
myjournal manuscript No.
(will be inserted by the editor)

An Ontology-Based
Framework for Domain-
Specific Modeling

Tobias Walter ·
Fernando Silva

Parreiras · Steffen

Staab

Received: date / Revised version: date

Abstract Domain-specific languages (DSLs) provide

abstractions and notations for better understanding and

easier modeling of applications in a special domain.

Current shortcomings of DSLs include learning curve

and formal semantics. This paper reports on a frame-

work that allows the use of ontology technologies to

describe and reason on DSLs. The formal semantics of

OWL together with reasoning services allows for ad-

dressing constraint definition, progressive evaluation,

suggestions, and debugging. The approach integrates

existing metamodels and concrete syntaxes in a new

technical space. A scenario in which domain models for

network devices are created illustrates the framework.

1 Introduction

Domain-specific languages (DSLs) are used to model

and develop systems in application domains. Such lan-

guages are high-level and provide abstractions and no-

tations for better understanding and easier modeling of

applications in a special domain. A variety of different

domain-specific languages are used to develop one large

software system. Each domain-specific language focuses

on different problem domains and as far as possible on

automatic code generation [1].

Domain-specific languages are designed by DSL de-

signers. They design abstract syntax, at least one con-

crete syntax and semantics. The developed DSL is used

by the DSL users to build domain models modeling the

domain of a software system.

WeST - Institute for Web Science and Technology
Universitätsstrasse 1, Koblenz 56070, Germany
E-mail: {walter, parreiras, staab}@uni-koblenz.de

We have identified the following challenges given by

current approaches for domain-specific modeling [2]:

Tooling: DSL tooling provides abstraction and assis-

tance for the domain to be modeled. The purpose

of abstraction is to reduce software descriptions and

implementations. Tool assistance aims at guiding

the development process (debuggers, testing engines) [3].

(challenge (1))

Interoperability: In industrial projects, multiple lan-

guages are considered to model a software system.

The facilities for language interoperability allow DSL

users to model different static and behavioral as-

pects of the system and to freely shift between domain-

appropriate languages. (challenge (2))

Formal semantics and constraints: To describe the

meaning of concepts semantics are defined and to re-

strict the use of a concept constraints are defined.

DSL semantics and constraints are often not defined

explicitly but hidden in tools. To fix specific for-

mal semantics and constraints for DSLs, they should

be defined precisely in the language specifications.

(challenge (3))

Learning curve: At the beginning, users of DSLs have

not a deep understanding of the concepts a DSL pro-

vides. They need suggestions and guidance to use

the DSLs. Suggestions and guidance facilitate the

learning effort of a DSL. (challenge (4))

Domain analysis: The purpose of the domain analy-

sis is to select and define the domain of focus and to

collect relevant domain information and integrate it

into a coherent domain model [4]. (challenge (5))

Some of the challenges depend on each other. Im-

proving tooling enhances the user experience and the

learning curve of DSLs. Formal semantics and constraints

are the basis for interoperability and formal domain

analysis. Formal semantics are required to provide tool-

ing like debugging. Nevertheless, addressing the chal-

lenges is crucial for the successful adoption of domain-

specific languages.

Modeling issues like formal semantics or interop-

erability motivated the development of ontology lan-

guages. Formal semantics constrain the meaning of mod-

els, such that their interpretations are the same for

different persons (or machines). Description Logics [5]

underpin the W3C standard Web Ontology Language

(OWL) [6] and provide the foundations for ontology

languages. OWL together with automated ontology and

reasoning technologies provide a powerful solution for

formally describing domain concepts.

Considering that some of the main challenges of

domain-specific modeling motivated the design of OWL

2 Tobias Walter et al.

and ontology technologies, the following two questions

arise: Which characteristics of ontology technologies may

help in addressing current DSL challenges? What are

the building blocks of a solution for applying ontology

technologies in DSLs?

Recent work has explored ontology technologies to

address some domain-specific modeling challenges. Tairas

et al. [7] apply ontologies in the early stages of domain

analysis to identify domain concepts (challenge (5)).

Guizzard et al. [8] propose the usage of an upper on-

tology to design and evaluate domain concepts (chal-

lenge (3)) whereas Bräuer and Lochmann [9] propose

an upper ontology for describing interoperability among

DSLs (challenge (2)). Nevertheless, the application of

ontology languages and technologies to address the re-

maining challenges (1) and (4) remains an open issue.

France and Rumpe present in [10] a research road

map for model-driven development of complex software.

The open challenges for MDE presented in their work

completely cover our challenges (1) and (4). France and

Rumpe ask for the integration of formal techniques with

MDE approaches to design and use formal (domain-

specific) modeling languages.

Besides the integration, the complexity of the for-

mal language being integrated should be hidden. Hence

language designers and users may use the modeling lan-

guages they are familiar with as much as possible. If

their language provides an insufficient expressivity they

should be able to use the integrated formal language

(challenges (1)).

Besides the integrated use of formal language, the

analysis tools should be integrated with existing mod-

eling language tools (challenges (4)).

1.1 Proposed Solution

To provide support for the challenges (1) and (4) we

suggest an ontology-based framework for domain-specific

modeling. For the support of tooling and learning of a

DSL, it provides automated services that base on on-

tology technologies.

The framework provides tool support to DSL de-

signers and DSL users. DSL users are guided during

the modeling process, and are able to validate incom-

plete domain models. The correctness of the domain-

specific language in development is important for DSL

designers. They use services to check the consistency

of the developed language, or they might exploit in-

formation about concept satisfiability, checking if it is

possible for a concept in the metamodel to have any

instances. When DSL users verify whether all restric-

tions and constraints imposed by the DSL metamodel

hold, they use a reasoning service to check the consis-

tency of domain models. If the domain models, created

by users during the modeling process, are inconsistent,

they rely on debugging support and inconsistency man-

agement for detecting, diagnosing, and handling the in-

consistency [11].

To facilitate the learning curve, the framework sup-

ports DSL users with suggestions during building do-

main models and progressive evaluation of domain con-

straints. At the beginning, DSL users often are not fa-

miliar with the specific concepts a DSL provides. They

often use generic concepts, but it is important for a

domain model, that its elements have the most spe-

cific type (for example for generating the most spe-

cific code). DSL users select a model element and use

a reasoning service for dynamic classification. Dynamic

classification allows for determining the concepts which

model elements belongs to dynamically, based on the

instances descriptions.

1.2 Modeling Approach

To help DSL designers to define sound and valid lan-

guages whose use is supported by the aforementioned

services, we create a new technological space. In [12] a

technological space is defined as a working context with

a set of associated concepts, body of knowledge, tools,

required skills, and possibilities. Since we are describing

a framework for domain-specific modeling, we will con-

centrate on the concepts and tools available for DSL

designers and users.

The framework implementing this new technologi-

cal space is arranged according to the OMG’s layered
architecture depicted in Figure 1. In addition, the figure

refers to the sections where the corresponding parts are

explained. The roles DSL user and DSL designer are

assigned to the different layers they are responsible for.

The Ecore-based metamodeling language described

by the M3 metametamodel is used by DSL designers at

the M2 layer. Here new metamodels are designed. The

language designers define the general structure of the

language at the M2 layer and extend it by additional

constraints. The framework allows for using the familiar

Java-like KM3 syntax [13,14] to a very large extent. It

is used to textually implement Ecore-based metamod-

els. If DSL designers recognize that it is not expressive

enough they are able to define constraints within the

metamodel in an integrated manner (cf. Section 5.1). To

annotate Ecore-based metamodels with additional con-

straints, an integrated metamodeling language at the

M3 layer is needed (cf. Section 5.2).

DSL users consider the metamodel (the abstract

syntax definition of the DSL) and create instances at

An Ontology-Based Framework for Domain-Specific Modeling 3

the M1 layer. These instances build the domain models

(cf. Section 2).

Services in the framework like the ones mentioned

above are provided to both, DSL designers and DSL

users (cf. Section 5.3). The services instruct and guide

DSL users during building domain models. Services al-

low to check the consistency of domain models, domain

concepts should be suggested to DSL users, incomplete

parts in the models should be detected and redundan-

cies should be removed.

In the scope of this paper, a DSL framework is a

tool for model-driven development of DSLs at the M2

layer and to support domain modeling at the M1 layer.

Section 5 gives more details about the framework, its

concepts and services. Here we will extend Figure 1.

In [15] we presented a framework for using ontolo-

gies with UML class-based modeling. In [16,17] we pre-

sented the idea of ontology-based design of domain-

specific language. In this paper we are going to strength-

ening the approaches given in [15–17] by enriching domain-

specific modeling with ontology technologies. While in [15]

the integration of ontology languages and a general

class-based modeling language was presented, in this

paper we concentrate more on the design and use of

domain-specific modeling languages. We are going to

show, how DSL designers and users benefit from the ad-

vantages of ontology technologies. While [16] just pre-

sented the idea and challenges for the design and use of

DSLs together with ontology technologies, in this pa-

per we are strengthening the integration of DSLs and

ontologies and the services which are provided to DSL

designers and users.

We organize the remaining sections as follows: Sec-

tion 2 describes the running example used through the

paper and analyzes the DSL challenges to be addressed

with ontology technologies. In [18], an ontology is de-

fined as a formal, explicit specification of a shared con-

ceptualization. In this paper we concentrate more on

the ontology technologies usable for DSL design and

use. Therefore, Section 3 describes the ontology lan-

guage OWL as a software language by presenting a con-

crete syntax, a metamodel and its semantics. In addi-

tion we comment in this section on the reasoning tech-

nologies, which consider an ontology designed by the

ontology language. The framework is described in Sec-

tion 5 by presenting the language used to design DSL

metamodels and the services it provides to designers

and users. In Section 7 we present two possible imple-

mentations for a framework for ontology-based domain

specific modeling. We revisit the running example in

Section 8 and analyze related work in Section 6. Sec-

tion 9 finishes the paper.

2 Scenario

Comarch1, one of the industrial partners in the MOST

project2, has provided the running example used in this

paper. It is a suitable simplification of the user scenario

being conducted within the MOST project.

The company is specialized in designing, implement-

ing and integrating IT solutions and services. For soft-

ware development, Comarch uses model-driven meth-

ods with different kinds of domain-specific languages

being deployed during the modeling process.

Comarch uses a domain-specific language to model

physical network devices. DSL designers at Comarch

design a DSL to specify devices from a specific family

(e.g. the Cisco 7600 family) at the M2-layer. Here, the

goal of DSL designers is to formally define the logical

structures of devices and restrictions over these struc-

tures (which leads to the below listed requirement (1),

listed at the end of this Section).

DSL users use the DSLs defined by DSL designers

to create domain models that describe concrete config-

urations of physical devices (M1-layer) [19].

The general physical structure of a Device consists

of a Bay which has a number of Shelfs. A Shelf con-

tains Slots into which Cards can be plugged. Logically,

a Shelf with its possible Slots and Cards is stored as a

Configuration.

Figure 2 depicts four steps of the development of

a configuration of a Cisco device. Firstly (step 1), the

DSL user starts with an instance of the general concept

Cicso Dev representing the physical device. A Cisco de-

vice requires at least one configuration. Thus he plugs

in a Cisco Configuration 760x element into the device.

In step 2, the DSL user adds exactly three slots to

the device configuration. At this point, the DSL user

verifies whether the configuration satisfies the DSL re-

strictions (requirement (2)). Although the domain model

is incomplete it is not inconsistent. Thus queries against

it are possible asking if the domain model consists of at

least one configuration with at least one slot.

After adding three slots to the configuration of the

physical device, the DSL user plugs in some cards to

complete the end product (step 3). He may insert two

SPA Interface Cards for 1-Gbps broadband connections

and a controller for swapping cards at runtime (Hot
Swappable OSM).

1 http://www.comarch.com/
2 http://www.most-project.eu/

4 Tobias Walter et al.

M3

M2

M1Domain
Model

Domain
Model

instanceOf

instanceOf instanceOf

M0Real World Systems

representationOf representationOf

Service

Integrated Metametamodel
(Ecore-based)

DSL Metamodel
DSL

Designer

DSL
User

Sec. 4.2

Sec. 4.1

Sec. 2

Sec. 4.3

Fig. 1 DSL Designer and DSL User in the OMG four-layered architecture

At this point, the DSL user wants to check the con-

sistency of his configuration by just invoking the cor-

responding functionality. This functionality is imple-

mented by a reasoning service. In our example, the do-

main model in step 3a is inconsistent. Here debugging

comes into play, since a DSL user needs an explana-

tion why his model is inconsistent and how to correct

it (requirement (3) and (4)). In step 3b an explanation

service would explain that every configuration of Cisco

requires a Supervisor card to control the device and that

one of the three cards must be replaced by it.

The DSL defines the knowledge of which special

types of cards are provided by a specific configura-

tion. Having the information that a configuration in

step 4 is connected with three slots in which a Su-
pervisor card and at least a Hot Swappable OSM or

SPA Interface Card is plugged in, the refinement of the

Cisco Configuration 760x type by the more specific type

Cisco Configuration 7603 should be recommended to the

DSL user (requirement (3)) by the framework. This rec-

ommendation is the result of a reasoning service.

Since it has been inferred that the Cisco device has

the Cisco Configuration 7603, in step 4, the recommen-

dation service also suggests to change the type of the

Cisco Dev to the more specific type Cisco7603 Dev.

In the following, we concentrate on the requirements

derived from the scenario and from the challenges men-

tioned in Section 1. The requirements may be classified

with regard to the two actors concerned: DSL designer

and DSL user. First we present the ones for the DSL

designer:

1. Constraint Definition (challenge (3)). The DSL de-

velopment framework should allow for defining con-

straints over the DSL metamodel. DSL designers

have to define formal semantics of the DSL in devel-

opment to describe constraints and restrictions the

domain models have to fulfill.

The following requirements concern the DSL user:

2. Progressive verification (challenges (1), (4)). Even

with an incomplete model, the DSL development

framework must provide means for verifying con-

straints. For example, in step 2 the DSL user may

want to validate constraints.

3. Suggestions of suitable domain concepts to be used

(challenge (4)). DSL users need suggestions of do-

main concepts to be used because they might not be

familiar of all concepts the DSL provides. DSL users

normally start the modeling with generic concepts

like Cisco Dev or Cisco Configuration 760x. The frame-

work suggests the refinement of elements to the most

suitable ones, like Cisco Configuration 7603 or Cisco-
7603 Dev (step 4). Such classifications together with

explanation help novice DSL users to understand

how to use the DSL.

4. Debugging (reasoning explanation) (challenges (1),

(4)). DSL users want to debug their domain models

to find errors inside them and to get an explana-

tion how to correct the model. They want to have

information about consequences of applying given

domain constructs. In this scenario, DSL users want

to know that they have to replace an SPAInterface
card with a Supervisor card (step 3).

5. Different ways of describing constructs (syntactic

sugar) (challenge (4)). DSL users always are not

familiar with all specific concepts a DSL provides.

In the aforementioned scenario, DSL users do not

have the complete knowledge of the Cisco Config-

uration 7603. Thus, they use an alternative way to

describe an instance of this concept (step 2 and 3).

An Ontology-Based Framework for Domain-Specific Modeling 5

1 2

3a

3b

4

Fig. 2 Modeling a physical device in four steps (M1 layer)

6 Tobias Walter et al.

Providing such alternative ways of designing domain

models might improve productivity.

3 Ontology Languages and Technologies

In this section we are going to introduce ontology tech-

nologies.

Among ontology languages, we build on the W3C

standard OWL. OWL actually stands for a family of

languages with increasing expressiveness. OWL2 [6],

the emerging new version of OWL, is a highly expres-

sive language that allows for sound and complete calculi

that are decidable as well as practically efficient.

In general, ontologies are used to define sets of con-

cepts that describe domain knowledge and allow for

specifying classes by rich, precise logical definitions.

The difference between OWL and modeling languages

such as UML class diagrams is the capability to de-

scribe classes in many different ways and to handle in-

complete knowledge. These OWL features increase the

expressiveness of the metamodeling language, making

OWL a suitable language to formally define classes of

modeling languages.

OWL2 features many types of axioms and thus pro-

vides different constructs to restrict classes or proper-

ties.

3.1 Ontology Example

In Figure 3 we give an example of an OWL2 ontology in

functional-style syntax describing a part of the domain

of physical devices presented in Section 2. Each line of

the ontology presents one axiom and it represents the

class descriptions (modeled in the terminological box

(TBox) where the knowledge is declared), the relation

descriptions (modeled in the relation box (RBox)), as

well as the instance descriptions (modeled in the asser-

tional box (ABox)).

In the first part, the TBox (Terminological Box)

of an ontology is depicted. In the TBox all necessary

classes are declared and their descriptions refined by

additional class axioms. The class Cisco7603 Dev is sub-

class of Cisco Dev and equivalent with an anonymous

class just defining that it is linked via the property

hasConfiguration with some specific Configuration7603.

Configuration7603 is defined as specialization of Config-
uration760x. In addition, the classes Slot and Card are

declared.

In the second part the RBox (Relationship Box) is

depicted. In the RBox the object properties hasConfig-
uration, hasSlot, and hasCard are declared and bound

Ontology(DeviceOntology

// TBox: Axioms on Classes
Declaration(Class(Cisco Dev))
Declaration(Class(Cisco7603 Dev))
EquivalentClasses(Cisco7603 Dev ObjectSomeValuesFrom(

hasConfiguration Configuration7603))
SubClassOf(Cisco7603 Dev Cisco Dev)
Declaration(Class(Configuration760x))
SubClassOf(Configuration760x Configuration7603)
Declaration(Class(Configuration7603))
Declaration(Class(Slot))
Declaration(Class(Card))
SubClassOf(Configuration760x ObjectMinCardinality(1 hasSlot Slot))
EquivalentClasses(Thing ObjectOneOf(cisco7603 dev config slot1 card))
DisjointClasses(Cisco Dev Configuration760x Slot Card)

// RBox: Axioms on Relations (”Properties”)
Declaration(ObjectProperty(hasConfiguration))
ObjectPropertyDomain(hasConfiguration Cisco Dev)
ObjectPropertyRange(hasConfiguration Configuration760x)
Declaration(ObjectProperty(hasSlot))
ObjectPropertyDomain(hasSlot Configuration760x)
ObjectPropertyRange(hasSlot Slot)
Declaration(ObjectProperty(hasCard))
ObjectPropertyDomain(hasCard Slot)
ObjectPropertyRange(hasCard Card)

// ABox: Axioms on Inviduals
Declaration(Individual(cisco7603 dev))
ClassAssertion(cisco7603 dev Cisco Dev)
Declaration(Individual(config))
ClassAssertion(config Configuration7603)
ObjectPropertyAssertion(hasConfiguration cisco7603 dev config)
Declaration(Individual(slot1))
ClassAssertion(slot1 Slot)
ObjectPropertyAssertion(hasSlot config slot1)
Declaration(Individual(card))
ClassAssertion(card Card)
ObjectPropertyAssertion(hasCard slot1 card)
DifferentIndividuals(cisco7603 dev config slot1 card)
)

Fig. 3 Example of an OWL2 ontology

via a domain and range axiom to the classes they come

from and go to.

In the third part the ABox (Assertional Box) is

depicted. In the ABox the individuals cisco7603 dev,

config, slot1, card are declared, assigned by their re-

spective types using a class assertion and linked by an

object property assertion.

3.2 OWL2 Syntax and Model-theoretic Semantic

OWL2 provides model-theoretic semantics [20] which

are defined by an interpretation function and are re-

lated to the semantics of description logics [5].

An interpretation I = (∆I , ·I) consists of a non-

empty set ∆I , the interpretation domain, and a map-

ping ·I , which associates each class description C with

a set CI ⊆ ∆I , each object property description P with

a binary relation P I ⊆ ∆I ×∆I , and each individual i

with an element iI ⊆ ∆I .

In Table 1 we present a set of OWL2 constructs to

model the TBox, RBox and ABox. We highlight their

An Ontology-Based Framework for Domain-Specific Modeling 7

OWL2 Construct OWL2 Functional-Syntax Semantics

TBox class axioms and expressions
Top Concept Thing ThingI = ∆I

Class Declaration Declaration(Class(C)) CI ⊆ ∆I

Subclass Definition SubClassOf(C D) CI ⊆ DI

Equivalent Classes EquivalentClasses(C D) CI = DI

Disjoint Classes DisjointClasses(C D) CI ∩DI = ∅
Class Intersection ObjectIntersectionOf(C D) CI ∩DI

Class Union ObjectUnionOf(C D) CI ∪DI

Class Complement ObjectComplementOf(C) ∆I\CI

Existential Quantification ObjectSomeValuesFrom(P C) {x | ∃y : (x, y) ∈ PI ∧ y ∈ CI}
Universal Quantification ObjectAllValuesFrom(P C) {x | ∀y : (x, y) ∈ PI → y ∈ CI}
At Most Restriction ObjectMaxCardinality(n P C) {x |]{y ∈ ∆I | (x, y) ∈ PI ∧ y ∈ CI} ≤ n}
At Least Restriction ObjectMinCardinality(n P C) {x |]{y ∈ ∆I | (x, y) ∈ PI ∧ y ∈ CI} ≥ n}
Enumeration ObjectOneOf(i1...in) {iI1 ...iIn} ⊆ ∆I

RBox object property axioms and expressions
Object Property Declaration Declaration(ObjectProperty(P)) PI ⊆ ∆I ×∆I

Object Property Domain ObjectPropertyDomain(P C) {x | ∃y : (x, y) ∈ PI} ⊆ CI

Object Property Range ObjectPropertyRange(P C) ∆I ⊆ {x | ∀y : (x, y) ∈ PI → y ∈ CI}
ABox individual axioms and expressions

Individual Declaration Declaration(Individual(i)) iI ∈ ∆I

Class Assertion ClassAssertion(i C) iI ∈ CI

Object Property Assertion ObjectPropertyAssertion(P i j) (iI , jI) ∈ PI

Different Individuals DifferentIndividuals(i1 in) iIk 6= iIj (1 ≤ k < j ≤ n)

Table 1 OWL2 constructs and semantics (excerpt)

syntax and describe their semantics for a given inter-

pretation I. In [21] a complete list of OWL2 constructs

and its semantics is described.

3.3 Open World vs. Closed World and Domain

Assumption

While the semantics of MOF-based modeling and OCL

adopts the closed world assumption (CWA), descrip-

tion logics and OWL adopt the open world assumption

(OWA) by default. The closed-world assumption states

that the elements and their relations in the model are

all known.

The open world assumption assumes incomplete in-

formation as default and allows for validating incom-

plete models which are still in the design phase.

3.3.1 Closing the world

Many approaches were developed for closing knowledge

bases and allowing reasoners to validate integrity con-

straints. In general there are two different approaches:

those which try to close the knowledge base by addi-

tional facts and those which introduce new language

constructs for closing the knowledge base.

A first variant of using additional facts proposes the

use of closure axioms. A closure axiom on a property

consists of a universal quantification that acts along

the property to define that it can only be filled by the

specified fillers [22].

In [9] a more comprehensive approach is presented,

which allows for locally closing the world. Every concept

is closed by defining that it is equivalent with the set

of all known instances.

An approach that simulates the local CWA by intro-

ducing a new language construct is the one presented

in [23,24]. Here a K-operator is introduced which allows

for locally closing concepts and roles. The K-operator

only considers instances which are known by the knowl-

edge base.

3.3.2 Closing the domain

Although the open world assumption has many advan-

tages we have to ensure that the validation of integrity

constraints defined in OWL2 is still possible.

The closed domain assumption (CDA) states that

the set of all individuals in the domain coincides with

the set of individuals explicitly mentioned in the on-

tology. The CDA ensures the unique name assumption

(UNA) and the type which is explicitly assigned to an

individual.

UNA: The unique name assumption (UNA) requires

that if instances have different names they are un-

derstood as different. In OWA the UNA is not con-

sidered, since two instances are not declared as dif-

ferent. Using the Different Individuals construct pro-

8 Tobias Walter et al.

vided by OWL2 it is possible to explicitly declare a

set of individuals as different.

Types: To ensure that a given instance only has the

asserted type all other concepts are declared as dis-

joint. This fact is achieved by the use of the Disjoint

Classes axiom.

Instances: Only the instances which are explicitly de-

fined in the ontology are considered in CDA. Thus

the top concept Thing is defined as equivalent with

the set of instances the ontology contains. This fact

is achieved by using the Enumeration construct.

3.4 Metamodel of OWL2

Figure 4 depicts an excerpt of the OWL2 metamodel

that we use subsequently. Each OWL2 ontology con-

sists of a set of axioms. Class axioms for example are

the EquivalentClasses axioms or the SubClassOf axioms.

The EquivalentClasses axiom is used to describe two or

more class expressions as equivalent, whereas the Sub-
ClassOf axiom defines exactly one class expression to be

the subclass of another. A possible class expression for

example is the ObjectSomeValuesFrom expression which

describes those individuals which are connected via a

given object property to at least an individual of the

given class expression.

Beside class descriptions, individuals are part of an

ontology. Class assertions are axioms that are used to

assert individuals having as type the given class expres-

sion.

The ontology in Figure 3 conforms to the meta-

model in Figure 4 .

3.5 Reasoning

Based on an OWL2 ontology, standard reasoners like

Pellet [25] provide reasoning services such as consis-

tency checking, satisfiability checking, and subsumption

checking.

An interpretation I is called a model of the TBox

and RBox of an ontology, if it satisfies all its axioms on

classes and properties. The interpretation I is called a

model of the ABox of an ontology, if it satisfies all its

axioms on individuals.

In the following we describe four standard reasoning

services.

Consistency checking: checks, if the ABox is consistent

with regard to the TBox and RBox (the ABox is

consistent, if it has a model I which is also a model

of the TBox and RBox).

SELECT ?i
WHERE {

?i rdf:type [
rdf:type owl:Restriction ;
owl:onProperty :hasSlot ;
owl:someValuesFrom :Slot
]

}

Fig. 5 SPARQL query

Satisfiability checking: checks, if the a class expression

C is satisfiable. C is satisfiable if CI 6= ∅ for some

model I of the TBox containing C and the RBox.

Subsumption checking: checks, if Csub is subsumed by

Csup. Csub is subsumed by Csup if CIsub ⊆ CIsup for

all models I of the TBox and RBox.

Classification Checking: checks, if i is an instance of

the class expression C. i is an instance of C, if iI ∈
CI for all models I of TBox, RBox and ABox.

3.6 Querying

The current W3C recommendation for the SPARQL

Protocol and RDF Query Language (SPARQL is a re-

cursive acronym) corresponds to version 1.1 [26]. Orig-

inally SPARQL is designed to query RDF graphs.

Below we depict a SPARQL query which asks for all

instances which are connected (via hasSlot) with a slot.

SPARQL 1.0 has only be defined as a query lan-

guage over RDF graphs, not taking into account RDF

Schema or OWL ontologies [27].

Answering full SPARQL queries on top of OWL has

already preliminarily been addressed so far [28,29] and

is proposed to be provided by SPARQL 1.1 [30].

The semantics and their entailment is similar to the

one of ontology languages. It is based on interpretations

of RDF basic graph pattern which are mapped to OWL

axioms defined in an ontololgy.

In [31] a translation of a SPARQLAS query to a

SPARQL query is presented.

The problem identified in [31] lies in SPARQL and

its syntax for RDF triples. If a user wants to query an

ontology which is represented in OWL functional-style

syntax, he needs to translate his OWL syntax to the

proper representation in RDF triples. This translation,

if done manually, can be time consuming and is prone

to syntactic as well as to semantic errors.

A simpler syntax is the one of SPARQLAS. The fol-

lowing SPARQLAS query asks for all individuals which

have some slot:

Query (ClassAssertion(?i ObjectSomeValuesFrom(hasSlot Slot)))

Its syntax is adapted to the OWL2 functional-style syn-

tax. Thus similar to the OWL2 functional-style syntax

An Ontology-Based Framework for Domain-Specific Modeling 9

Fig. 4 Excerpt of the OWL2 metamodel [6]

presented in Figure 3. The semantics of the query are

the same as the SPARQL query in Figure 5.

4 Relationship between Software Modeling

Space and Ontology Space

In Section 1.2 we presented the software modeling ap-

proach, where all models are described by metamodels,

which in turn are modeled using a metamodeling lan-

guage like Ecore.

In Section 3 we introduced the ontology space. The

space allows for designing ontologies, which conform to

the ontology language OWL 2.

Before we combine both spaces in Section 5, we are

going to discuss its relationship and describe the com-

monalities and differences.

Figure 6 depicts an overview of the relationship be-

tween a software modeling space and an ontology space.

In the following we are going to compare the Ecore

metamodeling language with the ontology language OWL 2.

Domain Model

Ecore Metametamodel

Software Modeling Space Ontology Space

DSL Metamodel

OWL2 Metamodel

TBox

ABox

Ontology

M3

M2

M1

instanceOf

instanceOf

instanceOf

ontology hasType

Fig. 6 Comparison of Software Modeling Space and Ontology
Space

We will establish a mapping between both languages,

which represents the common concepts. Additionally,

we depict differences of both languages.

10 Tobias Walter et al.

4.1 Common Concepts

In this section we are going to the common concepts

the respective spaces provide. We consider the concepts

of the metamodeling language Ecore and those of the

ontology language OWL 2.

OWL 2 allows for modeling instance layer (ABox)

and concept layer (TBox). With respect to the software

modeling approach and besides Ecore used to model

metamodels at the M2 layer, we consider Instance, Link,

and Attribute Assignment as the concepts to create a

model at the M1 layer.

Comparing the Ecore language and the OWL 2 lan-

guage, at first glance we intensionally find similar con-

cepts, which are juxtaposed in Table 2.

(1) An Ecore metamodel allows for specifying classes,

datatypes and relations like references or attributes.

The TBox of an OWL2 ontology as well allows for de-

scribing classes and its relations. (2) Classes in Ecore

correspond to classes in OWL. With respect to the in-

tensional semantics both class concepts represent a set

of instances. (3) The references in Ecore correspond to

object properties in OWL. They both represent sets

of relations between instances of given types. (4) The

attributes in Ecore correspond to data properties in

OWL, since they both describe relations between in-

stances and values of a predefined datatype. (5)The

datatypes of attributes in Ecore semantically comprise

atomic values like the datatypes in OWL.

OWL 2 ontologies additionally allow for modeling

an ABox consisting of individuals and assertions. (6)

With respect to the intensional semantics instance in a

domain model correspond to individuals in an OWL2

ontology. Both are classified by classes. (7) In domain

models links are instances of references and represent

connections between two instances. In OWL 2 object

property assertions are used to define connections be-

tween two individuals with respect to an object prop-

erty. (8) In domain models attribute assignments define

the relation between an instance and a value. In OWL 2

data property assertions are used to define the relation

between an individual and a value with respect to a

data property.

4.2 Differences

After we illustrated commonalities of Ecore and OWL 2,

we continue the comparison by depicting differences.

For the ontology language OWL 2, we mention those

constructs, which are not replaceable by respective coun-

terparts in Ecore-based metamodels. In the case of the

Ecore metamodeling language we mention those con-

structs, which are not directly representable in an on-

tology.

4.2.1 OWL 2

Besides the description of classes, properties and in-

stances, OWL 2 provides a comprehensive set of class

expressions and axioms used to extend the description

of modeled data in ontologies.

In OWL 2, class expressions and property expres-

sions are combined to form new class expressions. Class

expressions represent sets of individuals by formally

describing the properties of individuals. Class expres-

sions in OWL 2, which have no counterpart in Ecore,

are the ObjectIntersectionOf, ObjectUnionOf, and Ob-
jectComplementOf for the standard set-theoretic oper-

ations on class expressions (in logical languages these

are usually called conjunction, disjunction, and nega-

tion, respectively). Furthermore, constructs for quanti-

fied expressions for the description of classes containing

those instances being linked with some individual (us-

ing the ObjectSomeValuesFrom class expression) or only

with individuals (using the ObjectAllValuesFrom class

expression) of a given type, are not provided by Ecore.

OWL 2 provides the description of classes by enumerat-

ing individuals. A counterpart of the ObjectOneOf class

expression is not available in Ecore.

The following class expression, which is defined as

equivalent to the class Device describes those individu-

als, which are linked via the property hasConfiguration
with at least one individual of type ComplexConfigura-
tion or with one of the individuals config7603 or con-
fig7604.

EquivalentClasses(Device ObjectSomeValuesFrom(hasConfiguration
ObjectUnionOf(ComplexConfiguration ObjectOneOf(config7603
config7604))))

OWL 2 provides an extensive set of axioms used

to state what is true in the domain [6]. In particular

OWL 2 provides the use of class axioms and property

axioms.

Class axioms are used to express relationships be-

tween two or more class expressions. The Equivalent-
Classes axiom states that two class expressions describe

the same set of individuals, while the DisjointClasses
axiom states that the sets of individuals described by

both class expressions are disjoint. In the listing above

the EquivalentClasses axiom states the equivalence of

the set of individuals described by Device and the set

described by the ObjectSomeValuesFrom class expres-

sion. Ecore allows for relating classes by specialization

relationships. Additional relations between the sets of

instances described by classes are not possible.

An Ontology-Based Framework for Domain-Specific Modeling 11

] Ecore Concept OWL 2 Concept

1

Metamodel

Metamodel

TBox

Ontology
2 Class Class
3 Reference ObjectProperty
4 Attribute DataProperty
5 Datatype Datatype

6
Model

Instance
ABox

Individual
7 Link ObjectPropertyAssertion
8 AttributeAssignment DataPropertyAssertion

Table 2 Mapping between Ecore concepts and OWL 2 concepts.

Object property axioms are used to characterize and

establish relationships between object property expres-

sions. An OWL 2 object property transitivity axiom

describes that an object property expression is transi-

tive. Furthermore, OWL 2 allows for stating that two

object properties are equivalent or disjoint. If two ob-

ject properties are equivalent or disjoint, the sets of

relations between individuals they describe are equiv-

alent or disjoint. Ecore does not provide constructs to

relate the sets of links described by an reference.

OWL 2 allows for composing two or more object

properties to one object property chain being the spe-

cialization of another object property. The object prop-

erty hasDeviceCard in the following is defined as the

composition of hasCard and hasDeviceCard. In Ecore the

composition of references is not possible.

SubObjectPropertyOf(SubObjectPropertyChain(hasConfiguration hasCard)
hasDeviceCard)

4.2.2 Ecore

The main distinction of the Ecore metamodeling lan-

guage compared to OWL 2 is the definition of packages.

Ecore allows for (sub-)packaging classes and data types.

The hierarchical (sub-)packaging concepts are not avail-

able for ontologies.

Metamodeling languages like CMOF [32] or grUML[33]

compared to OWL 2 allow for the definition of attributes

for associations that connect two classes. Hence, links

in models may be attributed. OWL 2 does not allow

for defining attributes (or data properties) assigned to

object properties. In OWL 2 only classes can be defined

as a domain of a data property.

4.3 Other Relationships between Software Models and

Ontologies

In [8,17] ontologies are used as a pure domain model

with layers for domain types and domain instances, re-

spectively. Here, ontologies play the role of conceptual

domain models, which are used in domain engineer-

ing to describe the problem domain a software system

should support. Conceptual domain models are of de-

scriptive nature. It consists of domain instances (indi-

viduals), which describe the system instances in the real

world. All domain instances and their relations build

one layer (ABox), which is part of the ontology. To

classify domain instances, ontologies consist of domain

types (classes) lying in a separate layer (TBox).

In [34,35] Gasevic et al. use UML class diagrams

with a specific UML profile for OWL to model ontolo-

gies. In general, one class diagram represents an ontol-

ogy with TBox and ABox, i.e. UML classes are used to

model OWL classes, UML associations and attributes

are used to model properties, and UML instances are

used to model OWL individuals.

In contrast to other works, we consider ontologies

as one single representation for metamodel and domain

model. Here, the TBox of the ontology consists of lan-

guage concepts typically defined in the metamodel of a

DSL and the ABox consists of respective instances.

5 Languages and Services for Ontology-Based

Domain-Specific Modeling

In this section we are going to present the ontology-

based framework for domain-specific modeling.

Figure 7 enriches Figure 1 and represents the frame-

work in more detail. It shows the layered architecture

with additional technical details of the framework.

The framework supports both, DSL designers and

DSL users.

DSL designers define domain-specific languages at

the M2 layer. They require a concrete syntax to model

the metamodels together with constraints. Our frame-

work provides a combination of the Java-like KM3-

syntax [13] (a concrete syntax for Ecore [36]) and an

OWL syntax. DSL designers are able to describe classes

in DSL metamodels seamlessly integrated with OWL

axioms and expressions. In Section 5.1 we exemplify

the design of integrated metamodels.

To build metamodels, DSL designers require a meta-

modeling language whose abstract syntax is described

by a metametamodel. This metametamodel is defined

12 Tobias Walter et al.

at the M3 layer. A metametamodel which provides a

tool-ready reusable implementation is the Ecore meta-

metamodel [36]. To support the DSL designer in en-

riching metamodels by constraints and formal seman-

tics we integrate the metametamodel with a language

that is more expressive than Ecore. We consider an in-

tegration of OWL2 to describe integrated metamodels

with seamlessly embedded OWL2 axioms and expres-

sions. The integration of Ecore and OWL2 is presented

in Section 5.2.

DSL users may then use the developed DSL with ad-

ditional benefits. Results are domain models (M1-layer)

like the ones in Section 2. Having formal semantics of

the DSL, different reasoning services are available. Ser-

vices are presented in Section 5.3.

DSL users build domain models (cf. Section 2) using

the DSL developed by the DSL designer. Based on the

formal semantics and constraints restricting the use of

the DSL, different reasoning services are available. In

Section 5.3 we specify a set of services. They describe

an interface of the framework for DSL designers and

DSL users. All services rely on ontology technologies.

Services get as input an ontology which is a projec-

tion of metamodel (to the ontology TBox) and domain

model (to the ontology ABox).

5.1 Integrated Metamodeling

The static structure of domain models as well as ex-

tended model-theoretic semantics are defined by DSL

designers in integrated metamodels.

In Figure 8, we see an excerpt of an M2 meta-

model that is created by a DSL designer using the inte-

grated metamodeling language. Using the KM3 syntax,

he defines that a Cisco Dev has Cisco Configurations,
a Cisco7603 Dev is a specialization of Cisco Dev, each

Cisco Configuration has Slots and in each Slot one to

many cards can be plugged in. All specific cards are

specializations of Card.

The DSL designer defines additional formal seman-

tics and constraints using an embedded variant of the

OWL2 Manchester style concrete syntax [37], which is

integrated with the existing KM3 syntax. In Figure 8,

the designer states that every Cisco7603 Dev device has

at least one Cisco Configuration7603. All possible con-

figurations must have a slot in which a Supervisor card

is plugged in. A Cisco Configuration760x is a Cisco Con-
figuration7603 if and only if it has exactly three slots in

which either a HotSwappableOSM card or a SPAInter-
face card is plugged in. Furthermore, if a Supervisor card

is part of a configuration, the same configuration can-

not have VoiceInterface card.

class Cisco Dev {
reference hasConfiguration [1−∗]: Cisco Configuration760x;
}
class Cisco7603 Dev extends Cisco Dev, equivalentWith hasConfiguration

min 1 Cisco Configuration7603 {
}
class Cisco Configuration760x extends (hasSlot min 1 Slot) and (hasSlot

some (hasCard some Supervisor)) {
reference hasSlot [1−∗]: Slot;
}
class Cisco Configuration7603 extends Configuration, equivalentWith (

hasSlot exactly 3 Slot) and (hasSlot some (hasCard some (
HotSwappableOSM or SPAInterface))) {

}
class Cisco Configuration780x extends (hasSlot min 1 Slot) and (hasSlot

some (hasCard some VoiceInterface)) {
reference hasSlot [1−∗]: Slot;
}
class Slot {

reference hasCard [0−∗]: Card;
}
class Card {
}
class Supervisor extends Card and inv(hasCard) only inv(hasSlot) only

hasSlot only hasCard only (not VoiceInterface) {
}
class SPAInterface extends Card {
}
class HotSwappableOSM extends Card {
}
class VoiceInterface extends Card {
}

Fig. 8 Example of an M2 metamodel

5.2 Integration of Ecore and OWL

To design integrated metamodels like the one in Fig-

ure 8 DSL designers need an integrated metamodeling

language. In the following we are going to discuss how to

integrated the metamodeling language Ecore and OWL.

We have chosen Ecore for the integration with OWL

because it represents the metametamodel of the Eclipse

Modeling Framework [36] a technological space which

provides a set of freely available modeling frameworks,

tools, and implementations. Nevertheless the integra-

tion approach presented in the following is similar to the

integration of OWL with other class-based metamodel-

ing languages (e.g. with MOF [32] or grUML [33]).

The integration is established in three steps: map-

ping of concepts, integration of concepts and projection.

Step 1: Mapping based on intensional knowledge. Be-

fore an integration bridge between Ecore and OWL can

be established, the different concepts the two languages

provide must be compared and related. The relation of

constructs is based on the intensional semantics and the

knowledge framework developers have of the languages

Ecore and OWL. The result of a relation is depicted in

Table 2 in Section 4.

Step 2: Integration of concepts. The integration of dif-

ferent constructs relies on some basic integration tasks,

which are informally described in the following:

An Ontology-Based Framework for Domain-Specific Modeling 13

Ecore
Metametamodel

M3

M2

M1

Domain
Concepts

Domain
Model

Domain
Model

instanceOf

instanceOf instanceOf

M0Real World Systems

representationOf representationOf

OWL
Metamodel

Complex Class
Desciptions / Axiom

Integration

Integrated Modeling

DL
Knowledge

Base

ABox

TBox

Reasoning
Service

projection

projection

Integrated Metametamodel

DSL Metamodel
DSL

Designer

DSL
User

Fig. 7 Bridging Ecore and OWL

Merge of Concepts: If two concepts have the same

intensional meaning they are merged. All incident

associations, specialization relations and all nested

attributes of the classes to be merged are moved to

the new class.

Specialization of Concepts: If one concept has a more

specialized meaning than some other concept, they

are related by a specialization relationship.

Relation between Concepts: If two concepts are re-

lated to each other they are connected by an asso-

ciation.

For each correspondence between two concepts in
the mapping in Table 2, one of the integration tasks is

performed. The result of the integration tasks applied

on the Ecore metametamodel and the OWL2 meta-

model is a new, integrated metametamodel. It is de-

picted in Figure 9.

(1) Specialization of Ontology Concept: The Ecore

concept Metamodel is declared as a specialization of

Ontology. This allows for adding OWL2 axioms to

Ecore metamodels.

(2) Merge of Class Concepts: The Ecore concept Class
is merged with the OWL2 concept Class. Hence, all

classes within an integrated metamodel can be in-

volved in class axioms, like the equivalent classes

axiom.

(3) Specialization of Object Property Concept:

A specialization relationship between Reference and

ObjectProperty is created. This integrations allow

Ecore references being involved in different object

property axioms and class expressions.

(4) Specialization of Data Property Concept: A

specialization relationship between Attribute and Dat-
aProperty is created. This integrations allow Ecore

attributes being involved in different object prop-

erty axioms and class expressions.

(5) Merge of Datatype Concepts: The two classes

for data types in Ecore and OWL2 are merged be-

cause they intensionally have the same meaning.

Both represent a set of values.

Since the Ecore metametamodel does not provide

explicit concepts for the design of instances and their

links, there is no integration with concepts of OWL 2.

Instances and their links are considered by a projection

service, which translates these elements to respective

OWL 2 elements according to the mapping in Table 2.

The metametamodel in Figure 9 allows for describ-

ing metamodels like the one depicted in Figure 8. The

metamodel conforms to the integrated metametamodel.

Step 3: Projection. For language designers and users

the interoperability with other tools is important. In

particular, language designers and users having created

a metamodel or domain model want to benefit from on-

tology technologies. These technologies perform reason-

ing tasks in the OWL2 technological space. Hence, our

tools project metamodels and models to an ontology

such that they can serve as input for reasoning tools.

We propose the implementation of a projection ser-

vice. A projection service for a given integrated lan-

guage is used to extract those parts of a hybrid model

conforming to the integrated metamodel which are built

by constructs of the given language to be integrated.

14 Tobias Walter et al.

Fig. 9 Integrated Metametamodel Ecore+OWL

The projection service for OWL transfers elements built

by ontology constructs and keeps their relations to other

ontology elements. The OWL projection service returns

a pure OWL2 ontology. Figure 10 depicts a specifica-

tion of a projection service getting as input a (hybrid)

metamodel and a domain model. The service returns

one ontology which conforms to the OWL2 metamodel.

It is one formal representation of both metamodel and

domain model.

5.2.1 Concrete Syntax

Figure 8 gives an example of using the concrete syntax

to define a metamodel.

The concrete syntax of our framework is based on

KM3. The motivation is that DSL designers should use

the Java-like KM3 syntax as much as they can. To bene-

fit from OWL, they should be able to annotate elements

of their DSL metamodel in a textual manner. Hence, we

have extended the grammar of the KM3 concrete syntax

by new non-terminals which are defined in grammars of

a textual OWL2 concrete syntax.

In Figure 8 the Cisco7603 Dev and the Cisco Config-
uration7603 class are annotated by an OWL2 equivalent

classes axioms.

We have extended the KM3 syntax by an adapta-

tion of the OWL2 Manchester Syntax [37] to get a nat-

ural controlled language for coding OWL2-based an-

notations. We have chosen the Manchester Syntax be-

cause its notations are closely related to the notations

of KM3. The mapping between abstract and concrete

syntax is solved using the EMFText framework for tex-

tual concrete syntax specification of DSLs [38].

An Ontology-Based Framework for Domain-Specific Modeling 15

Name Projection Service

Signature Ontology project(Metamodel mm, Model
m)

Description Creates a new ontology o which only
consists of those parts of mm which con-
form to ontology constructs defined in
the metamodel of an ontology language.
In addition, the model m is projected
into the same ontology o:

(6) Projection of Instances: for each in-
stance in a model m conforming to
some class in mm, o is extended by
an individual having as type the pro-
jection of the class.

(7) Projection of Links: For each in-
stance in a model m conforming
to some reference in mm an object
property assertion is created in o
connecting the individuals which are
projections of source and target in-
stance in m.

(8) Projection of Attribute Assignments:
For each instance in a model m

conforming to some attribute in
mm a data property assertion is
created in o assigning the value to
the individual, which is a projection
of the corresponding instance.

Fig. 10 Projection of a metamodel and a domain model to
an ontology

An editor for designing metamodels with the com-

bined textual concrete syntax is provided by the TwoUse

Toolkit3 (cf. Section 7).

5.3 Services for DSL Designers and Users

In the following we are going to present services for

DSL designers and users. The services are composed of

standard reasoning services, services for inconsistency

management and querying services.

We specify the services by giving their name, their

signature and a description of their activity.

The standard reasoning services presented in the fol-

lowing specify the services provided by standard reason-

ers (cf. Section 3.5).

Services for inconsistency management are provided

to DSL users to diagnose, detect and handle the incon-

sistency in domain models.

DSL users use a query service for predefined queries

developed by the DSL designer.

3 http://code.google.com/p/twouse

Name Consistency Checking

Signature boolean isConsistent(Ontology o)

Description The service returns true, if the ABox A
of the ontology o is consistent with re-
gard to the TBox T . Otherwise, it re-
turns false.

Fig. 11 Reasoning Service: Consistency Checking

Name Satisfiability Checking

Signature boolean isSatisfiable(Ontology o, ClassEx-
pression c)

Description The service returns true if the class ex-
pression c is satisfiable. Otherwise, it re-
turns false. (c is satisfiable if some in-
stance of c can be created in o and o

does not become inconsistent)

Fig. 12 Reasoning Service: Satisfiability Checking

5.3.1 Reasoning Services

In the following we are going to present a set of reason-

ing services available for language designers and users.

Consistency Checking. DSL users having created a do-

main model want to check the consistency of the model

with respect to the metamodel. Our framework sup-

ports DSL users by providing a consistency checking

service. Before invoking the service, the framework pro-

jects both, the metamodel and the domain model, by

the projection service presented in Figure 10 into an

OWL2 ontology. The domain model is part of the ABox,

where the metamodel with all axioms and expressions

lies in the TBox of the ontology. The service specified in

Figure 11 gets as input an ontology model, which con-

forms to the OWL2 metamodel, and returns, whether

the domain model is consistent.

A DSL user, who checks the domain model in Fig-

ure 2 (3a), gets the answer, that the model is not con-

sistent (because the supervisor card is missing).

Satisfiability Checking. The task of language designers

is to build a metamodel, describing the abstract syn-

tax of domain-specific modeling language. To validate

the metamodel, the language designer wants to check

if its classes are instantiable. Our framework supports

language designers with a satisfiability checking service.

Before the service can be applied, the metamodel (and

an empty domain model) must be projected to an on-

tology. The satisfiability checking service gets as input

the ontology and an OWL2 class expression which is a

projection of the class to be validated.

The class definition of Cisco Dev in Figure 13 is not

satisfiable because on the one side it must have at least

two configurations, on the other side it must have at

most one configuration. The reasoning service specified

16 Tobias Walter et al.

class Cisco Dev equivalentWith (hasConfiguration max 1
CiscoConfiguration760x) and (hasConfiguration min 2
CiscoConfiguration760x) {

reference hasConfiguration [1..∗]: CiscoConfiguration760x;
}

Fig. 13 Unsatisfiable Class

Name Classification

Signature boolean classifies(Ontology o, ClassExpres-
sion c, Individual i)

Description The service returns true if i is an instance
of the class expression c. Otherwise it re-
turns false. i is an instance of c if it ful-
fills all properties and restrictions given
by the class c.

Fig. 14 Reasoning Service: Classification

in Figure 12 allows for detecting the class Cisco Dev as

an unsatisfiable class.

Classification. DSL users, who are not familiar with the

language, often start with generic concepts. In the ex-

ample given in Figure 2, the DSL user starts modeling a

Cisco Dev with a Cisco Configuration760x, although he

wants to model a specific device, since he adds a specific

set of cards to the device.

In Figure 14 a classification service is specified. After

a projection of metamodel and model to an ontology,

the service can be used to check whether an individual

has as a type the given class expression.

In domain modeling the service can be used to re-

fine the type of a given model element. In Figure 2 (3)

the DSL user asks for the most specific type of the

Cisco Dev and CiscoConfiguration760x element. Based

on the service given in Figure 14 the framework com-

putes all possible types the elements might have (by

iterating through all named classes in the ontology and

only listing those for which the classifies service returns

true). In step (4) in Figure 2, the DSL user replaces

the types to the valid ones Cisco7603 Dev and Cisco-
Configuration7606, because they are the most specific

ones.

Inconsistency Explanation. In Figure 2 (3a) the DSL

user describes a Cisco Dev device with a missing su-

pervisor card. The domain model is inconsistent which

simply is detected by the isConsistent service specified

in Figure 11.

If models are inconsistent, DSL users require an ex-

planation. This explanation is computed by the service

given in Figure 15. The service adopts the projection

of metamodel and model, the ontology, and computes

for each inconsistency in the domain model a minimal

Name Inconsistency Explanation

Signature Set<Set<Axiom>> inconsistencyExplana-
tion(Ontology o)

Description The service returns a set S of minimal
sets of axioms for each inconsistency. If
at least one axiom of each set si ∈ S is
removed from o, o becomes consistent.

Fig. 15 Reasoning Service: Inconsistency Explanation

CiscoConfiguration760x equivalentTo hasSlot some hasCard some
Supervisor

hotswappable type HotSwappableOSM
spainterface1 type SPAInterface
spainterface2 type SPAInterface

Fig. 16 Inconsistency Explanation by Reasoners

Name Satisfiability Explanation

Signature Set<Set<Axiom>> explanation(Ontology
o, ClassExpressions c)

Description The service returns a set S of sets of ax-
ioms where each set si ∈ S of axioms is
minimal and entails the unsatisfiability
of c (c is unsatisfiable if c equivalentWith
Nothing.

Fig. 17 Reasoning Service: Satisfiability Explanation

set of axioms. If at least one axiom of the ontology is

removed, it becomes inconsistent.

For the inconsistency in the model in Figure 2 (3)

the service returns axioms given in Figure 16 (each line

consists of one axiom):

The axioms in Figure 16 are rendered in the natu-

ral readable OWL2 Manchester syntax. A DSL user sees

that each CiscoConfiguration760x must have some slot

in which some supervisor card is plugged in. Problems
in the domain model are the instances for the HotSwap-
pableOSM card and the two instances of SPAInterface.

If one of those types is changed to Supervisor the model

becomes consistent.

In Section 5.3.2 we show how the framework evalu-

ates these sets and gives suggestions to DSL users how

to repair their models.

Satisfiability Explanation. A language designer uses the

service specified in Figure 12 to check whether a class

is satisfiable. Having detected an unsatisfiable class the

language designer needs an explanation why it is un-

satisfiable. The service specified in Figure 17 returns

for a given unsatisfiable class a minimal set of axioms

explaining the unsatisfiability.

Figure 18 depicts the explanation for the class Cisco-
7603 Dev, because it is unsatisfiable too. The reason for

the unsatisfiability is that Cisco7603 Dev is a subclass

of Cisco Dev which must have at most one configuration

and at least two configurations at the same time.

An Ontology-Based Framework for Domain-Specific Modeling 17

Cisco Dev equivalentTo hasConfiguration max 1 CiscoConfiguration760x
and hasConfiguration min 2 CiscoConfiguration760x

Cisco7603 Dev subClassOf Cisco Dev

Fig. 18 Unsatisfiability Explanation by Reasoners

5.3.2 Inconsistency Management

Syntactic consistency ensures that a specification con-

forms to the metamodel of the modeling language, spec-

ified by the language designers. This guarantees that

the model is well-formed [39].

In [40] inconsistency management is defined as the

process by which inconsistencies between software mod-

els are handled to support the goals of the stakeholders

concerned. The process of inconsistency management

consists of activities for detecting, diagnosing, and hand-

ling inconsistency [11].

Detecting: Detection of inconsistencies is the activity of

checking for inconsistencies in instance models with

regard to a metamodel. Different approaches for the

detection of inconsistencies are possible [41]. In this

work, we consider a logic based approach with de-

tecting logical inconsistency [5], where models to-

gether with metamodels are projected to ontologies

which are expressed as description logics knowledge

bases and which are consistent if an interpretation

exists.

Diagnosing: The diagnosis of inconsistencies is concerned

with the identification of the elements causing an

inconsistency [41]. The diagnosis is a basic for in-

consistency handling. Several methods are available

for debugging ontologies and identifying inconsis-

tent parts [42]. Since models specified by DSL users
are graphs composed of instances of classes and links,

in the following we present a service delivering the

instances in a model causing the inconsistency.

Handling: Inconsistency handling is concerned with iden-

tifying possible actions for dealing with an inconsis-

tency [41]. For ontologies several repair strategies

have been developed [42]. In the following we use a

service suggesting valid types for instances involved

in an inconsistency.

In the following we describe inconsistency manage-

ment services for DSL user having built a domain model.

They are going to detect that their domain model is in-

consistent, they are going to diagnose the domain model

to find the parts involved in the inconsistency and they

are going to repair the domain model.

The metamodel considered by DSL users to build

instances in the domain model is assumed as valid and

all concepts are satisfiable. Input of all services is a

metamodel and a corresponding domain model.

Cisco_Dev

DeviceType

Slot

VoiceInterface

Slot

Slot

Cisco_Configuration
 760x

Fig. 19 Inconsistent Domain Model (M1 layer)

Name Inconsistent Elements Service

Signature Set<Set<Instance>> inconsistentEle-
ments(Metamodel mm, Model m)

Description Project mm and m to an ontology
o=project(mm, m).
If isConsistent(o)=true, return null. If
isConsistent(o)=false, compute an expla-
nation E=inconsistencyExplanation(o).
For each sets in E put those instances
into one set in S which are involved in
an axiom in the given set in E.

Fig. 20 Inconsistent Elements Service

Services for Inconsistency Management With respect

to the DSL metamodel in Figure 8, the domain model

in Figure 19 is not consistent.

As mentioned above, Figure 2 (3) depicts an incon-

sistent domain model.

For the detection of the inconsistency the domain

model is projected together with the metamodel to an

ontology. The ontology is used as an input for the con-

sistency checking service specified in Figure 11. For the

domain model in Figure 19 and the metamodel in Fig-

ure 8 the service isConsistent returns false.

Having an inconsistency detected, DSL users may

want to diagnose the inconsistency. To identify which

elements in the domain models are involved, the DSL

users require a service which returns a set of instances

being part of the domain model he has created. The

service, specified in Figure 20, considers the explana-

tion service for inconsistent ontologies. The reason for

the model not being consistent depends on the Super-
visor card type which excludes the VoiceInterface (cf.

the metamodel in Figure 8). Although the Supervisor
card is not part of the current configuration, the rea-

soner assumes this fact, since it is required for each

Cisco Configuration760x. In an open world reasoners as-

sume missing facts in models as default, which are de-

scribed in metamodels.

The service for inconsistent elements works on the

explanation given in Figure 16. Since the model in Fig-

ure 19 has only one inconsistency the service for incon-

18 Tobias Walter et al.

Name Type Suggestion Service

Signature Set<Class> typeSuggestion(Metamodel
mm, Model m, Instance i)

Description Project mm and m to an ontology
o=project(mm, m).
An Ecore class c defined in mm is put
into the result set s, if o′ is consistent.
o′ is defined by removing all class as-
sertions for i from o, so that o′ be-
comes consistent. If o′ is still consis-
tent after adding the class assertion
ClassAssertion(i c) then c is put into the
set s.

Fig. 21 Type Suggestion Service

Name SPARQL Query Answering

Signature ResultSet sparqlQuery(Ontology o, Query q)

Description Evaluates the SPARQL query q on the
ontology o and computes the answer a.
If there is no answer a is null.

Fig. 22 SPARQL Querying Service

sistent elements returns only one set of elements. It re-

turns configuration element of type Cisco Configuration760x,

the card element of type VoiceInterface and the respec-

tive slot element linking the card with the configura-

tion.

Several strategies for ontology debugging and re-

pairing are developed. A simple solution for handling

inconsistencies and to repair domain models is to pro-

vide for one instance being involved in a class assertion

axiom leading to an inconsistency a set of valid types.

Replacing the type of the given instance by a suggested

one leads to a consistent domain model. This is realized

by a type suggestion service, specified in Figure 21.

5.3.3 Querying Services

DSL designers are able to define their own services by

describing their functionality as queries. The framework

allows for building SPARQL queries. In Figure 22 we

specify a SPARQL query answering service. It gets as

input a SPARQL query and returns an answer set.

Services defined by Queries DSL users which are not fa-

miliar with the concepts the DSL provides need sugges-

tions. A DSL user having created an instance of Cisco-
7603 Dev in his domain model wants to know which el-

ements of which types can be connected via the hasCon-
figuration reference with the Cisco7603 Dev instance.

The DSL user relies on a service which is implemented

by the DSL designer, defining the signature of the ser-

vice and a query defining the functionality of the ser-

vice. The service is presented in Figure 23. It queries

simultaneously metamodel and model and returns all

Name Target Type Service

Signature Set<Class> targetType(Metamodel mm,
Model m, Reference r, Instance i)

Description The target type service returns a list l
of classes of mm which are valid types
for an instance t in m where i refers via
r to t.
The service projects mm and m to an
ontology o=projectGSOWL

(mm, g).
It returns the query result of the follow-
ing SPARQL query
q=”Query(ObjectPropertyAssertion(i r :t)
Type(:t ?C))”
by using the querying service with
sparqlQuery(o, q).

Fig. 23 Target Type Service

types of target instances which are linked via an object

property assertion (the projection of the instantiated

reference) with the instance whose type offers the ref-

erence.

6 Related Work and Advantages

In the following, we group related approaches into two

categories: approaches with formal semantics and con-

straints and approaches for model-based domain-specific

language development.

Among approaches with formal semantics, one can

use languages like F-Logic or Alloy to formally describe

models. In [43], a transformation of UML+OCL to Al-

loy is proposed to exploit analysis capabilities of the Al-

loy Analyzer [44]. In [45], a reasoning environment for

OWL is presented, where the OWL ontology is trans-

formed to Alloy. Both approaches show how Alloy can

be adopted for consistency checking of UML models or

OWL ontologies. F-Logic is a further prominent rule

language that combines logical formulas with object

oriented and frame-based description features. Differ-

ent works [46] have explored the usage of F-Logic to

describe configurations of devices or the semantics of

MOF models.

The integration in the cases cited above is achieved

by transforming MOF models into a knowledge rep-

resentation language (Alloy or F-logic). Thus, the ex-

pressiveness available for DSL designers is limited to

MOF/OCL. Our approach extends these approaches by

enabling DSL designers to specify class descriptions à

la OWL together with MOF/OCL, increasing expres-

siveness.

Many other approaches are dealing with inconsis-

tency management. In [39] the detection and resolu-

tion of inconsistencies in UML models with description

An Ontology-Based Framework for Domain-Specific Modeling 19

logics (DL) is presented. Here, UML models are trans-

lated to (encoded as) DL knowledge bases, which allow

for querying and reasoning. Similar to our approach of

metamodeling, [39] presents an approach for checking

structural inconsistencies of UML models with regard

to its metamodel. Here, the DL knowledge base ABox

represents the user model, where the TBox encodes the

UML metamodel.

The integration between UML and DL in the ap-

proach cited above is established by a transformation

which precisely defines which UML metamodel elements

are translated to DL constructs. The transformation is

adequate since [39] is dealing only with the UML lan-

guage. Generally, for domain specific languages with

arbitrary metamodels we propose an integration of the

metametamodel with the one of an ontology language.

Such an integration allows DSL designers to define their

own constraints embedded within an arbitrary DSL meta-

model.

There is quite a large number of works in the field

of assisting modeling and debugging models. Different

works [47,48] are dealing with tool support for creat-

ing feature models. Here the prescription of valid fea-

ture configuration is based on OCL constraints [49].

They provide the propagation of configuration choices,

auto-completion of configurations and the debugging

of incorrect configurations. [50] is dealing with model

intelligence where existing constraint specifications in

OCL [49] are used to query for valid endpoints of re-

lationships in models. Such queries guide users toward

correct solutions. [51,52] present a modeling editor for

process models with syntax-based assistance. The edi-

tor provides the completion and correctness preserving

of models. The syntax of the process modeling language

is formally defined by graph grammars.

6.1 Advantages

In this section we concentrate on the advantages of

metamodeling and reasoning approaches. We compare

our solution with respective other approaches.

6.1.1 Constraint definition and formal semantics

Considering our comparison in Section 4 we may state

that OWL 2, compared to usual metamodeling lan-

guages like Ecore, provides a rich set of primitives for

the conceptual description of domains.

In contrast to Ecore, OWL 2 allows for refining

classes by using additional axioms and several OWL 2

class and object property expressions. In Figure 8 a

DSL designer builds a metamodel using integrated Ecore+OWL

metamodeling language. Besides the structure of de-

vices, the DSL designer also defines constraints in the

metamodel. Therefore, he uses the integrated OWL 2

language, which is integrated with the existing KM3

syntax.

Furthermore, Ecore adopts the formal semantics of

the integrated ontology language. Hence, elements in a

Ecore-based metamodel have a formal meaning. A class

in a metamodel describes a set of instances in the do-

main model. A reference in a metamodel describes a

set of links between instances of a corresponding type.

Attributes in a metamodel describe links between in-

stances and values in the domain model.

6.1.2 Reasoning

For the suggestion of suitable concepts to be used (guid-

ance) we use ontology reasoning technologies.

Technologies in the software modeling space mainly

do not provide reasoning facilities. Reasoning on soft-

ware models is principally enabled after a translation

to a logic-based representation, e.g to Alloy [43], De-

scription Logics [53], OWL 2 [54], or Object-Z [55,56].

When using such formal representations, one could rea-

son on modelware models and formally prove properties

through inference and make implicit knowledge of in-

terest explicit [53]. Description Logics reasoners (such

as Pellet [25], or Racer [57]) allow for joint as well as

for separate sound and complete reasoning at both, the

schema and the instance layers.

Nevertheless, we consider ontology technologies to

exploit reasoning facilities. For example, OCL and re-

spective tools do not allow for reasoning and inferring

new facts based on the facts defined by language de-

signer or user.

Schema Reasoning Schema reasoning considers all con-

cept descriptions in ontologies independent of their in-

stances. Based on the descriptions in the schema (TBox),

schema reasoning allows for inferring new facts, which

might be queried, e.g., using SPARQL, or detected by

reasoning services.

Language designers creating metamodels may pos-

sibly be interested in computing the classes and ref-

erences, which are not satisfiable, i.e., classes, which

cannot be instantiated without the model becoming in-

consistent. The following OCL constraint is not satisfi-

able because it simultaneously forbids and requires that

instances of Configuration have a successor.

context Configuration
inv: not(hasSlot−>exists(t|t.oclIsKindOf(Slot))) and (hasSlot−>exists(t|t.

oclIsKindOf(Slot)))

20 Tobias Walter et al.

The tools available in the software modeling space

do not allow for detecting the unsatisfiability of ele-

ments in metamodels. If we encode the OCL constraint

as an axiom of an ontology, we will be able to reason

and infer new facts. The listing below represents the

OCL constraint above as class description being part

of an OWL 2 ontology.

SubClassOf(Configuration ObjectIntersectionOf(ObjectComplementOf(
ObjectSomeValuesFrom(hasSlot Slot)) ObjectSomeValuesFrom(
hasSlot Slot)))

Facts for unsatisfiability of class expressions may be

derived by queries or the given reasoning service pre-

sented in Section 3.5. The SPARQL query below queries

for the fact of unsatisfiability. It uses the ontology with

all additional facts inferred by a reasoner as data model:

SELECT DISTINCT ?t
WHERE {

?t rdfs:subClassOf owl:nothing
}

The satisfiability checking service presented in Sec-

tion 3.5 considers an ontology and may infer the unsat-

isfiability based on all descriptions. The result of this

check is that the OWL class Configuration described

above is not satisfiable.

Schema+Instance Reasoning Description logics reason-

ers allow for joint reasoning on both schema and in-

stance layer. Given an ontoware model describing TBox

concepts and ABox instances, reasoners allow for clas-

sifying individuals to find their possible types described

in the schema.

The following excerpt of an ontoware model depicts

a TBox axiom stating that every device is linked via

hasConfiguration with some configuration. The corre-

sponding ABox consists of two individuals d and c. d is

linked with c, which is of type Configuration.

// TBox axiom
EquivalentClasses(Device ObjectSomeValuesFrom(hasConfiguration

Configuration))

// ABox axioms
Declaration(Individual(d))
ObjectPropertyAssertion(hasConfiguration d c)
Declaration(Individual(c))
ClassAssertion(c Configuration)

Based on a common description of schema and in-

stance layer within one ontoware model, reasoners may

infer new facts. Based on the descriptions in TBox and

ABox, the SPARQL query below asks for all named

types, that an individual i has. In the case of the indi-

vidual d it returns the type Device.

SELECT DISTINCT ?t
WHERE {

i rdf:type ?t
}

Using the reasoning service mentioned in Section 3.5,

we are able to classify the individual d to find its pos-

sible type. The result is the class Device, since d fulfills

all descriptions defined by the class expression.

6.1.3 Open World Assumption

The Open World Assumption (OWA) assumes incom-

plete information as default and allows for reasoning on

incomplete models, while the Closed World Assumption

(CWA) assumes all positive to be facts as part of the

knowledge base (cf. Section 3.3).

For quantified expressions a reasoner assumes that

a given individual is linked with other individuals. Al-

though an individual is not linked with a given number

(cardinality) of other individuals, a reasoner would as-

sume by default that cardinality restrictions are fulfilled

by assumed individuals in the domain.

The ontology below describes an incomplete knowl-

edge base. In the TBox we define that each device must

have a configuration and that each configuration must

have a slot. In the ABox we declare the individuals d
and c. d is linked with c, which is of type configuration.

// TBox axiom
EquivalentClasses(Device ObjectSomeValuesFrom(hasConfiguration

Configuration))
EquivalentClasses(Configuration ObjectSomeValuesFrom(hasSlot Slot))

// ABox axioms
Declaration(Individual(d))
ObjectPropertyAssertion(hasConfiguration d c)
Declaration(Individual(c))
ClassAssertion(c Configuration)

Although the knowledge base is incomplete (c is not

linked with a slot), reasoners are able to infer facts

based on all descriptions in TBox and ABox. In the

example above a reasoner infers that the individual d
is of type device, because it is linked with some con-

figuration although the configuration c is not complete

(i.e., it is not linked with a slot).

7 Implementation

In this section we are going to present two implemen-

tations of an ontology-based framework for domain-

specific modeling. In Section 7.1 we present the TwoUse

toolkit, implemented at the WeST institute4. In Sec-

tion 7.2 we present the MOST workbench, implemented

by BOC5. While we have developed the TwoUse toolkit

for the proof of concept of the approaches given in

this paper, the MOST workbench provides a framework

usable for industrial domain-specific modeling tasks.

4 http://west.uni-koblenz.de/
5 http://www.boc-group.com

An Ontology-Based Framework for Domain-Specific Modeling 21

From the point of ontology-based reasoning services

provided by the two frameworks, they are equivalent.

Comparing the usability of both frameworks, the MOST

workbench provides a graphical user interface provided

to DSL users. This is not available in the TwoUse toolkit.

7.1 The TwoUse Toolkit

In Figure 24 we depict a screenshot of the TwoUse

toolkit. The TwoUse toolkit in general aims to filling

the gap between MDE and ontology technologies. The

TwoUse Toolkit is developed in the Eclipse Platform

using the Eclipse Modeling framework [36] and is freely

available for download on the project website6. In Fig-

ure 24 we see the view of a DSL designer modeling an

integrated metamodel.

Integrated metamodeling is based on an integration

of Ecore and OWL as explained in Section 5.2. We de-

veloped a textual concrete syntax combining the KM3

syntax and an adaption of the OWL Manchester syn-

tax.

Ontologies are extracted by a projection service. All

services for inconsistency management and guidance

base on standard reasoning services provided by Pel-

let.

7.2 The MOST Workbench

In Figure 25 we depict a screenshot of the MOST work-

bench. The workbench is developed in the ADOxx plat-

form7 by the company BOC which is also industrial

partner in the MOST project. The tool offers to de-

velop domain-specific languages which may be coupled

to different visual concrete syntaxes. A language like

the physical device domain-specific language (PDDSL)

is developed within the workbench by a DSL designer

(or DSL expert). In Figure 25 we see the view of a

DSL user modeling configurations of physical network

devices.

The integrated modeling is based on the ADOxx

generic graphical modelling editor. To enable integrated

modeling with OWL descriptions, languages to be in-

tegrated as well as the OWL metamodel are defined

using the ADOxx M3-metametamodel (called ADOxx

Meta2Model [58]). Then the integration has been per-

formed following to the integration approach presented

in Section 5.2.

6 http://code.google.com/p/twouse/
7 ADOxxR© is the extensible, multi-lingual, multi-os,

repository-based platform for the development of modeling
tools of the BOC Group. ADOxxR© is a registered trademark
of the BOC Group, http://www.boc-group.com.

The reasoning services are implemented by a sep-

arate validation services component Comarch has im-

plemented. The component projects models and meta-

models to a format which is readable by OWL reason-

ers. In addition it implements domain-specific services

for inconsistency management and guidance [59].

8 Analysis of the Approach

In this section, we establish the viability of our ap-

proach by a proof of concept evaluation. We analyze the

approach with respect to the requirements of Section 2.

At the end of this section we give comments Comarch

provided after evaluating the approaches above.

To address formal semantics and constraints (re-

quirement (1)), we integrated the EMOF based meta-

metamodel Ecore and its concrete syntax KM3 with

OWL, allowing for a formal and logical representation

of the solution domain. DSL designers count on an ex-

pressive language that allows for modeling logical con-

straints in DSL metamodels (requirement (1)). Reason-

ers check the consistency of metamodels and constraints

and debugging services clarify the inferences (require-

ment (4)).

Formal model-theoretic semantics enable the usage

of reasoning services to help DSL users to validate do-

main models, to detect inconsistencies, to diagnose them

and to get suggestions how to repair the models (re-

quirement (3)). DSL users may get suggestions of cards

to be used in their DSL models based on the configu-

ration of the device.

The expressiveness of OWL enables DSL designers

to define classes and properties as equivalent. DSL de-

signers may use this functionality to provide DSL users

with different means for declaring objects (requirement

(5)). A DSL user may describe a Cisco 7603 device

in two different ways: by creating an instance of class

Device with a configuration with three slots and a su-

pervisor card in one slot; or by creating an instance of

class Cisco7603 Dev.

The nature of the open world assumption enables

progressive evaluation of domain models (requirement

(2)). A DSL user may drag a new configuration into

a DSL model with three slots but without any cards.

The reasoner assumes that at least one of the manda-

tory cards is part of the configuration. Thus, DSL users

can progressively evaluate parts of the domain model

without firstly completing it .

DSL users call services defined by DSL designers by

a query (requirement (3)). These queries are the inter-

face between DSL users and reasoning services. For ex-

ample, a DSL user may use a reasoning service which is

22 Tobias Walter et al.

Fig. 24 View of the DSL designer in the TwoUse Toolkit

implemented as query defined in the DSL metamodel

and queries all classes that describe an object in the

DSL model.

While solutions provided by DSL development en-

vironments for teaching DSL users are usually limited

to help the creation of the example models, we have

an interactive assisted solution by suggesting concepts

and explaining inferences (requirement (3)). Neverthe-

less, addressing the aforementioned requirements lead

us to new challenges as well as it demands to consider

trade-offs between expressiveness and completeness and

soundness, expressiveness and user complexity.

OWL is a logical language and it requires logical ex-

pertise of DSL designers. On the other side, the usage

of OWL is encapsulated from DSL users. They only use

operations to invoke different reasoning services which

work on ontologies. Our approach extends the KM3 vo-

cabulary with a controlled natural language as OWL

textual concrete syntax to smooth the usage of logical

assertions.

Comarch has evaluated the approach on ontology-

based domain specific languages with an extension of

scenario given in Section 2. Initial experiences showed

benefits as well as limitations [59].

Benefits are the simple but expressive metamodeling

language to design DSL metamodels and the DSL in-

dependent services provided to DSL designers and DSL

users.

Limitations concern scalability and a hybrid syn-

tax for DSL designers. Initial experiments revealed that

scalability issues are not sufficiently handled within the

prototype. The time needed to perform the guidance

services is increasing dramatically with the size of the

models. DSL designers at Comarch are domain experts

who prefer graphical syntaxes to design DSL metamod-

els. However, the OWL annotations still should be mod-

eled using the Manchester Syntax which is naturally

readable.

Comarch showed in a user evaluation [60], that the

development of DSL tools is less resource-consuming.

The development time is reduced by 92% when com-

paring with the manually developed solution based on

models only. The reason is that DSL tool developers are

able to use the freely available basic services for rea-

soning and inconsistency management. Based on these

services new domain-specific services are implemented

easily. In addition Comarch showed for the particular

case study that the modelling of domain models is less

resource-consuming and less error-prone.

An Ontology-Based Framework for Domain-Specific Modeling 23

Fig. 25 View of the DSL user in the MOST Workbench

While our approach currently is only used within the

company Comarch, it nevertheless is reusable for other

stakeholders creating Ecore-based metamodels and mod-

els within the Eclipse Modeling Framework.

Since our new technological space represents the

union of the Ecore software modeling space and the

OWL 2 ontology space, for example several other lan-

guage metamodels may be loaded.

Subsequently metamodels may be extended by addi-

tional constraints and expressions using the integrated

ontology language.

On the other side, several technologies, e.g. for lan-

guage evolution [61,62], which are developed within the

Eclipse Modeling Framework may be reused. Addition-

ally several other (textual or graphical) concrete syn-

24 Tobias Walter et al.

taxes may be developed, e.g. using the Graphical Mod-

eling Framework or EMFText.

9 Conclusion

In this paper, we presented an approach on how to ad-

dress major challenges in the field of domain-specific

languages with ontology languages and automated rea-

soning services.

We presented a new technological space which in-

tegrates Ecore and OWL at the M3-layer. The new

metamodeling language is provided to DSL designers,

who are able to specify metamodels with seamlessly in-

tegrated ontology-based expressions and axioms. DSL

users simply use the DSL provided by DSL designers to

create domain models.

The integrated ontology language gives the devel-

oped DSLs a formal model-theoretic semantics. The

formal semantics enable applications of reasoning to

help DSL designers and DSL users through the devel-

opment and usage of DSLs. DSL designers benefit from

constraint analysis. DSL users benefit from progressive

verification, debugging support and assisted modeling.

The approach has been used and tested in the tele-

communication domain under EU STReP MOST.

Acknowledgement. We like to thank Krzysztof Miksa

from Comarch for providing the use cases. Further, we

like to thank Prof. Dr. Jürgen Ebert for comments and

improvement remarks. This work is supported by EU

STReP-216691 MOST.

References

1. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling.
John Wiley & Sons (2007)

2. Gray, J., Fisher, K., Consel, C., Karsai, G., Mernik, M.,
Tolvanen, J.P.: Panel - DSLs: the good, the bad, and the
ugly. In: OOPSLA Companion ’08, ACM (2008)

3. Langlois, B., Jitia, C.E., Jouenne, E.: DSL Classification.
In: OOPSLA 7th Workshop on Domain Specific Model-
ing. (2007)

4. Czarnecki, K.: Generative Programming. PhD thesis,
Department of Computer Science and Automation Tech-
nical University of Ilmenau (1998)

5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D.,
Patel-Schneider, P.: The description logic handbook: the-
ory, implementation, and applications. Cambridge Uni-
versity Press New York (2003)

6. Motik, B., Patel-Schneider, P.F., Horrocks,
I.: OWL 2 Web Ontology Language: Struc-
tural Specification and Functional-Style Syntax.
http://www.w3.org/TR/owl2-syntax/ (October 2009)

7. Tairas, R., Mernik, M., Gray, J.: Using ontologies in the
domain analysis of domain-specific languages. In: Pro-
ceedings of the 1st International Workshop on Transform-
ing and Weaving Ontologies in Model Driven Engineer-
ing 2008. Volume 395 of CEUR Workshop Proceedings.,
CEUR-WS.org (2008)

8. Guizzardi, G., Pires, L.F., van Sinderen, M.: Ontology-
based evaluation and design of domain-specific visual
modeling languages. In: Proceedings of the 14th Interna-
tional Conference on Information Systems Development,
Springer (2005)

9. Bräuer, M., Lochmann, H.: An ontology for software
models and its practical implications for semantic web
reasoning. In: Proceedings of the 5th European Semantic
Web Conference on The Semantic Web: Research and
Applications. Volume 5021 of LNCS., Springer (2008) 34–
48

10. France, R.B., Rumpe, B.: Model-driven Development of
Complex Software: A Research Roadmap. In: Proceed-
ings of the Workshop on the Future of Software Engi-
neering (FOSE). (2007) 37–54

11. Nuseibeh, B., Easterbrook, S., Russo, A.: Leveraging In-
consistency in Software Development. Software Develop-
ment 33(4) (2000) 24–29

12. Kurtev, I., Bézivin, J., Aksit, M.: Technological Spaces:
An Initial Appraisal. In: CoopIS, DOA’2002 Federated
Conferences, Industrial track, Irvine (2002)

13. Jouault, F., Bézivin, J.: KM3: a DSL for Metamodel
Specification. In: Formal Methods for Open Object-
Based Distributed Systems. Volume 4037 of LNCS.,
Springer (2006) 171–185

14. ATLAS Group LINA & INRIA, Nantes: KM3: Kernel
MetaMetaModel - Manual version 0.3. (2005)

15. Parreiras, F.S., Staab, S.: Using ontologies with uml
class-based modeling: The twouse approach. Data &
Knowledge Engineering 69(11) (2009) 1194–1207

16. Walter, T., Parreiras, F.S., Staab, S.: OntoDSL: An
Ontology-Based Framework for Domain-Specific Lan-
guages. In: Model Driven Engineering Languages and
Systems, 12th International Conference, MODELS. Vol-
ume 5795 of LNCS., Springer (2009) 408–422

17. Walter, T., Parreiras, F.S., Staab, S., Ebert, J.: Joint
Language and Domain Engineering. In: Proceedings of
European Conference Modelling Foundations and Appli-
cations. Volume 6138 of LNCS., Springer (2010) 321–336

18. Guarino, N., Oberle, D., Staab, S.: What Is an Ontology?
Handbook on Ontologies (2009) 1–17

19. Miksa, K., Kasztelnik, M.: Definition of the case study
requirements. Deliverable ICT216691/CMR/WP5-
D1/D/PU/b1, Comarch (2008) MOST Project,
http://www.most-project.eu/.

20. Farrugia, J.: Model-theoretic semantics for the web. In:
WWW ’03: Proceedings of the 12th international confer-
ence on World Wide Web, New York, NY, USA, ACM
(2003) 29–38

21. Motik, B., Patel-Schneider, P.F., Grau, B.C.: OWL 2
Web Ontology Language Direct Semantics. http://www.

w3.org/TR/2009/REC-owl2-direct-semantics-20091027/

(October 2009)
22. Horridge, M., Knublauch, H., Rector, A., Stevens, R.,

Wroe, C.: A practical guide to building OWL ontolo-
gies using the protégé-OWL plugin and CO-ODE tools.
Technical report (2004)

23. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W., Schaerf,
A.: An epistemic operator for description logics. Artificial
Intelligence 100(1-2) (1996) 225–274

An Ontology-Based Framework for Domain-Specific Modeling 25

24. Grimm, S., Motik, B.: Closed World Reasoning in the Se-
mantic Web through Epistemic Operators. In: Proceed-
ings of the 1st OWL Experiences and Directions Work-
shop (OWLED-2005). Volume 188 of CEUR Workshop
Proceedings., CEUR-WS.org (2005)

25. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.:
Pellet: A practical OWL-DL Reasoner. Web Semantics:
Science, Services and Agents on the World Wide Web
5(2) (2007) 51–53

26. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language.
http://www.w3.org/TR/sparql11-query/ (June 2010)

27. Polleres, A.: SPARQL 1.1: New Features and Friends
(OWL2, RIF). In: Web Reasoning and Rule Systems.
Volume 6333 of LNCS., Springer (2010) 23–26

28. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL Query for
OWL-DL. In: Proceedings of the 3rd OWL Experiences
and Directions Workshop (OWLED-2007). Volume 258
of CEUR Workshop Proceedings., CEUR-WS.org (2007)

29. Kremen, P., Sirin, E.: SPARQL-DL Implementation
Experience. In: Proceedings of the 4th OWL Experi-
ences and Directions DC Workshop (OWLED-DC-2008).
Volume 496 of CEUR Workshop Proceedings., CEUR-
WS.org (2008)

30. Glimm, B., Parsia, B.: SPARQL 1.1 Entail-
ment Regimes. http://www.w3.org/TR/2010/

WD-sparql11-entailment-20100126/ (January 2010)

31. Schneider, M.: SPARQLAS – Implementing SPARQL
Queries with OWL Syntax. In: Proceedings of the 3rd
Workshop on Transforming and Weaving Ontologies in
Model Driven Engineering. Volume 604 of CEUR Work-
shop Proceedings., CEUR-WS.org (2010)

32. OMG: Meta Object Facility (MOF) Core Specification.
Object Management Group. (January 2006)

33. Ebert, J., Riediger, V., Winter, A.: Graph Technology in
Reverse Engineering, The TGraph Approach. In: Pro-
ceedings of Workshop Software Reengineering (WSR).
Volume 126 of LNI., GI (2008) 67–81

34. Djuric, D., Gasevic, D., Devedzic, V.: Ontology Modeling
and MDA. Journal of Object technology 4(1) (2005) 109–
128

35. Gaševic, D., Djuric, D., Devedzic, V., Damjanovic, V.:
Approaching OWL and MDA through Technological
Spaces. In: Proceedings of the 3rd Workshop in Software
Model Engineering (WiSME 2004). (2004)

36. Steinberg, D., Budinsky, F., Paternostro, M., Merks,
E.: EMF: Eclipse Modeling Framework (2nd Edition).
Addison-Wesley (2008)

37. Horridge, M., Patel-Schneider, P.F.: OWL 2 Web Ontol-
ogy Language Manchester Syntax. http://www.w3.org/

TR/owl2-manchester-syntax (October 2009)

38. Heidenreich, F., Johannes, J., Karol, S., Seifert, M.,
Wende., C.: Derivation and Refinement of Textual Syn-
tax for Models. In: Proceedings of European Conference
on Model-Driven Architecture Foundations and Applica-
tions. Volume 5562 of LNCS., Springer (2009) 114–129

39. Van Der Straeten, R.: Inconsistency Management in
Model-driven Engineering. An Approach using Descrip-
tion Logics. PhD thesis, Vrije Universiteit Brussel, Bel-
gium (2005)

40. Finkelstein, A., Spanoudakis, G., Till, D.: Managing In-
terference. In: ISAW ’96: Joint proceedings of the second
international software architecture workshop (ISAW-2)
and international workshop on multiple perspectives in
software development (Viewpoints ’96) on SIGSOFT ’96
workshops, ACM (1996) 172–174

41. Spanoudakis, G., Zisman, A.: Inconsistency Management
in Software Engineering: Survey and Open Research Is-
sues. Handbook of Software Engineering and Knowledge
Engineering 1 (2001) 329–380

42. Kalyanpur, A.: Debugging and Repair of OWL Ontolo-
gies. PhD thesis, University of Maryland, College Park
(2006)

43. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.:
UML2Alloy: A challenging model transformation. In:
Proceedings of Model Driven Engineering Languages
and Systems, MoDELS 2007. Volume 4735 of LNCS.,
Springer (2007) 436–450

44. Jackson, D.: Software Abstractions: logic, language, and
analysis. The MIT Press (2006)

45. Wang, H., Dong, J., Sun, J., Sun, J.: Reasoning support
for Semantic Web ontology family languages using Alloy.
Multiagent and Grid Systems 2(4) (2006) 455–471

46. Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood,
A.: Transformation: The missing link of MDA. In: Pro-
ceedings of 1st International Conference on Graph Trans-
formation. Volume 2505 of LNCS., Springer (2002) 90–
105

47. Czarnecki, K., Kim, C.H.P.: Cardinality-based feature
modeling and constraints: A progress report. In: Proceed-
ings of International Workshop on Software Factories at
OOPSLA’05. (2005)

48. Czarnecki, K., Pietroszek, K.: Verifying feature-based
model templates against well-formedness ocl constraints.
In: Proceedings of the 5th international conference on
Generative programming and component engineering,
ACM (2006) 211–220

49. Warmer, J., Kleppe, A.: The Object Constraint Lan-
guage: Getting Your Models Ready for MDA. Addison-
Wesley (2003)

50. White, J., Schmidt, D.C., Nechypurenko, A., , Wuchner,
E.: Model intelligence: an approach to modeling guid-
ance. UPGRADE 9(2) (2008) 22–28

51. Mazanek, S., Minas, M.: Business process models as
a showcase for syntax-based assistance in diagram edi-
tors. In: Proceedings of Model Driven Engineering Lan-
guages and Systems (MoDELS). Volume 5795 of LNCS.,
Springer (2009) 322–336

52. Mazanek, S., Maier, S., Minas, M.: Auto-completion for
Diagram Editors based on Graph Grammars. In: Pro-
ceedings of IEEE Symposium on Visual Languages and
Human-Centric Computings, IEEE (2008) 242–245

53. Berardi, D., Calvanese, D., Giacomo, G.D.: Reasoning
on UML class diagrams. Artificial Intelligence 168(1-2)
(2005) 70–118

54. Walter, T., Schwarz, H., Ren, Y.: Establishing a Bridge
from Graph-based Modeling Languages to Ontology Lan-
guages. In: Proceedings of 3rd Workshop on Transform-
ing and Weaving Ontologies in Model Driven Engineer-
ing (TWOMDE). Volume CEUR of 604., CEUR-WS.org
(2010)

55. Evans, A.S.: Reasoning with UML class diagrams.
In: Proceedings of 2nd IEEE Workshop on Industrial
Strength Formal Specification Techniques, IEEE Com-
puter Society (1998) 102–113

56. Ebert, J., Winter, A., Dahm, P., Franzke, A., Süttenbach,
R.: Graph Based Modeling and Implementation with
EER / GRAL. In: Proceedings of Conceptual Modeling -
ER’96. Volume 1157 of LNCS., Springer (1996) 163–178

57. Haarslev, V., Möller, R.: Description of the racer sys-
tem and its applications. In: Proceedings of Description
Logics Workshop. Volume 49 of CEUR Workshop Pro-
ceedings., CEUR-WS.org (2001)

26 Tobias Walter et al.

58. Bartho, A., Zivkovic, S.: Modeled software guid-
ance/engineering processes and systems. Deliv-
erable ICT216691/TUD/WP2-D2/D/PU/b1.00, Tech-
nial University Dresden, BOC (2009) MOST Project,
http://www.most-project.eu/.

59. Miksa, K., Sabina, P., Zivkovic, S.: First demon-
strator and report on experiences. Deliverable
ICT216691/CMR/WP5-D3/D/PU/b1, Comarch (2010)
MOST Project, http://www.most-project.eu/.

60. Miksa, K.: Evaluation of case study. Deliverable
ICT216691/CMR/WP5-D4/D/RE/b1, Comarch (2011)
MOST Project, http://www.most-project.eu/.

61. Kappel, G., Wimmer, M., Retschitzegger, W., Schwinger,
W.: Leveraging Model-Based Tool Integration by Con-
ceptual Modeling Techniques. In: The Evolution of
Conceptual Modeling. Volume 6520 of LNCS., Springer
(2011) 254–284

62. Kolovos, D.S., Paige, R.F., Polack, F.: Merging Models
with the Epsilon Merging Language (EML). In: Proceed-
ings of International Conference on Model Driven Engi-
neering Languages and Systems(MoDELS). Volume 4199
of LNCS., Springer (2006) 215–229

