes and for modelling real-
time systems, where the system behaviour depends on
explicit timing (e.g. time-outs in network protocols) and
performance metrics are essential, a mechanism to model
how time progresses during the GT execution is needed.

Computer simulation [47] is the activity of perform-
ing virtual experiments on the computer (instead of in
the real world) by representing real systems by means of
computational models. Simulation is intrinsically multi-
disciplinary, and is at the core of research areas as diverse
as real-time systems, ecology, economy and physics. Hence,
users of simulations are frequently domain experts (not
necessarily computer scientists) who are hardly profi-
cient in programming languages, but have deep knowl-
edge on the domain-specific notations used in their sci-
entific domain.

There are several types of computer simulation. In
particular, discrete event simulation (DES) [7,20] stud-
ies systems where time may be modelled in a continuous
way (R), but in which there is only a finite number of
events or state changes in a finite time interval. Many
languages, systems and tools have been proposed over
the years in the DES domain [1,18,20,31,33,34,41,47].
However, these require specialized knowledge that do-
main experts usually lack, or consist of libraries for pro-
gramming languages like Java. Therefore simulationists

2 Juan de Lara et al.

would strongly benefit if they could define the simulators
using the concepts of the domain they are experts in.

In this paper, we propose a language for defining
domain-specific behavioural specifications by extending
the GT formalism with explicit mechanisms for handling
control flow and time. In this way, based on the event
scheduling approach to simulation [42], we allow rules to
program the occurrence of other rules in the future. Our
approach makes use of two concepts: explicit rule invoca-
tion and cancellation with parameter passing, and time
scheduling of rule executions. This improves efficiency
in two ways: rule execution is guided by parameter pass-
ing, and the global time is increased to the time of the
next occurring event (instead of doing small increments).
Our goal is to provide the simplest possible time han-
dling primitive, on top of which other more advanced
constructs can be added. We show that scheduling is one
such primitive mechanism, and demonstrate its use to
model (stochastic) delays, timers, durations and peri-
odic activities. Hence, we keep the best of both worlds:
the intuitive, graphical nature of GT rules and its anal-
ysis capabilities, and the flexibility and efficiency of the
event scheduling approach.

Our approach is specially suited for MDE, where
DSMLs are defined and used to describe systems in par-
ticular domains. GT rules enable the direct use of the
DSML concrete syntax to describe its timed semantics
without resorting to encodings in external simulation
languages. The visual nature of GT makes the result-
ing simulator amenable to the visual animation of the
domain-specific models. GT rules are also a natural means
to express dynamic structural changes, which are gen-
erally more difficult to model in traditional simulation
approaches, where the structure of the model is usually
fixed [41,47].

This work is an extension of [11]. In particular here
we have extended our formalization with match-dependent
distribution functions; we propose an approach to spec-
ify domain-specific performance metrics based on our
formalization; we have developed GT theory to detect
errors in parallel schedulings; we report on a tool imple-
mentation atop Maude supporting our approach; and we
discuss additional case studies and related research.

The paper is organized as follows. Section 2 gives an
overview to DES and event scheduling. Section 3 intro-
duces the use of (untimed) GT to describe the seman-
tics of DSMLs. Next, Section 4 extends GT with rule
invocations and parameter passing, called flow gram-
mars. These are extended with time scheduling in Sec-
tion 5. Section 6 discusses how to model other timed ap-
proaches with ours. Section 7 introduces domain-specific
simulation metrics. Section 8 presents some case studies,
followed by an implementation of the framework using
Maude in Section 9. Section 10 covers related research
and Section 11 concludes. An appendix details the de-
veloped GT theory to detect parallel scheduling errors.

2 Discrete Event Simulation: World Views

Discrete-event systems can be modelled using different
styles or world-views [7,20]. Each world-view focuses on
a particular aspect of the system: events, activities or
processes. An event is an instantaneous change in an
object state. An object activity is the state of an object
during a time interval, between two events. A process
is a succession of object states defining its simulation
life-cycle.

These concepts are illustrated in Fig. 1 through a
simple messaging system. The figure shows the arrival
of two messages at time t1 and t2 respectively, and their
dispatch through a channel of capacity one, so that mes-
sage m2 has to wait while m1 is in the channel. There-
fore, a message can perform two activities: waiting or
being transported in the channel. The message process is
formed by the sequence of these two activities, or just by
the second in case the message is immediately sent after
its creation. The figure shows in the lower row the state
evolution of the system, represented by pairs where the
first component is the number of messages in the chan-
nel, and the second the number of waiting messages.

act: waiting act: in channel

process m2

create m1
send m1

create m2
Events

receive m1

send m2

receive m2

time

t1 t2 t3 t4

State (0,0) (1,0) (1,1) (0,1) (0,0)

t0=0

start

process m1

activity: in channel

Fig. 1 Discrete-event simulation concepts.

Events, activities and processes give rise to three dif-
ferent approaches to describe discrete time models [7,31]:
Event Scheduling focusing on events, Activity Scanning
focusing on activities, and Process Interaction focusing
on object processes.

Event Scheduling languages offer primitives to de-
scribe events, their effect on the current state, and the
scheduling of future events. Time is managed efficiently
by simply advancing the simulation time to the time of
the next event to occur. Activity Scanning languages fo-
cus on describing the conditions enabling the start of
activities. They are less efficient because, lacking the
concept of event to signal state changes, they have to
advance the time using a small discrete increment and
check at each moment whether new activities can be
started. To increase efficiency, the three-phase approach
combines Event Scheduling and Activity Scanning so that
the start of new activities is only checked after handling
an event. Finally, Process Interaction provides constructs
to describe the life-cycle (the process) of the active enti-

Domain-Specific Discrete Event Modelling and Simulation using Graph Transformation 3

ties of the system [40]. These entities are called transac-
tions, which move through the different blocks describing
their process.

Among the three approaches, Event Scheduling is
the most primitive as events delimit the start and end
of activities, and a flow of activities makes up a pro-
cess. Hence, we concentrate on the Event Scheduling
approach, and in particular on the Event Graphs no-
tation [42].

Fig. 2 shows an example event graph. It models the
communication network protocol shown in Fig. 1, where
a computer sends messages periodically to a receiver
computer through a channel with limited capacity cap.
The nodes in the event graph represent events. There
are two special events: the start and the end of the sim-
ulation, identified with a small arrow and a double circle
respectively. The state is represented with variables, in
our example ch being the load of the channel and w
the number of waiting messages. Below the event nodes,
a sequence of expressions over variables describes state
changes. Arrows between events represent schedulings
(i.e. programming of new events in the future). For in-
stance, the arrow from the event start to the event end
indicates that, once start happens, an occurrence of end
will happen after tf time units. If no time is indicated
(like in the arrow from start to create) then the target
event is scheduled to occur immediately. Arrows can be
decorated with a condition that is evaluated after pro-
cessing the source event, and that must be true in order
to schedule the target event at the indicated time. For
example, the arrow from create to send means that after
creating a message, this will be sent only if there is some
message waiting and the channel has enough capacity.
Finally, although not shown in the example, event graphs
can also contain event-cancelling edges, represented as
dashed arrows. These edges indicate the deletion of all
events of the target type scheduled after the indicated
time units, if the condition (if some is given) holds at
the time the source event is processed [42].

tm
w>0 and

w>0 and ch<cap

start

{ch=0

create

{w++}

send

ch<cap

rec
tch

{w-- ch++} {ch--}{ch=0,
w=0}

{w++} {w ,ch++} {ch--}

end

tf

Fig. 2 An event graph model.

Discrete event simulators use a Future Event Set
(FES) which contains the events scheduled to occur in
the future. The simulation proceeds by taking the event
with earliest occurrence time and executing its specifica-
tion as given by the event graph, i.e. modifying the sys-
tem state and scheduling new events. Many algorithms

and data structures exist to handle efficiently the FES [20,
46]. As the approach we will present in this paper uses
a FES, it can profit from these algorithms.

Fig. 3 shows some execution steps of the model in
Fig. 2, using as parameters tm = 5, tf = 100, cap = 1,
tch = 7. Each state is enclosed in a rounded box that
contains the current time in the upper part, the sched-
uled events, and the value of the variables ch and w.
Each state transition consumes the earliest event in the
set, updates the current time to the time of this event,
modifies the variables, and schedules or deletes events
according to the invocation and cancelling edges in the
model. The simulation continues until processing the end
event.

start
@0

time=0

create
@0

end
@100

time=0

(ch=0,w=0)

create
@5

end
@100

time=0

(ch=0,w=1)

send
@0

create
@5

end
@100

time=0

(ch=1,w=0)

rec
@7

rec
@7

end
@100

time=5

(ch=1,w=1)

create
@10

FES FES FES FES FES

Fig. 3 Some steps in the execution of the model.

The execution of event graphs is efficient, but its
modelling sometimes lacks intuitivity. This is so because
event graphs are not domain-specific and force the use of
scattered variables for expressing state changes instead
of models with a richer structure in a particular domain.
For example, even though the concept of message is rel-
evant in the example, such entity does not appear in
the event graph of Fig. 2, but only indirectly through
counters (variables ch and w). This is especially inade-
quate in MDE processes, where specifications of models
are conformant to a given DSML. In this paradigm, one
needs a way to define simulators using the concepts of
the domain in terms of DSMLs. Next we show how GT
provides an intuitive formalism for this task but lacks
time handling capabilities, which we subsequently add
in Section 5.

3 Rule-Based, Domain-Specific, Untimed
Simulation

In this section we give an overview of the use of GT to
describe the semantics of DSMLs. The syntax of DSMLs
is usually defined through a meta-model, or type graph,
which contains the node and edge types that can be used
to define models. For example, Fig. 4 shows a meta-
model describing a DSVL in the domain of communica-
tion networks and protocols. In this language, a network
is made of nodes which exchange messages through chan-
nels. Messages can be either requests or replies. There
are two special kinds of nodes: initiators, whose attribute

4 Juan de Lara et al.

isInit is true, and terminals, whose attribute isFinal is
true.

Container Message

Node

-isInit:boolean

-isFinal:boolean

Channel Reply Request

*1 at

** out

** in

Fig. 4 Meta-model of DSVL for communication networks.

Fig. 5 shows an example model in concrete syntax,
with an initiator node to the left marked with a “play”
icon, and a terminal node marked with a cross to the
right. Requests are shown as closed envelopes (like the
one to the left) and replies as open envelopes (like the
one to the right). Channels are depicted as pipes.

Fig. 5 A communication network model.

We are using this DSVL to describe the dynamics
of a simple protocol where the messages are propagated
through the network at random. When a request reaches
a terminal node, this node sends back a reply that tra-
verses the network randomly until it reaches the ini-
tiator. Since channels can lose messages, the initiator
sends a new request periodically. We are also modelling
changes in the net topology, so that nodes can be dy-
namically connected and disconnected from channels.

We define this protocol and the topology changes
by using Double Pushout (DPO) graph transformation

rules [15] with the form p : ⟨L l← K
r→ R,NAC =

{ni : L → Ni}i∈I⟩. In this approach, L is the left-hand
side (LHS) of the rule and contains the elements that
need to be present in the host graph for the rule to
be applicable. Graph K (kernel or interface) identifies
which of the elements in the LHS are not modified by
the rule application. Finally, graph R is the right-hand
side (RHS) and accounts for the rule post-conditions. In
this way, the difference L \ K represents the elements
deleted by the rule, R \ K are the elements created by
the rule, and K are the preserved elements. Addition-
ally, NAC is a set of Negative Application Conditions
expressing extra graph conditions that prevent the rule
application whenever they are found.

As an example, Fig. 6 shows a rule owning two NACs.
The rule simulates the dispatch of a message: it deletes
the connection between the message and the source node,

and creates a new connection between the message and
a channel connected to the node. The rule contains an
abstract object m of type message (depicted as a dotted
envelope) which can be matched to both requests and
replies (subtypes of message in the DSVL meta-model).
In this way, this rule becomes a compact specification of
two different rules [10,15]. The rule is not applicable if
the message is a request and the node is terminal (first
NAC), or if the message is a reply and the node is initial
(second NAC). In this paper, we sometimes depict rules
using just their LHS and RHS, as done in Fig. 8, and
use the concrete syntax of the DSVL.

L

send

m
n

c

R

n

c

N2

m
n

N1

n
m

m
c

c

K

m
n

c

l r

n
1

n
2

Fig. 6 A DPO rule.

A rule can be applied to a graph if we find a mor-
phism (an occurrence or match) from the rule’s LHS to
the graph, and this morphism satisfies the NACs of the
rule. A morphism from graph L to G can be thought
as an embedding of L in G. Formally, we say that a
morphism m : L → G is a valid match for rule p in the
host graph G, written m |=G p, if m satisfies the glue-
ing conditions [15] and if ∀ni : L → Ni ∈ NAC, then
@n : Ni → G with n ◦ ni = m. The latter condition de-
mands that there is no occurrence of any NAC in the
same context where the LHS was found. The glueing
conditions include the dangling edge and the identifica-
tion conditions. The first condition states that if a rule
deletes a node, it should delete all its incident edges as
well in order to avoid dangling edges. The second condi-
tion concerns non-injective matches that identify several
elements in the LHS of a rule with a unique element in
the graph. In this case the rule cannot demand deleting
some of these elements and preserving others.

If a match m exists and the glueing conditions and
NACs are satisfied, we have m |=G p, and hence we
can perform a direct derivation. Fig. 7 shows an exam-
ple. There is only a valid match m from the LHS of
the rule to G, the one that identifies the message in the
rule with m1 in G. The message m2 does not belong to
a valid match of the rule as it does not satisfy the first
NAC. The direct derivation proceeds in two steps: it first
deletes from G the elements in L \K yielding graph D
(i.e. it disconnects message m1 and node n3), and then
it creates the elements in R \ K yielding graph H (i.e.
it connects m1 to the channel c2). Graph D is embed-
ded in both G (which in addition contains the elements
deleted by the rule) and H (which in addition contains
the elements created by the rule). These embeddings are

Domain-Specific Discrete Event Modelling and Simulation using Graph Transformation 5

given by the morphisms d and h. The two squares in the
figure commute (m ◦ l = d ◦ k, g ◦ r = h ◦ k) and are
pushouts [15]. The left one is in charge of deleting ele-
ments by computing the so-called pushout complement
D, whereas the right one is in charge of adding new ele-
ments. The execution of a graph transformation system
proceeds by applying its rules in non-deterministic order,
until none is further applicable.

L

send

mn

c

R

n

c

N2

mn

N1

n
m

mc

c

K

mn

c

l r

n
1

n
2

n2 n3c2

c3

n1

m2

G
c1

n2 n3c2

c3

n1

m1
m2

D
c1

n2 n3c2

c3

n1

m1
m2

H
c1

d h

m k g

m1

Fig. 7 A direct derivation.

Fig. 8 shows some GT rules of the simulator for our
DSVL. Messages are generated from initiators by rule
init. Nodes can send and receive messages. As explained
before, rule send does not apply if the message is a re-
quest and the node is terminal (first NAC), or if the
message is a reply and the node is initial (second NAC).
The first case is handled by rule reply, which processes
the request and generates a reply, whereas the second
case is handled by rule end, which removes the reply
from the net. The GT system also contains rules account-
ing for changes in the topology and modelling channel
reliability. In particular, rule lose simulates the loss of
messages, while rules createConnection and deleteCon-
nection model the creation and deletion of connections
from nodes to channels. The former only applies to nodes
without output channels.

For simulation purposes, the standard approach to
GT has some advantages. First, the rules are domain-
specific, using the concepts and the concrete syntax of
the DSVL. Second, the rules can very naturally describe
changes in the model topology, more difficult to express
with standard simulation techniques. However, GT has
two main drawbacks when used for simulation. First,
even though the rules capture the untimed semantics of
a DSVL, they cannot represent time-outs, delays or be
used to obtain metrics about the system performance.
For example, we would like to set a time-out in the ini-
tiator so that it sends requests each 50 time units, as
well as to model transmission delays and the average
rate at which channels lose messages. Moreover, some
execution paths may not correspond with the behaviour
of the system under study, like a path in which the rules

move always the same message and leave “frozen” the
other ones.

Second, rules represent events which signal the start
or end of activities of the entities in the system. Thus,
the focus on active entities requires an explicit model for
event processing (a process) which identifies the context
in which the events are executed and passes part of this
context to subsequent events. This would result in more
efficient simulations, as matches could be “completed”
instead of being sought from scratch. Moreover, different
processes may interact. For instance, we may want to
prevent the deletion of connections if they are being used
to send a message. Hence, next we extend GT with these
two features: explicit rule invocation and time.

4 Flow Graph Grammars

An important need in modelling DES is the ability to
describe the order in which events should be executed
and their context of execution. For example, a message
has to be sent before it is received. Even though these
conditions can be encoded in the LHS and NACs of the
rules, it is sometimes simpler to resort to explicit rule
invocations, as well as more efficient to provide a data
dependency between rules so that the context (a part of
the match in which the rule is to be executed) is passed
as a parameter.

Hence, our aim is to use an event graph (cf. Fig. 2) as
a control structure for rule execution. In our approach,
each node in the event graph contains a rule, and the
edges of the event graph represent rule dependencies,
where for the moment the time scheduling is neglected.
Although tools like Fujaba [19], GReAT [2] and VMTS [27]
support similar features, here we give a novel formaliza-
tion in terms of DPO, consider a truly parallel semantics,
and include event cancelling edges, also new in the GT
literature. This formalization will be used in the next sec-
tion to incorporate a time scheduling distribution func-
tion to rule invocations. By separating rule invocation
from time scheduling we show how to extend existing
graph and model transformation tools to handle time.

Thus we start by defining a flow grammar as a set of
productions P with two sets I and C of invocation and
cancelling edges between productions. Each edge defines
a parameter passing from the source to the target rule.
For technical reasons, we define an auxiliary empty rule
⊥ = ⟨∅ ← ∅ → ∅⟩ which is used to invoke the initial
rules of the flow.

Def. 1 (Flow grammar) A flow grammar FG = ⟨P ∪
{⊥}, end, I, C,G0⟩ is made of:

– a set P ∪ {⊥} of rules;
– a set end ⊆ P of final rules;
– a set I = {(pi, Ri ← Mik → Lk, pk)} of invocation

edges, where pi ∈ P ∪ {⊥}, pk ∈ P , Ri is pi’s RHS,
and Lk is pk’s LHS;

6 Juan de Lara et al.

LHS RHS

init

n n m

receive
RHS

mn

c

LHS

n

c

m

reply

RHS

m’

LHS

n m
RHSLHS

end

nn m

LHS

deleteConnection

n

c

RHS

n

c

LHS

send

mn

c

RHS

n

c

NAC

mn

NAC

n m

m

c c

LHS

createConnection

n

c

RHS

n

c

NAC

n

c

NAC

c

c2n

lose
RHS

c

LHS

c

m

Fig. 8 Some rules of the DSVL simulator.

– a set C = {(pj , Rj ← Mjl → Ll, pl)} of cancelling
edges, with pj , pl ∈ P ;

– and an initial graph G0.

Given a rule pi ∈ P ∪ {⊥}, we use the notation
I(pi) = {s = (pi, Ri ← Mik → Lk, pk) | s ∈ I} and
C(pi) = {s = (pi, Ri ←Mik → Lk, pk) | s ∈ C}.

Remark. The structure Ri ← Mij → Lj of invocation
and cancelling edges is used to pass the context of execu-
tion from Ri to Lj . Mij identifies the elements of Ri and
Lj that have to be matched in the same elements of the
host graph. If Mij is empty, there is no data dependency,
but still rule invocation.
Example. Fig. 9 shows the definition of an invocation
edge which passes the node and linked message from rule
init’s RHS to rule send’s LHS. The typing of the message
in the Minit,send component is abstract, as the typing of
the message in Lsend is abstract too.

Fig. 9 Parameter passing.

Fig. 10 shows a visual representation of a flow gram-
mar that uses the rules of Fig. 8 plus the rule chan-
nelCheck, which is a rule containing just a channel in
both its LHS and RHS. We use a notation similar to
that of event graphs, where each node represents a rule,
and the edges show the parameters passed between rules
(i.e. the Mij) as this is more informative. For example,
the invocation edge depicted in Fig. 9 is represented as a
directed edge from init to send decorated withMinit,send.
The nodes marked with an incoming arrow, with no
source, are the initial rules, which receive an invocation
from rule ⊥. We take the convention of not showing the
rule ⊥ and its invocation edges I(⊥).

The event graph in Fig. 10 constraints the behavioural
specification given by production rules acting on mod-
els such as the one represented in Fig. 5. This fact, to-
gether with the parameter passing from one event to

n

init

n m

sendreply
n m’

n mn m
m

receive

d

n m

end

c
cn

delete

Connec-

tion

channel

Check

c
cn

create

Connection
lose

cn

nc

Fig. 10 Flow grammar for the example.

other events, makes our approach share some charac-
teristics with process-interaction approaches. The event
graph representation of the example reveals three pro-
cesses, given by the three initial rules and the compo-
nents connected through invocation edges. Hence, there
are three active entities: messages, connections and chan-
nels. The process for messages starts in init and termi-
nates in end, and the invocation edges in this process
show how messages are passed from one event to the in-
voked ones. The process for channels to the right makes
them to lose a message periodically. Processes can in-
teract explicitly by means of invocation and cancelling
edges. For example, if a connection is used by rule send,
then we cancel its programmed (i.e. invoked) deletions so
that the network connectivity is optimised to the most
used connections.

In order to define the semantics of a flow grammar,
first we need to define the system state. This is made
of the host graph, plus a set E of events storing rule
invocations (i.e. elements in I) together with the match
at which the rules should be applied (i.e. matches of the
invoked rule’s LHS). Hence, E contains all valid matches
of explicitly invoked rules that are ready to be executed.

Domain-Specific Discrete Event Modelling and Simulation using Graph Transformation 7

Def. 2 (Event and state) Given a flow grammar FG,
an event is a tuple e = ⟨m : Lj → G, s⟩, with s =
(pi, Ri ← Mij → Lj , pj) ∈ I and m |=G pj. We write
m(e) = m, s(e) = s, p(e) = pj to refer to e’s match,
edge and invoked rule.

A state S = ⟨G,E⟩ is a tuple made of a graph G and
a set E of events such that ∀e ∈ E,m(e) |=G p(e).

The execution of a flow grammar starts from the
matches of the initial rules (those invoked from⊥). These
matches are converted into events to populate the event
set E0 of the initial system state.

Def. 3 (Initial state) Given a flow grammar FG, the
initial system state init(FG) is given by S0 = ⟨G0, E0⟩,
where G0 is the initial graph of FG, and E0 = {(m : Li →
G0, s = (⊥, ∅ ← ∅ → Li, pi))|s ∈ I(⊥) and m |=G0 pi}.

Example. Fig. 11 shows the initial system state, taking
G0 in the upper part as initial graph, for the flow gram-
mar of Fig. 10. The initial state contains one event for
each match of the initial rules, that is, one event e0 whose
production p(e) is init, three events due to matches of
channelCheck, and three events due to matches of delete-
Connection (the matches from the events to the graph
are represented by equality of identifiers). These events
are the starting point for the autonomous execution of
the three processes in the grammar.

n3
c2

n1 n2

G
0

c1

LHSinit

e
0

n1
LHSchannelCheck

c1

LHSchannelCheck

c2

LHSchannelCheck

c3

e
1

e
2

e
3

LHSdeleteConnection

n1

c1

LHSdeleteConnection

n3

c2

LHSdeleteConnection

n2

c3

e
4 e

5
e

6

E0=

, , , ,

, ,

c3

Fig. 11 An example of initial system state for the flow gram-
mar in Fig. 10.

A direct derivation of a flow grammar from a state
⟨G,E⟩ consists of taking one event e ∈ E (if more than
one exist, one is taken at random), performing a stan-
dard DPO direct derivation using the match m(e), and
then calculating the new set of enabled events E′. This
set E′ contains the old matches in E that were not de-
stroyed by the application of p(e) (set OLD in the fol-
lowing definition), and incorporates at most one event
for each rule invoked from p(e) (set NEW). Moreover,
E′ excludes e from the system state, as well as the events
cancelled by the cancelling edges C(p(e)) (set CANC),

and the events in E whose match is destroyed by the
application of p(e).

Def. 4 (Derivation) Given a flow grammar FG = ⟨P∪
{⊥}, end, I, C,G0⟩, and a state S = ⟨G,E⟩, a direct

derivation S = ⟨G,E⟩ e
=⇒ S′ = ⟨H,E′⟩ due to the event

e = ⟨mi, (ps, Rs ← Msi → Li, pi)⟩ ∈ E is performed as
follows:

– H is obtained by a standard DPO direct derivation

G
mi,pi
=⇒ H, as Fig. 12 shows, where p(e) = pi and

m(e) = mi : Li → G.
– E′ = NEW ∪ (OLD \ CANC), where:

– NEW = {(mk : Lk → H, s) | s = (pi, Ri ←
Mik → Lk, pk) ∈ I, @(m′

k, s) ̸= (mk, s) ∈ NEW ,
(1) commutes in Fig. 12 and mk |=H pk},

– OLD = {(h ◦m′
j , sj = (pk, Rk ←Mkj → Lj , pj))

| ej = (mj : Lj → G, sj) ∈ E, ej ̸= e,∃m′
j : Lj →

D with d◦m′
j = mj (see Fig. 12) and h◦m′

j |=H

pj},
– CANC = {(mc : Lc → H, s′c) ∈ OLD | sc =

(pi, Ri ← Mic → Lc, pc) ∈ C, p(s′c) = pc and (2)
commutes in Fig. 13 }.

A derivation S0 ⇒∗ Sn is a sequence of zero or more
direct derivations.

Li

mi

��

Ki

ri //lioo

k
��

Ri

g

��

Mik
oo

��
(1)

Lj

mj //
=

m′
j

88G D
h //doo H Lk

mkoo

Fig. 12 NEW and OLD events.

Li

mi

��

Ki

ri //lioo

k
��

Ri

g
��

Mic
oo

��
(2)

G D
h //doo H Lc

mcoo

Fig. 13 CANC events.

Remark. The required commutativity of square (1) in
Fig. 12 means that the new match mk : Lk → H of the
invoked rule has to identify the elements in Mik in the
same place as the execution of the previous rule pi. The
required commutativity of square (2) in Fig. 13 means
that the matches mc : Lc → H to be cancelled are those
that identify the elements in Mic in the same place as
the execution of the previous rule pi.
Remark. The condition @(m′

k, s) ̸= (mk, s) ∈ NEW
ensures that at most one match of each invoked rule is
added to the set of new enabled matches NEW . If more
than one match exists, one is chosen non-deterministically.

8 Juan de Lara et al.

This means that if a rule can be applied in several places
(say n), there are n possible different simulation paths at
that point. A non-deterministic choice enables the explo-
ration of all such paths. The ability to explore the whole
state space is important to achieve completeness (oth-
erwise there could be simulation paths that our system
would not produce) and is in line with standard tech-
niques of GT. For the purpose of simulation, repeatabil-
ity of executions can be achieved by using the same seed
to generate the pseudo-random numbers governing the
non-deterministic choices.

The set NEW contains at most one event for each
rule invoked from e. Such events are demanded to con-
tain a valid match of the LHS of the invoked rule. If no
match is found for a certain invoked rule, then no event
is generated for it. In this way, the LHS and NACs of
the invoked rules are conditions for programming the
rules, although in contrast to traditional event graphs,
we do not visually show these conditions in the invoca-
tion edges, but we show the context of execution passed
from the source to the target rule instead.

The set OLD contains the existing events in the sys-
tem state whose matches are preserved by the rule exe-
cution. In fact, all matches that are right-parallel inde-
pendent [15] with the execution of e are preserved.

The set CANC contains those events in OLD which
are cancelled due to the execution of e. Cancellation only
affects to events in OLD (pre-existing events), so that
if an event e both invokes and cancels the same kind of
event, invocation prevails.

Please note how parameter passing between rules
(i.e. non-empty graphs Mik) makes simulations more ef-
ficient, as rule matches do not have to be sought from
scratch but only completed to Mik → Lk. This is es-
pecially useful in simulation applications, where one de-
scribes the flow of the active entities in the system (e.g.
messages in our example) and the context of application
of the events is passed while these entities evolve.
Example. Fig. 14 shows an example of derivation. The
initial system state is given by the graph G and the
events to the left (the actual matches in the events are
given by equality of identifiers in Li and G). Applying
the match for send in the upper left gives as a result
graph H. The set of events is updated as shown to the
right of the figure: (i) the applied event is removed, (ii)
a new event receive is added due to the invocation edge
coming out from send in the flow grammar, and (iii)
the old event deleteConnection for the match given by
objects n and c is removed due to the cancelling edge.
Note how the cancelling edge only removes one of the
deleteConnection events in the system state, namely the
one that contains the node and channel involved in the
execution of send, which are passed as parameters (cf.
Fig. 10).

As this shows, cancellation edges cannot always be
modelled easily with NACs, because these can only refer
to state conditions present in the host graph, but not

to the execution of other rules. In the standard DPO
approach, each rule has to take care of its own execu-
tion conditions, using the LHS and an appropriate set
of NACs. In flow grammars it is also possible to allo-
cate these responsibilities in other rules, so that one
rule may explicitly cancel the programmed executions of
other rules. This is a natural way to model inter-process
interactions.

Next we define the semantics of a flow grammar as
the set of all derivations whose last direct derivation was
performed by a final rule. We use a set of traces (instead
of a set of reachable graphs) to be able to take perfor-
mance metrics. This is so as these metrics are used to
observe the evolution of some feature (e.g. the load of a
channel) along a sequence of states, given by a trace.

Def. 5 (Flow grammar semantics) Given a flow gram-
mar FG, its semantics is defined as SEM(FG) = {init
(FG)⇒∗ Sn

e⇒ Sn+1|p(e) ∈ end}.

Remark. If a trace belongs to SEM(FG), it means
that its last step was performed by a final event, and
hence the trace has a finite length. Nonetheless, the size
of SEM(FG) may not be finite if the flow grammar uses
continuous probability density functions, where there is
an infinite set of possible choices for the occurrence time
of events.
Remark. We can define a set of failure traces FAIL(FG)
that contains terminating derivations that did not reach
the execution of a final event, as well as infinite deriva-
tions.

The use of GT as a basis for the formalization of
flow grammars enables the use of its theory [15] for the
analysis of some properties of the models, as we will show
in next subsection.

4.1 Parallelism

A direct derivation adds to the set NEW at most one
match from each invoked rule. However, for certain ap-
plications (e.g. to model broadcasting in networks) it is
interesting to introduce all enabled matches instead. In
that case we just have to remove the condition @(m′

k, s) ̸=
(mk, s) ∈ NEW in Def. 4. This feature is related to the
degree of parallelism of the system, called server seman-
tics in timed Petri nets [28]. The single server semantics
assumes that the system can process one invocation at
a time, which corresponds to the original Def. 4. The
infinite server semantics takes into account all enabled
matches. The k-server semantics limits the parallelism
to at most k matches. These semantics can be included
in our model by adding a function par : I → N ∪ {∗}
(“*” for unbounded) that assigns a parallelism degree to
each invocation edge. We visually annotate the invoca-
tion edges in the event graph by placing the value of this
function near the arrow end. If no annotation is used in
the arrow end, then we assume it is the default value 1.

Domain-Specific Discrete Event Modelling and Simulation using Graph Transformation 9

Lsend
RsendKsend

c

d

H

e

c

d

D

e

c

d

G

e

Events

before derivation

n n n

m

m
n

c

n

c

m
n

c

m

m m

n2n2 n2

n3n3n3

...

n

c

m

L
send

d

n

L
deleteConn.

n

c

L
deleteConnection

n

L
init

Events

after derivation

...

n2

c

m

L
receive

d

n

L
deleteConn.

n

L
init

Fig. 14 Example of derivation.

Fig. 15 illustrates the use of annotations to control
the parallelism of event invocations. The fragment of the
shown flow grammar models broadcasting by introduc-
ing two rules, broadcastinit and broadcastend, the former
invoking the latter with “*”. While broadcastinit removes
the message from the sending node, broadcastend adds a
new message in an output channel. The invocation edge
with the “*” annotation makes the broadcastend rule to
get executed at every existing match commuting with
the one in which broadcastinit was executed. Hence, the
message will be sent to all outgoing channels of node n.
Reliable broadcasting (where receivers have to send an
ack to the sender) could be modelled by providing the
nodes with a counter which gets incremented each time a
sender receives an ack from a receiver. When the counter
equals the number of output channels of the sender, it
knows that all receivers have processed the request.

n

1

1 broad

castinit

init n
1

m

1

LHS

broadcas

LHS RHS

broadcastinit

m

nn n

broad

castend

*n

m

RHS

stend

c

n

c

Fig. 15 Controlling the event parallelism.

Defining a flow grammar like the one shown to the
left of Fig. 16, with rule send being invoked at all matches,
does not produce the desired broadcasting effect. This
is so as the “*” semantics considers as many matches as
output channels, but then the first match to be executed
would disable the others because it would delete the mes-
sage connection that belongs to the other matches as
well, as the message, the connection and the node are
passed in the invocation. In this way, we would obtain
single server semantics regardless the unbounded anno-
tation. This kind of mistakes can be detected at design
time by using the theory of GT to detect all rules that

are invoked with parallel semantics, but which can only
get single server semantics. In particular, we have spe-
cialized critical pairs analysis [25] for our particular set-
ting. We can detect two kinds of conflicts: delete-use and
produce-forbid.

In the delete-use conflict, the invoked rule deletes
some element present in the passed parameters. If that
is the case, other matches of the same parallel rule in-
vocation will be inapplicable as the LHS match is de-
stroyed. Fig. 16 illustrates this issue. The right of the
figure shows the procedure to detect the delete-use con-
flict by checking if the elements in Mij are present in
the kernel K of the invoked rule. If this is not the case,
applying rule send at one match will destroy the other
matches in the same invocation. The figure shows that
deleting the connection from the message to the node
destroys one of the elements passed as parameter, which
is needed by other instantiations of the rule in the same
invocation, hence indicating a design error. Please note
that if a rule preserves the parameters but destroys a
different part of the LHS of the invoked rule we could
still have conflicts. However, in such a case, not all pos-
sible matches would be in conflict and the rule has the
chance to be applied more than once.

send

init

n

n m

*

1

1

L send

m
n

c

K send

m
n

c

Minit, send

m
n

=

Fig. 16 Delete-use conflict in infinite server semantics.

The second conflict is called produce-forbid, where a
rule produces some elements that prevent the same rule
from being applied again, as they belong to some of the

10 Juan de Lara et al.

rule’s NACs. Due to the technical nature of the detection
technique, we illustrate it in the Appendix A.

Annotations can be used in all flow edge types. First,
we can label the arc from the ⊥ rule to each initial rule.
By default, our initialisation step in Def. 3 creates one
event for every match of each initial rule. With the anno-
tation we control whether all (“*”), at most one (“1”) or
at most k (“k”) should be programmed. As we omit the
⊥ rule from the event graph representations, the anno-
tation is shown visually next to the mark of initial event.
We can decorate cancelling edges as well, to denote the
cancellation of at most one (“1”), at most k (“k”) or all
events (“*”) of a certain type. If no annotation is given,
we assume “1” in every possible arc type.

5 Time Scheduling

A flow grammar describes the structure of an event graph,
but still lacks the ability to handle time explicitly. There-
fore, we need to introduce an implicit notion of simula-
tion time, and to decorate the edges of the event graph
with explicit time values. To this purpose, we extend
our flow grammars with scheduling functions associat-
ing edges with relative time values, or more generally
with probability density functions p(t). These distribu-
tions give the relative likelihood p(t) of the target rule to
be scheduled at relative time t. In this way, we can model
either specific times (e.g. four time units using a degen-
erate distribution δ4), as well as discrete and continuous
distributions, like the uniform, normal and exponential
negative [20].

Def. 6 (Scheduling grammar) A scheduling grammar
SG = ⟨FG, tI , tC⟩ is made of a flow grammar FG, a
time scheduling function tI : I → R→ [0, 1], and a time
cancelling function tC : C → R→ [0, 1].

Remark.Given s ∈ I, tI(s) maps s to a probability den-
sity function tI(s) : R → [0, 1], which assigns each time
value x ∈ R a probability tI(s)(x). Hence, at a partic-
ular derivation step, we make use of a random variable
Xi with density tI(s), which in the case of invocation
edges can be interpreted as the waiting time before the
corresponding rule is applied, and therefore added to the
simulation time gives the absolute time the rule applica-
tion is scheduled for.

Example. Fig. 17 shows the example flow grammar an-
notated with time. For instance, when send happens, an
event receive is scheduled with uniform probability be-
tween 5 and 7 units of time later. This is shown using
the interval notation [5, 7]. Rule init is scheduled period-
ically each 50 units of time. Among others, the cancelling
edge and the invocation edge from init to send have no
timing annotation, so 0 is assumed. Rule channelCheck
schedules itself at times given by a Normal distribution,
and then immediately deletes one message, if there is

any. This periodic behaviour is similar to a timer. Simi-
larly, the deleteConnection event gets scheduled period-
ically using a Poisson distribution with average 4.

n
50

init

n m

[5 7]

sendreply
n m’

[5,7]

n mn m

[1,2] [5,

m

receive

d

n m

end

c
cn

N(40,2)P(4)

delete

Connection

channel

Check
* *

c
cn

create

Connection
lose

cn

n

7]

c

Fig. 17 Scheduling of events.

Match-dependent distributions. For practical pur-
poses, it is important to be able to describe match-
dependent probability density functions. For example,
the time it takes a message to be received may depend
on the current load of the channel. Hence, the density
function may depend on certain attribute values given
by the match of the rule that is target of the scheduling
edge. Formally, this dependency can be expressed by the
following scheduling function: tI : I → (MorAGraphTG

×
R) → [0, 1], where MorAGraphTG is the set of all mor-
phisms in the category of attributed, typed graphs (over
a suitable type graph TG). Actually, such function will
be meaningful only from morphisms whose domain is the
LHS of the invoked rule.

Fig. 18 shows an example of match-dependent dis-
tribution. Assuming an attribute load in channels, we
can set a linear dependence between the load of the chan-
nel and the transmission delay. In practical implemen-
tations, it could be possible to use e.g. the Object Con-
straint Language (OCL) [32] to obtain suitable features
of the model (like the sum of the sizes of the messages
in a certain channel) to be included in the distribution
functions.

[1 2]

send receive

n m

m c

[1,2]

[5 c.load,7 c.load]

m c

Fig. 18 Example of match-dependent distribution function.

Now we define the semantics of a timed grammar. For
this purpose, we extend the states and events presented

Domain-Specific Discrete Event Modelling and Simulation using Graph Transformation 11

in Def. 2 with a concrete absolute occurrence time. The
time of events should be greater or equal than the cur-
rent simulation time. The occurrence time of an event is
produced when it gets scheduled.

Def. 7 (Timed event and timed state) Given a sched-
uling grammar SG, a timed event is a tuple e = ⟨m : L→
G, s, t⟩, where ⟨m : L → G, s⟩ is an event according to
Def. 2 and t ∈ R. We write t(e) = t, to refer to e’s
scheduled time.

A timed state S = ⟨G,FES, t⟩ is made of a state
⟨G,FES⟩ and the current simulation time t ≥ 0, where
∀e ∈ FES, t(e) ≥ t ∧m(e) |=G p(e).

Remark. We use FES (future event set) instead of E
to remark the similarity of this concept with that of
discrete-event systems [46].

The initial state of a scheduling grammar is a state
S0 = ⟨G0, FES0, 0⟩, where G0 is the grammar initial
graph, zero is the simulation start time, and FES0 con-
tains one event for each valid match of the initial rules
(actually, as many matches as the cardinality annota-
tions marks of the initial states). These are scheduled
to occur at an absolute time given by a set of vari-
ables Xi that follow the density function assigned to the
scheduling edges from ⊥ (immediately if no annotation
is given). For brevity, we do not include the formal def-
inition, straightforward from Def. 3.

A timed derivation step is performed according to
Def. 4, but we select the event with lowest time (if there
are several we take one non-deterministically), and we
update the current simulation time to the time of this se-
lected event. In addition, when we schedule a new event,
we choose an absolute time equal to the actual time plus
a random variable with the probability distribution of
the scheduled edge e ∈ I. Finally, given a cancelling edge
c ∈ C, we cancel all events that have a greater occurrence
time than the current time plus a random variable that
follows the probability distribution tC(c). For brevity, we
avoid duplicating Def. 4 and only indicate how the time
for events and states is calculated.

Def. 8 (Timed derivation) Given a scheduling gram-
mar SG = ⟨FG, tI , tC⟩ and a timed state S = ⟨G,FES, t⟩,
a direct timed derivation or state change S = ⟨G,FES, t⟩
e

=⇒ S′ = ⟨H,FES′, t′⟩ due to the event e = ⟨mi, (ps, Rs ←
Msi → Li, pi), t

′⟩ ∈ FES can be performed iff @e′ ∈
FES with t(e′) < t(e). The resulting state S′ is calcu-
lated as in the untimed case (see Def. 4), while the time
of events and the set CANC are calculated as follows:

– ∀ei ∈ NEW, t(ei) = t′ + Xi, s.t. Xi is a random
variable with density tI(s(ei)).

– ∀ei ∈ OLD, its occurrence time t(ei) remains un-
changed (so that ei “ages”).

– CANC = {(mc : Lc → H, s′c, t
′
c) ∈ OLD | sc =

(pi, Ri ← Mic → Lc, pc) ∈ C, p(s′c) = pc, (2) com-
mutes in Fig. 13, t′c ≥ t′ +Xc, with Xc being a ran-
dom variable with density tC(sc)}.

Remark. Two conditions are needed for cancelling an
event: its match should commute as square (2) in Fig. 13
indicates, and the absolute time of the cancelled event
should be greater or equal than the current time plus
the relative time the cancelling edge indicates (through
a probability distribution). Usually, the relative time tC
of cancelling edges is zero.
Example. Fig. 19 shows a timed derivation like the one
in Fig. 14, but considering time and using the scheduling
grammar shown in Fig. 17. Before applying the timed
derivation, the simulation time is 40 and the follow-
ing events are scheduled in the FES: send at time 50,
deleteConnection at two different matches at time 70,
and init at time 100. Applying the first scheduled rule,
which is send, updates the system state as follows: (i)
the host graph is modified by the derivation of the DPO
rule (not shown, it is performed as depicted in Fig. 14),
(ii) the simulation time advances to 50 (as this was the
scheduled time for the event), (iii) a new event receive
is scheduled at time 50 + 6 = 56, and (iv) one of the
deleteConnection events is cancelled (in particular, the
one which includes objects n and c as they are passed
in the cancelling edge).

...
@50

n

c

m

L
send

@70

n

c

L
deleteConnection

time = 40

@70

n

d

L
deleteConnection

@100

n

L
init

...

time = 50

@70

n

d

L
deleteConnection

@100

n

L
init

@56

n2

c

m

L
receive

Fig. 19 Example: updating events in a timed derivation.

The language of a scheduling grammar is similar to
that of a flow grammar, but each state is decorated
with its absolute time. This is useful to take metrics,
as demonstrated in Section 7.

6 Modelling Higher-level Timed Primitives

Now we show that our formalism is low-level and general
enough to give semantics to other timing schemes and
primitives [6,12,23,36,45].
Three-phase approach. One of the features of stan-
dard GT is that, when the host graph changes, new
matches for the rules of the grammar can be created
and then “discovered” by the pattern matching algo-
rithm. However, in our approach, matches for a certain
rule are only sought if the rule is explicitly scheduled.

Inspired by the three-phase approach [20], we can
combine scheduling and activity scanning by extending
the definition of scheduling grammar with an additional
set act ⊆ P . The rules in act represent the start of ac-
tivities, so that whenever we execute a rule in P \act, in

12 Juan de Lara et al.

addition to scheduling events, we seek all matches from
rules in act and schedule them for immediate execution.
This does not increase the expressive power of our orig-
inal formalism but, as Fig. 20 shows, it is a shortcut
notation that can be modelled by just adding explicit
schedulings from all rules in P \ act to each rule in act,
for all their possible matches (as the “*” indicates), at
relative time 0, with empty Mij (so that rules are only
invoked but no match is passed).

p0

pm

a0

ak

… …

act
P

*

*

*

*

Fig. 20 Activities in the three-phase approach.

Delays. Delays are used in [12,45] to extend GT with
time. Once a valid match for a rule is found, the execu-
tion of the rule at the match is delayed by a time σ (an
interval in [12] and other distributions in [45]). We write

these rules as p = ⟨L σ→ R⟩.
Our events can be used to give semantics to delays.

Delayed rules can be seen as activities that do not modify
the system state when they start but only when they
finish after a delay of σ. Hence, we split a delayed rule p
in two rules, pinit and pend, with the former scheduling
the latter after σ. Rule pinit is the identity rule L →
L, pend is the original rule, and the dependency passes
L from pinit to pend. The scheme is shown in Fig. 21,
where each initial rule passes its LHS as the context of
execution for the end rule.

pinit

p’init

…

act
P

pend

p’end

’

L L L R

L’ L’ L’ R’

L R

L’ R’
’

…

Delays Event scheduling

{

}

L

L’

Fig. 21 Rules with delays.

In the semantics of [12], new matches are sought
whenever a delayed rule is executed. Its infinite server se-
mantics corresponds to our three-phase approach, where
the set act of initial conditions for starting the activities
(which in this case are the delayed rules) is given by the
events pinit. To model the single server semantics of [12],
we need to ensure at most one activity of the same type
executing on the same set of objects, hence each pend

would have a cancelling self-loop with the context of ex-
ecution as parameter.
Stochastic delays. In [23], GT rules are extended with
stochastic delays given by a negative exponential distri-
bution. A rule with stochastic delay p = ⟨L τ→ R⟩ has
similar semantics to a delayed rule, but the difference
concerns the memory policy when it is executed. After
executing a rule, the remaining time of scheduled events
has to be restarted and resampled again. We can model
this behaviour by using cancelling edges. In particular,
we split a stochastic rule in two parts as before, and in
addition, we add cancelling edges from the event pend
to each rule pk in the original stochastic grammar (see
Fig. 22). This is so as, at each derivation, we have to
“forget the past” stored in the FES.

pinit

p’init

…

act
P

pend

p’end

’

L L L R

L’ L’ L’ R’

L R

L’ R’
’

…

Stochastic delays Event scheduling

{

}

L

L’

*

**

*

*

*

*

*

Fig. 22 Stochastic delays.

Activities, duration and conflicts. As seen before,
activities are represented by an initial event, a final event
and a duration. However, as a difference from delays, ac-
tivities may have an observable behaviour when started,
and hence pinit does not need to be the identity rule.
This situation is depicted in Fig. 23, which shows an ac-
tivity with duration t that passes a context of execution
M from the initial to the final rule.

pinit pend

L R L’ R’t

M

act

P

…

Fig. 23 Activity with duration, initial and final actions.

Activities can be interruptible or not. The behaviour
in the first case corresponds with the semantics of our
formalism. The behaviour of non-interruptible activities
is more complex to model, because an initiated activity
has to be completed. This means that one cannot sched-
ule the start of new activities if such activities eventually
destroy the match of the final event of running activities.
This behaviour can be modelled using FES policies. In
this way, a new event at a match m : L → G cannot be
scheduled to occur at absolute time t, if ∃e ∈ FES with
t(e) ≥ t, where e is the end of some non-interruptible

Domain-Specific Discrete Event Modelling and Simulation using Graph Transformation 13

activity, and m and m(e) are in conflict (i.e. executing
the rule at m breaks m(e)).

Timers. Several approaches associate timers to elements
in the model [6,36]. Timers receive an initial value to
that is decremented as time progresses. When they ex-
pire, an action represented by a rule act is executed.
As the rule channelCheck in our example shows, we can
model timers by an identity rule identifying the element
the timer should be added to, which schedules the rule
act after to time units. This idea is depicted to the left of
Fig. 24, where the LHS of the action rule is not necessar-
ily equal to the identity rule of the timer. The left part
of the figure shows a one-shot timer. The timer event
ptimer passes the execution context L to the action rule
act. The right of the same figure shows a periodic timer,
which can be interpreted as a periodic activity with un-
observable initiation, as we describe next.

ptimer act
L L L’ R

Lptimer act
L L L’ R

L
to

to

L

Fig. 24 One-shot timer (left) and periodic timer (right).

Periodic activities. These are activities that are re-
peated periodically. In this case, the final event of the
activity schedules the initial event of the activity, maybe
passing certain elements M ′ in the match, as Fig. 25
shows.

pinit pend

t’

L R L’ R’

M’

t

M

Fig. 25 Periodic activity with initial observable behaviour.

In conclusion, we have seen that our approach is gen-
eral and primitive enough to model other timed GT ap-
proaches in the literature. Moreover, being events and
event schedulings the basic building blocks of DES, it
is possible to construct and use higher-level primitives –
such as activities – when modelling a simulation system.

7 Metrics

One of the objectives of simulation is to obtain met-
rics on the system behaviour. We can take metrics in
three different ways. The first one is by just observing
the occurrence time of events in a timed derivation. For
instance, the time of the final event in our example is
the time taken for the initiator node to get a response.

The second way is by counting the occurrence of
events of different types. In our case we can, e.g., mea-
sure the number of lost messages by counting how many
times event lose occurs in a simulation execution.

The two previous types of metrics have limited ex-
pressive power, as one is restricted to measure properties
just by counting the execution of events. In our exam-
ple, with these kinds of metrics, it would be difficult to
measure the utilization of a channel. This is so as with
rules send and receive we know when a message is added
or deleted from a channel, but we need a mechanism to
measure, e.g., its average content over the simulation ex-
ecution, or the total time in which the channel has some
message. In this way, we define a third kind of metric to
perform domain-specific measurements. For this purpose
we can define graph constraints [15] and check the states
in which a constraint starts to be satisfied or is no longer
satisfied, therefore obtaining the time intervals in which
a constraint holds. For simplicity we consider positive
atomic graph constraints of the form a : P → Q, but
our approach supports negative as well as more complex
constraints as well. Nonetheless, simple positive atomic
constraints are highly suitable for our purpose, as they
allow identifying specific elements in the system through
P , and define properties of interest for them through Q.
Example. The upper part of Fig. 26 shows a constraint
P

a→ Q that is satisfied by all channels that have at
least one message. Intuitively, this kind of constraints
can be interpreted as an implication: if an occurrence of
P is found in the graph, then an occurrence of Q should
be found as well. Theoretically, an atomic constraint is
satisfied on a graph G at match m : P → G if there is a
match q : Q→ G commuting with a [15]. A constraint is
satisfied globally if it is satisfied for all possible matches
m : P → G.

P Q

c

m

c

m={(c,c2)} q
0
={(c,c2), (m,m1)}

q
1
={(c,c2), (m,m2)}

a

n3
c2

n1 n2

G c1

c3

m3

m1 m2

Fig. 26 A constraint and its satisfaction over a host graph.

Next definition presents the notions of constraint en-
abledness and satisfaction.

Def. 9 (Enabling and satisfaction of constraint) Given
an atomic constraint a : P → Q and a state S = ⟨G,FES, t⟩,
the constraint a is enabled at S if there is a match m : P →

14 Juan de Lara et al.

G. We use the notation ENAB(a, S) for the set of all
matches m : P → G.

The constraint a is satisfied at S at match m : P →
G ∈ ENAB(S, a), written m |=S a, iff ∃q : Q → G s.t.
q ◦ a = m. We use the notation SAT (a, S) for the set
{m|m |=S a} ⊆ ENAB(a, S).

A constraint is globally satisfied at S iff ∀m : P →
G ∈ ENAB(a, S), m ∈ SAT (a, S).

Example. The constraint in Fig. 26 is enabled at three
matches because there are three channels in the graph
(three occurrences of P in G). Hence, ENAB(a,G) =
{m1 = {(c, c1)},m2 = {(c, c2)}, m3 = {(c, c3)}}. The
constraint is satisfied at two matches, the ones identify-
ing c with c2 and with c3, because these channels have
a message (i.e. we find at least an occurrence of Q). The
constraint is not satisfied in the match that identifies
c with c1 because c1 is empty. Hence, SAT (a, S) =
{m2,m3}, and therefore, the constraint is not satisfied
globally because SAT (a, S) ̸= ENAB(a, S).

We are interested in measuring the span of time dur-
ing which a constraint is satisfied at a particular match.
For this purpose we define the concept of preservation
of a constraint at a match in a direct derivation. In-
tuitively, a constraint is preserved at match m if, after
applying a timed direct derivation, the constraint still
holds at match m. This notion is similar to the preserva-
tion of matches in events (set OLD in Def. 4). We present
two notions, the first one refers to the preservation of a
match, while the second one refers to the preservation of
a constraint at a given match.

Def. 10 (Match and constraint preservation) Given

a timed direct derivation S = ⟨G,FES, t⟩ e⇒ S′ = ⟨G′,
FES′, t′⟩, and a match m : P → G, we say that m is
preserved by the derivation iff ∃k : P → D,m′ = h ◦ k
s.t. (1) commutes in Fig. 27. We write it m

e→ m′.
Given a timed direct derivation as before, an atomic

constraint a : P → Q, and a match m ∈ SAT (a, S) that
satisfies the constraint; we say that the constraint a is
preserved at match m iff ∃m′ : P → G′ ∈ SAT (a, S′)

with m
e→ m′. We write it m

e⇒ m′.

Q

q

$$

P

m

��

aoo a //

k

??
??

?

(1)

��?
??

??=

Q

q′
@@

@@
@

��@
@@

@=

G D
h //doo G′

Fig. 27 Match and constraint preservation over direct

derivation G
d← D

h→ G′.

Fig. 27 shows the preservation of a constraint at
match m by a direct derivation. The preserved match
is built as m′ = h ◦ k. The constraint a is satisfied at
G′ because there exists a match q′ : Q→ G′ commuting
with m′.

Example. Fig. 28 shows the preservation of constraint a
at match m. The match m : P → G is preserved because
the channel persists in the derivation. The constraint
is also preserved because the rule application does not
delete the channel, but moves one of the messages in the
channel to the connected node, leaving the other message
in the channel, therefore the constraint is satisfied.

We now introduce the set of successor matches of a
given match m : P → G0, which is the set of preserved
matches along a given derivation. In order to build this
set we only require the preservation of the match from
the premise P of a constraint a : P → Q, but not the
preservation of the constraint.

Def. 11 (Successor matches) Given a match m0 : P →
G0 and a derivation d = S0

e0⇒ S1
e1⇒ . . .

en⇒ Sn+1, the set
of successor matches of m0 in d is given by sucd(m0, S0) =

{m1,m2, . . . ,mn+1|m0
e0→ m1,m1

e1→ m2, . . .mn
en→ mn+1}.

Example. In the derivation d of Fig. 28, S = ⟨G,FES, t⟩
⇒ S′ = ⟨G′, FES′, t′⟩, the set of successor matches for
m : P → G with m = {(c, c2)} is sucd(m,S) = {m′ =
h ◦ k}.

Next, we define the duration of a constraint at a
match as the maximum time span in which the con-
straint is preserved.

Def. 12 (Duration) Given mi ∈ SAT (a, Si) and a timed

derivation d = Si−1
ei−1⇒ Si

ei⇒ Si+1
ei+1⇒ . . .

en−1⇒ Sn
en⇒

Sn+1, the maximal satisfaction interval (MSI) of mi in
d is the interval [Si, Sn] if ∃mi+1 . . .mn ∈ sucd(mi, Si)

s.t. mi
ei⇒ mi+1

ei+1⇒ . . .
en−1⇒ mn, and @mn+1,mi−1 s.t.

mn
en⇒ mn+1 and mi−1

ei−1⇒ mi. The duration of mi in
[Si, Sn] is given by t(Sn)− t(Si).

Given a timed derivation d = S0
e0⇒ S1 . . .

en−1⇒ Sn,
and a match m0 ∈ ENAB(a, S0), the set of maximal sat-
isfaction intervals of m0 in d is given by MSId(m0, a) =
{[Si, Si+k]|[Si, Si+k] is a MSI for some m′ ∈ sucd(m0, S0)}.
The duration of m0 in MSId(m0, a) is given by:∑

[Si,Si+k]∈MSId(m0,a)

t(Si+k)− t(Si)

Remark. The duration of a match in a derivation is
defined as maximal intervals. For example, if a match
is satisfied from time 4 to 9 and from 10 to 12, both
[4, 9] and [10, 12] are maximal time spans, but not [5,
9]. Hence, given a simulation path, we are interested in
obtaining those maximal spans, in order to measure the
moments when the constraint is satisfied.
Example. The constraint in Figs. 26 and 28 can be used
to measure the utilization time of each channel. This is
so as the constraint is satisfied whenever the channel has
at least one message. Hence, we can calculate the time
each channel is busy with respect to the total simulation
time. In the derivation in Fig. 28, we have MSId(m =
{(c, c2)}, a) = {[S, S′]} and its duration is t(S′)− t(S) =
6.

Domain-Specific Discrete Event Modelling and Simulation using Graph Transformation 15

PQ

c

m

c

m={(c,c2)}q0={(c,c2), (m,m1)}
q1={(c,c2), (m,m2)}

d h

a

k={(c,c2)}

Q

c

ma

q’1={(c,c2), (m,m2)}

=
=

FES, t=40 FES’, t’=46

=

n3
c2n1 n2

G c1

c3

m3

m1 m2

n3
c2n1 n2

D c1

c3

m3

m1 m2

n3c2n1 n2

G’ c1

c3

m3

m1 m2

Fig. 28 Preservation of a constraint at the match given by channel c2.

Other metric types may require counting matches.
For instance, in our example, we may not only check
that a match for Q exists, but we may need to know how
many of them exist in order to measure the utilization
level of the channels. This can be seen as a refinement
of mere satisfaction, where we count 1 if the match m ∈
SAT (a, S) and 0 otherwise.

Def. 13 (Satisfaction level) Given an atomic constraint
a : P → Q and a state S = ⟨G,FES, t⟩:

– The satisfaction level of a at S at match m : P → G
is defined as satlevel(S, a,m) = |{q : Q→ G|q◦a =
m}|, where |M | denotes the cardinality of the set M .

– The satisfaction of a at match m : P → G is de-
fined as sat(S, a,m) = 1 if m ∈ SAT (a, S), and
sat(S, a,m) = 0 otherwise.

– The global satisfaction level of constraint a is defined
as satlevel(S, a) = |SAT (a, S)|.

Example. In Fig. 26, satlevel(S, a,m) = 2 as there are
two messages in channel c2, sat(S, a,m) = 1 because a
is satisfied at match m, and satlevel(S, a) = 2 because
there are two channels with at least one message.

Finally, it is useful to perform a calculation on the
attributes gathered by a constraint. For instance, if mes-
sages had a certain size, we may be interested in the load
of a channel. Moreover, these calculations can be aggre-
gated in several ways to obtain different metrics (e.g.
average, minimum, maximum or standard deviation) for
each match from Q. Our strategy is to define a func-
tion which later can be aggregated over the states in a
derivation. For instance, once we know the load of each
channel, we can calculate the average network traffic.

Def. 14 (Constraint expression and aggregation)
Given an atomic constraint a : P → Q, a constraint ex-
pression is a function exp : MorAGraphTG

(Q,)→ R.
Given an atomic constraint a : P → Q, a constraint

expression exp, a state S = ⟨G,FES, t⟩, and a match
m : P → G, a constraint aggregation function is any
function of the form aggexp(S, a,m)→ R.

In the previous definition, we have used the nota-
tion MorAGraphTG

(Q,) to denote the set of morphisms

with domain Q. In this kind of metrics, we evaluate such
expressions on all matches q : Q→ G satisfying the con-
straint a and apply the aggregation function aggexp. In
practical implementations, one could use OCL to define
the expression function exp and the aggregation function
aggexp. There are many useful aggregation functions that
can be used in practice, for example:

– Summatory. The accumulation of the result of eval-
uating exp on all commuting matches from Q:

sumexp(S, a,m) =
∑

q : Q→G|q◦a=m

exp(q)

– Minimum. The minimum value of exp on all com-
muting matches from Q:

minexp(S, a,m) = min{exp(q : Q→ G)|q ◦ a = m}

– Maximum. The maximum value of exp on all com-
muting matches from Q:

maxexp(S, a,m) = max{exp(q : Q→ G)|q ◦ a = m}

– Average. The average of exp on all commuting matches
from Q:

avgexp(S, a,m) =

∑
q : Q→G|q◦a=m exp(q)

satlevel(S, a,m)

as well as dispersion metrics like the standard devi-
ation.
Example. Fig. 29 shows a domain-specific metric cal-
culated through a constraint expression. Assuming an
attribute size on messages, we can take the sum of
the size of all messages (of any kind) located on a chan-
nel to calculate its load using the aggregation function
sumexp(S, a,m). In a similar way, we can measure the
minimum, maximum, average or standard deviation of
the size of all messages in a given channel.

Next, we use the functions defined over a specific
state, constraint and match (aggexp, satlevel and sat)
as the basic building blocks to construct aggregation
functions over a derivation d. In this way, we can ob-
tain for example the average or dispersion of the values
over certain intervals.

16 Juan de Lara et al.

P Q

c

m

c

load

exp: m.size

Fig. 29 A metric calculated with a constraint expression.

Def. 15 (Aggregation over timed derivation) Given

a scheduling grammar SG, a derivation d = S0
e0⇒ S1 . . .

e⇒
Sn ∈ SEM(SG), a match m0 : P → G0, and a func-
tion of the form fun(S, a,m)→ R with S a timed state,
a : P → Q a constraint and m : P → G a match, an ag-
gregation function over d has the form: agg(d, a,m0, fun)→
R.

There are many aggregation functions of interest to
calculate different statistics. For example:

– Weighted Average. The average of fun over each
interval of the derivation:

wavg(d, a,m0, fun) =
n−1∑
i=0

fun(Si, a,mi)

t(Si+1)− t(Si)

– Average. The average of fun over the time span of
the derivation:

avg(d, a,m0, fun) =

∑n−1
i=0 fun(Si, a,mi)

t(Sn)− t(S0)

– Weighted Sum. The accumulation of each interval
length, weighted by the value of fun:

wsum(d, a,m0, fun) =

n−1∑
i=0

fun(Si, a,mi)(t(Si+1)− t(Si))

– Minimum. The minimum value of fun during the
derivation:

min(d, a,m0, fun) = min{fun(Si, a,mi)|0 ≤ i ≤ n}

– Maximum. The maximum value of fun during the
derivation:

max(d, a,m0, fun) = max{fun(Si, a,mi)|0 ≤ i ≤ n}

In all previous functions mi ∈ sucd(m0, S0). It is also
possible to define aggregation functions on global met-
rics, like satlevel(a, S), which are not measured over a
concrete match.
Examples. We can measure the total time during which
a channel has some message in a given timed derivation
d by using the constraint in Fig. 28 and the aggregation
function wsum(d, a,m, sat) over d. This is so as, if the
constraint is satisfied, sat returns 1 and hence the satis-
faction interval is accumulated. For the derivation of the
figure, wsum(d, a,m, sat) = 1 · (46−40) = 6. This metric

can also be calculated using the length of the maximal
satisfaction intervals MSId(m, a), as previously shown.

The weighted average number of messages that a
channel has during a derivation is given by wavg(d, a,m0,
satlevel) = 2/(46−40) = 1/3, which in this case yields
the same value as avg(d, a, m0, satlevel). The max-
imum number of messages in the channels during the
derivation is given by max(d, a,m0, satlevel) = 2. Fi-
nally, using the constraint in Fig. 29 and its expression
exp, we can use the aggregation function wavg(d, a,m0,
sumexp) to obtain the average over d of the sum of sizes
of each message in the channel.

As a final remark, even though the metrics are theo-
retically defined on derivations of the language, for prac-
tical purposes they can be taken while the simulation is
running, to avoid storing all intermediate states. Hence,
we could extend the simulation state with a further set
containing the existing matches of the defined graph con-
straints. Whenever a timed derivation is performed, we
calculate the preserved constraints, delete those that are
not preserved, and store new matches of created occur-
rences of constraints. The handling of these matches is
similar to the handling of events in the FES, as described
in Def. 4.

8 Case Studies

In this section we provide two further case studies that
illustrate different features of our proposal and demon-
strate its versatility. The first one builds on the running
example, showing the extensibility and scalability of our
approach. The second one relies on the use of higher-
level primitives, activities in particular, and illustrates
the use of domain-specific metrics.

8.1 Reconfigurable Networks

This case study specializes the running example by con-
sidering dynamic reconfigurable networks. For this pur-
pose, we incorporate different processes to model the
creation and deletion of nodes and channels. The aim of
the case study is to show the extensibility of schedul-
ing grammars, and how different processes can interact
through invoking and cancelling edges and share events.

Fig. 30 shows the additional events that we add to the
scheduling grammar of the running example of Fig. 17,
while the left part in dark shows the interaction of the
new events with the previous ones. The new events make
up four cyclic processes to delete nodes (choose node)
and channels (choose channel), and to create nodes (new
node) and channels (new channel).

While the creation events simply create nodes and
channels at random (the latter between two randomly
chosen unconnected nodes, see Fig. 31), the deletion is

Domain-Specific Discrete Event Modelling and Simulation using Graph Transformation 17

delete

node
identif

node

delete
inputs

delete

outputs

P(20)

n

n

n

new

node

P(40)

new

channel

P(40)
identif

channel

*

*

[0.2, 0.5]

* *

cc

delete
channel

c

[0.4, 0.8]

receive n

send

lose

c

*

choose

node

n

c

P(18)

choose

channel

c

[10,20]

[10,20]

Fig. 30 Scheduling grammar for reconfigurable networks.

more complicated. This is so as nodes in the DPO ap-
proach can only be deleted if all their incoming and out-
going links are explicitly deleted as well, or if they have
no links at all. In this way, the process of deleting a node
is actually made of several activities. First, rule choose
node shown in Fig. 31 selects the node to be deleted
among those that do not have messages. Then, the iden-
tity rule identif node (with a node in its LHS and RHS)
is scheduled after a delay, receiving the identified node
as parameter. Immediately after applying this rule, we
schedule in parallel the deletion of all incoming and out-
going connections to adjacent channels of the node. Rule
delete outputs, for example, identifies an output channel
of the node and deletes the connection (see Fig. 31). As
this rule is scheduled for all possible matches commuting
with the node, all output connections will be deleted. Fi-
nally, the actual deletion of the node is scheduled after a
small delay. We can make this deletion process interact
with those of Fig. 17 via cancelling edges. For example,
nodes cannot be deleted if they are receiving a message,
therefore there is a cancelling edge from event receive to
event identif node. This illustrates that incrementing a
simulation model with a new process usually does not in-
volve changing the rules with extra conditions, but only
modifying the control flow.

LHS

delete outputs

n

c

RHS

n

c

LHS

choose channel

c

RHS

c

LHS

new channel

n

RHS=NAC

m

c

n m

LHS

choose node

n

RHS

nn

NAC

m

Fig. 31 Reconfiguration rules.

Similarly, we delete channels after deleting all their
messages and their input and output connections. In-
terestingly, we can reuse rules delete inputs and delete
outputs, but this time passing as parameter the chan-
nel to be deleted. The process for deleting channels also
reuses event lose (from Fig. 17) to delete each message
of a selected channel. The cancelling edge from send for-
bids deleting the channel if some node is going to use it
to send a message. As a remark, please note that in the
grammar we do not cancel directly the choose node or
choose channel events, as this would terminate the pro-
cesses. This is so as there is at most one instance of both
processes in parallel (the cardinality of the events is “1”,
not “*”). Thus, we cancel events identif node and iden-
tif channel instead. It is not necessary to cancel events
delete channel or lose as these are only scheduled once
identif channel gets executed.

Altogether, this example demonstrates that the par-
allel semantics of scheduling grammars allows their ex-
tension by simply incorporating new processes. The new
processes can interact in several ways: they can reuse
events (normally, terminal events that do not schedule
other events), and they can invoke or cancel events of
other processes. This presents advantages with respect
to using standard plain GT rules, where one needs to
encode in each rule all possible conditions for its (non-
)executability. Instead, cancelling and scheduling edges
permit assigning such responsibilities to other processes,
hence facilitating extensibility in a more controlled way.

8.2 Factories

The second example comprises a DSML for describing
plant factories and its simulator. With this example we
want to illustrate the aggregation of events into activi-
ties expressing the behaviour for the entities in a system.
The meta-model of the DSML is shown in Fig. 32. Thus,
a factory is made of different types of machines which ei-
ther feed different part types into the production plant at
a given rate (generators) or consume and produce trans-
formed parts from/to conveyors (transformers). Trans-
former machines are able to process a number of parts
up to their maximum capacity, and need to be operated
by humans in order to start processing new parts.

Fig. 33 shows a factory model where a generator
of cylinders and another of bars put parts in the same
conveyor with rates 6 and 8 respectively. This conveyor
holds one cylinder and one bar. An assembler machine,
which is operated by a worker, has a maximum capacity
of 4 and is currently processing 2 parts. The model also
contains a packaging machine that is not being attended
by any operator.

Once we have described the DSML syntax, we can
use our approach to model its timed semantics. Fig. 34
shows in the upper part two rules modelling the be-
haviour of generators for cylinders and bars, which put

18 Juan de Lara et al.

Fig. 32 The meta-model for the factory DSML.

assem

op

pack

bar
cyl

gen
cyl

gen
bar

6 8

cap=4

nparts=2

cap=3

nparts=1

Fig. 33 A factory model.

one part of the appropriate type into a conveyor. The
rules schedule themselves, hence they can be considered
as periodic, atomic activities. This is modelled through
the events and invocation edges shown below the rules.
They use the production rate of the generators as the
average of a poisson distribution for the scheduling.

g

genBars

c c

bar

LHS RHS

g g

genCyls

c c

cyl

LHS RHS

g

genCyls

P(g.rate)

*

g

genBars

P(g.rate)

*

g

r r r r

Fig. 34 Rules for generators (top) and scheduling (bottom).

Fig. 35 presents to the left the rules for the assem-
bler machines. These need to have an operator for start-
ing their work, in which case they assemble one cylinder
and one bar from their input conveyor, provided that
the machines have enough capacity. The assembly is ini-
tiated by rule assembleinit, which schedules the produc-
tion of the assembled part for the given machine by rule
assembleend. Hence, both rules together represent an ac-
tivity given by an initial and a final event, representing
the behaviour of assembler machines. The right of the
figure shows the activity using an abstraction which de-
picts the rules making an activity enclosed in a rounded
rectangle. The probability function for the scheduling de-

pends on the load of the particular assembler machine:
the higher the load in a machine, the bigger the assem-
bling time.

assemc

cyl
bar

LHS

assemc

RHS

CONDITION

assem.nparts+2 <= assem.capacity
ACTIONS

assem.nparts=assem.nparts+2

assemble
init

LHS RHS

ACTIONS

assem.nparts=assem.nparts-2

assemble
end

assem c

op op

assem c

assembleinit

[10+assem.nparts/2,
12+assem.nparts/2]

*

assemble

assembleend

assem

ACTIVITY

Fig. 35 Rules for assembler machines (left) and scheduling
(right).

The behaviour of packaging machines, the transport
of parts between adjacent conveyors, and the movement
of operators between machines can be represented as ac-
tivities as well. For example, Fig. 36 shows the activity
that moves parts of any type (we use an abstract object)
across two adjacent conveyors, whereas Fig. 37 shows
the activity that moves an operator between two trans-
former machines of any type (we use abstract machines)
provided that the target machine has some part waiting
in an input conveyor but has no operator (NAC).

c

LHS RHS

move
init

cc0

part part

c0

LHS RHS

move
end

part part

c c

moveinit

moveend

[1,2]

*

move

part

ACTIVITY

c

Fig. 36 Rules for moving parts across conveyors (left) and
scheduling (right).

Fig. 38 shows the whole scheduling grammar of the
factory simulator. We require non-interruptible activ-
ities. Moreover, following the “three-phase approach”
shortcut introduced in Sec. 6, we include the initial event
of every activity in the set act of activities so that they
do not need to be explicitly invoked by the others, but
their start event is scanned after the execution of the
rules in the set. The grammar includes a final rule end
with empty LHS and RHS and scheduled at time 1000,
which signals the simulation end.

Fig. 39 shows some metrics for the example. We use
the one on the left to measure the load of the con-

Domain-Specific Discrete Event Modelling and Simulation using Graph Transformation 19

opermoveinit

NAC LHS

opop’

opermoveend

LHS

op

opermoveinit

[2,3]

*

operator

opermoveend

ACTIVITY

m m0 m

m

m

c

RHS

op

m

NAC

op’

m

part RHS

op

m0 m

c

part

Fig. 37 Rules for moving operators between machines (left)
and scheduling (right).

end
1000

packinit

packend

*

pack

activities

pack

moveinit

moveend

[1,2]

*

move

assembleinit

*

assemble

assembleend

assem

opermoveinit

[2,3]

*

operator

opermoveend

m

genCyls

P(g.rate)

*

g

genBars

P(g.rate)

*

g

[10+assem.nparts/2,
12+assem.nparts/2]

[3+pack.nparts,

8+pack.nparts]

part

c

Fig. 38 Scheduling grammar of the factory simulator.

veyors. We can use the weighted average aggregation
function over a derivation d to obtain the average load:
wavg(d, a, m0, satlevel). We can also investigate the
so-called zero-entries, that is, the total time a conveyor
is empty. This can be done either by performing the
weighted sum of the satisfied intervals and then sub-
tracting from the total: t(Sn)−wsum(d, a,m0, sat), or by
performing the weighted sum using the inverse of the sat
function (sat = 1− sat) as follows: wsum(d, a,m0, sat).

P

transf

Q

transf

exp: transf.nparts

Transformer load

P Q

part

Conveyor utilization

Fig. 39 Some metrics of the factory simulation.

The metric to the right of Fig. 39 measures the load
on a transformer machine (either assembler or packag-
ing) by using an expression that returns its number of
parts. We can use this metric to obtain the maximum
load of a machine during a derivation: max(d, a,m0, sumexp).
In this case, it is irrelevant which aggregation function

we use over the constraint expression sumexp as there is
exactly one match from Q for every match from P .

In conclusion, in this case study we have seen that
our approach enables the definition of higher-level con-
structs, like activities. As a difference from our solu-
tion, approaches based on rule delays [12,23,45] repre-
sent each activity as a single rule, and therefore would
not be able to represent activities with initial observable
behaviour as required by this system.

9 Implementation

In this section, we present an executable, algebraic pro-
totype for performing simulations of graph-based sys-
tems implementing the notions described in this paper
using Maude [8]. We have chosen Maude due to its reflection-
based facilities for defining rewriting strategies, which
proved to be very useful for implementing the control
flow constructs proposed in this work. The represen-
tation of a graph-based system as a rewrite theory in
Maude [4,38] is introduced in Section 9.1; the specifi-
cation of the notion of flow grammar and the untimed
simulation scheme are defined in Section 9.2; the notion
of scheduling grammar and the event scheduling scheme
are defined in Section 9.3; and the specification and eval-
uation of metrics are considered in Section 9.4.

9.1 Graph-based Systems in Maude.

Maude programs are composed of functional modules
and system modules. While functional modules are used
to represent algebraic data types (specifying their types
using sorts and subsorts) and their operations, a system
module specifies local concurrent transitions in a sys-
tem, whose states are algebraically characterized by the
functional module. A functional module is defined as an
expression fmod n is (Σ, E) endfm, where:

– n is the name of the module,
– Σ is a signature specifying sorts s with the clause sort

s ., subtyping relationships between sorts s1 and s2

with the clause subsort s1 < s2 . (i.e. s1 is a subsort
of s2), and operation signatures of the form op f :

s1...sn -> s ., where si, s are sorts in Σ, and
– E is a collection of (possibly conditional) equations

of the form (c)eq t = t’ (if cond) ., where t and t’

are terms with variables over the signature Σ and cond

may be a conjunction of equations and memberships,
and (possibly conditional) memberships of the form
(c)mb t : s (if cond) ., where t is a term as above,
s is a sort in Σ, and cond is a condition as above.
Additionally, E also contains axioms for some binary
operations, such as associativity, commutativity and
identity.

A system module mod n is (Σ, E, R) endm extends a
functional module with (possibly conditional) rewrite

20 Juan de Lara et al.

rules R of the form (c)rl t => t’ (if cond) ., where t and
t’ are terms as above, and cond may be a conjunction of
equations, memberships and rewrites. Moreover, we can
also use so-called matching equations of the form t :=

t’ as an atomic formula in a condition cond, where t

is a term with variables over the signature Σ that are
instantiated by matching the term t against the canon-
ical form of the subject term t’, where the term t must
contain free variables satisfying certain technical require-
ments [8], which are not relevant for the presentation of
the implementation in this section.

In this work, we use functional modules for represent-
ing meta-models as data types, for representing models
as directed graphs and for encoding the deterministic
procedures that form part of the simulation scheme; and
we use system modules representing the non-deterministic
aspects of the simulation scheme.

9.1.1 Type Graphs and Instance Graphs. Ameta-model
is syntactically formalized as an order-sorted signature
Σ and a set of equations [5]. Σ can be split into a
generic part providing constructs (sorts, subsorts and
operators) for defining directed graphs of objects, and a
meta-model-specific part containing type-relative infor-
mation (metaclass names and properties). In the generic
part, an object is represented by a triple < O : C | PS

> using the operator op < : | > : Oid Cid PropertySet ->

Object . so that O is a unique object identifier1, C is a
class name, and PS is a record where each field repre-
sents either a slot (an attribute value) or a reference (a
collection of pointers to other objects). Objects can be
grouped in collections of objects by means of an asso-
ciative, commutative union operator (denoted by juxta-
position) with identity none. A model is syntactically
represented as an object collection that is wrapped with
the operator << >> shown in Listing 1.

1 subsort Object < ObjCol .
2 op none : -> ObjCol .
3 op __ : ObjCol ObjCol -> ObjCol [assoc comm id: none] .
4 op <<_>> : ObjCol -> Model .

Listing 1 Syntactic representation of model.

In the meta-model-specific part of the signature Σ,
there is a sort for each metaclass name and there is a
constant defining this sort if the metaclass is not ab-
stract. Metaclass inheritance is formalized by means of
subsort relationships between the sorts corresponding to
each metaclass. Taking into account the resulting sub-
sort ordering, maximal sorts in this ordering are declared
as subsorts of the sort Cid. In addition, properties de-
fined for each metaclass are encoded as constructors of
the sort Property defining fields for the record PropertySet.
Listing 2 shows the encoding of the domain-specific part
of the signature corresponding to the meta-model in Fig.
4.

1 We define identifiers using literals prefixed with a quote,
such as ’a or ’1, using the built-in datatype Qid, which is
defined as a subsort of the sort Oid.

1 sorts Container Node Channel Message Reply Request .
2 subsorts Container Message < Cid .
3 subsorts Node Channel < Container .
4 subsorts Reply Request < Message .
5 --- Concrete metaclasses
6 op Node : -> Node . op Channel : -> Channel .
7 op Reply : -> Reply . op Request : -> Request .
8 --- Node properties
9 op isInit : -> PropName . op isFinal : -> PropName .

10 --- Channel properties
11 op in : -> PropName . op out : -> PropName .
12 --- Message properties
13 op at : -> PropName . op size : -> PropName .

Listing 2 Encoding of meta-model in Fig. 4.

The model in Fig. 5 is represented by including a
term as shown in Listing 3.

1 << < ’a : Node | isInit : true, isFinal : false >
2 < ’b : Channel | in : ’a, out : ’c >
3 < ’c : Node | isInit : false, isFinal : false >
4 < ’d : Channel | in : ’c, out : ’e >
5 < ’e : Node | isInit : false, isFinal : true >
6 < ’f : Channel | in : ’e, out : ’g >
7 < ’g : Node | isInit : false, isFinal : false >
8 < ’h : Channel | in : ’g, out : ’a >
9 < ’i : Channel | in : ’e, out : ’j >

10 < ’j : Node | isInit : false, isFinal : false >
11 < ’k : Channel | in : ’j, out : ’g >
12 < ’l : Request | at : ’b >
13 < ’m : Reply | at : ’i > >>

Listing 3 Encoding of model in Fig. 5.

9.1.2 Production Rules. GT rules are encoded as rewrite
rules of the form rl [<label>] : <LHS> => <RHS> and [c]rl

[<label>] : <LHS> => <RHS> [if <NAC-LIST>] where <label> is
an identifier for the rule, <LHS> and <RHS> are terms with
variables of sort Model, and <NAC-LIST> is a list of negative
application condition statements separated by the con-
junctive connective /\. As an example, Listing 4 shows
rule send, which moves a message from a node to a chan-
nel unless the message is a request and the node is ter-
minal (NAC RequestInTerminal in line 6), or the message
is a reply and the node is initial (NAC ReplyInInitial in
line 9).

1 crl [send] : << < N : Node | PS1 >
2 < M : Message | at : N, PS3 >
3 < C : Channel | in : N, PS2 > OC >> =>
4 << < N : Node | PS1 > < M : Message | at : C, PS3 >
5 < C : Channel | in : N, PS2 > OC >>
6 if nac("RequestInTerminal", NodeId(N) MessageId(M),
7 < N : Node | PS1 > < M : Message | at : N, PS3 >
8 < C : Channel | in : N, PS2 > OC)
9 /\ nac("ReplyInInitial", NodeId(N) MessageId(M),

10 < N : Node | PS1 > < M : Message | at : N, PS3 >
11 < C : Channel | in : N, PS2 > OC) .

Listing 4 Encoding of rule send from Fig. 6.

NACs are defined with the boolean operation nac that
receives as arguments an identifier for the NAC, an en-
vironment containing assignments for some variables in
the NAC, and the collection of objects that constitutes
the syntactic representation of the model. A NAC is de-
fined with an equation by providing the pattern that
is forbidden in the third argument, which must return
false. Listing 5 shows the definition of the NACs in the
previous rule send. By default, the equation in line 2 as-
sumes that a NAC fails if no pattern corresponding to

Domain-Specific Discrete Event Modelling and Simulation using Graph Transformation 21

a specific NAC can be matched, by returning true. The
operations in line 4 define the mechanism to instantiate
variables in the equations defining NACs, and the equa-
tions in lines 5 and 9 define the NACs used in the rule
send.

1 op nac : String Environment ObjCol -> Bool .
2 eq nac(Name, E, OC) = true [owise] .
3

4 ops NodeId MessageId : Oid -> EnvVar .
5 eq nac("RequestInTerminal", NodeId(N) MessageId(M),
6 < N : Node | isFinal : true, PS1 >
7 < M : Request | at : N, PS3 >
8 < C : Channel | in : N, PS2 > OC) = false .
9 eq nac("ReplyInInitial", NodeId(N) MessageId(M),

10 < N : Node | isInit : true, PS1 >
11 < M : Reply | at : N, PS3 >
12 < C : Channel | in : N, PS2 > OC) = false .

Listing 5 Encoding of NACs for rule send.

All rules in Figs. 8 and 10 are defined in the Ap-
pendix B.

9.2 Untimed (Logical) Simulation

In this section, we present the Maude simulation engine
that enables the simulation of flow grammars, as pre-
sented in Section 4.

9.2.1 Flow Grammar. Both invocation and cancella-
tion edges are represented as tuples flowEdge(SC, PR, TG),
where: SC and TG correspond to labels identifying the
source and target rules, respectively; and PR is a binary
relation defining the parameter passing structure. A flow
grammar is a tuple flowGrammar(MOD, End, I, C, G) where:
MOD is the module containing the encoding of the produc-
tion rules of the flow grammar as rewrite rules; End is a
set of rule labels identifying those rules that terminate
the simulation process; I and C are sets of flow edges con-
stituting the sets of invocation and cancellation edges,
respectively; and G is a term of sort Model representing
the initial graph.

9.2.2 Simulation Data Types. An event is given as a tu-
ple edge(FE, M, G), where FE is the flow edge whose target
rule has been applied, M is the match of the LHS of the
target rule over the host graph, and G is the graph result-
ing from the application of this rule with the match M.
For implementation purposes, the notion of simulation
environment emerges and is defined as a term env(FG,

SS), where FG is a flow grammar and SS is the simulation
state.

9.2.3 Simulation Scheme. The parameter passing in in-
vocation and cancelling edges involves the capability of
both defining parameterised rules and instantiating (some
of) their arguments with specific values, constraining
the number of events that can be enabled by the target
rule. We have chosen Maude for implementing the pro-
posed simulation scheme because it provides facilities for

handling these mechanisms through its meta-level oper-
ations by means of which rules can be applied in an
explicit way.

The main simulation scheme presented in Def. 4 is
implemented by three rewrite rules defined over a term
of the form env(FG,SS). The first rule, shown in Listing 6,
constitutes the core mechanism for firing events and it
applies when there are non-terminating events enabled in
the simulation state component events, as checked in the
condition in line 10. In line 11, the operator processChoice
is used to split the set of currently enabled events into
a pair of disjoint sets. The event to be fired is cho-
sen from the first component. For untimed simulation,
this operator defines a pair where the first component
is the original set of events and the second component
is empty. However, this operator is crucial for handling
timed events as we explain in the next section. This rule
can only be applied if the chosen event is not final. This
is handled by the conditions in line 12, which check that
the label of the rule that was used to create the event is
not in the set End of final rule labels.

The event is fired by replacing the host graph G1 by
the precomputed resulting graph G2 obtained from the
event E in the component model, through the matching
equation in line 13. The set of new events newES (resp.
cancelling events cancES) is obtained by applying the
function computeEvents, in line 14 (resp. 16), for each invo-
cation edge (resp. cancellation edge) whose source rule
component coincides with the rule that was used to cre-
ate the event E.

In line 4, the resulting set of enabled events is ob-
tained by updating the remaining set of events, namely
the union of ES2 and ES3 with the new graph G2 through
the function refreshOld. Given the module MOD containing
the definition of production rules, the graph G1 repre-
senting the current state of the system under simulation,
and a set ES2 ES3 of enabled events (with precomputed
matches and output graphs), the function refreshOld checks
whether each event in ES2 ES3 is still valid by creating an
event with the precomputed match and the same rule
over the graph G2. The resulting set corresponds to those
events that remain valid after firing event E and that have
not been cancelled. The resulting set of enabled events is
formed by adding the set newES of events that are enabled
by event E over the system state G1.

Finally, the function updateGlobalTime in line 18 is used
for updating the global clock when it is available, and the
function recordData in line 8 is used to record simulation
data to be used for analysis purposes by using (domain-
specific) metrics.

1 crl env(flowGrammar(MOD, End, I, C, Model),
2 model(G1) events(ES1) SS1) =>
3 env(flowGrammar(MOD, End, I, C, Model), model(G2)
4 events(newES
5 applyCancEvents(
6 refreshOld(MOD, G2, ES2 ES3, empty),
7 cancES))
8 recordData(E, SS4)
9)

10 if ES1 =/= empty /\

22 Juan de Lara et al.

11 < E ES3, ES2 > := processChoice(ES1) /\
12 TGR := getTarget(getEdge(E)) /\ TGR in End = false /\
13 G2 := getTerm(E) /\
14 events(newES) SS2 := computeEvents(MOD, E,
15 nextEdges(I, TGR, empty), events(empty) inv SS1) /\
16 events(cancES) SS3 := computeEvents(MOD, E,
17 nextEdges(C, TGR, empty),events(empty) canc SS2) /\
18 SS4 := updateGlobalTime(E, SS3) .

Listing 6 Main rule of the implemented simulator.

A second rule is applied when the chosen event is fi-
nal, in which case the simulation process ends after firing
the event. A third rule deals with the case when there
are no enabled events left in the simulation state com-
ponent events, i.e. there is a deadlock since a terminating
event cannot be fired.

9.3 Event Scheduling

In this section, we cover a number of variation points
in the untimed simulation scheme that allow us to ex-
tend the untimed simulation scheme as an event schedul-
ing scheme. This is achieved by enriching the simulation
state with the set ES of scheduled events, with a com-
ponent clock(T) with the global time of the simulation,
and components invClock(RVS1) and cancClock(RVS2) rep-
resenting the stochastic clock structures for invocation
and cancellation edges.

The extensions concern the choice of the event to be
fired according to its scheduling, the scheduling of events
when an event is enabled according to the corresponding
stochastic clock structure, the update of old scheduled
events, the cancellation of scheduled events as dictated
by cancellation edges, and the update of the global clock.

Event choice. The scheduling of events imposes an or-
der over the events to be fired according to the rela-
tive time that is randomly sampled from a cumulative
distribution function. A strict ordering is defined over
the set of scheduled events, by means of which timed
events are ordered by its time component. The function
processChoice splits the set of scheduled events into a set
of minimal timed events, from which one will be chosen
to be fired.

Scheduling of events. The scheduling of events is achieved
by enriching the function computeEvents in order to cre-
ate a set of events whose flow edge corresponds to an
invocation edge.

When there is a random variable assigned to the flow
edge FE in the corresponding stochastic clock structure,
the function computeEvents creates a set of events that
are scheduled for an absolute time that is equal to the
actual time of the simulation plus the current value of
the random variable associated with the flow edge FE.
The case for cancellation edges is analogous.

In the current implementation, we do not support
FES policies, which is left for future work.

Updating and cancelling scheduled events. Once an event
is fired, the current state of the system under simulation
may change. The function refreshOld checks that remain-
ing enabled and scheduled events are still valid and up-
dates their matches and resulting graph as explained in
the previous section. These equations are extended to
deal with timed events.

The function for cancelling events is also extended to
deal with timed events. In particular, the absolute time
of the cancelled event should be greater or equal than the
current time plus the relative time the cancelling edge
indicates.

Updating the global clock. When a scheduled event is
fired, the global clock is updated with the minimum time
elapse provided by the time component of the event.

9.4 Metrics

The function recordData (line 8 in Listing 6) allows us
to gather information in the simulation state during the
simulation for its analysis a posteriori. As an example,
Listing 7 provides the implementation of the metric that
calculates the utilization time of channels (see the con-
straint in Fig. 26).

For this purpose, the dynamic part of the simula-
tion state is extended with a set waitingTimes of tuples
cwt(C,TT,B,T), where C is the object identifier of a chan-
nel (i.e. graph P of the constraint), TT is the duration
of the set of maximal satisfaction intervals, B indicates if
the channel contained messages when the previous timed
event was fired, and T is the time when the last event oc-
curred. Whenever a timed event is fired, the function
update in Listing 7 updates this set of tuples comput-
ing the duration. The equation in line 2 is applied when
the channel was busy before firing the last event (i.e.
the constraint was satisfied at the same match before
the direct derivation) and updates the duration value by
means of the expression TT + (T’ - T), where T’ is the
current global clock value. The equation in line 7 is ap-
plied when the channel was not busy before firing the
last event but it contains a message now, as indicated
by the pattern in the left side of the equation (i.e. the
constraint has started to be satisfied after the last direct
derivation) and it sets the boolean flag B to true. The
equation in line 13 deals with the case where the chan-
nel is empty by setting the boolean flag B to false in the
tuple cwt(C,TT,B,T). By the end of the execution, this set
will contain the utilization time of each channel.

1 op update : CWTSet Model Time CWTSet -> CWTSet .
2 eq update(cwt(O1, TT, true, T) CWTS1,
3 << < O2 : Message | at : O1, PS > OC >>,
4 T’, CWTS2) = update(CWTS1,
5 << < O2 : Message | at : O1, PS > OC >>,
6 T’, cwt(O1, TT + (T’ - T), true, T’) CWTS2) .
7 eq update(cwt(O1, TT, false, T) CWTS1,
8 << < O2 : Message | at : O1, PS > OC >>,
9 T’, CWTS2) = update(CWTS1,

10 << < O2 : Message | at : O1, PS > OC >>,

Domain-Specific Discrete Event Modelling and Simulation using Graph Transformation 23

11 T’, cwt(O1, TT, true, T’) CWTS2) .
12 eq update(none, Model, T’, CWTS2) = CWTS2 .
13 eq update(cwt(O1, TT, B:Bool, T) CWTS1,
14 Model, T’, CWTS2) = update(CWTS1, Model, T’,
15 cwt(O1, TT, false, T’) CWTS2) [owise] .

Listing 7 Measuring the utilization time of channels.

Note that, in the implementation, durations are asso-
ciated with matches implicitly by using pattern match-
ing in the set of recursive equations that define the func-
tion update. This is not the case in the graph transfor-
mation formalism, where matches are explicitly managed
as first-order citizens. From the implementation point of
view, Maude allows for a more economic approach where
only the data that is relevant for simulation analysis pur-
poses is kept.

10 Related Work and Discussion

In this section we start by comparing our work with
related approaches and finalize with a discussion of the
advantages and limitations of our techniques.

10.1 Related work

There are three ways of adding time to GT rules: (i)
embedding the time in the host graph (time as data);
(ii) incorporating it into the GT formalism (time as con-
trol); and (iii) embedding GT into some other simulation
formalism.

In the first approach, [22] proposes using time stamps
to mark the elements of the host graph. GT rules are
standard untimed rules, but two conditions are demanded
concerning the manipulation of local clocks: monotonic-
ity (time should progress) and uniformity (time should
progress at equal rates locally). In [43], the authors de-
velop a timed approach with the purpose of animating
the execution of GT rules. Their rules are classified as in-
ternal or external events (the latter may be triggered by
users) and the timing information is represented as ad-
ditional attributes of the elements in the model. In [9],
the author encodes the list of scheduled events in the
host graph, and the events that have to be executed are
modelled as edges pointing to the different graph ele-
ments. In our view, these approaches pollute the model
(and the meta-model) with timing elements for control
purposes only.

In the second approach, [12] adapts concepts from
timed Petri nets, so that rules are assigned a range, and
rule executions are delayed with uniform probability in
this range. The work of [23] takes concepts from stochas-
tic Petri nets, so that rules are assigned a delay given
by a negative exponential distribution. An important
difference of these works with respect to ours is that,
while time is assigned to rules in [12,23,45], we assign
it to schedulings. Hence, our formalism distinguishes all
possible occurrences of a rule as events, offering a more

refined control over the actions that manipulate the sys-
tem state during simulation. This makes our approach
flexible enough to model the other ones in a unified way,
as we can model activities (interruptible or not) with a
start and an end event, and hence activities may have
an observable initiation (start event). In [45], events are
related to equivalence classes of matches modulo renam-
ing, and time can follow a general distribution. Our ap-
proach, based on parameter passing and scheduling, is
more efficient as we do not need to compute the equiva-
lence classes at each derivation step.

Other approaches based on rewriting logic follow a
similar purpose. In [6], elements in models can be as-
signed timed constructs like clocks or timers. The work
of [36] provides a variety of high-level timed primitives,
like periodic activities, and rules can manipulate the
FES, mixing both control and data. An encoding of these
primitives in Real-Time Maude is presented in [37], in
which the state representation includes time and action
objects metarepresenting the actions to be performed,
and where, for example, the semantics of atomic rules
with a duration (activities) is given by a pair of rewrite
rules, one for triggering the activity, keeping a record of
the actions to be performed, and another one to real-
ize it, materializing the changes that were scheduled. In
our approach, we deal with events explicitly, avoiding a
temporary representation of actions in the state which
have to be applied when a rule is realized. We provide a
neat separation between data and control by extending
graph grammars with invocation and cancelling edges
between rules. At the conceptual level, this allows us
to reuse GT theory to reason about conflicts between
activities of different duration. At the implementation
level, using Maude’s reflection facilities, a flow grammar
imposes a number of control constraints that are inter-
preted by the simulation engine. In addition, we also
provide an event scheduling simulator that extends the
untimed simulation scheme through a number of vari-
ability points as explained in Section 9.3. In this way,
the simulation scheme is defined and implemented inde-
pendently of the semantics of the rules.

With respect to the third approach, in [44], GT rules
are embedded into the DEVS simulation formalism [47].
Rule concurrency issues are difficult to handle and have
to be solved in an ad-hoc way, whereas we use can-
celling edges and the theory of GT to eliminate sched-
uled matches that are no longer valid. In [13], the au-
thors present an approach for the modelling and verifi-
cation of time-dependent dynamic structures based on
real-time statecharts, where operations with side effects
are modelled as graph transformations. Models are ex-
tended with clocks, and rules may add or query clock
instances using simple inequalities. The working scheme
of such timed systems is conceptually similar to timed
automata. While the approach is mainly used for veri-
fication of properties expressed as graphs, our proposal
is directed to specify simulations. Hence, we incorporate

24 Juan de Lara et al.

explicit event schedulings with arbitrary probability den-
sity functions and define a variety of metrics. Moreover,
parallel processes may interact via cancelling edges.

Our work also relates to the models of computa-
tions proposed by the embedded systems and systems-
on-chip communities [29]. However, although we follow
the discrete-time model of computation, our approach
is not based on modules (processes) and communica-
tion channels. Instead, our behavioural specifications are
decoupled from the actual system state where they are
executed, allowing its dynamic change. This is a distin-
guishing feature of our approach (and those based on
GT [13,23,36,44]) with respect to approaches like that
of Ptolemy II [26,16], where dynamic structure changes
are difficult to model but they can be naturally expressed
using GT rules. See the next subsection for a more de-
tailed comparison with Ptolemy II.

There are many systems to perform visual discrete-
event simulation [1,18,33,34,41]. Many of them are graph-
ical front-ends for discrete-event languages. For example,
the Arena tool is a graphical front-end for the SIMAN
process interaction language [34]. This is a simulation
language tailored to the manufacturing domain. Models
are built interconnecting blocks that represent activi-
ties like queuing a transaction (QUEUE) or modelling
a timed activity (DELAY). Still, simulation models use
this general-purpose syntax instead of concepts of the
domain, which makes models more difficult to build and
understand by non-experts. Moreover, if the modeller
needs a primitive not provided by the language, he may
need to adapt his simulation model. Therefore, this ap-
proach is less suitable for MDE, where the use of DSMLs
is fundamental. In contrast, our proposal gives modellers
freedom to define the semantics of DSMLs by using GT
rules to specify behaviour in a flexible way.

Finally, some works in the end-user development com-
munity are somehow close to our proposal. For instance,
AgentSheets [35] is a tool for building agent-based sim-
ulations and games using a rule-based language.

10.2 Discussion

The work presented in this paper contributes to the
current research state by proposing a new way to add
time to GT, inspired by the event scheduling view of
discrete-event simulation. Its distinguishing feature is
that it does not add time to rules, but to events, using
arbitrary probability density functions. This fine-grained
formalism provides flexibility to model higher-level con-
cepts like activities and processes. It also promotes ex-
tensibility of behaviours, as an existing grammar can
be extended by adding new processes which may inter-
act with the existing ones through invocation and can-
celling edges. Extending a standard GT system is gener-
ally more difficult as each rule encodes its conditions for
executability, so that adding new behaviour to a gram-
mar implies adding new rules but also modifying the

existing ones. In our approach, the conditions for the
executability of a rule can be placed in a different pro-
cess which may cancel or start the execution of the rule.

Regarding the invocation scheme, we use invocation
and cancellation edges to refine the concurrent seman-
tics of graph grammars. In this way, we can pass the
context of execution to the scheduled events. The advan-
tage of this feature with respect to rule-based approaches
like [12,13,22,23,36,45] is that we gain in efficiency, as
matches are not sought from scratch but they are just
completed starting from the received match. A more sub-
tle difference with other languages for control flow [2,17,
19], is that our invocation edges are enabling conditions
for the application of rules, but the flow grammars are
not to be interpreted as flow charts in traditional pro-
gramming [3]. This feature greatly helps in modelling
concurrency.

For example, in GReAT [2] a flow edge between two
rules passes to the second rule all matches where the
first rule was executed, resulting in a sequential process-
ing of such matches (all matches of the first rule are
processed before the matches of the second). In Fujaba’s
story diagrams [19] edges do not pass partial matches,
but rules may use the same identifiers to match the same
elements. Edges between rules move the execution con-
trol from one rule to the next, and only one rule owns
the current execution point. In Henshin, different types
of transformation units [17] (like independent, sequen-
tial or conditional) can be used to define the execution
control flow of a grammar. Data dependencies between
units and their subunits can be defined as well by passing
partial matches.

In contrast, our basic mechanism are the invocation
edges, which represent enabling conditions for a rule to
be executed at a certain match, but does not imply a se-
quential processing. Hence, flow grammars do not specify
a sequence of activities, but rule (event) dependencies,
and moreover we may have several initial events to start
different concurrent processes. A flow grammar does not
imply a single point of execution, hence there is no “pro-
gram counter” but a set of concurrently enabled rules,
which can be picked for execution. Whereas the concur-
rent semantics of a flow chart is obtained by interleaving
the activities in parallel flows that appear in fork clauses,
in our flow grammars concurrency is explicitly character-
ized through dependencies between sets of events. This
implies that our approach is more scalable when dealing
with infinite server semantics, since we capture concur-
rency at a local level, avoiding the computation of the
whole class of interleavings. Finally, in our approach we
also consider cancellation of events, and we can control
the level of parallelism through edge inscriptions (see
Section 4.1).

Regarding the heterogeneity of models of computa-
tion, we discuss the similarities of our approach with
Ptolemy II [26,16]. Ptolemy II provides a block dia-
gram language [14] to coordinate, via wiring constructs,

Domain-Specific Discrete Event Modelling and Simulation using Graph Transformation 25

the execution of synchronous, concurrent software mod-
ules that may be given as precompiled blocks speci-
fied in other languages. The execution model of a sys-
tem specified in this language is a deterministic actor-
based model, where the semantics of a system at a given
point is provided by the least fixed point of the vector-
valued function that defines the behaviour of the sys-
tem in terms of the functions of the blocks and their
connectivity. Ptolemy’s abstract semantics [26] enables
a stepwise implementation of synchronous/reactive mod-
els, discrete-event models and continuous-time models.
There is a clear analogy with our approach since our
flow grammars can be used to simulate synchronous/re-
active systems and scheduling grammars can be used
to simulate discrete-event models and continuous-time
models. This is possible because scheduling grammars
are parameterised with respect to the probability den-
sity function, which can be defined over a discrete do-
main or over a continuous domain that provides the de-
lay for an event. Discrete-event systems in Ptolemy II
are based on the notion of super-dense time in which
an actor is scheduled to be fired at a given tag (t, n),
where t is a timestamp and n is a natural number, so
whenever there are several actors scheduled at the same
timestamp t, the second component provides the order in
which they have to be fired, achieving a deterministic be-
haviour. In our approach, events scheduled at the same
timestamp are not ordered and the choice of the next
event to be fired, among several instantaneous events,
is non-deterministic in order to cover all possible be-
haviours. In Ptolemy II, pre-compiled blocks specified in
different languages can be used in a system by encapsu-
lating them in actors following a black-box philosophy.
Our approach allows the domain expert/simulationist
to exploit the domain-specific syntax of the correspond-
ing model by using graphical syntax for defining both
the system state and the behaviour of the system fol-
lowing a white-box philosophy. The black-box approach
used in Ptolemy II also means that it is not possible
to determine whether an actor breaks data precedences,
whereas we have shown how to use GT theory to anal-
yse this problem in our approach. Ptolemy II provides
exact and heuristic algorithms to improve the efficiency
of the execution of systems by exploiting their concur-
rent behaviour [14]. In our case, this effect is achieved
by explicitly defining invocation edges that may carry
contextual information. Hence, a domain expert can de-
fine heuristics in this way for the corresponding applica-
tion domain. As stated above, the topology of systems in
Ptolemy II is fixed at design time while we have shown
how dynamic reconfiguration of systems can be simu-
lated in our approach.

A crucial difference with other timed approaches to
GT [12,22,23,36,45] is that we do not add time to the
rules, but to events. This is consistent with the view
that rules represent schemas of atomic events with no
duration. As discussed in Section 6, adding time to rules

makes them have a duration, so that rules become ac-
tivities with unobservable initiation, and only a final ac-
tion given by the application of the rule. Adding time to
events is therefore more primitive, and as illustrated by
the example of Section 8.2 permits defining higher-level
primitives like activities. Therefore, our approach can be
used to express the semantics of other formalisms.

Our proposal is especially suited to complement MDE
approaches, which explicitly define DSMLs and models
thereof. In these approaches, it would be more time con-
suming to encode the semantics of models using an ex-
ternal simulation language. Instead, we propose a di-
rect means to define the timed semantics of the DSMLs.
Hence, we retain the best properties of both GT and
discrete-event simulation worlds: on the one hand, we
follow an MDE approach based on meta-models to de-
fine the syntax of the DSMLs, and use declarative GT
rules to specify their semantics; on the other hand, we
adopt the efficient time handling schemes of the event
scheduling approach.

11 Conclusions and Future Work

Inspired by the Event Scheduling world view of discrete
event simulation, we have presented a new way to incor-
porate time into GT. We model events as rule matches
which may explicitly schedule and cancel the occurrence
of other events in the future, and may pass information
(partial matches) between such event occurrences for ef-
ficiency purposes. We have presented the approach in
two steps. Flow grammars organize rule flows into pro-
cesses with parameter passing. Scheduling grammars are
built on top of flow grammars adding time in a modular
way so that other (untimed) approaches can be extended
in a similar way. We have shown that the approach is
general enough to model other timing approaches to GT.
We have also defined several ways to define and apply
domain-specific metrics, and developed GT theory to de-
tect errors in the scheduling of parallel matches. The
visual nature of GT makes the approach suitable in ap-
plication domains where simulation is used. We have also
described an implementation in Maude, which shows the
feasibility of our proposal.

In the future, we plan to work on analysis methods
taken from both Event Graphs theory [42] and GT the-
ory. In particular, the analysis of rule independence is
of special interest for the optimisation of FES policies,
e.g. to model non-interruptible activities. We would also
like to extend our implementation in two ways. First, we
are planning to provide a graphical front-end as well as
facilities for the graphical representation of the obtained
metrics. Second, we would like to use the verification ca-
pabilities of Maude, like model-checking and reachability
analysis, to investigate properties of the simulation mod-
els. A usability study of this enhanced implementation
is left for future work.

26 Juan de Lara et al.

Acknowledgements. Work partially sponsored by the
Spanish Ministry, under project “Go Lite” (TIN2011-
24139) as well as by the R&D programme of the Commu-
nity of Madrid, project “e-Madrid” (S2009/TIC-1650).
We are grateful to the anonymous reviewers, which helped
in improving previous versions of the paper.

References

1. AnyLogic. http://www.xjtek.com/.
2. D. Balasubramanian, A. Narayanan, C. van Buskirk, and

G. Karsai. The graph rewriting and transformation lan-
guage: GReAT. ECEASST, 1, 2006. See also http:
//www.isis.vanderbilt.edu/tools/GReAT.

3. M. Bohl and M. Rynn. Tools For Structured and Object-
Oriented Design. Prentice Hall Press, 7th edition, 2007.

4. A. Boronat, R. Heckel, and J. Meseguer. Rewriting Logic
Semantics and Verification of Model Transformations. In
FASE’09, volume 5503 of LNCS, pages 18–33. Springer,
2009.

5. A. Boronat and J. Meseguer. An algebraic semantics for
MOF. Formal Aspects of Computing, 22:269–296, 2010.

6. A. Boronat and P. C. Ölveczky. Formal real-time model
transformations in MOMENT2. In FASE’10, volume
6013 of LNCS, pages 29–43. Springer, 2010.

7. C. G. Cassandras and S. Lafortune. Introduction to Dis-
crete Event Systems, 2nd Ed. Springer, 2008.

8. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-
Oliet, J. Meseguer, and C. L. Talcott, editors. All About
Maude - A High-Performance Logical Framework, How
to Specify, Program and Verify Systems in Rewriting
Logic, volume 4350 of LNCS. Springer, 2007. See also
http://maude.cs.uiuc.edu.

9. J. de Lara. Meta-modelling and graph transformation
for the simulation of systems. Bulletin of the EATCS,
81:180–194, 2003.

10. J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange,
and G. Taentzer. Attributed graph transformation with
node type inheritance. Theor. Comput. Sci., 376(3):139–
163, 2007.

11. J. de Lara, E. Guerra, A. Boronat, R. Heckel, and P. Tor-
rini. Graph transformation for domain-specific discrete
event time simulation. In ICGT’10, volume 6372 of
LNCS, pages 266–281. Springer, 2010.

12. J. de Lara and H. Vangheluwe. Automating the
transformation-based analysis of visual languages. For-
mal Aspects of Computing, 22(3–4):297–326, 2010.

13. T. Eckardt, C. Heinzemann, S. Henkler, M. Hirsch,
C. Priesterjahn, and W. Schäfer. Modeling and verify-
ing dynamic communication structures based on graph
transformations. Computer Science - Research and De-
velopment, in press:1–20, 2011.

14. S. A. Edwards and E. A. Lee. The semantics and ex-
ecution of a synchronous block-diagram language. Sci.
Comput. Program., 48(1):21–42, 2003.

15. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fun-
damentals of Algebraic Graph Transformation. Springer,
2006.

16. J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, and Y. Xiong. Taming het-
erogeneity - the ptolemy approach. Proceedings of the
IEEE, 91(1):127 – 144, jan 2003.

17. C. Ermel, E. Biermann, J. Schmidt, and A. Warning.
Visual modeling of controlled emf model transformation
using henshin. ECEASST, 32, 2010.

18. ExtendSim. http://www.extendsim.com.
19. T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story

diagrams: A new graph rewrite language based on the
unified modeling language and java. In TAGT, volume
1764 of LNCS, pages 296–309. Springer, 2000. See also
http://www.fujaba.de.

20. G. S. Fishman. Discrete-Event Simulation: Modeling,
Programming, and Analysis. Springer, 2001.

21. L. Gönczy, M. Kovács, and D. Varró. Modeling and ver-
ification of reliable messaging by graph transformation
systems. ENTCS, 175(4):37–50, 2007.

22. S. Gyapay, D. Varró, and R. Heckel. Graph transforma-
tion with time. Fundam. Inform., 58(1):1–22, 2003.

23. R. Heckel, G. Lajios, and S. Menge. Stochastic graph
transformation systems. Fundam. Inform., 74(1):63–84,
2006.

24. S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling.
Enabling Full Code Generation. Wiley-IEEE CS, 2008.

25. L. Lambers, H. Ehrig, and F. Orejas. Conflict detection
for graph transformation with negative application con-
ditions. In ICGT’06, volume 4178 of LNCS, pages 61–76.
Springer, 2006.

26. E. A. Lee and H. Zheng. Leveraging synchronous lan-
guage principles for heterogeneous modeling and design
of embedded systems. In EMSOFT, pages 114–123.
ACM, 2007.

27. L. Lengyel, T. Levendovszky, G. Mezei, and H. Charaf.
A visual control flow language for model transforma-
tion systems. In IASTED Conf. on Software Engi-
neering, pages 194–199. IASTED/ACTA Press, 2006.
See also http://avalon.aut.bme.hu/˜tihamer/
research/vmts/.

28. M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and
G. Franceschinis. Modelling with Generalized Stochastic
Petri Nets. John Wiley & Sons, 1995.

29. D. A. Mathaikutty, H. D. Patel, S. K. Shukla, and
A. Jantsch. SML-Sys: a functional framework with mul-
tiple models of computation for modeling heterogeneous
system. Des. Autom. Embed. Syst., 12:1–30, 2008.

30. M. Naeem, R. Heckel, F. Orejas, and F. Hermann. In-
cremental service composition based on partial matching
of visual contracts. In FASE’10, volume 6013 of LNCS,
pages 123–138. Springer, 2010.

31. R. E. Nance. A history of discrete event simulation pro-
gramming languages. SIGPLAN Not., 28:149–175, 1993.

32. OCL. http://www.omg.org/spec/OCL/2.3/
Beta2/.

33. C. D. Pegden. SIMIO: a new simulation system based
on intelligent objects. In Winter Simulation Conference,
pages 2293–2300, 2007. See also http://www.simio.
com.

34. C. D. Pegden and D. A. Davis. Arena: a SIMAN/cinema-
based hierarchical modeling system. In Winter Simula-
tion Conference, pages 390–399, 1992. See also http:
//www.arenasimulation.com/.

35. A. Repenning, A. Ioannidou, and J. Zola. AgentSheets:
End-user programmable simulations. Journal of Artifi-
cial Societies and Social Simulation, 3(3), 2000. See also
http://www.agentsheets.com.

Domain-Specific Discrete Event Modelling and Simulation using Graph Transformation 27

36. J. E. Rivera, F. Durán, and A. Vallecillo. A graphical
approach for modeling time-dependent behavior of DSLs.
In VL/HCC’09, pages 51–55. IEEE, 2009.

37. J. E. Rivera, F. Durán, and A. Vallecillo. On the behav-
ioral semantics of real-time domain specific visual lan-
guages. In WRLA, volume 6381 of LNCS, pages 174–190.
Springer, 2010.

38. J. E. Rivera, E. Guerra, J. de Lara, and A. Vallecillo. An-
alyzing rule-based behavioral semantics of visual model-
ing languages with Maude. In SLE’09, volume 5452 of
LNCS, pages 54–73. Springer, 2009.

39. G. Rozenberg, editor. Handbook of Graph Grammars
and Computing by Graph Transformations, Volume 1:
Foundations. World Scientific, 1997.

40. T. J. Schriber. Simulation Using GPSS. John Wiley &
Sons, 1974.

41. T. J. Schriber and D. T. Brunner. Inside discrete-event
simulation software: How it works and why it matters.
In Winter Simulation Conference, pages 151–165, 2010.

42. L. Schruben. Simulation modeling with event graphs.
Commun. ACM, 26(11):957–963, 1983.

43. T. Strobl and M. Minas. Specifying and generating edit-
ing environments for interactive animated visual models.
ECEASST, 29, 2010.

44. E. Syriani and H. Vangheluwe. Programmed graph
rewriting with DEVS. In AGTIVE’07, volume 5088 of
LNCS, pages 136–151. Springer, 2008.

45. P. Torrini, R. Heckel, I. Ráth, and G. Bergmann.
Stochastic graph transformation with regions. ECE-
ASST, 29, 2010.

46. J. G. Vaucher and P. Duval. A comparison of simulation
event list algorithms. Commun. ACM, 18:223–230, April
1975.

47. B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of
Modeling and Simulation, 2nd Edition. Academic Press,
2000.

A Detecting Errors in Parallel Schedulings

This appendix details the developed theory to detect
errors in the scheduling of parallel matches. Similar to
critical pairs [15], there are two kinds of conflicts: delete-
use and produce-forbid. The first one, already discussed
in Section 4.1, detects if some element in the passed
parameters is not preserved by the rule execution. As
all matches share such elements, the first rule applica-
tion will destroy the rest of the scheduled matches. The
second conflict (produce-forbid) detects if the rule adds
elements that will violate some of the rule’s NAC, inval-
idating the rest of the scheduled matches.

As a difference with standard critical-pairs analysis,
we only want to indicate a conflict if it violates the par-
allel semantics, allowing only the first match to be exe-
cuted. That is, we do not report potential conflicts but
real ones, produced in the passed parameters Mij .

Delete-Use. The left of Fig. 40 shows the condition
for a delete-use conflict, which is the absence of a mor-
phism mk : Mij → Kj s.t. (1) commutes. The right of

the same figure shows the first step in the rule appli-
cation at match m1. This rule application does not de-
stroy a previous match m2 : Lj → G (with m1 ◦ ml =
m2 ◦ ml), if there exists a morphism m′

2 : Lj → D s.t.
d◦m′

2 = m1 (see the left of Fig. 41). However, as the right
of Fig. 41 shows, such morphism cannot exist because,
in (weak) adhesive HLR categories, pushouts where one
of the given morphisms is injective (like l : Kj → Lj)
are also pullbacks [15]. Then, as we would have that
m1 ◦ml = m′

2 ◦ml, by the pullback universal property,
there would exist a morphism u : Mij → Kj , obtaining
a contradiction. Hence, m′

2 cannot exist.

Mij

ml

��
/

��(1)

Mij

ml

��
/

��
Lj Kjloo Lj

m1

��

Kjloo

��
P.O.

G Ddoo

Fig. 40 Condition for delete-use scheduling conflict (left).
First rule application step in delete-use scheduling conflict
(right).

Mij

ml

��
/

��

Mij

ml
yyy

||yyy
u
��

m′
2◦ml

{{

Lj

m1

��
m′

2

FF

##FF
F

Kjloo

��

Lj

m1

��
P.B.

Kjloo

��
G Ddoo G Ddoo

Fig. 41 A preserved match m2 in delete-use conflict (left).
Contradiction if match m2 would exist (right).

Produce-Forbid. Fig. 42 shows the conditions for a
produce-forbid conflict. This conflict exists if: (a) there
exist a graph X and morphisms mx, y s.t. the left square
is a pushout, (b) there exist morphisms mr and x s.t. (1)
and (2) commute. The left pushout exists if the NAC N
adds elements only to elements included in Mij . mr ex-
ists and (1) commutes if the rule preserves the elements
in Mij . x exists and (2) commutes if the rule adds the
elements included in the NAC.

X

y

��

x

��

Mij

(1)

(2)

mxoo

ml

��
P.O.

mr

��
N Ljnoo Kjloo r // Rj

Fig. 42 Conditions for produce-forbid scheduling conflict.

We next proof that this condition induces a conflict
as the rule cannot be applied twice at two matches shar-
ing Mij . Fig. 43 shows how, if the conditions of Fig. 42

28 Juan de Lara et al.

are met, and the first rule application at match m1 pre-
serves the match m2 : Lj → G so that we have a mor-
phism m′

2 : Lj → D, then the rule cannot be applied at
e ◦ m′

2 since there is a match u : N → H violating the
NAC. Morphism u exists due to the pushout universal
property, because we have m∗

1 ◦ x ◦mx = e ◦m′
2 ◦ml.

X

y

��

x

��

Mij

(1)

(2)

mxoo

ml

��
P.O.

mr

��
N

u

::

Ljnoo

m1

��
m′

2

FF

##FF
F

Kjloo r //

��

Rj

m∗
1��

G Doo e // H

Fig. 43 Produce-forbid scheduling conflict.

B Encoding of the Flow Grammar for the
Protocol Example

The Maude encoding of the rules in Fig. 8 for the pro-
tocol example is as follows:

1 rl [init] :
2 << < N : Node | isInit : true, PS > OC >> =>
3 << < N : Node | isInit : true, PS >
4 < freshOid() : Request | at : N, size : 256 > OC >> .
5

6 rl [end] :
7 << < N : Node | isInit : true, PS1 >
8 < M : Reply | at : N, PS2 > OC >> =>
9 << < N : Node | isInit : true, PS1 > OC >> .

10

11 crl [send] :
12 << < N : Node | PS1 > < M : Message | at : N, PS3 >
13 < C : Channel | in : N, PS2 > OC >> =>
14 << < N : Node | PS1 > < M : Message | at : C, PS3 >
15 < C : Channel | in : N, PS2 > OC >>
16 if nac("RequestInTerminal", NodeId(N) MessageId(M),
17 < N : Node | PS1 > < M : Message | at : N, PS3 >
18 < C : Channel | in : N, PS2 > OC)
19 /\ nac("ReplyInInitial", NodeId(N) MessageId(M),
20 < N : Node | PS1 > < M : Message | at : N, PS3 >
21 < C : Channel | in : N, PS2 > OC) .
22

23 ops NodeId MessageId ChannelId : Oid -> EnvVar .
24 eq nac("RequestInTerminal", NodeId(N) MessageId(M),
25 < N : Node | isFinal : true, PS1 >
26 < M : Request | at : N, PS2 > OC) = false .
27

28 eq nac("ReplyInInitial", NodeId(N) MessageId(M),
29 < N : Node | isInit : true, PS1 >
30 < M : Reply | at : N, PS2 > OC) = false .
31

32 rl [receive] :
33 << < N : Node | PS1 > < M : Message | at : C, PS3 >
34 < C : Channel | out : N, PS2 > OC >> =>
35 << < N : Node | PS1 > < M : Message | at : N, PS3 >
36 < C : Channel | out : N, PS2 > OC >> .
37

38 rl [reply] :
39 << < N : Node | isFinal : true, PS1 >
40 < M : Request | at : N, PS2 > OC >> =>
41 << < N : Node | isFinal : true, PS1 >
42 < M : Reply | at : N, PS2 > OC >> .
43

44 rl [lose] :
45 << < M : Message | at : C, PS2 >
46 < C : Channel | PS > OC >> =>

47 << < C : Channel | PS > OC >> .
48

49 crl [createConnection] :
50 << < N : Node | PS1 >
51 < C : Channel | in : O:Oid, PS2 > OC >> =>
52 << < N : Node | PS1 >
53 < C : Channel | in : N, PS2 > OC >>
54 if nac("notConnectedToAnotherNode",
55 NodeId(N) ChannelId(C),
56 < N : Node | PS1 >
57 < C : Channel | in : O:Oid, PS2 > OC)
58 /\
59 nac("notConnectedYet", NodeId(N) ChannelId(C),
60 < N : Node | PS1 >
61 < C : Channel | in : O:Oid, PS2 > OC) .
62

63 eq nac("notConnectedToAnotherNode",
64 NodeId(N) ChannelId(C),
65 < N : Node | PS1 > < C : Channel | PS2 >
66 < C2 : Channel | in : N, PS3 > OC
67) = false .
68

69 eq nac("notConnectedYet", NodeId(N) ChannelId(C),
70 < N : Node | PS1 > < C : Channel | in : N, PS2 > OC
71) = false .
72

73 rl [deleteConnection] :
74 << < N : Node | PS1 >
75 < C : Channel | in : N, PS2 > OC >> =>
76 << < N : Node | PS1 >
77 < C : Channel | in : ’null, PS2 > OC >> .
78

79 rl [channelCheck] :
80 << < C : Channel | PS > OC >> =>
81 << < C : Channel | PS > OC >> .

Listing 8 Maude encoding of the example rules.

Invocation and cancellation edges in the flow gram-
mar in Fig. 10 are defined as constants IESet and CESet

in our Maude encoding as follows:

1 op IESet : -> FlowEdgeSet .
2 eq IESet =
3 flowEdge(’null, empty, ’init)
4 flowEdge(’init, < ’N:Oid, ’N:Oid >, ’init)
5 flowEdge(’init,
6 < ’N:Oid, ’N:Oid > < ’M:Oid, ’M:Oid >, ’send)
7 flowEdge(’send,
8 < ’C:Oid, ’C:Oid > < ’M:Oid, ’M:Oid >, ’receive)
9 flowEdge(’receive,

10 < ’N:Oid, ’N:Oid > < ’M:Oid, ’M:Oid >, ’send)
11 flowEdge(’receive,
12 < ’N:Oid, ’N:Oid > < ’M:Oid, ’M:Oid >, ’reply)
13 flowEdge(’receive,
14 < ’N:Oid, ’N:Oid > < ’M:Oid, ’M:Oid >, ’end)
15 flowEdge(’receive, < ’N:Oid, ’N:Oid >, ’

createConnection)
16 flowEdge(’reply,
17 < ’N:Oid, ’N:Oid > < ’M:Oid, ’M:Oid >, ’send)
18 flowEdge(’createConnection,
19 < ’C:Oid, ’C:Oid > < ’N:Oid, ’N:Oid >, ’send)
20 flowEdge(’deleteConnection,
21 < ’C:Oid, ’C:Oid > < ’N:Oid, ’N:Oid >,
22 ’deleteConnection)
23 flowEdge(’null, empty, ’deleteConnection)
24 flowEdge(’null, empty, ’channelCheck)
25 flowEdge(’channelCheck, < ’C:Oid, ’C:Oid >, ’

channelCheck)
26 flowEdge(’channelCheck, < ’C:Oid, ’C:Oid >, ’lose) .
27

28 op CESet : -> FlowEdgeSet .
29 eq CESet = flowEdge(’send,
30 < ’C:Oid, ’C:Oid > < ’N:Oid, ’N:Oid >,
31 ’deleteConnection) .

Listing 9 Encoding of the Flow Grammar in Maude.

