
SOSYM manuscript No.
(will be inserted by the editor)

Spider Graphs: A Graph Transformation
System for Spider Diagrams

Paolo Bottoni1, Andrew Fish2, Francesco Parisi Presicce1

1 Department of Computer Science, “Sapienza” University of Rome, Italy
e-mail: (bottoni,parisi)@di.uniroma1.it

2 School of Computing, Engineering and Mathematics, University of Brighton,
UK
e-mail: Andrew.Fish@brighton.ac.uk

Received: July 9, 2013/ Accepted:

Abstract The use of diagrammatic logic as a reasoning mechanism to pro-
duce inferences on subsets of some universe could provide a way to overcome
the current limitations of visual modeling methods, which have to be inte-
grated with textual languages to express complex constraints. On the other
hand, graph transformations are becoming widespread as a way to express
formal semantics for visual modeling languages, so that a mechanisation
of diagrammatic logic based on graph transformation would facilitate lan-
guage integration, based on a common underlying machinery. In this paper,
we propose such a mechanisation for Spider Diagrams (SDs), an established
language for reasoning with diagrams modeling relations between sets and
constraints on their cardinalities. The concrete syntax of SDs extends that
of Euler diagrams which use closed curves and the enclosed regions to repre-
sent sets and their intersections. The language is augmented with reasoning
rules, i.e. syntactic transformation rules corresponding to logical inference
rules. However, these rules are typically defined in procedural terms, so that
a completely formal specification and an adequate mechanisation of them
has not been achieved yet. We propose an abstract syntax for SDs in terms
of typed graphs, and define the corresponding language of Spider Graphs
(SGs), expressing reasoning rules for SDs as graph transformation units.
This enables a direct realisation of the reasoning system via graph transfor-
mation tools without resorting to ad-hoc implementations, and we provide
an implementation in AGG. Techniques for static analysis become available
to reason on proof strategies and on possible optimisations.

Keywords Diagrammatic Reasoning - Graph Transformations - Spider Di-
agrams - Spider Graphs - Reasoning Strategies

2 Paolo Bottoni et al.

1 Introduction

Euler Diagrams (EDs) are a well-known formal notation for modeling sets
and their relationships. As a representational device, EDs are a variation
of the Euler circles developed to represent syllogistic reasoning [17]. EDs
generalise Venn Diagrams (VDs) in that they do not require every possible
set intersection to be displayed (for a survey on VDs see [43]).

By adopting a model-theoretic semantics and defining transformation
(reasoning) rules on a class of diagrams, diagrammatic logics can be ex-
ploited as a reasoning mechanism to produce inferences on subsets of some
universe. The area was established by Shin, Hammer, Barwise and Etch-
mendy [2, 29, 44] and has been rapidly expanding in recent years.

Visual reasoning would also be beneficial for the Unified Modeling Lan-
guage (UML), which is currently limited in its capability of expressing
complex constraints, for which one needs the textual Object Constraint
Language (OCL) [53], requiring modellers to deal with different languages,
rather than with a completely visual representation. Research is currently
active on the definition of automatic checks on model satisfaction, as re-
ported on in Section 2, usually involving mapping to some textual represen-
tation language for expressing transformations. An advantage of diagram-
matic reasoning systems is that they enable the presentation of visual proofs
of correctness. As an example, one can express the post-condition of a con-
tract for method a as a diagram d1 and the precondition for a method b

as d2. Then a sequence of diagrams connecting d1 to d2 where consecutive
diagrams differ in a manner corresponding to a logical inference, constitutes
a visual proof that the execution of a can be followed by that of b.

Spider Diagrams (SDs) [32, 33] extend EDs through additional syntax
for the representation of constraints on set cardinality, enabling diagram-
matic inferences not normally considered in symbolic logics. Variations on
SD syntax or rules induce variations of the SD reasoning system, with some
choices producing sound and complete systems. For example, the SD system
in [48] is expressively equivalent to monadic first order logic with equal-
ity. SDs are also the basis of the richer language of Constraint Diagrams
(CDs) [35], which has extra syntax to express explicit quantification and
relations, and was proposed as a means of visually presenting invariants in
object-oriented models, potentially as a visual replacement for the OCL.

The paper makes several contributions. We provide the first translation
from SDs to Graph Transformation (GT) systems for the variant discussed
in [32], that we adopt as a reference. The resulting system of typed graphs
is called Spider Graphs (SGs) and we give constraints to characterise its
language and prove its equivalence to the SD system. This formalisation
provides a mechanisation of the reasoning system, based on general pur-
pose GT tools, rather than ad-hoc algorithmic solutions. In [32] the infer-
ence rules are indeed specified algorithmically via sequences of actions that
can be applied to a given diagram to infer a new one, and diagrams which
are not syntactically correct can be produced at intermediate steps. The

Spider Graphs 3

proposed SG formalisation also offers the possibility to reason in formal
terms about the transformations themselves. In particular, the invariants
for the transformation steps can be expressed, characterising the language
of all graphs which are part of a demonstration, and the relations between
the different reasoning rules can be explored in terms of static analysis of
collections of rules. We propose a mechanisation of the reasoning system
based on the AGG system [37], which enables us to consider conflicts and
dependencies between rules via critical pair analysis, to check the applica-
bility of rule sequences on specific graphs, and in general to reason on proof
strategies based on the characteristics of the source and target graphs.

To prove the equivalence between the SD and the SG systems, we also
provide precise definitions in terms of a Z variant for the system of [32].

Paper organization. After the presentation of related work in Section 2,
Section 3 provides an informal background on SDs and an abstract formal-
ization of the SD reasoning system. A short introduction to concepts from
GTs is given in Section 4. In Section 5, SGs are formally defined for the
first time in terms of a type graph and a collection of positive and negative
constraints, while Section 6 shows the realization of (part of) the unitary
fragment of the reasoning system in [32] through SG transformation units
and their construction from the original rules for SD; the whole construc-
tion is completed in Appendix A. A proof of the correctness of the proposed
encoding of the reasoning system is given in Section 7, while Section 8 dis-
cusses techniques of analysis made possible by the proposed SG system, as
well as some alternative approaches to formalisation in the GT area. Finally,
Section 9 draws conclusions and points to future work.

2 Related work

To the best of our knowledge, this paper presents the first application of
graph transformation techniques to the formalisation of the ED and SD
logical reasoning systems. In this section we provide details of the most
closely related works; see Section 3 for ED/SD terminology.

For CDs, a formal semantics was provided in [20], formal reasoning was
investigated in [19], and a decidable, restricted, reasoning system was de-
veloped in [46]. Conceptual Graphs are a system of logic, based on the
existential graphs of Charles Sanders Peirce and the semantic networks of
artificial intelligence, intended as a readable, but formal design and specifi-
cation language [45]. Hyperproof [1] is a heterogeneous reasoning system for
understanding the information content of proofs rather than the syntactic
structure of sentences; it provides access to both graphical and sentential
information, together with a set of logical rules for integrating these differ-
ent forms of information. Diagrammatic theorem proving methods have also
been developed for mathematical problems, e.g. in the Diamond system [34].
A very recent development is Speedith, an interactive SD reasoner [52],
which integrates an external theorem prover with reasoning rules for com-

4 Paolo Bottoni et al.

pound SDs, allowing a user to observe the development of a proof, but
without direct support for reasoning on proof strategies.

Directed acyclic graphs (DAGs) were used in [49] to represent Euler/Venn
diagrams, preserving semantic and inferential properties. The DAGs are
uniquely characterised by their leaf nodes, corresponding to ED zones; trans-
formations of DAGs corresponding to the reasoning rules are used to check
if, given a pair of diagrams, one could be inferred from the other. The focus
in [49] was on checking proofs (or individual steps of proofs), as opposed to
their construction, and graph rewriting techniques were not used.

There has been a significant amount of work on the automatic construc-
tion of concrete Euler diagrams from abstract Euler diagrams, primarily
based on the fundamental works of Chow [8] and Flower et al. [22]. Adding
syntax (such as spiders) to EDs adds further layout questions but does
not fundamentally alter the complexity of the generation problem. In terms
of interactive modelling tools one envisions facilities for the presentation
and interaction with concrete diagrams, with user choices passed to the
abstract level for use by the system, permitting the application of the ma-
chinery developed here (via AGG for example) followed by results presented
at concrete level utilising generation tools. Therefore, following the standard
approach from the logical perspective in this area, we deal here only with
abstract syntax and the reasoning system acts at this level; this will also
facilitate subsequent analysis on the effects of the choice of reasoning rules.
Thus we effectively separate reasoning and generation concerns in order to
deal with these issues independently. The investigation of the challenging
question of concrete level transformations of EDs via transformation of the
“dual graph” of the diagram was begun by Fish [18], although this avenue
has yet to make full use of the power of the theory of graph transformations.

Tools to assist [24] and automate [25] reasoning with EDs and SDs use
heuristic guidelines for searches. In [47], several ED reasoning systems were
presented, using heuristics based on an A∗ algorithm to provide a lower
bound on the number of proof steps required, based on differences between
the premise and the conclusion diagrams in a proof. The heuristics were
constructed using difference measures (e.g. curve, zone and shading differ-
ence) providing a numerical estimate of the number of rules of a certain
type to be applied in a proof, or, in the “restrictive system” to identify if
a proof does not exist. In addition to these heuristic functions, two “proof-
writing rules” were provided: the add curve rule is not applied (i) until
all curves that need to be removed (i.e. those in the premise but not in
the conclusion) have been removed; (ii) to add curves that are neither in
the premise or the conclusion. In this case, the heuristics and proof-writing
rules were discovered by inspection and analysis of the diagrammatic sys-
tems in question, requiring an in-depth knowledge of the individual systems
themselves. Through our approach, we discover analogous heuristics in an
automatic way, using formal tools for conflict analysis. Flower et al. [25] use
less sophisticated heuristics and give an algorithm producing a proof within
a sound and complete compound (i.e. enabling logical connectives between

Spider Graphs 5

diagrams) SD system if a premise diagram entails a conclusion diagram, or
a counterexample (a model for the premise which is not a model for the
conclusion) otherwise. In [24], a heuristic approach increases the readability
of proofs for a unitary SD system, extended to a compound system in [23].

By mapping SDs to SGs, we transform the question of existence of a
proof within the diagrammatic logic into that of reachability of one SG
(corresponding to the conclusion SD) from another (for the premise SD). In
particular, the properties of the diagrams determined by the heuristics of
the restrictive system of [47] indicating the non-existence of a proof between
a pairs of diagrams correspond to a characterisation of the non-reachability
for the corresponding graph pair. Dependency analysis for the graph based
framework presented in this paper may provide hints for similar “proof-
writing rules” for the extended SD system.

In [4, 5], Transformation Units provided an operational semantics of
OCL and the foundation for Visual OCL, mixing diagrammatic and textual
notation. A translation from Visual OCL back to OCL enables round-trips
between notations [16]. Graph transformations have been used for verifying
properties of models in UML (see e.g. [42]), whereas a visual notation for
expressing model to model transformations, according to the Query-View-
Transform paradigm, has been incorporated into the QVT standard [39]. In
the latter cases, the focus is on inter-model transformations, rather than the
sort of intra-model transformations inherent to diagrammatic reasoning.

Several works employ constraints to define classes of graphs, or study
classes of graph transformations preserving or enforcing such constraints.
Taentzer et al. propose to manage inconsistencies among different model
views via distributed graph rewriting, for example applying special rules
when an inconsistency is identified [26]. The detection of inconsistencies be-
tween rules representing different model transformations has been attacked
by static analysis methods in [30]. Similarly, Münch et al. add repair actions
to rules in case some post-conditions are violated by rule application [38]. In
all these cases, actions were modeled through single rules. Habel and Pen-
nemann [28] have extensively treated the problem of transforming existing
rules to make them compatible with (nested) constraints by adding applica-
tion conditions. Their work unifies theories about application conditions [11]
and nested graph conditions [41], lifting them to high-level transformations.
In [40], a logic of graph constraints is defined to allow the use of constraints
for language specification, and to provide rules for proving satisfaction of
clausal forms. Finally, Ehrig et al. exploit layered graph grammars to derive
a grammar generating (rather than transforming) instances of the language
defined by a meta-model with multiplicities [15]. Satisfaction of OCL con-
straints is checked a posteriori on a generated instance.

An approach based on textual constraint programming has been used
to specify forms of reasoning on diagrammatic languages, notably UML,
together with OCL constraints (see e.g. [7] for a comparison of different
tools). In this case, a mapping from a UML+OCL specification to a Con-
straint Satisfaction Problem has to be given. This model allows a general

6 Paolo Bottoni et al.

encoding of UML models, on which arbitrary constraints have to be checked,
whereas we are interested in coding a restricted number of reasoning rules
on a language characterised by fewer constraints and types of elements.

3 Spider Diagrams

We describe the SD system in [32], whilst simplifying the terminology. We
briefly describe the concrete syntax and the intuition of the semantics, be-
fore giving the formal abstract syntax definition. Then we present the trans-
formation rules of the SD-system, called reasoning rules, that correspond to
logical inferences. We present examples of SDs within a modelling context
to demonstrate their use in specification and reasoning.

A concrete ED is a collection of labelled simple closed curves in the
plane, decomposing it into connected minimal regions. A zone is a region
inside one set of curves and outside all of the others; zones may be shaded.
A concrete SD is an ED together with a set of spiders: trees whose vertices
are placed in zones with no two vertices of the same tree lying in the same
zone. Strands (wiggly lines) and ties (two parallel lines mimicking an equals
sign) can be placed between the vertices of distinct spiders within a zone.
We adopt the convention that all diagrams have a boundary curve, drawn
as a rectangle and labelled by U (for the universe of discourse); this is in
the set of inside curves for any region. In particular, there is an outermost
zone, characterised by being inside only the boundary curve.

A concrete diagram represents a collection of logical statements accord-
ing to the following intuitive semantics: a curve interior represents a set
(corresponding to the label); intersection, union and complement on regions
represent the corresponding operations on sets; spiders represent elements
in the sets determined by their habitat (the set of zones that they have
vertices in); if two spiders are connected by a tie within a zone and they
represent elements in the set represented by that zone, then these elements
are the same; if two spiders are connected by a strand within a zone, then
they may be equal; the elements denoted by two distinct spiders are distinct
if there is no zone for which both of the spiders lie in the same strand-tie
graph (formed by taking all of the vertices of the spiders and all of the ties
or strands within that zone); the set represented by a shaded zone contains
no elements except for those denoted by spiders that inhabit that zone.

Figure 1 shows two examples of sequences of four SDs, demonstrating
reasoning processes within the domain of nation composition, in particular
for Great Britain. The diagram on the top left has 5 curves (including U),
5 zones (including the outermost zone), one spider (Bob) inhabiting a sin-
gle zone ({U,GreatBritain,England}, {Wales, Scotland}). This diagram
indicates that every member of Great Britain is either English, Welsh or
Scottish (due to the shading) and that Bob is English. Deleting the Wales
curve in the subsequent diagram also removes the shading: it is not true
that the sets of English and Scottish people partition the set of people from

Spider Graphs 7

Great Britain. Two more curve deletions lead us to conclude that Bob is
from Great Britain. In the bottom sequence Alice (a single spider that in-
habits two zones) is either English or Scottish and the same sequence of
curve deletions yields the conclusion that Alice is from Great Britain.

U
Great Britain

Alice
Wales England

Scotland

U
Great Britain

England

Scotland

U
Great Britain

England

U
Great Britain

Alice

U
Great Britain

Bob
Wales England

Scotland

U
Great Britain

Bob
England

Scotland

U
Great Britain

Bob
England

U
Great Britain

Bob

Alice Alice

Fig. 1 Two sequences of SDs in which consecutive diagrams differ by erasing a
curve (rule 5). We deduce that Bob, who is English, is from Great Britain, and
Alice, who is either English or Scottish, is also from Great Britain.

3.1 Abstract syntax

The abstract syntax of an SD records the semantically important informa-
tion, leaving out details such as the particular embeddings of the curve in
the plane. We provide a formal definition of the abstract syntax of an SD
in Definition 1, which is a more detailed formalisation of those in [32, 33],
including the boundary curve, which is often omitted. We introduce only
the necessary terminology and simplify notation, referring here to a spider
diagram instead of a unitary spider diagram; one can also consider diagrams
joined by logical connectives, but for simplicity, we only consider the unitary
system consisting of single diagrams and their transformations.

In the following, the symbol \ denotes set difference, P(X) denotes the
powerset of a given set X, P2(X) the set of subsets of cardinality 2 of a given
set X, and Pf (X) the set of subsets of finite cardinality for an infinite set X.
We write τ ∩ υ and τ ∪ υ to denote the intersection and union, respectively,
of the two relations τ and υ, and Πx, y ∈ Q for Πx ∈ Q∧Πy ∈ Q, for some
quantifier Π and some set Q. The symbol ! indicates uniqueness.

Definition 1 (Spider Diagram.) Let L be a fixed, countably infinite set
of labels. A spider diagram is a tuple d =〈C,Z,Z∗,S, h, τ, υ〉 where:

1. C = C(d) ∈ Pf (L) is a finite set of curve labels.
2. Z = Z(d) ⊆ {(X, C \X) | X ∈ Pf (C)} is a finite set of zones.
3. Z∗ = Z∗(d) ⊆ Z is the set of shaded zones.

8 Paolo Bottoni et al.

4. S = S(d) ∈ Pf (L) is a finite set of spider labels.
5. h : S → P(Z) is a function that returns the habitat of each spider (i.e.

the set of zones that the spider inhabits).
6. τ ⊆ P2(S) × Z is a relation between pairs of spiders and zones which

indicates if two spiders are connected by a tie within that zone.
7. υ ⊆ P2(S) × Z is a relation between pairs of spiders and zones which

indicates if two spiders are connected by a strand within that zone.

satisfying the following traits:

(a) ∃!U ∈ C(d)[(∃!zU = ({U}, C \ {U}) ∈ Z) ∧ (∀z = (X,Y) ∈ Z[U ∈ X])].
(b) ∀c ∈ C[∃z = (X,Y) ∈ Z[c ∈ X]].
(c) C ∩ S = ∅.
(d) ∀s ∈ S[h(s) 6= ∅].
(e) τ ∩ υ = ∅.
(f) ∀({s1, s2}, z) ∈ τ ∪ υ[(z ∈ h(s1) ∩ h(s2))].

The collection of all SDs is denoted SD.

If z = (X,Y) is a zone, then X is the set of labels for curves that contain
z, Y is the set of labels for curves that exclude z, and {X,Y } is a partition
of C. If {X,Y } is a partition of C but (X,Y) 6∈ Z then we say that the zone
(X,Y) is missing. We say that z is inside each x ∈ X and outside each
y ∈ Y . The label U is reserved; it is called the universe, and by condition a)
it must be present. There is an outermost zone which is outside every curve
except for U . Every curve must contain at least one zone by condition b).

Figure 2 shows a representation of the relations of the abstract syntax
as a graph, where box nodes correspond to sets L, C and S and bullet nodes
are designators of relations, with the edges indicating the sets on which
they are defined. The zone node defines two subsets of curves, whilst the
connection node (strands or ties) defines a subset of spiders and of zones.

Curves Spiders

Labels

zone

habitat

shading

connection

strand

tie

universe

Fig. 2 A diagrammatic representation of the abstract syntax for SDs.

The formal semantics for an abstract SD are commonly provided in a
model theoretic manner: a universal set U together with an interpretation

Spider Graphs 9

function mapping curves to subsets of U and spiders to elements of U are
said to be a model for the diagram if they respect some additional semantics
predicate. Examples of predicates are found in [32, 33]; we follow [32], which
has been informally discussed above. Reasoning rules are transformations of
abstract diagrams; they are said to be sound if each model for the premise
diagram is also a model for the consequent diagram.

3.2 The transformation rules

We present the SD rules in the system of [32], rephrased so as to be pre-
sented as a clear natural language statement that is consistent with the
improved terminology adopted here, whilst retaining the rule numbering to
aid comparison. A complete reformulation into a formal Z-based specifica-
tion is distributed between Section 7 and the Appendix. Besides providing
a formalisation of this rule system (which was heretofore missing), this sets
the ground for deriving graph transformation rules and transformation units
which realise a faithful operationalisation of this system.

U
British Citizen

Alice Born In UK

U
British Citizen

Alice Born In UK

Of British Descent

U
British Citizen

Alice Born In UK

Of British Descent

Fig. 3 A sequence of SDs, first introducing a curve (rule 6) and then extending
a spider habitat (rule 2). The information about Alice, who is a British citizen, is
weakened by removing the fact that she was not born in the UK.

We provide examples modeling the requirements of British Citizenship
which demonstrate the application of the reasoning rules described below.
Figure 3 shows an example where the curve labelled OfBritishDescent is
added to a model instance. The effect of introducing a curve (rule 6) re-
places every present zone in the premise diagram (the left hand diagram)
with two zones (these will be called twin zones with respect to the curve
OfBritishDescent). The spider Alice inhabits both of the twin zones con-
structed from the zone inside BritishCitizen and outside BornInUK. This
essentially says that Alice is a British citizen who was born outside the UK,
and so she may or may not be of British descent (i.e. have a British par-
ent). The extension of the habitat of the spider Alice (rule 2) gives rise to
the conclusion shown on the right hand side of the figure. This relaxes the
constraint that Alice was not born in the UK, indicating that it is now not
known if she was born in the UK or not (in a modelling context this might
occur if the validity of the birth record documentation was doubtful).

10 Paolo Bottoni et al.

U

British Citizen

Bob
Born In UK

Blob

U

British Citizen

Bob
Born In UK

Blob

Of British Descent

U

British Citizen

Bob

Born In UK Blob

Of British Descent

U

British Citizen

Bob
Born In UK

Fig. 4 A sequence of SDs showing the introduction of a strand (rule 1), followed
by the introduction of a curve (rule 6) and the erasure of a spider (rule 3).

The left hand diagram in Figure 4 contains two spiders Bob (inhabit-
ing one zone) and Blob (inhabiting two zones). Here, Bob and Blob are
different British Citizens, and Bob was not born in the UK. The intro-
duction of a strand (rule 1) between the Bob and Blob within the zone
({U,BritishCitizen}, {BornInUK}) removes the necessity that Bob and
Blob are distinct (one might wonder whether partial records were duplicated
with spelling errors). Curve introduction (rule 6) is shown next, followed fi-
nally by the erasure of the spider Blob (rule 3). It could have been decided
that Blob was indeed the effect of an unfortunate typographical error.

U
British Citizen

Bob
Born In UK

Born In USA

U
British Citizen

Bob Born In UK

Born In USA

Fig. 5 A pair of SDs showing the application of addition of the reversible rule to
add all of the missing zones (rule 7).

The SD reasoning rule, called Equivalence of Venn and Euler form, can
be viewed as the addition of missing zones, and the removal of shaded zones
which are not inhabited by any spider. Figure 5 shows that Bob denotes a
British Citizen who was born in the USA. The curves showing Born in UK
and Born in USA are disjoint (have disjoint interiors) and so the zone that
would be inside both of these curve is missing (since no one can be born
in both the UK and the USA). The application of rule 7 adds the missing
zone as shaded zone in the conclusion diagram. This rule is reversible, and
viewing the right hand diagram as the premise diagram, one can remove
the shaded zones that have no spiders inhabiting them, returning the left
hand diagram as conclusion. We present the set of rules in natural language,
together with some definitions necessary to state the rules precisely.

Rule 1 (Introduction of a strand): If spiders s and t inhabit a zone z, but
are not connected within z, then a strand connecting them within z can

Spider Graphs 11

be added. If spiders s and t inhabit a zone z and are connected by a tie
within z then the tie can be replaced by a strand within z.

Rule 2 (Extend Habitat): If spider s does not inhabit zone z then the habi-
tat of s can be extended to z, and if t is another spider inhabiting z then
any connection (strand or tie) between s and t within z can be added.

For the statement of the next rule we introduce the notion of strand-tie
graph, which will also be used in the formalisation via SGs.

Definition 2 (Strand-tie graph.) Let d be a SD with zone z. Then the
strand-tie graph of z is the graph whose vertices correspond exactly to the
set of spiders that inhabit z, with edges connecting vertices if and only if
those spiders are connected by a strand or tie within z.

Rule 3 (Erase Spider): If spider s does not inhabit any zone that is shaded
then s, together with all of its connections, can be erased. If this erasure
disconnects the strand-tie graph of any zone z, then strands are added
so that the strand-tie graph is connected again.

Rule 4 (Erase Shading): the shading can be erased from any shaded zone.

For the erase curve rule (used in Figure 1) we require the concept of
twin zones from [21], formalised in the current style: zones z1 and z2 are
twins with respect to a curve c when z1 is inside c, z2 is outside c and they
have identical relationships (being inside or outside) with all other curves.
This rule is a more precise version of the statement given in [32].

Definition 3 (Twin relation.) With z1, z2 ∈ Z(d), c ∈ C(d), we have:
twinsc(z1, z2) ⇔ ∃X,Y ∈ P(C \ {c})[X ∪ Y ∪ {c} = C ∧ z1 = (X ∪ {c}, Y)
∧ z2 = (X,Y ∪ {c})].

Rule 5 (Erase Curve): a curve c can be erased. If either of (X ∪ {c}, Y) or
(X,Y ∪ {c}) is present then it is replaced by z = (X,Y). If there exist
zones z1 and z2 which are twins with respect to c then they are both
replaced by z, and: (i) z is shaded iff both z1 and z2 were shaded; (ii) a
spider s will inhabit z iff s inhabited at least one of z1 and z2; (iii) two
spiders s and t are connected by a strand in z iff there was a connection
(strand or tie) between s and t within either z1 or z2.

Rule 6 (Introduce Curve): a new curve c can be added. If z = (X,Y) was
present then z is replaced with the twins z1 = (X ∪ {c}, Y) and z2 =
(X,Y ∪ {c}), and: (i) z1 and z2 are both shaded iff z was shaded; (ii) a
spider s inhabits z1 and z2 iff s inhabited z; (iii) two spiders s and t are
connected by a strand (respectively, tie) within both z1 and z2 iff there
was a strand (respectively, tie) between s and another spider t within z.

The following rule has an extra clause which was omitted in [32]: one
cannot remove all of the zones inside any curve since this would break one of
the constraints on the diagram; an alternative approach would be to adopt
a cascading effect, removing any curves that would cause this problem.

12 Paolo Bottoni et al.

Rule 7 (Equivalence of Venn and Euler forms): If ZM is the set of missing
zones, then ZM may be added to Z∗(d). If K ⊆ Z∗(d), such that no
spider inhabits any zone in K, and U 6∈ K, then K can be removed,
provided that for each c ∈ C(d), there is at least one zone z = (X ∪
{c}, Y) ∈ Z such that z 6∈ K.

4 Graph Rewriting

We set our study in the context of graph rewriting for typed graphs. A graph
G = (V,E, s, t) consists of a set1 of nodes V = V (G), a set of edges E =
E(G), a pair of source and target functions, s, t : E → V . A (partial) graph
morphism between two graphs G1 = (V1, E1, s1, t1) and G2 = (V2, E2, s2, t2)
is a pair of (partial) functions fV : V1 → V2 and fE : E1 → E2 preserving
source and target relations on their images, as expressed by Condition (1).

(e2 = fE(e1)) =⇒ ((fV (s1(e1)) = s2(e2)) ∧ (fV (t1(e1)) = t2(e2)) (1)

In a type graph TG = (VT , ET , s
T , tT), VT and ET are sets of node and edge

types, while the functions sT : ET → VT and tT : ET → VT define source and
target node types for each edge type. A typed graph on TG is a graph G =
(V,E, s, t) equipped with a (total) graph morphism tp : G→ TG, composed
of functions tpV : V → VT and tpE : E → ET , preserving the typing of the
source and target functions, i.e. tpV (s(e)) = sT (tpE(e)) and tpV (t(e)) =
tT (tpE(e)). We consider simple typed graphs, where at most one edge of a
given type can exist for a given (source,target) pair [10].

A morphism between typed graphs (typed on the same TG) adds to
condition (1) conditions (2) and (3) for type preservation.

(e2 = fE(e1)) =⇒ (tpE(e2) = tpE(e1)) (2)

(v2 = fV (v1)) =⇒ (tpV (v2) = tpV (v1)) (3)

In the rest of the paper we use only injective morphisms between graphs
and omit the indication whether a morphism is a typing morphism or a
morphism between typed graphs, when it is clear from the context.

An atomic universal constraint is a morphism ac : P → C [28]. A
graph G satisfies ac, denoted G � ac, if for each morphism m : P → G
there exists a morphism c : C → G such that2 c ◦ ac = m. An atomic
constraint is recursively defined to be either an atomic universal constraint
or a construct ¬ac, with ac an atomic constraint. For satisfaction of ¬ac one
has: G � ¬ac⇔ G 2 ac. The set of models for ac is M(ac) = {G | G � ac}.
A constraint of the form c : ∅ → C is called an existential constraint as it
amounts to requiring the presence of a subgraph isomorphic to C within G.

1 In this paper we consider only finite graphs, i.e. with V and E finite sets.
2 The left argument of a composition ◦ is the last morphism to be applied.

Spider Graphs 13

The negation of an existential constraint (¬c : ∅ → C) defines a forbidden
graph, as it states that a subgraph isomorphic to C cannot appear in G.

General constraints can be built on top of atomic constraints via atomic
formulae of the form F = (F1 op F2) where op is one of ∧ or ∨ and F1

and F2 are atomic formulae or atomic constraints. Moreover, we also admit
general nested constraints characterised by nested formulae of the form
N = OP (N2) where OP is one of ∀ and ∃ and N2 is either a nested formula
or an atomic one. The notion of satisfaction for atomic constraints is suitably
adapted to satisfaction of general nested constraints.

A graph rewriting rule is given by a morphism between typed graphs,
together with application conditions expressed as (nested) formulae. We
adopt here the Single-PushOut (SPO) approach to graph rewriting [14],
where rules are expressed by presenting two graphs, called left- and right-
hand sides (L and R) with a partial morphism r : L → R between them,
stating which elements from L are preserved by the transformation. The left
of Figure 6 shows an SPO direct derivation diagram, where the target graph
H produced by the application of L

r→ R to a host graph G is defined as

the cospan G
g→ H

m∗

← R for the span G
m← L

r→ R, such that the resulting
square (1) is a pushout (i.e.H is the union ofG and R through their common
pre-images in L). Informally, the application of a rule to a host graph G
according to the match m : L → G deletes the elements in m(L \ r−1(R))
and creates in the target graph H the elements in the image m∗(R \ r(L)).
We indicate by G =⇒m

r H the relation between G and a target graph H
obtained by applying rule r along the match m. The notation G =⇒ H
defines the derivation relation, i.e. H can be produced by transforming G
according to some rule along some match.

In the SPO approach, unlike the DPO approach [13], it is not required
that the dangling condition be satisfied. Hence, a node in L \ r(L) can be
matched to a node in G even if its removal would leave some dangling edges.
The pushout construction then ensures that in this case the application of
the rule would remove the node together with all its adjoining edges. The
right of Figure 6 shows that (atomic) constraints can be associated with a
rule in the form of an application condition AC: {aci : L → Pi, {pij : Pi →
Cij}j∈Ji

}i∈I , for a match m : L→ G of the LHS of a rule. The rule is then
applicable at the match m if the associated AC is satisfied by m, i.e. for
each ni : Pi → G for which ni ◦aci = m, there exists cij : Cij → G such that
cij ◦pij = ni. In a negative application condition (NAC) Cij is empty, hence
the NAC cannot be satisfied if ni exists. Therefore, for r to be applicable,
a subgraph isomorphic to Pi must not be present in G. In particular, NACs
can be derived from a forbidden graph F according to the construction
in [27], so as to avoid that the application of r creates a match for F .

In a similar way General Application Conditions (GACs) are expressed
by formulae with the same structure as general nested constraints. A rule
is applicable at a match m only if the associated formula is satisfied for m.

All these concepts are lifted to attributed typed graphs following the
approach of [11]. Intuitively, we partition V into VG and VD (D for domain),

14 Paolo Bottoni et al.

L

m

��
(1)

r // R

m∗

��

Cij

cij
//

=

Pi

ni

--

=

pij
oo L

m

��
(1)

aci
oo r // R

m∗

��
G g // H G g // H

Fig. 6 SPO Direct Derivation Diagram for rules (left) and with AC (right).

the sets of graph and value nodes, respectively, while E is partitioned into
EG and EA (A for attribute). Graph edges in EG are equivalent to those for
non-attributed graphs, while an attribute edge in EA defines the assignment
of a value to an attribute of a node. Moreover, we have s = sG ∪ sA, with
sG : EG → VG and sA : EA → VG, and t = tG ∪ tA, with tG : EG → VG and
tA : EA → VD. In a similar way, the type graph TG has distinct sets V G

T

and V D
T of graph and value node types respectively, as well as distinct sets

EG
T and EA

T for graph and attribute edge types. Given t ∈ V G
T , all nodes

of type t are associated with the same subset A(t) ⊂ EA
T of edge types,

corresponding to the set of attribute names for t. Values in VD range over
the disjoint union of the set of sorts in a data signature DSIG. In this paper
we consider that nodes have a single, immutable, attribute.

The final component of our setting are Transformation Units (TUs), by
which one can express control conditions over rule application [36]. Let:

– G be the class of typed graphs;
– R be the class of SPO rules on typed graphs with application conditions;
– =⇒ be the derivation relation for the SPO approach;
– E be a class of graphs , where the semantics sem(e) of an expression e ∈
E is a subclass of G. In this paper we define E through the combination
of a type graph and a set of graph constraints;

– C be a class of control conditions over identifiers of rules in R built on a
grammar allowing identifiers, the sequential construct ‘;’, the alternative
choice ‘|’, and the loop construct asLongAsPossible c end, with c ∈ C.

A Transformation Unit is a construct TU = (e1, e2, P, imp, c), with
e1, e2 ∈ E initial and terminal graph class expressions (defining valid in-
put and output graphs), P ∈ Pf (R) a finite set of SPO rules, imp a set of
references to other, imported, TUs, whose rules can be used in the current
one, and c ∈ C a control condition enabling rules from P and units from
imp to be applied. A TU can only be applied to a graph G ∈ sem(e1) to
produce a graph H ∈ sem(e2); if H 6∈ sem(e2), it is considered to fail.

TUs have a transactional behaviour, i.e. a unit succeeds only if its rules
and imported units can be executed according to the control condition; it
fails otherwise. In this case, all the graphs produced during its execution
are discarded and the graph G is restored. For rules, failure corresponds to
the absence of a match for L which satisfies the application condition. A
sequence fails if any rule in the sequence fails. Control conditions of type
asLongAsPossible r end, where r is a single rule, always succeed (i.e. even
if r cannot be applied) and terminate as soon as no match is found for r.

Spider Graphs 15

However, if r = r1, . . . , rn is a sequence of rules, then the iteration on r fails
if, after a successful execution of r1 the execution of any rule ri as prescribed
by the remaining sequence r2, . . . , rn fails. Otherwise, asLongAsPossible
r end terminates with success as soon as no further match is found for r1.

In this paper, we take e1 = e2 to specify the class of Spider Graphs, as
defined in Section 5 and P to be the set of rules in Section 6. We relate
rule expressions to graph rules by naming rules and passing parameters to
them. We use parameters to identify nodes, thus restricting rule application
to specific diagram elements with specific properties. Hence, the rules pre-
sented in the TUs in Section 6 are actually rule schemata to be instantiated
to actual rules, with the parameter values defining application conditions.

5 Spider Graphs

We introduce Spider Graphs (SGs) as a language of typed graphs, speci-
fied by a type graph and a system of constraints, providing an equivalent
representation for the abstract syntax of SDs presented in Section 3.

The definition of the type graph for SGs starts from the diagrammatic
representation of the abstract syntax of SDs in Figure 2, where nodes desig-
nating subsets can be construed as hyperedges. In order to use simple typed
graphs, we employ a construction analogous to König’s one for reducing hy-
pergraphs to bipartite graphs (see e.g. [54]). That is, a hyperedge type can
be reified into a node type together with a corresponding edge type for every
hyperedge tentacle directed towards a different type of node. The construc-
tion starts by recognising curves and spiders as primary types of nodes, to
which the types Curve and Spider correspond. With these two types, we
associate the attribute label, with values of type String, to provide a ref-
erence to the original label for the corresponding element. After that, zones
are identified as hyperedges connecting the curves including them. Hence,
we define the node type Zone and the edge type inside, relating zones to
curves. We dispense with the representation of the outside relation as it can
be derived from the inside one. For the habitat relation, the same procedure
would give a Habitat node type with edge types spider and zone to connect
it to the corresponding node types. However, each habitat node would have
an edge toward a single spider and a collection of edges to a set of zones.
Since we do not need to identify specific instances of habitat, we replace
this type by directly connecting spiders and zones via the inhabit edge type
from Spider to Zone. Finally, connections are hyperedges relating spiders
inhabiting the same zone, so we provide a Connection node type with edges
of type connects, relating connections to spiders, and of type within, relating
connections to the zone for which the relation exists. The remaining desig-
nators in Figure 2 correspond to unary predicates on single elements of type
Zone or Connection. Hence, we represent them as self-edge types, where the
type shading indicates that the corresponding zone is shaded; the presence
of a universe self-edge denotes the boundary curve, and self-edges of type

16 Paolo Bottoni et al.

tie or strand define the nature of the connection. The resulting type graph
SG is shown in Figure 7, where multiplicities limit the number of edges of
the same type leaving from or entering a given node type (self-edges are
always restricted to have multiplicity 0 or 1).

Fig. 7 The type graph for SGs.

Under this typing, Definition 4 introduces a notion of representation of
an SD as a graph typed on SG. For G a graph typed on SG, we call T-node
any node n of G of type T and T-edge any edge of G of type T. We write nT
to indicate that n is a T-node, and eT to indicate that e is a T-edge.

Definition 4 (Representation of SDs.) Let d = 〈C,Z,Z∗,S, h, τ, υ〉 ∈
SD and let G = (V,E, s, t) be a simple typed graph on SG. Then we say
that G is a representation of d if and only if:

1. there is a bijection bc from C to the set of Curve-nodes.
2. there are exactly one Curve-node nU and one universe-edge eU such that
s(eU) = t(eU) = nU .

3. there is a bijection bz from Z to the set of Zone-nodes, such that: z =
(X,Y) ∈ Z ⇐⇒ there is a partition of the set of Zone-nodes of G into
X and Y (permitting X or Y to be empty) such that:

(a) there is an inside-edge from bz(z) to bc(x), for every x ∈ X, and
(b) there is not an inside-edge from bz(z) to bc(y), for any y ∈ Y .

4. z ∈ Z∗ ⇐⇒ there is a shading-edge from bz(z) to itself.
5. there is a bijection bs from S to the set of Spider-nodes, such that:
z ∈ h(s) with s ∈ S and z ∈ Z ⇐⇒ there is an inhabit-edge from bs(s)
to bz(z).

6. there is a bijection bcon from the set of all connections τ ∪ υ to the set
of Connection-nodes, such that:

(a) t = ({s1, s2}, z) ∈ τ ∪ υ ⇐⇒ there is a within-edge from bcon(t) to
bz(z) and there are connects-edges from bcon(t) to bs(s1) and bs(s2),
both of which have inhabits-edges to bz(z).

(b) t = ({s1, s2}, z) ∈ τ ⇐⇒ there is a tie-edge from bcon(t) to itself.
(c) t = ({s1, s2}, z) ∈ υ ⇐⇒ there is a strand-edge from bcon(t) to itself.

Spider Graphs 17

Lemma 1 Let G1 and G2 be representations of the same Spider Diagram
d. Then G1 is isomorphic to G2.

Proof We observe that the conditions in Definition 4 fix all choices for
graphs typed over the type graph in Figure 7. Any representation G of d has
a fixed number of nodes of each type, determined by the bijections in condi-
tions 1, 3, 5, and 6 of Definition 4. The self-edges are completely determined
by conditions 2, 4 and 6(b,c), noting that condition 2 ensures that there is
a universe self-edge present in G corresponding to the boundary curve in
d even though this is not enforced by the type graph for SG. Conditions 3
and 5 fix the inside and inhabits relationships. Finally, condition 6(a) fixes
the choices for the connects-inhabits-within relationship triangle of the type
graph: the bijection from the connections of d to the Connection nodes of
G with the required relationships, together with the cardinality constraint
on the within and connects relationship, means that there can be no extra
edges besides those involved in the imposed relationship. 2

Since the graph representation of an SD d is unique up to isomorphism,
we can refer to it as the representation of d; the existence of one such graph
is guaranteed. Theorem 1 characterises the properties of graphs represent-
ing SDs enabling the identification of a set of constraints completing the
definition of the class of Spider Graphs.

Theorem 1 Let d = 〈C,Z,Z∗,S, h, τ, υ〉 ∈ SD and let G be the represen-
tation of d. Then the following properties hold for G, where edge types are
omitted if they are derivable from the context (i.e. from the type graph).

1. ∀e1, e2 ∈ E[s(e1) = s(e2) ∧ t(e1) = t(e2) =⇒ e1 = e2]
2. ∀n1, n2 ∈ V [(n1 6= n2 ∧ tpV (n1) = tpV (n2) = Zone) =⇒

(∃nc ∈ V [(tpV (nc) = Curve) ∧
(((∃e1 ∈ E[s(e1) = n1∧t(e1) = nc])∧(@e2[s(e2) = n2∧t(e2) = nc]))∨
((∃e2 ∈ E[s(e2) = n2∧t(e2) = nc])∧(@e1[s(e1) = n1∧t(e1) = nc])))])]

3. ∃!nU ∈ V [(tpV (nU) = Curve) ∧
(∀nz ∈ V [(tpV (nz) = Zone) =⇒ (∃eU ∈ E[(s(eU) = nz ∧ t(eU) =
nU)])]) ∧
(∃nzU ∈ V [(tpV (nzU) = Zone) ∧ (∀nc ∈ V [(nc 6= nU ∧ tpV (nc) =
Curve) =⇒ (@en ∈ E[s(en) = nzU ∧ t(en) = nc])])])]

4. ∀nc ∈ V [tpV (nc) = Curve =⇒ ∃nz ∈ V, en ∈ E[s(en) = nz ∧ t(en) =
nc]]

5. ∀ns ∈ V [tpV (ns) = Spider =⇒ ∃nz ∈ V, es ∈ E[s(es) = ns, t(es) =
nz]]

6. ∀nx ∈ V [tpV (nx) = Connection =⇒ ∃!ex ∈ E[(s(ex) = t(ex) =
nx) ∧ (tpE(ex) = strand ∨ tpE(ex) = tie)]]

7. ∀nx ∈ V [(tpV (nx) = Connection) =⇒ (∃!n1, n2, nz ∈ V [(n1 6= n2) ∧
(tpV (n1) = tpV (n2) = Spider ∧ tpV (nz) = Zone) ∧

(∃e1, e2 ∈ E[tpE(e1) = tpE(e2) = connects ∧ t(e1) = n1 ∧ t(e2) = n2
∧ s(e1) = s(e2) = nx]) ∧

18 Paolo Bottoni et al.

(∃e3, e4 ∈ E[(tpE(e3) = tpE(e4) = inhabits) ∧ (t(e3) = t(e4) = nz)
∧ (s(e3) = n1) ∧ (s(e4) = n2)]) ∧
(∃ex ∈ E[tpE(ex) = within ∧ s(ex) = nx ∧ t(ex) = nz])])]

Proof We analyse each of the properties in Theorem 1 using the conditions
and traits on d from Definition 1. These translate to conditions on the
representation G of d due to the bijections in Definition 4, ensuring that
there is a unique node in G for each curve, spider and zone in d, as required
by conditions (1), (2), (4) and trait (c) of Definition 1. Property (1) of
Theorem 1 says that there is at most one edge between any two nodes of G.
Since G is a simple typed graph by Definition 4, non-unique edges between
a pair of nodes can only occur as a tie-edge and a strand -edge on the same
Connection node; this is prevented by bijection bcon. Property (2) says that
any two distinct Zone nodes have distinct sets of inside-edges; this follows
from condition (2) of Definition 1 and bijection bz. Property (3) says that
there is a unique Curve-node for which every Zone-node is inside, and there
is a Zone-node which is inside this particular Curve-node only; this follows
from trait (a) in Definition 1 and bijections bc and bz. Property (4) says
that each Curve-node has a Zone-node which is inside it; this follows from
trait (c) in Definition 1 and bijections bc and bz. Property (5) says that each
Spider-node inhabits at least one Zone-node; this follows from condition (5)
and trait (d) in Definition 1, and bijections bs and bz. Property (6) says that
each Connection-node has exactly one self-edge, of type either strand or
tie, trait (e) in Definition 1, and bijections bcon and bs. Property (7) says
that each Connection-node connects exactly two Spider-nodes within the
Zone-node that both spiders inhabit ; this follows from conditions (6), (7)
and trait (f) in Definition 1, and bijections bcon, bs and bz. ut

We observe that the only condition of Definition 1 that was not consid-
ered in the above proof was condition (3); the bijection between shading in
zones and shading self-edges was already imposed in Definition 4.

5.1 Graph constraints for SGs.

We express the properties derived from Theorem 1 as graph constraints,
characterising the class of SGs independently from their being a represen-
tation of an SD. Hence, the forbidden graphs shown in Figure 8 enforce
uniqueness of connections and of the universe self-edge and ensure that
each occurrence of strand, tie, shading, universe is a self-edge, while F8
prevents a connection from being both a strand and a tie. The forbidden
graph F2, ensuring uniqueness of the inhabits edges, is representative of the
class F of constraints enforcing simplicity of typed graphs.

The positive constraints in Figure 9 correspond to other properties of
Theorem 1: property 7 about connections existing only between spiders
which both inhabit the region that the connection is within (P1); property 5
about each spider inhabiting at least one zone (P2); property 4 about not

Spider Graphs 19

F1 F2 F3

F4 F5 F6

F7 F8

Fig. 8 Forbidden graphs for uniqueness constraints.

having a curve without zones inside (P3); and the first part of property 3
about each zone being inside the boundary curve (P4) (marked with the
universe edge). These are all universal constraints of the form P → C, while
constraint P5 in Figure 10, requiring the existence of the boundary curve,
is an existential constraint of the form ∅ → C. The nested constraint P6 at
the bottom of Figure 10 requires the existence of an outermost zone lying
inside of the boundary curve only. Here and henceforth, identical numbers
in different components of a constraint or of a rule identify corresponding
elements in the morphisms. The constraint P7 in Figure 11 realises prop-
erty 6: each connection is either a tie or a strand. Finally, Figure 12 presents
a nested constraint (P8) stating that for each pair of zones there is at least
one curve such that the two zones have different relations with that curve,
while the constraints P9-P11 on values in Figure 13 ensure uniqueness of
the node associated with a label.

Definition 5 gives the formal characterisation of the language of Spider
Graphs (SG), while Theorem 2 proves that elements of SG are in a bijective
correspondence with elements of SD.

Definition 5 (Spider Graph.) A simple typed graph G on SG, is a Spider
Graph if and only if G 6|= Fi, for i ∈ {1, . . . , 8}, G 6|= f , for f ∈ F3 and
G |= Pi, for i ∈ {1, . . . , 11}. Let SG denote the class of all SGs.

Theorem 2 Let G ∈ SG be a Spider Graph. Then there exists d ∈ SD such
that G is a representation of d.

3 F is the set of forbidden graphs enforcing simplicity of the typed graphs.

20 Paolo Bottoni et al.

P1

P2

P3 P4

Fig. 9 Positive constraints for SGs.

P5

outermostZone






P6

Fig. 10 There exists a boundary curve and an outermost zone.

Proof We construct d = 〈C,Z,Z∗,S, h, τ, υ〉 ∈ SD such that there exist
bijections as in Definition 4, indicating the conditions and traits of Defini-
tion 1 that must hold due to the construction together with the constraints
defining the SG language. This ensures that the construction yields a SG.
We construct d from the nodes of G and then the edges for curves, spi-
ders and connections, pointing to the relevant conditions from Definition 1
satisfied at each stage.

For each node of G of type Curve, Zone and Spider, construct exactly
one c ∈ C, z ∈ Z and s ∈ S respectively. For each z ∈ Z, let z = (X,Y),
where X is the set of curves constructed for the Curve-nodes that the Zone

node was inside (i.e. it is adjacent to, via an edge typed as inside), and Y
is the remaining set of curves. No two Zone-nodes in G have the same set

Spider Graphs 21

eitherStrandOrTie



P7

Fig. 11 Connections are either ties or strands.

twoZonesDiffer




 

P8

Fig. 12 Two distinct zones have different inside relationships with some curve.

P9

C1C2

P10

S1S2

P11

S1C1

Fig. 13 Labels are unique for spiders and curves.

of adjacent Curve-nodes as per the constraint in Figure 12. For each z ∈ Z,
take z ∈ Z∗ if and only if the corresponding Zone-node had a shading
self-edge; there are no shading edges between distinct zones by F6. Thus,
conditions 1-4, and trait (c) of Definition 1 hold.

Exactly one Curve-node has a universe self-edge because of F3 and P5;
no universe edge is adjacent to two distinct Curve-nodes due to F7. Every
zone is inside the boundary curve due to P4, and there is a zone that is
only inside the boundary curve due to P6. So, trait (a) of Definition 1 holds.
Every curve has a zone inside it, due to P3. So trait (b) of Definition 1 holds.

For each spider s ∈ S, the habitat function is constructed by associating
with each spider s the set of zones corresponding to the set of Zone-nodes
adjacent (via an inhabits edge) to the Spider-node corresponding to s. This
is non-empty due to P2. Thus condition 5 and trait (d) of Definition 1 hold.

22 Paolo Bottoni et al.

For each Connection-node n of G, if n has a strand or tie self-edge then
construct ({s, t}, z) ∈ υ or ({s, t}, z) ∈ τ , respectively, where s, t ∈ S are
the spiders defined for the Spider -nodes which have a connects edge from n,
and z ∈ Z is the zone defined for the Zone node with a within edge from n;
s, t and z exist due to the type graph constraints. The incident edges with
any Connection node must be self-edges due to F4, F5 and the type graph
constraints. Every Connection node has either a strand or a tie self edge
by P7 and F8. Thus conditions 6 and 7 of Definition 1 hold. We must have
that s and t inhabit z, due to P1. So trait (f) holds. The sets υ and τ are
disjoint due to F1, F8 and P7. So trait (e) holds.

Since all of the conditions and traits of Definition 1 are satisfied, d is
a Spider Diagram. Since the construction ensures that the bijections of
Definition 4 exist, G is a representation for d, as required. ut

6 A Graph Transformation System for Spider Graphs

We define a collection T USG of TUs realizing the reasoning system in Sec-
tion 3. We first outline the approach followed and the conventions adopted.
Figure 14 shows the two SGs corresponding to the first two SDs in the se-
quence of Figure 3, illustrating the effect of the TU corresponding to the
Introduce curve rule.

Fig. 14 SG representation of the first reasoning step of Figure 3.

Spider Graphs 23

6.1 A procedure for deriving transformation rules from SD rules

For each SD rule, we define the corresponding TU in the SG system and
the individual GT rules in the unit. In general, for each SD rule, the derived
TU in T USG presents one principal GT rule. This is the last GT rule to be
applied in a TU derived from a SD rule erasing some element, or the first one
in a TU from a SD rule introducing some element. The remaining GT rules
in the TU derive from two requirements. First, rules are needed to ensure
that the TU terminates producing a syntactically correct SG, i.e. complying
with the type graph and the graph constraints. Then, rules are needed to
preserve semantic properties of the transformed models. Such rules might
vary if different semantics were involved. By breaking down the global effect
of a SD reasoning rule into GT rules in a TU, the preconditions for each
GT rule can be ensured by the effects of previously applied GT rules.

In order to operate on curves or spiders with specific labels, we use pa-
rameters which allow the selection of the correct element. Auxiliary markers
are used in some rules to force looping on all the required elements, or to
reify some complex relation between elements involved in a transformation.

The application of a principal rule may require some preparation (for
erasing rules) or repair action (for introducing rules). In general these ac-
tions involve arbitrary contexts, so they have to be applied in situations
which might lead to inconsistent graphs. Context can be managed by paral-
lel application on all non conflicting matches, or by iterating rule application
on all of them, via the asLongAsPossible construct. For this presentation,
we adopt this latter option for all cases. The order in which these actions
have to be taken depends on the specific inconsistencies which may arise. For
individual rules, if the absence of an element is stated in the pre-condition,
then this is included in a NAC. An additional set of NACs is used to pre-
vent iteration on the same elements. In general, we explicitly show the NAC
as part of the pre-condition only where necessary. The negative constraints
expressed by the forbidden graphs of Figure 8 are used to generate NACs
preventing the application of a rule which would produce such a graph [27].

6.2 The transformation rules

We use a reformulation of the SD rules in terms of pre- and post-conditions
to derive graph transformation rules and TUs complying with these condi-
tions. We present only the rules for erasing and introducing a curve, which
are the most complex ones, and complete the presentation of the SD system
in Appendix A. In these TUs, some rules require the use of additional edges,
which appear only temporarily while executing a TU and are removed when
it terminates. In particular, spiders and zones can be marked in the context
of an iteration on all instances of a type, while a twin edge type is used to
relate zones in the twinc relation for some curve c.

24 Paolo Bottoni et al.

Rule 5. [Erasure of a curve.] Given a curve c, let Sc be the set of zones
which are twins, w.r.t. c, of zones inside c. Deleting c entails an update of:
1) the relations of spiders with Sc; 2) the connections in zones of Sc; 3)
their shading properties. Once these operations are completed, all the zones
inside c are removed, before deleting c itself in the principal rule for the TU.
In the resulting control condition, C identifies the curve to be erased.

EraseCurve(C) =
asLongAsPossible associateTwin(C) end;
asLongAsPossible extendInhabitRelation end;
asLongAsPossible copyStrandToSurvivorZone end;
asLongAsPossible ensureConnectionsAreStrandInSurvivorZone end;
asLongAsPossible removeConnectionFromCondemnedZone end;
asLongAsPossible ensureCoherentShadingInSurvivorZone end;
asLongAsPossible removeCondemnedZone(C) end;
(deleteCurveWithTwin(C) | deleteCurveWithoutTwin(C))

The rules in the TU are presented in Figures 15-24. The first rule, in
Figure 15, is iterated to identify zones which are twins with respect to the
curve c specified by the parameter C (i.e. with label equal to C). An edge
of type twin is created for each such pair, with source in the condemned
zone inside c (to be eliminated by the TU) and target in the survivor zone
outside c (preserved by the TU). The rule presents three NACs, respectively
ensuring that: 1) the boundary curve cannot be deleted; 2) the zone node
that will become the target of the twin edge is not inside c; 3) the twin
relation has not already been established between the same pair of zones.

associateTwin(C)

Fig. 15 Rule associateTwin(C): identifying twins.

For conciseness, we define a predicate inside(z, c)⇐⇒ ∃e ∈ E[tpE(e) =
inside∧ s(e) = z ∧ t(e) = c]. The GAC in Figure 16 assesses the presence of
a twin relation between two zones z1, z2 (identified by a match for the LHS
of associateTwin(C)) such that inside(z1, c) and ¬inside(z2, c) (from the
rule NAC). More precisely, it checks the property ∀c1 6= c[(inside(z1, c1)
∧ inside(z2, c1)) ∨ (¬inside(z1, c1) ∧ ¬inside(z2, c1))], i.e. the zones have
different relations with c but the same relations with all of the other curves.

Spider Graphs 25
conditions





 

Fig. 16 A graphical representation of the GAC to identify twins, to be checked
on each match m for the LHS of the rule associateTwin(C) in Figure 15. The
formula reads “for each match m1 : g1 → G of the graph g1 in the ∀-box extending
m, either the graph in the ∨-box has a match extending m1 or neither of the graphs
in the ∧-box has a match extending m1”.

The rules in Figures 17-20 are individually iterated to transfer to survivor
twins the information about spiders and connections within condemned
zones. The rule extendInhabitRelation in Figure 17 extends the inhabit
relation for each spider in a condemned zone to its survivor twin (a NAC, not
shown here, checks that the spider does not already inhabit the survivor).

Fig. 17 Rule extendInhabitRelation.

The rule copyStrandToSurvivorZone (see Figure 18) creates a strand
in the survivor zone for each existing connection (of any type) in the con-
demned zone. A NAC (not shown here) in this rule prevents application
if a connection already exists between the same spiders within the sur-
vivor zone. To ensure that any connection in the survivor zone is a strand,
any previously existing tie within it is converted by looping on the rule
ensureConnectionIsStrandInSurvivorZone in Figure 19.

The connections in a condemned zone can now be removed by looping
on rule removeConnectionFromCondemnedZone in Figure 20.

26 Paolo Bottoni et al.

Fig. 18 Rule copyStrandToSurvivorZone.

Fig. 19 Rule ensureConnectionIsStrandInSurvivorZone.

Fig. 20 Rule removeConnectionFromCondemnedZone.

The condition (i) from the specification of Rule 5 in Section 3 is enforced
by ensureCoherentShadingInSurvivorZone (Figure 21), which removes
the shading from the survivor zone if the condemned zone was not shaded.

Fig. 21 Rule ensureCoherentShadingInSurvivorZone.

Spider Graphs 27

The iteration of removeCondemnedZone in Figure 22 and a final alterna-
tive between deleteCurveWithTwin or deleteCurveWithoutTwin complete
the unit. The iteration removes all condemned zones, identified by having
a twin, up to the last one. The first alternative (in Figure 23) removes the
curve together with the last twinned zone inside it. If no zone had a twin,
then the second alternative is used (Figure 24). The NAC for the second
rule ensures that only one of the rules can be applied, while both NACs
are consistent with the rules being applied only at the very end of the pro-
cess. Together, these rules preserve constraint P3, so that while the curve
is present, a zone is inside it. Note that, as we adopt the SPO approach, all
the remaining inhabits edges are deleted together with the curve.

Fig. 22 Rule removeCondemnedZone.

Fig. 23 Rule deleteCurveWithTwin.

Fig. 24 Rule deleteCurveWithoutTwin.

Rule 6. [Introduction of a curve.] The control condition for the TU is:

IntroduceCurve(C) =
addCurve(C);

28 Paolo Bottoni et al.

asLongAsPossible extendZone(C) end;
asLongAsPossible completeExtension(C) end;
asLongAsPossible copyInhabitInNewZone end;
asLongAsPossible copyTieInNewZone end;
asLongAsPossible copyStrandInNewZone end;
asLongAsPossible ensureCoherentShadingInNewzone end;
asLongAsPossible removeTwin end

After applying the unit to introduce a curve c, each of the old zones
which were in the start graph will be the twin (w.r.t. c) of a new zone
inside c in the target graph. First, rule addCurve(C) adds the new curve
(see Figure 25) and creates a zone which has the outermost zone as its twin,
preserving constraints P3 and P4. In the rest of the unit, the existence of a
twin edge indicates the relation between an old zone and a new one, which,
at the end of the process, will satisfy the twin relation.

Fig. 25 Rule addCurve(C). The additional checks C2 6=C and C16=C∧C26=C on the
two NACs (from left to right) are not shown graphically.

A pair of NACs is used to check that the value of C differs from that of
any other curve. The GAC of Figure 26 identifies the zone 2:Zone inside
the boundary curve 1:Curve as the outermost one if for each other curve
(5:Curve in the compartment labelled ∀) it does not happen that 2:Zone

is inside 5:Curve (compartment labelled ¬).




Fig. 26 A graphical representation of the GAC to identify the outermost zone,
to be checked on each match m for the LHS of the rule addCurve(C) in Figure 25.
The formula reads “for each match m1 : g1 → G of the graph g1 in the ∀-box
extending m, the graph in the ¬-box has no match extending m1”.

The two following iterations generate a number of twins for the old zones,
and copy the inside relations between old zones and other curves, to their

Spider Graphs 29

new twins. In particular, rule extendZone of Figure 27, creating new zones
which are twins to old ones with respect to c, is guarded by two NACs,
preventing repeated application of the same rule on the same match.

Fig. 27 Rule extendZone.

After this, the iteration of rule completeExtension in Figure 28 estab-
lishes the new zones as inside the same set of other curves as their twins with
respect to c. A NAC, not shown here, prevents the application of this rule if
it would duplicate an inside edge. The nested constraint of Figure 12, stat-
ing that no two zones have the same relations with respect to all curves, may
not hold after some application of completeExtension, but is guaranteed
to hold at the end of the iteration of this rule.

Fig. 28 Rule completeExtension.

The following three iterations (see Figures 29-30) take care of the spiders
inhabiting the old zones and their connections. All of these have to be
duplicated in the new zones. The first rule ensures that the new zone is
inhabited by the same spider as its twin zone, while the next two copy ties
and strands to the new zones. We show only the version for ties in Figure 30.

To complete the process, rule ensureCoherentShadingInNewZone in
Figure 31 makes the new zone shaded, if its twin was shaded. The unit is
concluded by removing all the auxiliary twin edges, as shown in Figure 32.

30 Paolo Bottoni et al.

Fig. 29 Rule copyInhabitInNewZone.

Fig. 30 Rule copyTieInNewZone.

Fig. 31 Rule ensureCoherentShadingInNewZone.

Fig. 32 Rule removeTwin.

7 Correctness of translation

From Definition 4 and Theorems 1 and 2, each SD has a representation as
an SG, and for each SG there is an SD that SG represents. We now prove
the correctness of the construction of T USG showing, via Definition 6 and
Theorem 3, that each TU ∈ T USG transforms an SG into an SG, realising
the specification of an SD rule on the corresponding SD.

Definition 6 Let T denote a transformation unit and R an SD-rule. Then
we say that T realises R if ∀d ∈ SD:

1. If d does not satisfy the preconditions of R then the application of T to
G(d) fails, where G(d) is the SG representing d.

Spider Graphs 31

2. If d does satisfy the preconditions of R then the application of T to G(d)
produces a Spider Graph G′ such that the Spider diagram d′ which G′

represents satisfies the post-conditions of R.

Theorem 3 Let rule R be an SD rule, and let R∗ denote the corresponding
TU ∈ T USG. Then the application of R∗ to any element of SG returns an
element of SG. Furthermore, R∗ realises R.

Proof We adopt the following proof strategy for each of the rules:

1. Provide a formal specification for SD-rule R.
2. Assume that d ∈ SD satisfies the preconditions of R and let G(d) ∈ SG

be the SG representation of d.
3. The ordered rules within R∗ alter G(d). We indicate, via a sequence of

transformations, the corresponding effects of each of these ordered rules
within R∗ on the components of d. The application of these individual
transformations is not guaranteed to preserve the class of SDs (i.e. they
may perform some intermediary step whose result is not a SD).

4. Argue, via case analysis when necessary, that the application of this
sequence of transformations applied to d yields d′ ∈ SD.

5. Deduce that G′, the result of applying R∗ to G(d), represents d′.

The details for each of the Rules 5 and 6 are provided in lemmata 2 and
3, whilst those for the remaining rules are provided in the Appendix. ut

In order to ensure a precise definition of the effect of each of the SD rules,
we provide a specification in a variant of Z. Pre- and post-conditions of the
rules are given within the context of a system invariant, the SD definition in
Definition 1, since before and after rule application we must have a valid SD.
The rules may use parameters indicating named objects (labels for curves
or spiders) for directed rule application. Within the specifications, variables
that are not passed as parameters or explicitly defined or quantified are
implicitly universally quantified. A SD-rule specification has: (i) signature
indicating system name, rule names and parameters; (ii) pre- and post-
condition contracts placed in boxes separated by a double line (boxes can
be omitted if vacuous). Pre-boxes are indicated with a M symbol, post-boxes
with a O symbol. Boxes can be nested, where containment of boxes indicates
a conjunction of conditions, whilst disjoint boxes at the same level of nesting
indicate alternative cases; two such disjoint boxes with equal pre-conditions
indicate a non-deterministic choice. Lemma 2 shows the SD-specification
for erasing a curve, utilising nested boxes, for example.

We consider the effect that iterating individual SG rules as long as pos-
sible would have on the components of the corresponding SD, and we record
this in an abbreviated form in order to save space. That is, we present the
effects on the corresponding SDs via an expression of the pre- and post-
states, in terms of components of the abstract SD syntax. To emphasize the
change from pre- to post-state, we add a prime to the sets in the post-state
(returning to non-primed use in the pre-state of the subsequent rule to avoid

32 Paolo Bottoni et al.

notation cluttering). We use the symbol of entailment (`) to indicate that
if the preconditions (on the left of the `) hold in the (SD represented by
the) graph before the (iterated) application of the rule, the post-conditions
(on the right of the `) hold after this application. The individual rule spec-
ifications can be obtained by considering the state of the SD corresponding
to LHS of rules before the application and the state of the SD correspond-
ing to RHS of rules afterwards. Forbidden graphs and their corresponding
NACs, as well as other NACs in the rule, give rise to negated clauses in the
pre-condition. For example, the clause z2 6∈ h(s) in entailment (4) below oc-
curs since the extendInhabitRelation rule (in Figure 17) is not applied if
z2 ∈ h(s) in the pre-state (because this would cause the forbidden creation
of two inhabits edges from the spider to the zone).

The proof of correctness follows by showing that the combined effect of
the whole TU on an initial SG, g1, yields an SG, g2, and that d2, the SD
corresponding to g2, satisfies the post-conditions of the SD rule provided
d1, the SD corresponding to g1, satisfied the precondition of that rule.

Lemma 2 The TU for R = eraseCurve realises Rule 5 of the SD system.

Proof We first provide the SD-specification of Rule 5.

SD !eraseCurve(c ∈ C)
M z1 = (X ∪ {c}, Y) ∈ Z ∨ z2 = (X,Y ∪ {c}) ∈ Z

M twinsc(z1, z2)

M z1, z2 ∈ Z∗

O (X,Y) ∈ Z∗

M ∃s ∈ S • z1 ∈ h(s) ∨ z2 ∈ h(s)

O (X,Y) ∈ h(s) ∧ z1, z2 6∈ h(s)

M ∃s, t ∈ S • ({z1, z2}) ∩ h(s) ∩ h(t) 6= ∅

M ({s, t}, z1) ∈ τ ∪ υ ∨ ({s, t}, z2) ∈ τ ∪ υ

O ({s, t}, (X,Y)) ∈ υ

O c 6∈ C ∧ (X,Y) ∈ Z ∧ z1, z2 6∈ Z

Next, we specify the effects that looping on rule applications within the
TU on the SG would have on the corresponding abstract syntax of SDs, in
the order that they appear within the TU: associateTwin, extendInhabit-
Relation (4), copyStrandToSurvivorZone (5), ensureConnectionsAre-

StrandInSurvivorZone (6), removeConnectionFromCondemnedZone (7),
ensureCoherentShadingInSurvivorZone (8), removeCondemnedZone (9),
deleteCurveWithTwin (10), deleteCurveWithoutTwin (11).

Spider Graphs 33

The rule associateTwin in the eraseCurve TU has no effect on the
abstract SD, but ensures that twin zones are correctly identified, whilst the
subsequent rules act as indicated in the following entailments.

twinc(z1, z2) ∧ ∃s ∈ S[z1 ∈ h(s) ∧ z2 6∈ h(s)] ` z2 ∈ h′(s). (4)

twinc(z1, z2) ∧ ({s1, s2}, z1) ∈ τ ∪ υ ∧ ({s1, s2}, z2) 6∈ τ ∪ υ `
({s1, s2}, z2) ∈ υ′.

(5)

twinc(z1, z2) ∧ ({s1, s2}, z2) ∈ τ `
({s1, s2}, z2) 6∈ τ ′ ∧ ({s1, s2}, z2) ∈ υ′.

(6)

twinc(z1, z2) ∧ ({s1, s2}, z1) ∈ τ ∪ υ ` ({s1, s2}, z1) 6∈ τ ′ ∪ υ′. (7)

twinc(z1, z2) ∧ z2 ∈ Z∗ ∧ z1 6∈ Z∗ ` z2 6∈ Z∗′. (8)

twinc(z1, z2) ∧ z1 = (X ∪ {c}, Y) ∧ ∃X3, Y3 ⊂ C
[X3 6= X ∧ (X3 ∪ {c}, Y3) ∈ Z] `

z1 /∈ Z ′.
(9)

c ∈ C ∧ twinc(z1, z2) ∧ z1 = (X ∪ {c}, Y) ∈ Z∧ 6 ∃z4, z5 ∈ Z
[{z4, z5} ∩ {z1, z2} = ∅ ∧ z4 = (X4∪{c}, Y4) ∧ twinsc(z4, z5)] `

c 6∈ C′ ∧ z1 /∈ Z ′ ∧ z2 /∈ Z ′ ∧ (X,Y) ∈ Z ′.
(10)

c ∈ C∧ 6 ∃z1, z2 ∈ Z[twinsc(z1, z2)] ` c 6∈ C′. (11)

We perform a case analysis of the overall effects that the sequence of
transformations above have on a diagram d, satisfying the preconditions
of the rule R, arguing that the output satisfies the post-conditions of rule
R. Firstly, suppose that exactly one of z1 = (X ∪ {c}, Y) ∈ Z and z2 =
(X,Y ∪{c}) ∈ Z hold. Then the zone z1 or z2 which is present is not a twin
(i.e. twinc(z1, zk) and twinc(zk, z2) are false for any zk ∈ Z). Since all of the
other rule specifications affect only twin zones, only entailment (11) holds,
and only if there are no c-twins present. In this case, the curve is removed,
altering zones in turn, as stated in the post-condition of SD!eraseCurve.
Curve deletion in the SG removes the inside relation between the curve and
all zones, thereby removing the c label from zones in the SD representation.
Thus the outermost pre- and post-condition pair is satisfied.

Now suppose that z1 = (X ∪ {c}, Y) and z2 = (X,Y ∪ {c}) ∈ Z exist.
Then, in the first nested level of conditions, the precondition twinsc(z1, z2)
holds, and we consider the remaining sub cases, where z = (X,Y).

Case 1: If z1, z2 ∈ Z∗ then z = (X,Y) ∈ Z∗′, where the prime indicates
the change to post-state in the global specification (as opposed to the local

34 Paolo Bottoni et al.

case when we referred to the equations), since z2 was shaded and no rules
apply to change this (entailment (8) only holds if z1 was not shaded, and
no other entailment holds). This deduction follows from the construction,
making use of the fact that the application of the transformation unit ef-
fectively removes the inside twin (corresponding to z1) whist keeping the
outside twin (corresponding to z2), albeit with all references to curve c re-
moved; thus all other attributes of z2 are inherited by z. If either of z1 or
z2, or both, are in Z but not in Z∗ then z 6∈ Z∗′ by construction since, if
entailment (8) holds, then the shading is removed from z2.

Case 2: ∃s ∈ S[z1 ∈ h(s) ∨ z2 ∈ h(s)]. Entailment (4) ensures that after
rule application (if it is applicable) we have that z2 ∈ h(s). The subsequent
curve deletion ensures that z retains the properties of z2, as indicated in
Case 1, and so z ∈ h′(s).

Case 3: ∃s, t ∈ S[{z1, z2}∩h(s)∩h(t) 6= ∅] and either ({s, t}, z1) ∈ τ ∪ υ
or ({s, t}, z2) ∈ τ ∪ υ. By entailment (5) a strand is added between s and
t in z2 if there were no connections in z2 but there were in z1. Then by
entailment (6) any tie in z2 is converted to a strand. This ensures there is
a strand between s and t in z2 after entailment (6), so ({s, t}, z) ∈ υ′.

Finally, the curve c ∈ C is deleted by the last rule which is applied in
a given execution of a TU. This happens as specified by entailment (10) if
there were twin zones with respect to c, or by entailment (11) if no such
twin zones were present. Thus the outermost pre- and post-condition pair
are satisfied. Equations (7) and (9) perform housekeeping tasks related to
the subsequent removal of the zone z1 (the inside twin).

Hence, the sequence of transformations of the components of d corre-
sponding to the execution of the TU for R = EraseCurve on the represen-
tation of d, yields a diagram d′ that is obtainable from d by the application
of rule R. Due to the correspondence between SDs and SGs from the con-
struction of Definition 4 and Theorem 2, we have that R∗ realises R. ut

We provide an example tracking the effects of entailments (4)-(11) in
detail; that is, we track the effect on the SD corresponding to each of the
application steps in the corresponding TU acting on the Spider Graphs.

Example 1 Let d1 be the SD shown in Figure 33 (top left), with a to be
deleted in the rule application yielding d2 on the right. Since the habitat of
both s and t, in d1, includes both of the twinned zones (({u, a, b}, {}) and
({u, b}, {a})), entailment (4) does not affect them. For the twinned zones
(({u, a}, {b}) and ({u}, {a, b})), we have ({u, a}, {b}) ∈ h(t), ({u}, {a, b}) /∈
h(t), and so ({u}, {a, b}) is added to the habitat of t (bottom left). Equa-
tion (5) has no effect, as the twinned pair (({u, a, b}, {}), ({u, b}, {a})), with
({s, t}, ({u, b}, {a})) ∈ τ , ({s, t}, ({u, a, b}, {})) /∈ τ ∪ υ does not satisfy
its pre-condition: z1 must be the zone which is inside the curve a. Next,
entailment (6) replaces the tie ({s, t}, ({u, b}, {a})) ∈ τ , with a strand so
that ({s, t}, ({u, b}, {a})) ∈ υ (bottom middle). Then, entailment (7) has
no effect since there are no ties or stands between spiders’ feet in any
twinned zone which is inside a. Equation (8) also has no effect since the

Spider Graphs 35

only shading is in a zone which is inside a. The effect of entailment (9) is to
remove any twinned zone which is inside a, provided there exists another
zone inside a, thereby non-deterministically removing exactly one of the
zones ({u, a, b}, {}), ({u, a}, {b}); the case of the removal of ({u, a, b}, {})
is shown in the bottom right. Finally, entailment (10) holds, with z1 being
the remaining zone inside a (there being no other inside twinned zone z3),
deleting curve a and the zone z1, yielding d2.

a b

s

t

b

s

t

uu

a b

s

t

u

a b

s

t

u

Rule 5

a b

s

t

u

Equation (3) Equation (7)

Equation (8)Equation (1)

EraseCurve(a)

Fig. 33 An example application of the Erase Curve rule on a SD. Curve a is
erased from diagram d1 (top left), yielding diagram d2 (top right). The other path
depicts the effective changes that would occur to the SD corresponding to the SG
rule applications within the TU for this rule.

Lemma 3 The TU for IntroduceCurve realises Rule 6 of the SD system.

Proof The SD specification is given by:

36 Paolo Bottoni et al.

SD !IntroduceCurve(c 6∈ C)
M z = (X,Y) ∈ Z

M (X,Y) ∈ Z∗

O (X ∪ {c}, Y), (X,Y ∪ {c}) ∈ Z∗

M ∃s ∈ S • (X,Y) ∈ h(s)

M ∃t ∈ S

M ({s, t}, (X,Y)) ∈ υ

O ({s, t}, (X ∪ {c}, Y)), ({s, t}, (X,Y ∪ {c})) ∈ υ

M ({s, t}, (X,Y)) ∈ τ

O ({s, t}, (X ∪ {c}, Y)), ({s, t}, (X,Y ∪ {c})) ∈ τ

O (X ∪ {c}, Y), (X,Y ∪ {c}) ∈ h(s)

O c ∈ C ∧ (X ∪ {c}, Y), (X,Y ∪ {c}) ∈ Z

The order of rules for the IntroduceCurve TU is: addCurve (12), extend-
Zone (13), completeExtension (14), copyInhabitInNewZone (15), copy-
TieInNewZone (16), copyStrandInNewZone, ensureCoherentShadingIn-
NewZone (17), removeTwin.

We provide a commentary indicating the effects on the SD interleaved
with the entailments presented for the rules. The first rule adds the new
curve together with a new zone with which has the outermost zone as a
twin; this corresponds to adding the new curve to the SD disjoint from all
of the other curves; the extra zones are added later.

c 6∈ C ∧ ({u}, C \ {u}) ∈ Z ∧ (X,Y) ∈ Z `
c ∈ C′, ({c, u}, C′ \ {c, u}) ∈ Z ′,

({u}, C′ \ {u}) ∈ Z ′, (X,Y ∪ {c}) ∈ Z ′.
(12)

The next two entailments collectively define the construction of the set
of all zones which are twins to previously existing zones (which were not
the outermost zone), while the following one extends to the new zones feet
of spiders with feet in the existing twin zones.

(X ∪ {c1, u}, Y ∪ {c}) ∈ Z ∧ (X ∪ {c, c1, u}, Y) 6∈ Z `
(X ∪ {c, c1, u}, Y) ∈ Z ′.

(13)

(X2 ∪ {c1}, Y2 ∪ {c}) ∈ Z ∧ (X1 ∪ {c}, Y1) ∈ Z ∧X1 ⊆ X2∧
(X2 ∪ {c, c1}, Y2) 6∈ Z ` (X2 ∪ {c, c1}, Y2) ∈ Z ′.

(14)

Spider Graphs 37

(X,Y ∪ {c}) ∈ h(s) ∧ (X ∪ {c}, Y) ∈ Z \ h(s) ` (X ∪ {c}, Y) ∈ h′(s). (15)

The subsequent two rules copy existing connections from old zones to
new twin zones (we show the version for ties) and ensure equal shading in
both twin zones. Finally, rule removeTwin removes the auxiliary twin edges.

({t1, t2}, (X,Y ∪ {c})) ∈ τ ` ({t1, t2}, (X ∪ {c}, Y)) ∈ τ ′. (16)

(X,Y ∪ {c}) ∈ Z∗ ∧ (X ∪ {c}, Y) ∈ Z ` (X ∪ {c}, Y) ∈ Z∗′. (17)

The overall effect is to copy every old zone in the pre-state, together with
its shading, any inhabit relation from spiders, and any connection between
such spiders, producing a new twin zone in the post-state with the same
properties as the old zone, thus satisfying the SD-rule specification. ut

Equation (11-12) Equation (13)

Equation (14-15) Equation (10)

b b a

s s

t t

u u

Rule 6

b

s

t

u

a

b a

s

t

u

b a

s

t

u

IntroduceCurve(a)

Fig. 34 An example application of the Introduce Curve rule on a SD. Curve a
is introduced into diagram d1 (top left), yielding the diagram d2 (top right). The
other path depicts the effective changes that would occur to the SD corresponding
to the SG rule applications within the TU for this rule.

Example 2 Let d1 be the SD shown on the left hand side of Figure 34, with
a the curve to be introduced to yield d2 on the right. Equation (12) adds
a and a new zone inside a and u, shown at the bottom left. Equation (13)
adds any missing zones outside a but currently with a twin which is inside

38 Paolo Bottoni et al.

a curve different from u or a. Equation (14) adds the twins which are inside
a of all zones created by entailment (13); collectively this has the effect of
updating any zone z1 in the old zone set by adding a to its outside curve set,
and creating the corresponding z2 (a twin of z1 with a in the inside curve
set). This produces the zone ({u, a, b}, {}), shown in the bottom middle.
Equation (15) copies all feet of the spiders from the old zones into their new
a-twin, as shown in the bottom right. Finally, entailments (16) and (17)
copy the ties (and analogously strands) and shading from the old zones into
the new zones, twins w.r.t. a, yielding d2, as required.

8 Discussion

We discuss features of the current realisation of SGs and alternatives to it.
The current implementation in AGG [37], combining interactive specifica-
tion of parameters and automatic application of rules, allows us to achieve
two main goals. On the one hand, we have a fully formalised procedure,
expressed in terms of TUs, which can be exactly followed with AGG. On
the other hand, we have access to tools for conflict and dependency analysis
based on critical pairs [12], which can be used to reason on applicability
of rules and sequences and relations among them. Indeed, an analysis on
the principal rules in each TU can be used to guide proof strategies to
demonstrate that a certain diagram d′ can be derived from a diagram d.
For example, rules for deleting and introducing a curve are dependent on
one another, as each one creates a condition for the application of the other,
but no proof actually requires the application of both of them to the same
curve. As another example, the existence of a conflict (meaning that the
application of one rule disrupts conditions for the application of the other)
between extendSpiderToZone and deleteSpider, in which the application
of the second rule deletes context used by the first one, indicates that proof
strategies can be made more efficient by avoiding the use of the Extend-
Habitat SD rule (in the Appendix) for spiders which must be later deleted.

We have adopted TUs as the general framework for the specification of
SG transformations. However, one can observe that different mechanisms
can be employed in most of the cases. In particular, in AGG it is possible
to describe rule sequences, where rules (or subsequences) have to be applied
in the order in which they appear for an indicated number of iterations,
including ’∗’, which corresponds to iteration as long as possible. This con-
struct can be used to realise TUs which do not include alternative choices.
Alternatives can be managed by the layering construct, also available in
AGG. In this case, one assigns rules to layers, subject to some compatibil-
ity condition [6], ensuring that no dependencies or conflicts arise between
rules in the same layer. The rules in one layer are applied as long as pos-
sible (at each iteration choosing non-deterministically one of them), before
moving to the next layer. This mechanism, however, does not allow nesting
of sequences. As no TU employs both nesting and alternative choice, AGG
supports a full mechanisation of the process.

Spider Graphs 39

In many cases, looping on a rule is needed only to make sure that all
possible matches are checked. This can be more simply realised via parallel
application and amalgamation of rules [50], which is also available (in an
experimental version) in AGG. Another frequent use for looping is to ensure
that nodes or edges are copied when preparing or repairing a context for a
principal rule. This might be specified through the use of the Sesqui-Pushout
approach, based on coupling a pullback and a pushout construction, with
the pullback providing cloning of edges between nodes identified in the LHS
and kept distinct in the RHS. However, it cannot completely substitute some
of the iterations, in which nodes, rather than edges, have to be copied, such
as in the case of copying connections. In any case, we have chosen not to
follow the Sesqui-Pushout approach in our aim to a mechanisation, as no
sufficient tool support for it is currently available.

9 Conclusions

The mechanisation of diagrammatic reasoning (DR) systems opens new pos-
sibilities for integrating such systems within visual modeling environments,
and restricts the need for complementing the latter with textual constraint
languages. In particular, languages based on extensions of Euler Diagrams
(EDs), such as Constraint Diagrams (CDs) have been proposed as a way to
achieve precise modeling capabilities within a completely visual setting.

In this paper, we presented a first step in this direction, utilising the
language of Spider Diagrams (SDs). Besides being of interest in itself, this
language provides a foundation for CDs, adding the possibility of expressing
explicit quantification and relations. In particular, we defined the language
of Spider Graphs (SGs), providing a complete translation of the unitary sys-
tem of SDs. This enables the formalization of the SD deductive reasoning
system in terms of graph transformations (GTs) – namely transformation
units (TUs) enabling the ordered application of sequences of graph trans-
formation rules – on a class of graphs modeling the language of SDs.

Bringing together DR and GTs enables the use of a large body of theory
and tools, which can assist the development and analysis of diagrammatic
reasoning systems and of their proof strategies. In particular, formal tools
become available to analyse aspects such as parallel and sequential indepen-
dence of derivations, or parallel and concurrent deductive rules. Further-
more, when dealing with strict deductive steps (i.e., steps with loss of infor-
mation, and not just logical equivalences), the notion of critical pairs [31]
allows reasoning on appropriate deductive strategies. The approach based
on TUs can be extended to support the definition of “derived rules” for
diagrammatic reasoning systems [33] as the combination of atomic simple
deductive steps into a single complex deductive step.

From the point of view of the SD system itself, we have presented a
formal specification of SD rules via pre/post condition pairs in a Z-variant.
This also facilitates the analysis of single deductive steps and reasoning se-
quences, which is made difficult by the usual presentation of SDs and their

40 Paolo Bottoni et al.

inference rules in algorithmic terms. As future work, different syntactic and
semantic variants of diagrammatic reasoning systems can be investigated by
analysing the corresponding alterations in the graph based system, exploit-
ing the current AGG implementation. By adopting our approach of keeping
all actions explicitly controlled within the TUs developed, we facilitate anal-
ysis of alteration in semantics of the system or variations of the reasoning
rules, permitting a deeper understanding of choices made when designing
diagrammatic logical reasoning systems.

ED-based representations are also used for set-based information visu-
alisation, where the representation of elements or items effectively yields a
SD, although with different semantics (e.g. [3, 9, 51]). In such applications,
one often visualises sequences of diagrams representing some set-based data
changes. Hence, besides logical inference rules, also rules indicating data
changes become essential. By adopting the same approach, one can specify
such transformation rules within the same setting and using the same tools.

Acknowledgments We thank the anonymous referees for many insightful
comments on the previous version which have helped us to greatly improve
the paper. Thanks to John Taylor for comments on an early draft. Andrew
Fish was partially funded by UK EPSRC grants EP/E011160: Visualisation
with Euler Diagrams and EP/J010898/1: Automatic Diagram Generation.
We also thank the AGG team, in particular Claudia Ermel and Olga Runge,
for assistance with the implementation.

References

1. Barwise, J., Etchemendy, J.: Hyperproof. CSLI (1994)
2. Barwise, J., Etchemendy, J.: Visual information and valid reasoning.

In: Allwein, G., Barwise, J. (eds.) Logical Reasoning with Diagrams,
pp. 3–25. OUP (1996)

3. Bottoni, P., Fish, A.: Coloured Euler diagrams: A tool for visualizing
dynamic systems and structured information. In: Proc. Diagrams 2010,
LNCS, vol. 6170, pp. 39–53 (2010)

4. Bottoni, P., Koch, M., Parisi-Presicce, F., Taentzer, G.: Consistency
checking and visualization of OCL constraints. In: Proc. UML 2000,
LNCS, vol. 1939, pp. 294–308 (2000)

5. Bottoni, P., Koch, M., Parisi-Presicce, F., Taentzer, G.: A visualization
of OCL using collaborations. In: Gogolla, M., Kobryn, C. (eds.) Proc.
UML 2001, LNCS, vol. 2185, pp. 257–271 (2001)

6. Bottoni, P., Schürr, A., Taentzer, G.: Efficient parsing of visual lan-
guages based on critical pair analysis (and contextual layered graph
transformation. In: Proc. IEEE-VL’00, pp. 59–61. IEEE CS Press (2000)

7. Cabot, J., Clariso, R., Riera, D.: Verification of UML/OCL class dia-
grams using constraint programming. In: Proc. ICSTW ’08., pp. 73–80.
IEEE CS Press (2008)

8. Chow, S.C.: Generating and drawing area-proportional Euler and Venn
diagrams. Ph.D. thesis, University of Victoria (2007)

Spider Graphs 41

9. Cordasco, G., De Chiara, R., Fish, A.: Interactive visual classification
with Euler diagrams. In: Proc. VL/HCC 2009, pp. 185–192. IEEE CS
Press (2009)

10. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout
rewriting. In: Proc. ICGT 2006, LNCS, vol. 4178, pp. 30–45. Springer
(2006)

11. Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.H.: Theory of constraints
and application conditions: From graphs to high-level structures. Fun-
dam. Inform. 74(1), 135–166 (2006)

12. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental theory for
typed attributed graphs and graph transformation based on adhesive
HLR categories. Fundam. Inform. 74(1), 31–61 (2006)

13. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Alge-
braic Graph Transformation. Springer (2006)

14. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Cor-
radini, A.: Algebraic approaches to graph transformation - Part II: Sin-
gle Pushout Approach and comparison with Double Pushout Approach.
In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing
by Graph Transformations, Volume 1: Foundations, pp. 247–312. World
Scientific (1997)

15. Ehrig, K., Küster, J.M., Taentzer, G., Winkelmann, J.: Generating in-
stance models from meta models. In: Proc. FMOODS 2006, LNCS, vol.
4037, pp. 156–170. Springer (2006)

16. Ehrig, K., Winkelmann, J.: Model transformation from VisualOCL to
OCL using graph transformation. In: Proc. GT-VMT 2006, ENTCS,
vol. 152, pp. 23–37 (2006)

17. Euler., L.: Lettres a une Princesse d’Allemagne sur divers sujets de
physique et de philosophie. Letters 2, 102–108 (1775). Berne, Société
Typographique

18. Fish, A.: Euler diagram transformations. In: Proc. GT-VMT 2009,
ECEASST, vol. 18. EASST (2009)

19. Fish, A., Flower, J.: Investigating reasoning with Constraint Diagrams.
In: Proc. VLFM 2004, ENTCS, vol. 127, pp. 53–69. Elsevier (2005)

20. Fish, A., Flower, J., Howse, J.: The semantics of augmented constraint
diagrams. JVLC 16, 541–573 (2005)

21. Fish, A., John, C., Taylor, J.: A normal form for Euler diagrams with
shading. In: Proc. Diagrams 2008, LNCS, vol. 5223, pp. 206–221.
Springer (2008)

22. Flower, J., Fish, A., Howse, J.: Euler diagram generation. Journal of
Visual Languages and Computing 19, 675–694 (2008)

23. Flower, J., Masthoff, J., Stapleton, G.: Generating proofs with spider
diagrams using heuristics. In: Proc. DMS-VLC, pp. 279–285. Knowledge
Systems Institute (2004)

24. Flower, J., Masthoff, J., Stapleton, G.: Generating readable proofs: A
heuristic approach to theorem proving with spider diagrams. In: Proc.
Diagrams 2004, LNAI, vol. 2980, pp. 166–181. Springer (2004)

42 Paolo Bottoni et al.

25. Flower, J., Stapleton, G.: Automated theorem proving with spider dia-
grams. In: Proceedings of Computing: The Australasian Theory Sym-
posium, ENTCS, vol. 91, pp. 116–132. Elsevier (2004)

26. Goedicke, M., Meyer, T., Taentzer, G.: Viewpoint-oriented software de-
velopment by distributed graph transformation: towards a basis for liv-
ing with inconsistencies. In: Proc. IEEE RE’99, pp. 92–99 (1999)

27. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative
application conditions. Fundam. Inform. 26(3,4), 287–313 (1996)

28. Habel, A., Pennemann, K.H.: Correctness of high-level transformation
systems relative to nested conditions. Mathematical Structures in Com-
puter Science 19(2), 245–296 (2009)

29. Hammer, E., Shin, S.J.: Euler’s Visual Logic. History and Philosophy
of Logic pp. 1–29 (1998)

30. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting func-
tional requirements in a use case-driven approach: a static analysis tech-
nique based on graph transformation. In: Proc. ICSE ’02, pp. 105–115.
ACM Press (2002)

31. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of typed attributed
graph transformation systems. In: Proc. ICGT ’02, LNCS, vol. 2505,
pp. 161–176. Springer (2002)

32. Howse, J., Molina, F., Taylor, J., Kent, S., Gil, J.: Spider diagrams: A
diagrammatic reasoning system. JVLC 12(3), 299–324 (2001)

33. Howse, J., Stapleton, G., Taylor., J.: Spider diagrams. LMS J. of Com-
putation and Mathematics 8, 145–194 (2005)

34. Jamnik, M.: Mathematical Reasoning with Diagrams: From Intuition
to Automation. CSLI (2001)

35. Kent, S.: Constraint diagrams: visualizing invariants in object-oriented
models. In: Proc. OOPSLA ’97, pp. 327–341. ACM Press (1997)

36. Kreowski, H.J., Kuske, S., Schürr, A.: Nested graph transformation
units. Int. J. on SEKE 7(4), 479–502 (1997)

37. de Lara, J., Taentzer, G.: Automated model transformation and its
validation using AToM3 and AGG. In: Proc. Diagrams’04, LNCS, vol.
2980, pp. 182–198 (2004)

38. Münch, M., Schürr, A., Winter, A.J.: Integrity constraints in the multi-
paradigm language PROGRES. In: Selected Papers from TAGT’98,
LNCS, vol. 1764, pp. 338–351. Springer (2000)

39. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation,
v1.1. http://www.omg.org/spec/QVT/1.1/PDF/ (2011)

40. Orejas, F., Ehrig, H., Prange, U.: A logic of graph constraints. In: Proc.
FASE 2008, LNCS, vol. 4961, pp. 179–198. Springer (2008)

41. Rensink, A.: Representing first-order logic using graphs. In: Proc. ICGT
2004, LNCS, vol. 3256, pp. 319–335. Springer (2004)

42. Rensink, A., Schmidt, Á., Varró, D.: Model checking graph transforma-
tions: A comparison of two approaches. In: Proc. ICGT 2004, LNCS,
vol. 3256, pp. 226–241 (2004)

Spider Graphs 43

43. Ruskey, F.: A survey of Venn diagrams. Electronic Journal of Combi-
natorics (1997). www.combinatorics.org/Surveys/ds5/VennEJC.html

44. Shin, S.J.: The Logical Status of Diagrams. CUP (1994)
45. Sowa, J.: Conceptual Structures: Information Processing in Mind and

Machine. Addison-Wesley (1984)
46. Stapleton, G., Howse, J., Taylor, J.: A decidable constraint diagram

reasoning system. J. of Logic and Computation 15(6), 975–1008 (2005)
47. Stapleton, G., Masthoff, J., Flower, J., Fish, A., Southern, J.: Auto-

mated theorem proving in Euler diagram systems. J. of Automated
Reasoning 39(4), 431–470 (2007)

48. Stapleton, G., Thompson, S., Howse, J., Taylor, J.: The expressiveness
of spider diagrams. J. of Logic and Computation 14(6), 857–880 (2004)

49. Swoboda, N., Allwein, G.: Using DAG transformations to verify Eu-
ler/Venn homogeneous and Euler/Venn FOL heterogeneous rules of
inference. J. of Soft. and Syst. Model. 3(2), 136–149 (2004)

50. Taentzer, G.: Parallel and distributed graph transformation - formal
description and application to communication-based systems. Berichte
aus der Informatik. Shaker (1996)

51. Thivre, J., Viaud, M.L., Verroust-Blondet, A.: Using Euler diagrams
in traditional library environments. In: Proc. Euler Diagrams’2004,
ENTCS, vol. 134, pp. 189–202 (2005)

52. Urbas, M., Jamnik, M., Stapleton, G., Flower, J.: Speedith: A diagram-
matic reasoner for spider diagrams. In: Proc. Diagrams 2012, LNCS,
vol. 7352, pp. 163–177. Springer (2012)

53. Warmer, J., Kleppe, A.: The Object Constraint Language: Precise mod-
eling with UML. Addison-Wesley (1999)

54. Zykov, A.: Hypergraphs. Russian Math. Surveys 29(6), 89–156 (1974)

44 Paolo Bottoni et al.

A Presentation of rules 1-4,7

We complete the presentation of the TUs realising the whole reasoning
system, and for each of them, we prove its correctness.

Rule 1. [Introduction of a strand.] Figure 35 shows the rule for adding
strands, realizing the first alternative for Rule 1, where a NAC (not shown
here) prevents the formation of the forbidden graph (F1) in Figure 8. Fig-
ure 36 shows the rule for the second alternative, replacing a tie by a strand.
In both cases, the rule receives as parameters the labels associated with the
spiders to be connected, and picks non-deterministically a zone inhabited
by both spiders. The resulting TU is a choice between the two rules.

IntroduceStrand(S1,S2) =
(addStrand(S1,S2) | replaceTieWithStrand(S1,S2))

Fig. 35 Rule addStrand(S1,S2).

Fig. 36 Rule replaceTieWithStrand(S1,S2).

Lemma 4 The TU IntroduceStrand realises Rule 1 of the SD system.

Proof The SD rule corresponds to two separate SD specifications:

SD !addStrand(s, t ∈ S)

M ∃z ∈ Z • (z ∈ h(s) ∩ h(t)) ∧ (({s, t}, z) 6∈ τ ∪ υ)

O ({s, t}, z) ∈ υ

Spider Graphs 45

SD !replaceTieWithStrand(s, t ∈ S)

M ∃z ∈ Z • (z ∈ h(s) ∩ h(t)) ∧ (({s, t}, z) ∈ τ)

O ({s, t}, z) 6∈ τ ∧ ({s, t}, z) ∈ υ

The SG rules addStrand and replaceTieWithStrand clearly realise
these specifications. Note that the condition ({s, t}, z) 6∈ τ ∪ υ for the first
rule is guaranteed by its NAC. ut

Rule 2. [Extension of habitat.] The spider to be extended is chosen
by passing a parameter S to the TU, which will pass it on to the invoked
rules. The zone in which to extend the chosen spider, and the spiders that
are to have connections (of different types) with it added are chosen non-
deterministically. The process is managed by a TU with control expression:

ExtendHabitat(S) =
extendSpiderToZone(S);
asLongAsPossible markSpiderForConnections(S) end;
asLongAsPossible (addStrandForNewExtension(S) |
addTieForNewExtension(S) | noConnectionAddded) end;

removeMarkFromZone;

The process starts with rule extendSpiderToZone in Figure 37. A new
inhabits edge is drawn from the chosen spider to a zone, which is marked
to specialise the context for the rest of the TU.

Fig. 37 Rule extendSpiderToZone.

The iteration on rule markSpiderForConnections in Figure 38 marks
each spider, other than the chosen one, inhabiting the marked zone as a
candidate for connection. All marks are removed in the second iteration
within the TU, where for each candidate spider, a choice is made of whether
to add a strand from the chosen spider to the candidate one, to add a tie or
do neither. We only present the rule for adding a tie in Figure 39, the case
for strand being analogous; the third alternative simply removes the mark
from the candidate spider.

Finally, the mark is removed from the zone (rule removeMarkFromZone,
not shown here). In Lemma 5, in order to track the effects of marking in
the SG, we introduce a new temporary set M ⊂ Z ∪ C ∪ S, and we refer to
this in the specification of the rules within the TU.

46 Paolo Bottoni et al.

Fig. 38 Rule markSpiderForConnections.

Fig. 39 Rule addTieForNewExtension.

Lemma 5 The TU ExtendHabitat realises Rule 2 of the SD system.

Proof The SD rule has specification:

SD !extendHabitat(s ∈ S)

M ∃z ∈ Z • z 6∈ h(s)

M ∃t ∈ S • z ∈ h(t)

O ({s, t}, z) ∈ τ

M ∃t ∈ S • z ∈ h(t)

O ({s, t}, z) ∈ υ

M ∃t ∈ S • z ∈ h(t)

O ({s, t}, z) 6∈ τ ∪ υ

O z ∈ h(s)

The rules extendSpiderToZone(18), markSpiderForConnections(19),
and addStrandForNewExtension / addTieForNewExtension / noConnec-

tionAdded(20) in the TU have effects as follows:

z 6∈ h(s) ∪M ` z ∈ h′(s) ∩M ′. (18)

z ∈ h(s) ∩M ∧ ∃t ∈ S[z ∈ h(t) ∧ t /∈M] ` t ∈M ′. (19)

Spider Graphs 47

z ∈ h(s) ∩M ∧ ∃t ∈ S[z ∈ h(t) ∧ t ∈M ∧ ({s, t}, z) /∈ τ ∪ υ] `
({s, t}, z) ∈ τ ′ ∧ t /∈M ′.

z ∈ h(s) ∩M ∧ ∃t ∈ S[z ∈ h(t) ∧ t ∈M ∧ ({s, t}, z) /∈ τ ∪ υ] `
({s, t}, z) ∈ υ′ ∧ t /∈M ′.

z ∈ h(s) ∩M ∧ ∃t ∈ S[z ∈ h(t) ∧ t ∈M ∧ ({s, t}, z) /∈ τ ∪ υ] `
t /∈M ′.

(20)

To see that effect of the TU complies with the SD specification, suppose
that we have z ∈ Z ∧ z 6∈ h(s). Then, by entailment (18), the habitat of s is
extended, satisfying the outer post-condition, and the zone z is marked, en-
suring that subsequent rules apply only to this chosen zone. Entailment (19)
marks any other spider that also inhabits the zone z. The alternative rules
have effects that correspond to the three alternative nested pre-post condi-
tion pairs in the SD specification (see entailment (20)). The removal of the
mark from the spider for each rule application ensures that each marked spi-
der triggers exactly one of these alternative rules once only, and so the pro-
cess terminates. All of the marks have been removed in the post-state: the
marks of the spiders by the above process, whilst the removeMarkFromZone

rule precisely ensures that z 6∈M in the post-state. ut

Before we consider Rule 3, we need some notation.

Definition 7 Let G(z), Con(s, z) and Cons(t, z) denote the strand-tie graph
within zone z, the set of vertices in the connected component of s in G(z),
and the set of vertices in the connected component of t in G(z) \ {s}, resp.

Rule 3. [Erasure of a spider.] The deletion of a spider s is prepared by
the deletion of all its connections to other spiders, reconstructing the con-
nectedness of the “strand-tie graph” in all the zones inhabited by s, when
needed. To this end, we compute the separate connected components result-
ing from the removal of s, where each component has at least one spider that
was directly connected to s in the original graph and which is taken as the
representative of the component. The process is started by selecting one rep-
resentative (of one connected component of the strand-tie graph in the given
zone after the deletion of s) via the rule startComputation(S) of Figure 40,
while the marking of the spiders in a connected component is achieved with
rule computeConnectedComponent of Figure 41. The two NACs prevent the
original spider s, or an already marked spider, from being marked. Connec-
tions are then created between the representative of the computed compo-
nent and another component (recognised by being directly connected to s
but not marked) to ensure that connectedness of the strand-tie graph is not
affected by the deletion of s, through rule createStrandToOtherComponent
of Figure 42. The representative of the reached component is also marked,
so that the process (of computing the connected component and then ex-
tending it by adding a connection) can be iterated, until all the spiders

48 Paolo Bottoni et al.

directly connected to the s are now directly or indirectly connected with
one another (i.e lie in the same component).

EraseSpider(S) =

asLongAsPossible

startComputation(S);

asLongAsPossible

asLongAsPossible computeConnectedComponent(S) end;

asLongAsPossible createStrandToOtherComponent(S) end;

removeZoneMark end;

end;

asLongAsPossible removeConnection(S) end;

asLongAsPossible removeSpiderMark end;

deleteSpider(S)

Fig. 40 Rule startComputation.

At the end of this iteration, all the connections associated with the spider
can be removed by rule removeConnection in Figure 43 (left), whose SPO
application also removes the connects edge to any other spider, and the
spider is finally deleted by rule deleteSpider in Figure 43 (right). Note
that the NAC would make this rule fail if the spider inhabited some shaded
zone, making the whole TU fail. Such a check could also be performed by
an additional rule at the beginning of the process.

Lemma 6 The TU EraseSpider realises Rule 3 of the SD system.

Proof The SD rule has specification:

Spider Graphs 49

Fig. 41 Rule computeConnectedComponent.

Fig. 42 Rule createStrandToOtherComponent.

Fig. 43 Rules removeConnection and deleteSpider.

SD !eraseSpider(s ∈ S)

M h(s) ∩ Z∗ = ∅

M ∃z ∈ Z, r, t ∈ S • (r, t 6= s) ∧ (r 6= t) ∧ (r, t ∈ Con(s, z))

O r ∈ Con(t, z)

O s 6∈ S

50 Paolo Bottoni et al.

The rules startComputation(21), computeConnectedComponent(22),
createStrandToOtherComponent(23), removeConnection(24), delete-
Spider(25) in the TU have effects as follows:

z ∈ h(s) ∩ h(t1) ∩ h(t2) ∧ ({s, t1}, z), ({s, t2}, z) ∈ τ ∪ υ∧
({t1, t2}, z) 6∈ τ ∪ υ ` z, t1 ∈M ′.

(21)

z, t1 ∈M ∧ t2 6∈M ∧ t2 6= s ∧ z ∈ h(t1) ∩ h(t2)∧
({t1, t2}, z) ∈ τ ∪ υ ` t2 ∈M ′.

(22)

z ∈ h(s) ∩ h(t1) ∩ h(t2) ∧ z, t1 ∈M ∧ t2 6∈M ∧ ({s, t2}, z) ∈ τ ∪ υ
` ({t1, t2}, z) ∈ υ′ ∧ t2 ∈M ′.

(23)

z ∈ h(s) ∧ ({s, t}, z) ∈ τ ∪ υ ` ({s, t}, z) 6∈ τ ′ ∪ υ′. (24)

h(s) ∩ Z∗ = ∅ ` s 6∈ S ′. (25)

We consider the effects of the nested part of the control condition of the
TU, before considering the SD specification. The startComputation rule
finds, and marks, an arbitrary (representative) spider t1 that is connected
to spider s but is not connected to every other spider that s is connected
to (see entailment (21)). If there are no such spiders then the removal of
spider s cannot disconnect the strand-tie graph in z since every pair of
spiders connected to s within z are already connected to each other; note
that in this case no match for this SG rule is found and the TU proceeds
to removeConnection. Otherwise, iterating computeConnectedComponent

(see entailment (22)) repeatedly marks every spider (except for s itself)
which is connected to a marked spider (by a connection), ending when all
of Cons(t1, z) is marked. If there is a spider t2 such that t2 6∈ Cons(t1, z)
(hence t2 is not marked) but there is a connection between s and t2 within
z, then rule createStrandToOtherComponent (see entailment (23)) adds a
strand between t2 and t1 within z. The iteration in the control condition
marks all of the extended connected component (which is the union of the
original connected components of t1 and t2 together with the new strand
that joins them). This is repeated until there is only a single connected
component. At this point the deletion of the spider s will not disconnect
the strand-tie graph. The removeZoneMark rule just removes the marking
on the zone. So the total effect of this nested part of the control condi-
tion is to add enough strands to ensure that the deletion of spider s does
not disconnect any component of the strand-tie graph, satisfying the in-
ner pre-/post-condition pair. Now, suppose we have a spider s such that
h(s) ∩ Z∗ = ∅, so the pre-condition of the eraseSpider SD rule is satis-
fied. Then, removeConnection (see entailment (24)) removes all connection
nodes involving s, and deleteSpider (see entailment (25)) removes s, sat-
isfying the outer postcondition. ut

Spider Graphs 51

Rule 4. [Erasure of shading.] Shading can be erased from any shaded
zone as shown in Figure 44 for rule eraseShading.

Fig. 44 Rule eraseShading: erasing shading from a zone.

Lemma 7 The rule eraseShading realises Rule 4 of the SD system.

Proof The rule effect clearly satisfies the SD rule specification given by:

SD !eraseShading()

M ∃z ∈ Z∗

O z ∈ Z \ Z∗

ut

Rule 7. [Equivalence of Venn and Euler forms.] The final rule es-
tablishes the equivalence between SDs in Euler and Venn forms, meaning
that they have underlying EDs or VDs (which have no missing zones), by
showing how to transform one form into the other. We first present the TU
for adding missing zones, in which missing zones can be progressively in-
troduced as the twins of existing zones, as defined by the control condition:

AddMissingZones() =
asLongAsPossible addMissingTwin;

asLongAsPossible completeInsideRelations end;
removeTwin

end

Rule addMissingTwin in Figure 45 creates a new zone z1 and marks it
as twin of some existing zone z2, outside some curve c. The zone z1 is inside
the boundary curve and c, and twinc(z1, z2) will hold at the end of the TU.

The GAC in Figure 46 checks that z2 lacks a twin. The newly created
z1 must be inside all and only the curves that contain z2, as guaranteed
by rule completeInsideRelations in Figure 47. A NAC, not shown here,
ensures that only one inside edge is created between a zone and a curve.
The rule removeTwin (not shown here) is then applied to remove all twin
edges, before proceeding with identifying and constructing the next twin.

We also consider the opposite transformation, from Venn to Euler, by
which any shaded uninhabited zone can be erased (provided it is not the
last zone inside any curve), realised by the TU whose control expression is:

52 Paolo Bottoni et al.

Fig. 45 Rule addMissingTwin.











 


Fig. 46 A graphical representation of the GAC for identifying missing twins, to be
checked on each match m for the LHS of the rule addMissingTwin in Figure 45.
The associated formula reads: “for all matches m1 : g1 → G of the graph g1
in the outer ∀-box extending m, it is not the case that there exists a match
m2 : g2 → G of the graph g2 in the outer ∧-box extending m1 such that, for
each match m3 : g3 → G of the graph g3 in the next ∀-box extending m2, either
a match extending m3 exists for the graph in the ∨-box, or neither of the two
graphs in the ¬-boxes has a match extending m3”.

EraseShadedZone() =

asLongAsPossible markShadedZone end;

asLongAsPossible (deleteMarkedZone | removeMarkFromZone) end;

In order to simulate a non-deterministic choice of the zones to be deleted,
we first iterate on rule markShadedZone (see Figure 48) to mark all shaded
zones satisfying the following conditions: (1) the zone is not the only one

Spider Graphs 53

Fig. 47 Rule completeInsideRelations.

inside a curve (checked in the LHS of the rule and in the GAC of Figure 49,
where the different ways in which a second zone can be inside a curve is
presented) and (2) the zone is not inhabited by any spider (checked in the
NAC). After that, an iteration is performed on the alternative between
deleting a marked zone, or simply removing the mark.

Fig. 48 Rule markShadedZone.

GAC




Fig. 49 A graphical representation of the GAC for checking that the zone is not
the only one inside a curve, to be checked on each match m for the LHS of the
markShadedZone rule in Figure 48. The associated formula reads: “for any match
m1 : g1 → G of the graph g1 in the ∀-box extending m, at least one of the two
graphs inside the ∨-box has a match extending m1.”

Lemma 8 The TUs for AddMissingZones and EraseShadedZone realise
Rule 7 of the SD system.

Proof The addition of all of the missing zones is specified as:

54 Paolo Bottoni et al.

SD !addMissingZones()

M X ∪ Y = C ∧X ∩ Y = ∅ ∧ u ∈ X ∧ (X,Y) 6∈ Z

O (X,Y) ∈ Z∗

The rule addMissingTwin in the TU (where the GAC is written in square
brackets) followed by the completeInsideRelations rule has effect:

c1 ∈ C ∧ z2 = (X2 ∪ {u}, Y2 ∪ {c1}) ∈ Z∧
∀z4 ∈ Z[¬z4 = (X4 ∪ {c}, Y4) ∧ ∀c5 ∈ C[z2 = (X5 ∪ {c5}, Y5)∧

z4 = (X6 ∪ {c5}, Y6) ∨ (z2 = (X5, Y5 ∪ {c5})∧
z4 = (X6, Y6 ∪ {c5}))]] ` z1 = (X ∪ {c1, u}, Y) ∈ Z∗′.

(26)

In the post-state of the SG after completing the iteration, twinsc(z1, z2)
holds. After the addMissingTwin rule the Zone-node for z1 = ({u, c}, Y)
is not a correct twin for z2 yet, but is related to z2 via a twin indicator.
Immediately afterwards, iterating the rule completeInsideRelations adds
all of the inside edges from z1 to the same set of curves as z2, as required
to ensure that it represents the required missing twin zone.

The above ensures that the addition of any missing twin zone can be
achieved. It remains to show that one can just add missing twin zones to
any SD in order to create the Venn form. Since any SD has an outermost
zone, we can consider if there is any curve which does not have a zone which
is inside only that curve (and the boundary curve). Such a zone would be
a twin of the outermost zone w.r.t. that curve. The addition of any such
missing zone ensures that every zone inside exactly the boundary curve
and one other curve is present. Then we consider if there are any missing
zones that are inside exactly two curves (plus the boundary curve), which
are twins of the zones that is inside one curve (plus the boundary curve).
Continuing this process ensures that all missing zones are added.

The removal of some of the shaded zones that are not inhabited by any
spider (and do not contain the last zone within any curve) is specified as:

SD !eraseShadedZones()

M z = (X,Y) ∈ Z∗ ∧X 6= {u} ∧ (6 ∃s ∈ S • z ∈ h(s))∧
(6 ∃c ∈ C • c ∈ X ∧ (6 ∃z3 = (X3, Y3) ∈ Z • z3 6= z ∧ c ∈ X3))

M

O z /∈ Z

M

O z ∈ Z∗

The markShadedZone rule is specified by entailment (27) (with the GAC
indicated within the second pair of square brackets):

Spider Graphs 55

z1 = (X1 ∪ {u, c}, Y1) ∈ Z∗ ∧ z2 = (X2 ∪ {u, c}, Y2) ∈ Z∧
(¬∃s ∈ S • z1 ∈ h(s)) ∧ (∀ck ∈ C \ {u, c} • (z1 = (X1 ∪ {u, c, ck}, Y1))∧

((∃z3 = (X3 ∪ {ck}, Y3)) ∨ (∃z2 = (X2 ∪ {u, c, ck}, Y2)))) ` z1 ∈M ′.
(27)

This marks a set of shaded zones. During the following iteration, at each
step one of deleteMarkedZone or removeMarkFromZone is selected. The
effect of the two rules is described in entailments (28) and (29), respectively.

z ∈ Z∗ ∩M ` z 6∈ Z ′ ∧ z 6∈M ′. (28)

z ∈ Z∗ ∩M ` z ∈ Z ′ ∧ z 6∈M ′. (29)

After the iteration is performed, a (possibly empty) subset of Z∗ has
been removed and no zone is marked. ut

