
Noname manuscript No.
(will be inserted by the editor)

TacoFlow: Optimizing SAT Program
Verification Using Dataflow Analysis

Bruno Cuervo Parrino1, Juan Pablo Galeotti2, Diego
Garbervetsky1,3, Marcelo F. Frias3,4

e-mail: bcuervo@dc.uba.ar, galeotti@cs.uni-saarland.de,

diegog@dc.uba.ar, mfrias@itba.edu.ar

1 Departmento de Computación, FCEyN, UBA
2 Saarland University
3 CONICET
4 Department of Software Engineering, Instituto Tecnológico de Buenos Aires.

The date of receipt and acceptance will be inserted by the editor

Abstract In previous work we presented TACO, a tool for efficient bounded
verification. TACO translates programs annotated with contracts to a SAT
problem which is then solved resorting to off-the-shelf SAT-solvers. TACO
may deem propositional variables used in the description of a program ini-
tial states as being unnecessary. Since the worst-case complexity of SAT (a
known NP problem) depends on the number of variables, most times this al-
lows us to obtain significant speed ups. In this article we present TacoFlow,
an improvement over TACO that uses dataflow analysis in order to also
discard propositional variables that describe intermediate program states.
We present an extensive empirical evaluation that considers the effect of
removing those variables at different levels of abstraction, and a discussion
on the benefits of the proposed approach.

1 Introduction

Bounded verification [12] is a highly automatic verification technique in
which all executions of a procedure are exhaustively examined within a finite
space given by a bound (a) on the domain sizes and (b) on the number of
loop unrollings. The scope of analysis is examined in order to look for an
execution trace that violates the provided specification.

Several bounded verification tools [12, 17, 19, 33] rely on appropriately
translating the original piece of software, as well as the specification to
be verified, to a propositional formula. The use of a SAT-Solver [3] then
allows one to find a valuation for the propositional variables that encodes a
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failure. Theoretically, SAT-solving time grows exponentially with respect to
the number of propositional variables. However, modern SAT solvers achieve
better results on practical instance problems.

The number of clauses and propositional variables in the resulting propo-
sitional formulas are highly related to the size and shape of the annotated
program, the state representation (for Java: local, global variables and the
heap) and the given scope of analysis. Therefore, techniques aiming at re-
ducing any of these factors could possibly have a significant impact on the
overall verification cost.

Dataflow analysis [23] is a well-know and widely spread static analysis
technique used for program understanding and optimization. Essentially,
it is used to infer facts about the program by collecting the data flowing
through its control flow graph (usually an abstraction of the concrete pro-
gram state). Instances of dataflow analyses are live variable analysis, avail-
able expressions, reachable definitions and constants propagation. These
analyses enable compilers to eliminate dead code, reduce unnecessary run-
time checks and remove redundant computations, among other things.

Dataflow analysis can also be applied to the code under analysis as
a means to obtain an optimized version before applying the (SAT-based)
bounded verification. In this work we analyze this hypothesis by introducing
a dataflow analysis into the TACO [17] verifier tool chain.

TACO is a SAT-based tool specially aimed at verifying Java sequential
programs. The current TACO distribution supports specifications written in
Java Modeling Language (JML) [6] or in the JForge Specification Language
(JFSL) [34]. TACO accurately represents all Java data types (including
primitive types such as double and float) and supports nearly all JML and
JFSL syntax. TACO does not report false positives, but it isn’t able to
prove the absence of errors above the given scope of analysis. Among its
features, TACO introduces a novel technique for reducing the number of
propositional variables without harming precision. This is accomplished by
preprocessing class invariants in order to obtain a good over approximation
of the initial state of the Java memory heap. This set of initial values can be
supplied to our dataflow analysis, obtaining a more accurate set of possible
values for every program variable. In turn, this information leads to a more
aggressive removal of SAT propositional variables.

We introduced a dataflow framework and implemented a novel dataflow
analysis for inferring the set of possible values that can be assigned to local
and instance variables, at each program point. The obtained information is
a safe over approximation of the actual value each variable may have. We
apply this value-propagation analysis in the context of bounded verification
where it is possible to use a fine-grained abstraction without compromising
termination.

TACO’s original representation for program loops was implemented as
a simple sequence of if statements. This representation introduced at least
one join point per loop unrolling, and impacted negatively in the perfor-
mance of the overall dataflow analysis. Thus, we introduce an alternative
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representation for loop unrollings tailored to favor precision of the dataflow
analysis.

Our experiments show significant speed-ups in analysis times: about 30
times reduction in average. Surprisingly, the proposed loop encoding has
a significant impact in the overall verification time. We also analyzed the
effect of removing the unnecessary variables at different stages of the process
of translating the program into a propositional formula, in order to identify
the best place where to apply the optimization and understand whether
it has any kind of impact in the other optimizations involved during the
verification process.

Contributions: The technical contributions of this article include:

– A formalization of a dataflow analysis for propagating values through a
program control flow graph, including the proof showing that the out-
come of the analysis is a sound over approximation of the program be-
havior.

– A proof of the fact that the propositional formula obtained by TACO
relying on this analysis is equisatisfiable with respect to the unoptimized
formula.

– TacoFlow: an extension of TACO featuring a general dataflow framework
including proper generation of control flow graphs, the (bounded) value-
propagation analysis and the generation of the optimized SAT-formula.

– The application of the optimization at different stages of the verification,
requiring the implementation of proper mappings between program vari-
ables and their logical representations both at the relational level as well
as the propositional logic level.

– An empirical evaluation using benchmarks accepted by the bounded ver-
ification community [17] showing an important speed-up in verification
time.

Outline: §2 introduces the foundations of SAT-based verification and TACO,
then it presents the problem we intend to address in the current work. §3
presents the syntax and semantics of DynAlloy, an intermediate language
used by TACO that is required for the formalization and proof of the the
value-propagation analysis which is presented in §4. §5 shows how this
technique is applied in the context of TACO. §6 shows our experimental
results. In §7 we analyze some related work. Finally, §8 concludes and dis-
cusses future work.

2 Tight Bounds for Improved SAT-solving

TACO [17] is a tool for Java code verification based on SAT-solving. Given
a verification scope bounding the sizes of the object domains, and a limit
for the number of loop iterations, TACO translates a program annotated
with JML or JFSL specifications into a propositional formula.
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Figure 1 shows a JFSL declaration of a singly linked list data structure.
JFSL has its roots in the Alloy specification language [21]; it resembles
JML but with a relational flavor. The declared list contains a header field
referring to its first node. Each node is linked to its next node in the list by
the next field. The List container is annotated with a JFSL object invariant
which constrains the set of valid linked structures to those that form a finite
acyclic sequence of Node elements. JFSL allows quantifiers (e.g., all, some).
The construct *f denotes the relational transitive closure of field f. In other
words, the JFSL expression expr.*f comprises the set of all references that
are reachable from a location expr using field f. Since the user may be
interested in denoting the set of references that are not equal to the value
null, the minus (-) operator can be used to remove elements from this set.
Similarly, membership in a given set can be tested through the construct
in.

Method removeLast (shown in Fig. 3a) removes the last element of the
list (if such an element exists). Both JML and JFSL allow one to write
partial specifications. In this example, the JFSL @Ensures annotation only
specifies that the returned Node element should not be reachable from the
receiver list.

As shown in Fig. 2, TACO translates the Java code annotated with
the JML or JFSL contract into a DynAlloy specification [15]. DynAlloy
is a relational specification language. This means that every variable in
DynAlloy can be seen as a relation of a fixed arity. For the removeLast

class Node {

Node next;

}

class List {

Node header;

@Invariant("all n: Node | n in this.header.*next - null

implies not (n in n.*next)")

}

Figure 1: A singly linked list declaration
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@Ensures("return !in
this.header.*next - null")

Node removeLast() {
if (this.header!=null) {

Node prev = null;
Node curr = this.header;
while (curr.next!=null) {

prev = curr;
curr = curr.next;

}
if (prev==null)

this.header = null;
else

prev.next = null;

return curr;
} else

return null;
}

(a) A removeLast() method

(this.header!=null)?;{
prev := null;
curr := this.header;
{

(curr.next!=null)?;
prev = curr;
curr = curr.next

}*;
((curr.next==null)?;
(prev==null)?;

this.header := null
+
(prev!=null)?;

prev.next := null;
);
return := curr;

}+
(this.header==null)?;

return := null

(b) The DynAlloy representation

Figure 3: Java implementation and its DynAlloy representation

method, the resulting DynAlloy program is shown in Fig. 3b. Signatures
List andNode are introduced to model the corresponding Java classes. Also,
a singleton signature null is defined to model the Java null value. Java
variables and fields are represented using DynAlloy variables. Java
fields are modelled in DynAlloy as functional binary relations (i.e., S->one
T), and Java variables are modeled as unary noempty relations (i.e., one S).
The following DynAlloy variables are also introduced to model removeLast’s
Java variables and fields:

// DynAlloy variables modeling Java fields

header: List -> one (Node+null)

next: Node -> one (Node+null)

// DynAlloy variables modeling arguments and local variables

this: one List

prev: one Node+null

curr: one Node+null

return: one Node+null

If the user wants to perform a bounded verification of removeLast’s
contract, she must limit the object domains and the number of loop itera-
tions. Let us assume that a scope of at most 5 Node objects, 1 List object
and 3 loop unrolls is chosen. The DynAlloy specification is then translated
to an Alloy specification as described in [15]. Alloy is defined in terms of
a simple relational semantics, its syntax includes constructs ubiquitous in
object-oriented notations, and it features automated analysis capabilities
by resorting to the Alloy Analyzer [20]. Given the static nature of Alloy,
DynAlloy was devised as a procedural extension of Alloy. In order to model
state change in Alloy, the DynAlloyToAlloyTranslator may introduce sev-
eral Alloy relations to represent different values (or incarnations) of the
same DynAlloy variable in an SSA-like form [1].

In order to translate the Alloy specification into a SAT-problem, the
Alloy Analyzer translates every Alloy relation into a set of propositional
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variables. Each propositional variable is intended to model whether a given
tuple is contained in the Alloy relation. In the example, as the Node domain
is restricted to 5 elements, {N1, . . . N5} is the set of 5 available Node atoms.
This leads to the the following propositional variables modeling the binary
relation next0 (which, in turn, models the initial state of the DynAlloy
variable next):

Mnext0 N1 N2 N3 N4 N5 null

N1 pN1,N1
pN1,N2

pN1,N3
pN1,N4

pN1,N5
pN1,null

N2 pN2,N1
pN2,N2

pN2,N3
pN2,N4

pN2,N5
pN2,null

N3 pN3,N1 pN3,N2 pN3,N3 pN3,N4 pN3,N5 pN3,null

N4 pN4,N1 pN4,N2 pN4,N3 pN4,N4 pN4,N5 pN4,null

N5 pN5,N1
pN5,N2

pN5,N3
pN5,N4

pN5,N5
pN5,null

Following this representation, propositional variable pN3,N2
is true if and

only if tuple 〈N3, N2〉 is contained in the Alloy relation next0. Given the
selected scope of verification, if no pre-processing is involved, the result-
ing SAT-problem will contain 126 propositional variables. Only 36 (28%)
variables model the initial Java state, that is the representation of the re-
ceiver object instances. The remaining 90 (72%) propositional variables are
introduced to represent the intermediate and final stages for computing
the removeLast method. That is, to model the state evolution during the
execution of the method body.

Alloy uses KodKod [31] as an intermediate language, which is then trans-
lated to a CNF propositional formula (Fig. 2 sketches the translations in-
volved). KodKod allows the prescription of bounds for Alloy relations. For
each relation f , two relational instances Lf (the lower bound) and Uf (the
upper bound) are attached. In any Alloy model I, f (the interpretation of
relation f in model I), must satisfy Lf ⊆ f ⊆ Uf . Therefore, pairs that are
in Lf must necessarily belong to f, and pairs that are not in Uf cannot
belong to f. If tuples are removed from an upper bound, the resulting upper
bound is said to be tighter than before.

Since tighter upper bounds contain fewer propositional variables, they
contribute to the SAT-based analysis. Given an Alloy relation f , proposi-
tional variables corresponding to tuples that do not belong to Uf can be
directly replaced in the translation process with the truth value false. Re-
placing these variables does not alter the validity of the SAT problem since
pairs that are not in Uf cannot belong to f , and it allows us to reduce
the number of propositional variables. Given the fact that the worst-case
time complexity of SAT is exponential on the number of propositional vari-
ables in the SAT-formula, it is often the case that reducing the number of
propositional variables leads to smaller analysis times.

Given a class invariant and the desired scope of verification, TACO is
able to automatically synthesize a tighter upper bound for the initial state.
In the example, only acyclic data structures are allowed due to the invariant
annotation. This forbids all tuples of the form 〈Ni, Ni〉 to belong to relation
next0 in any Alloy model. For each tuple in the scope of verification, TACO
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L0 N0 N1 N2
header0

next0 next0

L0 N1 N2 N0
header0

next0 next0

this0

this0

L0 N2 N0 N1
header0

next0 next0this0

Figure 4: Three isomorphic Alloy instances for a singly linked list

creates an Alloy formula and tests its validity. If the Alloy formula is valid,
then the tuple is infeasible under the current class invariant. Therefore, this
tuple may be safely removed from the upper bound.

More tuples may be infeasible due to symmetry restrictions. A symme-
try is a permutation of the signature atoms. One way to avoid consider-
ing permutations of an Alloy model is by introducing symmetry breaking
predicates. As this may contribute to significant reductions in SAT-solving
time [11], KodKod (Alloy’s backend) includes general-purpose symmetry
breaking [31]. TACO adds more symmetry restrictions ruling out all per-
mutations of the Java memory heap [17]. This is possible due to the fact that
we are dealing with an Alloy representation of the initial Java memory heap.
Following the example, given the isomorphic Alloy instances shown in Fig. 4,
TACO symmetry breaking predicates will prevent all valuations except the
first Alloy instance. Therefore, tuples such as 〈N1, N0〉 and 〈N2, N1〉 will not
belong to any valid Alloy valuation of relation next0. In turn, the feasibility
analysis for these tuples will remove them from the upper bound. In the
presented example, TACO discovers a tighter upper bound that removes
over 70% of the propositional variables representing the initial state.

As shown in Fig. 2, tighter upper bounds discovered by TACO are stored
in a repository. Since bounds are often reused during the analysis of different
methods in a class, the cost of computing them is amortized. Moreover,
the feasibility of a tuple does not depend on the feasibility of other tuples
enabling the parallel computation of bounds and, thus, obtaining significant
performance gains.

2.1 Problem Statement

The technique introduced in [17] limits itself to provide bounds only to those
propositional variables that represent the initial state of the program under
analysis. One may argue that, as the SAT-solver is not able to recognize
the order in which the program control flows, there is no guarantee that the



8 Bruno Cuervo Parrino et al.

SAT-solving process will avoid partial valuations from intermediate states
that could not lead to a valid computation trace.

Dataflow analysis allows us to collect facts about the program behavior
at various points in a program. For instance, we could conclude that (un-
der the scope of verification previously chosen) for the following statement:
Node curr = this.header; the set of values that are assignable to curr

is {null,N1}.
In this work we propose a dataflow analysis to conservatively over ap-

proximate the set of possible values every Java variable and field may store
within the provided scope of verification. Using this analysis we can propa-
gate the upper bounds from the initial state to the intermediate states. The
resulting tight upper bounds for the intermediate Alloy relations contribute
by allowing KodKod to remove propositional variables. For instance, for the
presented example we are able to remove about 58% of the propositional
variables modeling intermediate stages. As we will see in §6, this technique
leads to a potential improvement in the performance of the SAT-based ver-
ification.

3 DynAlloy: An intermediate language for program analysis

In this section we present the syntax and semantics of DynAlloy, the inter-
mediate representation of TACO. DynAlloy is an extension of Alloy based
on first-order dynamic logic [18]. We chose DynAlloy as a target for per-
forming dataflow analysis because: 1) it is closer to the SAT-problem than
the Java representation, and 2) it is the last intermediate representation in
the TACO pipeline where a notion of control flow and state change still re-
mains. In other words, DynAlloy contains the last imperative representation
of the code under analysis.

Before describing DynAlloy we will briefly comment on the Alloy lan-
guage, which is the core language used in DynAlloy expressions.

3.1 Alloy

A brief overview of Alloy’s syntax and semantics taken from [20] is given in
Fig. 5. Alloy was designed with the goal of making specifications automat-
ically analyzable. This has made the Alloy Analyzer an appealing tool for
an active and growing community.

We refer the reader to [21] for a complete description of the Alloy lan-
guage. Alloy’s semantics is defined in terms of sets and relational operations.
Each relation is a set of tuples of an arbitrary (but fixed) arity. The lan-
guage provides first order logic quantification (all and some formulas) as
well as transitive closure (the +expr operator). The navigation operator
(expr.expr) resembles object oriented notations. The semantics of Alloy is
given in terms of two functions: X, which maps Alloy expressions to rela-
tions, and M , which maps formulas to their truth value.
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problem ::= decl∗formula
decl ::= var : typexpr
typexpr ::=
type
| type→ type
| type⇒ typexpr

formula ::=
expr in expr (subset)
|!formula (neg)
| formula && formula (conj)
| formula || formula (disj)
| all v : type | formula (univ)
| some v : type | formula (exist)

expr ::=
expr + expr (union)
| expr & expr (intersection)
| expr− expr (difference)
|∼ expr (transpose)
| expr.expr (navigation)
| +expr (transitive closure)
| {v : t | formula} (set former)
| V ar

V ar ::=
var (variable)
| V ar[var] (application)

M : formula→ env → Boolean
X : expr→ env → value
env = (var + type)→ value
value = (atom× · · · × atom)+

(atom→ value)

M [a in b]e = X[a]e ⊆ X[b]e
M [!F ]e = ¬M [F ]e
M [F&&G]e = M [F ]e ∧M [G]e
M [F || G]e = M [F ]e ∨M [G]e
M [all v : t | F ] =∧
{M [F ](e⊕ v7→{ x })/x ∈ e(t)}

M [some v : t/F ] =∨
{M [F ](e⊕ v7→{ x })/x ∈ e(t)}

X[a+ b]e = X[a]e ∪X[b]e
X[a&b]e = X[a]e ∩X[b]e
X[a− b]e = X[a]e \X[b]e
X[∼ a]e = { 〈x, y〉 : 〈y, x〉 ∈ X[a]e }
X[a.b]e = X[a]e ;X[b]e
X[+a]e = the smallest r such that
r ;r ⊆ r and X[a]e ⊆ r

X[{v : t | F}]e =
{x ∈ e(t) |M [F ](e⊕ v7→{ x })}

X[v]e = e(v)
X[a[v]]e = {〈y1, . . . , yn〉 |
∃x. 〈x, y1, . . . , yn〉 ∈ e(a) ∧ 〈x〉 ∈ e(v)}

R;S = {〈a1, . . . , ai−1, b2, . . . , bj〉 : ∃b(〈a1, . . . , ai−1, b〉 ∈ R ∧ 〈b, b2, . . . , bj〉 ∈ S)

R→ S denotes the Cartesian product between relations R and S. R++S denotes the
relational overriding defined as follows1:

R++S = {〈a1, . . . , an〉 : 〈a1, . . . , an〉 ∈ R ∧ a1 /∈ dom(S)} ∪ S

[·]0 is the unary operator that returns the only element present in a singleton set: [{a}]0 = a.

Figure 5: Grammar and semantics of Alloy

3.2 DynAlloy

The aim of the DynAlloy specification language is to provide a formal char-
acterization of imperative sequential programs while keeping the relational
semantics of Alloy. Fig. 6 shows a relevant fragment of DynAlloy’s grammar.
DynAlloy extends Alloy by allowing the user to write partial correctness
assertions of the form {formula}program{formula}. This fragment corre-
sponds to the DynAlloy programs output by the JavaToDynAlloy trans-
lator, part of TACO. As shown in Fig. 3b, typical structured program-
ming constructs can be described using these basic logical constructs. For
example, if B then P else Q fi can be written as the DynAlloy pro-
gram B?;P + (¬B)?;Q. Similarly, while B do P od can be expressed as
(B?;P )∗; (¬B)?.

More complex programming language features such as dynamic mem-
ory allocation can also by modeled using grammar shown in Figure 6. For
instance, allocating a fresh object of type T can be written as the following
DynAlloy test program:



10 Bruno Cuervo Parrino et al.

formula ::= . . . | {formula} program {formula} “partial correctness”

program ::= v := expr “copy”
| v.f := expr “store”
| skip “skip action”
| formula? “test”
| program + program “non-deterministic choice”
| program; program “sequential composition”
| program∗ “iteration”
| 〈program〉(x) “invoke program”

expr ::= null |v | v.f

Figure 6: Relevant DynAlloy fragment

( x in T && x !in (l1+...+ln).*(f1+...+fm) )?

where l1, . . . , ln is the set of all alive variables (including static fields)
and f1, . . . , fm is the set of all fields of any type. Observe that the set
(l1+...+ln).*(f1+...+fm) denotes a transitive closure with all objects
that might be accessed by the program. If the target programming language
semantics includes object initialization (like Java), the field initialization is
performed afterwards using store actions.

3.3 DynAlloy relational semantics

Since DynAlloy’s relational semantics is interpreted in terms of atoms, Atom
represents the set of all atoms in this interpretation. We denote by JV ar ]
JField the set of DynAlloy variables. A DynAlloy variable belonging to
JV ar corresponds to the representation of a Java variable and its concrete
value: is a single atom. Similarly, a variable belonging to JField models
a Java field whose concrete value is a mapping (functional relation) from
atoms to atoms. A concrete state c ∈ E maps each DynAlloy variable to a
concrete value.

E = JV ar ] JField→ Atom ∪ P(Atom×Atom)

We denote by M [φ]c the truth value for formula φ at the concrete state
c. Similarly, we denote by X[expr]c the value of expression expr in the
concrete state c. The value of X[expr]c for the DynAlloy expressions that
we consider is defined as follows:

X[null]c = {〈null〉},
X[v]c = {c(v)},
X[v.f ]c = {c(v)}; c(f).
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4 Propagating Values in DynAlloy Programs

In this section, we present a dataflow analysis technique for DynAlloy pro-
grams that computes an over approximation of all the possible variable
assignments for every program location.

4.1 Collecting Semantics

Now we present an alternative definition based on the collecting seman-
tics [25] which is useful for proving the correctness of our proposed dataflow
technique.

We start by defining two helper functions we will use for updating states.

Definition 1 Given a concrete state c ∈ E, variables x, y ∈ JV ar]JField
and a value v ∈ Atom ∪ P(Atom × Atom), we define the update of a state
c as follows:

c[x 7→ v](y) =

{
v when y = x,

c(y) otherwise.

The transfer function is used to explain how a concrete state changes
when a DynAlloy statement is executed. We denote by C the power set of
concrete states (namely, C = P(E)).

Definition 2 The transfer function F : DynAlloyProgram×C → C is the
following:

F(skip, cs) = cs,
F(φ?, cs) = {c | c ∈ cs ∧M [φ]c},
F(v := expr, cs) = {c[v 7→ [X[expr]c]0] | c ∈ cs},
F(v.f := expr, cs) = {c[f 7→ c(f)++({c(v)} → X[expr]c)] | c ∈ cs}.

Observe that for the case of the variable assignment we use [X[expr]c]0].
This is because we know that in a state a variable has exactly one possible
value.

Given a DynAlloy program P it is possible to obtain its control flow
graph (CFG). We assume the CFG has a unique entry (respectively, exit)
point without incoming (respectively, outgoing) edges.

A collecting semantics defines how information flows through the CFG.
In the collecting semantics, every time a new value traverses a node it is
recorded. Therefore, each node keeps track of all values passing through it.

Definition 3 Given a DynAlloy program P and a formula φ representing
input states, the collecting semantics of P starting with state φ is the least
fix point (LFP) of the following equations:
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For each node n in the CFG of P :

in(n) =

{c0|M [φ]c0} n is the entry of CFG(P ),⋃
p∈pred(n)

out(p) otherwise.

out(n) = F(n, in(n)).

where in(n), out(n) denote the input and output values of node n, and
pred(n) denotes the set of predecessors of n.

4.2 Abstract Semantics

We represent an abstract state as a mapping of DynAlloy variables to their
corresponding abstract values.

Definition 4 The abstract value of a DynAlloy variable representing a Java
variable is a set of atoms. Therefore, we define A, the abstract domain, as

A = JV ar ] JField→ P(Atom) ∪ P(Atom×Atom).

An abstract value represents the set of all concrete values a DynAlloy
variable may take (i.e., an over approximation) at a given program location.
In order to operate with this abstraction we need A to be endowed with a
lattice structure.

Definition 5 Let 〈A,v〉 such that for all a, a′ ∈ A,

– a v a′ iff ∀x ∈ JV ar ] JField.(a(x) ⊆ a′(x)),
– a t a′ = a′′ such that ∀x ∈ JV ar ] JField.(a′′(x) = a(x) ∪ a′(x)).

Notice that 〈A,v〉, as defined in Def. 5, is indeed a lattice.
We define abstract state update similarly to concrete state update.

Definition 6 Given an abstract state a ∈ A, variables x, y ∈ JV ar]JField
and a value v ∈ P(Atom) ∪ P(Atom × Atom), we define the update of a
state a as follows:

a[x 7→ v](y) =

{
v when y = x,

a(y) otherwise.

Definition 7 The abstraction function α : C → A formalizes the notion of
approximation of concrete states by an abstract state. Given a set of concrete
states cs ∈ C,

α(cs) = a s.t. ∀v ∈ JV ar.(a(v) = {c(v) | c ∈ cs})

∧ ∀f ∈ JField.

(
a(f) =

⋃
c∈cs

c(f)

)
.
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Notice that the chosen abstract domain is indeed very similar to the
concrete domain. The main difference is that an abstract value can represent
several concrete values (i.e., the powerset of Atom). Several concrete values
are merged into a single abstract value after a join point in the CFG.

The concretization function γ : A → C is defined as the dual of α.
Namely,

γ(a) =
⋃
{cs | α(cs) v a}. (1)

Proposition 1 (C,⊆) −−−→←−−−α
γ

(A,v) is a Galois connection.

Proof: We resort to [10, Prop. 7] which guarantees this property when α is
a complete join morphism and γ is defined using α exactly as we did in (1).

The proof that α is a complete join morphism is straightforward by fol-
lowing the definitions of α, t and using that ∪ is a complete join-morphism.

α(
⋃
cs∈C′

cs)(v) = {c(v) | c ∈
⋃
cs∈C′

cs} =
⋃
cs∈C′

{c(v) | c ∈ cs}.

On the other hand, ⊔
cs∈C′

α(cs)(v) =
⊔
cs∈C′

{c(v) | c ∈ cs}

=
⋃
cs∈C′

{c(v) | c ∈ cs}.

Let X̂ be the abstract evaluation function. It agrees with X, with the
exception that for a variable v, X[v]c returns the singleton {c(v)} while
X̂[v]a returns the set a(v).

Definition 8 The abstract transfer function F̂ : DynAlloyProgram×A→
A is defined by the following rules:

F̂(skip, a) = a,

F̂(φ?, a) = a,

F̂(v := expr, a) = a[v 7→ X̂[expr]a],

F̂(v.f := expr, a) = let from = a(v), to = X̂[expr]a in
if |from| = 1,

then a[f 7→ a(f)++(from→ to)] (strong update)
else a[f 7→ a(f) ∪ (from→ to)] (weak update).

Notice that the semantics of the store operation distinguishes two cases:
1) the abstraction is precise enough to perform an update of a unique source,
2) an over approximated step must be taken.
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Definition 9 We define the analysis dataflow equations using F̂ as follows.
For each node n in the CFG of P ,

în(n) =

{
α({c0|M [φ]c0}) n is the entry of CFG(P ),⊔
p in pred(n)

ˆout(p) otherwise .

ˆout(n) = F̂(n, in(n)).

4.3 Correctness

Here we show that the abstraction is a sound over approximation of the
collecting semantics. Before the proof we introduce a lemma that will be
handy for proving the correctness of our analysis.

Lemma 1 Let cs ∈ C, a ∈ A and let expr in domain X. Then,

α(cs) v a =⇒ ∀c ∈ cs �X[expr]c ⊆ X̂[expr]a.

Proof: We need to prove the property for the three possible forms of expr:
null, v and v.f .

expr = null: ∀c ∈ cs �X[null]c = {〈null〉} = X̂[null]a.
Then, ∀c ∈ cs �X[null]c ⊆ X̂[null]a.

expr = v: Since α(cs) v a, α(cs)(v) ⊆ a(v). Then, by Def. 7,
{c(v) | c ∈ cs} ⊆ a(v). Thus, ∀c ∈ cs � {c(v)} ⊆ a(v).
Since X[v]c = {c(v)} and X̂[v]a = a(v), ∀c ∈ cs �X[v]c ⊆ X̂[v]a.

expr = v.f : Since α(cs) v a, α(cs)(v) ⊆ a(v) and α(cs)(f) ⊆ a(f). By
Def. 7, {c(v) | c ∈ cs} ⊆ a(v) and

⋃
c∈cs

c(f) ⊆ a(f). Then, ∀c ∈ cs �

{c(v)} ⊆ a(v) and c(f) ⊆ a(f).
By definition of operator ;, {c(v)}; c(f) ⊆ a(v); a(f). Since X[v.f ]c =
{c(v)}; c(f) and X̂[v.f ]a = a(v); a(f), ∀c ∈ cs �X[v.f ]c ⊆ X̂[v.f ]a.

We also introduce a lemma concerning the relational override operator
++. We will apply this lemma along the proof of correctness of the strong
update operator.

Lemma 2 Given R1 ⊆ R2, and S1 ⊆ S2. If dom(S1) = dom(S2), then,

R1++S1 ⊆ R2++S2.

The proof is straightforward following the definition of the ++ operator
introduced in Fig. 5 .

Theorem 1 (Correctness) Let cs ∈ C, a ∈ A, n ∈ CFG(P ). Then,

α(cs) v a =⇒ α(F(n, cs)) v F̂(n, a).

Proof: We prove it for the different types of statements (nodes in the CFG):
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n = skip: α(F(skip, cs)) = α(cs). By hypothesis, α(cs) v a = F̂(skip, a).
n = φ?: F(φ?, cs) = {c | c ∈ cs∧M [φ]c} ⊆ cs. Then, by monotonicity of α,

α(F(φ?, cs)) v α(cs). By hypothesis, α(cs) v a = F̂(φ?, a).
n = v := expr: By hypothesis, α(cs) v a. Then, by Def. 5,

∀x ∈ JV ar ] JField � α(cs)(x) ⊆ a(x). (2)

First, let x ∈ JField. Then, by Def. 2, α(F(v := expr, cs))(x) =
α({c[v 7→ [X[expr]c]]0 | c ∈ cs})(x) which, by Def. 7, equals⋃

c∈cs
c[v 7→ [X[expr]c]]0(x).

Observe that x ∈ JField and v ∈ JV ar. Since JField ∩ JV ar = ∅, it
follows that x 6= v. Therefore,⋃

c∈cs
c[v 7→ [X[expr]c]]0(x) =

⋃
c∈cs

c(x).

Since x 6= v, by hypothesis,⋃
c∈cs

c(x) ⊆ a(x) = a[v 7→ X̂[expr]a](x). (3)

By Def. 8, F̂(v := expr, a) = a[v 7→ X̂[expr]a]. Then,

α(F(v := expr, cs))(x) ⊆ F̂(v := expr, a)(x).

Let now x ∈ JV ar. Then, by Def. 2,

α(F(v := expr, cs))(x) = α({c[v 7→ [X[expr]c]]0 | c ∈ cs})(x)

which, by Def. 7, equals

{c[v 7→ [X[expr]c]]0(x) | c ∈ cs}. (4)

We now consider the cases when v = x and v 6= x in order to prove that

{c[v 7→ [X[expr]c]]0(x) | c ∈ cs} ⊆ a[v 7→ X̂[expr]a](x).

Consider (4). Splitting into the cases v = x and v 6= x,

(4) = {[X[expr]c]0 | c ∈ cs ∧ v = x} ∪ {c(x) | c ∈ cs ∧ v 6= x}.

First, note that by Lemma 1 we know ∀c ∈ cs �X[expr]c ⊆ X̂[expr]a. In
particular, since we applied it to a subset, when v = x

{[X[expr]c]]0) | c ∈ cs ∧ v = x} ⊆ X̂[expr]a = a[v 7→ X̂[expr]a](x) (5)

By fact (2), when v 6= x, we prove

{c(w) | c ∈ cs ∧ v 6= x} ⊆ a(x) = a[v 7→ X̂[expr]a](x). (6)

Therefore, by facts (3), (5) and (6),

α(F(v := expr, cs))(x) ⊆ a[v 7→ X̂[expr]a](x) = F̂(v := expr, a)(x).

Then, by Def. 5,

∀x ∈ JV ar ] JField � α(F(v := expr, cs))(x) v F̂(v := expr, a)(x).
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n = v.f := expr: We will use an approach similar to the one we used for
proving the previous case, but considering instead that the definition of
F̂(v.f := expr, a) distinguishes the case for strong and weak updates.
Therefore, we need to prove that the inclusion holds in these two cases.

First case: |a(v)| = 1 (strong update).
By Def. 8,

F̂(v.f := expr, a) = a[f 7→ a(f)++(a(v)→ X̂[expr]a)].

Let us consider first the case in which x ∈ JV ar. Then,

α(F(v.f := expr, cs))(x)

= α({c[f 7→ c(f)++({c(v)} → X[expr]c) | c ∈ cs})(x) (By Def. 2)

= {c[f 7→ c(f)++({c(v)} → X[expr]c)](x)|c ∈ cs}. (By Def. 7)

Observe that x ∈ JVar and f ∈ JField , since JField ∩ JVar = ∅, it
follows that x 6= f . Therefore,

{c[f 7→ c(f)++({c(v)} → X[expr]c)](x)|c ∈ cs} = {c(x)|c ∈ cs}.

Since x 6= f , by hypothesis,

{c(x)|c ∈ cs} ⊆ a(x) = a[f 7→ a(f)++(a(v)→ X̂[expr]a)](x). (7)

We now consider the case in which x ∈ JField. Then,

α(F(v.f := expr, cs))(x) =

α({c[f 7→ c(f)++({c(v)} → X[expr]c)]|c ∈ cs})(x) =⋃
c∈cs

c[f 7→ c(f)++({c(v)} → X[expr]c)](x). (8)

Consider (8). Splitting into the cases f = x and f 6= x:

(8) =
⋃

f=x∧c∈cs
c(f)++({c(v)} → X[expr]c) ∪

⋃
f 6=x∧c∈cs

c(x).

Let us analyze first the case when f = x. Since we know by Def. 5 that
∀x ∈ JV ar ] JField � α(cs)(x) ⊆ a(x), it holds that ∀c ∈ cs:
1. c(f) ⊆ a(f) (since f ∈ JField , c(f), a(f) ∈ P(Atom×Atom)).
2. Since |a(v)| = 1 and {c(v)} ⊆ a(v), it follows {c(v)} = a(v).
3. By Lemma 1, X[expr]c ⊆ X̂[expr]a.
It then follows that {c(v)} → X[expr]c ⊆ a(v)→ X̂[expr]a. The condi-
tions are then given for the application of Lemma 2, namely,
– c(f) ⊆ a(f)
– {c(v)} → X[expr]c ⊆ a(v)→ X̂[expr]a
– dom({c(v)} → X[expr]c) = dom(a(v)→ X̂[expr]a)
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Therefore, by Lemma 2,

c(f)++({c(v)} → X[expr]c) ⊆ a(f)++(a(v)→ X̂[expr]a).

Furthermore, ⋃
f=x∧c∈cs

c(f)++({c(v)} → X[expr]c)

⊆ a(f)++(a(v)→ X̂[expr]a)

= a[f 7→ a(f)++(a(v)→ X̂[expr]a)](f)

= F̂(v.f := expr, a)(f). (9)

Finally, we analyze the case when f 6= x. By hypothesis,⋃
c∈cs∧f 6=x

c(x) ⊆ a(x).

If f 6= x, then a[f 7→ a(f)++(a(v)→ X̂[expr]a)](x) = a(x). Then,⋃
c∈cs∧f 6=x

c(x) ⊆ a[f 7→ a(f)++(a(v)→ X̂[expr]a)](x)

= F̂(v.f := expr, a)(x). (10)

By (7), (9) and (10), we conclude

∀x ∈ JV ar ] JField � α(F(v.f := expr, cs))(x) ⊆ F̂(v.f := expr, a)(x).

Therefore, by Def. 7 we conclude, for the strong update case,

α(F(v.f := expr, cs)) ⊆ F̂(v.f := expr, a).

Second case: |a(v)| > 1 (weak update).
By Def. 8, F̂(v.f := expr, a) = a[f 7→ a(f) ∪ (a(v) → X̂[expr]a)]. We
will again consider the cases in which x ∈ JV ar or x ∈ JField .
If x ∈ JV ar, an analogous reasoning to the one we applied for the strong
update case allows us to conclude that

α(F(v.f := expr, cs))(x) ⊆ a(x) = a[f 7→ a(f)++(a(v)→ X̂[expr]a)](x).

Since x 6= f , a(x) = a[f 7→ a(f)∪(a(v)→ X̂[expr]a)](x). Therefore,

α(F(v.f := expr, cs))(x) ⊆ a[f 7→ a(f)∪(a(v)→ X̂[expr]a)](x). (11)

If x ∈ JField, then

α(F(v.f := expr, cs))(x)

(by Def. 2) = α({c[f 7→ c(f)++({c(v)} → X[expr]c)]|c ∈ cs})(x)

(by Def. 7) =
⋃
c∈cs

c[f 7→ c(f)++({c(v)} → X[expr]c)](x). (12)
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As with the strong update case, we consider (12) splitting into the cases
f = x and f 6= x:

(12) =
⋃

f=w∧c∈cs
c(f)++({c(v)} → X[expr]c) ∪

⋃
c∈cs∧f 6=w

c(x)

The case for f 6= x is analogous to the strong update proof. Let us
focus on the case when f = x. Since we know by Def. 5 that ∀x ∈
JV ar ] JField � α(cs)(x) ⊆ a(x), it holds that ∀c ∈ cs:

1. c(f) ⊆ a(f).
2. {c(v)} → X[expr]c ⊆ a(v)→ X̂[expr]a. This is the case because

– {c(v)} ⊆ a(v) and
– X[expr]c ⊆ X̂[expr]a by Lemma 1.

Thus, we derive by monotonicity of ∪,

c(f)∪({c(v)} → X[expr]c) ⊆ a(f)∪(a(v)→ X̂[expr]a).

Therefore, since R++S ⊆ R ∪ S,

c(f)++({c(v)} → X[expr]c) ⊆ c(f)∪({c(v)} → X[expr]c)

⊆ a(f)∪(a(v)→ X̂[expr]a).

Finally, ⋃
f=w∧c∈cs

c(f)++({c(v)} → X[expr]c)

⊆ a(f)∪(a(v)→ X̂[expr]a)

= a[f 7→ a(f)∪(a(v)→ X̂[expr]a)](f)

= F̂(v.f := expr, a)(f). (13)

By (11), (13) and the case when f 6= x, we can conclude

∀x ∈ JV ar ] JField � α(F(v.f := expr, cs))(x) ⊆ F̂(v.f := expr, a)(x).

Therefore, by Def. 7, we can conclude for the weak update case

α(F(v.f := expr, cs)) ⊆ F̂(v.f := expr, a).

Therefore,
α(cs) v a⇒ α(F(n, cs)) v F̂(n, a).

The following corollary shows that the abstraction computed using the
dataflow analysis is a safe approximation of the collecting semantics.

Corollary 1 The dataflow equations for the value propagation analysis pre-
sented in Def. 9 are a safe abstraction of the equations for the collect-
ing semantics defined in Def. 3. That is, for each node n ∈ CFG(P ),
α(LFP(in(n))) ⊆ LFP(în(n)) and α(LFP(out(n))) ⊆ LFP( ˆout(n)).
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Following the approach presented in [24] we can define2:

f(in, out)(n) = (
⋃

p in pred(n)

out(p),F(in(n))),

f̂(în, ˆout)(n) = (
⊔

p in pred(n)

ˆout(p), F̂(în(n))).

Note that both f and f̂ are monotone functions build from F and F̂ .
Then, from Theorem 1 and [9,24] we know that α(LFP (f)) ⊆ LFP (f̂)

Termination: Due to the monotonicity of dataflow equations and the fact
that a finite Atom set leads to a finite and complete lattice (both the con-
crete and abstract domains are finite), using the Kleene’s fixpoint theorem
it is possible to compute a least fixpoint in a finite number of steps.

5 Effective Removal of Variables Using Dataflow Analysis

We now present the mechanism to effectively remove propositional variables
in the SAT-formula.

As previously mentioned, TACO removes propositional variables by in-
troducing tight upper bounds for those Alloy relations representing the ini-
tial Java memory heap. KodKod allows one to prescribe bounds for Al-
loy relations of any arity (unary relations included). The DynAlloyToAlloy
translator introduces several versions of the same DynAlloy variable in or-
der to model state change in Alloy. Our goal is to compute a tighter upper
bound for each Alloy relation modeling different versions of the same Dyn-
Alloy variable.

The execution of the DynAlloyToAlloy translator is separated into sev-
eral phases. Each phase performs a semantic preserving transformation of
the DynAlloy specification. The following phases are executed in an orderly
fashion:

1. Unroll: Removes loops by unrolling them up to the provided limit.
2. Inline: Replaces program invocations with the corresponding method

bodies.
3. SSA: Applies an SSA-like transformation of the DynAlloy program.
4. NoLocals: Promotes local variables to program parameters.

The resulting DynAlloy specification is then translated into an Alloy
representation following the rules presented in [15]. Once the single static
assignment (SSA) transformation is applied, DynAlloy variables and Al-
loy relations match. Therefore, performing our value-propagation analysis
on this final DynAlloy representation, yields an over approximation of all
possible values each Alloy relation may have.

2 For the sake of simplicity and presentation we avoid showing the case for entry
in the definitions of f and f̂ .
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By default, Alloy associates a conservative upper bound (i.e., a set of
Atoms for unary relations, a Cartesian product for binary relations, and
so on), denoted Ux, for each relation x that was not explicitly bounded.
This upper bound represents all possible values a variable or field may have
according to its type and the scope of the analysis.

If an upper bound is found in its repository, TACO instruments the
Alloy representation by including the stored upper bound, refining the initial
state. We denote by UTACOx the final set of upper bounds obtained by this
process. Note that UTACOx ⊆ Ux.

5.1 Initializing variables for Dataflow analysis

It is worth mentioning that, as the upper bounds stored in TACO’s repos-
itory can be seen as an over approximation of the values of the initial
Java memory heap, we can use them as a refined entry abstraction for
our dataflow analysis.

We initialize each variable p representing the initial heap for the method
under analysis with a TACO upper bound, if one is available, or use the
default bound otherwise (i.e., UTACOp ∩Up). For any other DynAlloy variable
x, representing local variables, no tuple is associated (i.e., a(x) = ∅).

5.2 Using the dataflow analysis output

In order to properly introduce tighter bounds for all Alloy relations, we
inspect the abstract value of each DynAlloy variable at the exit location.

Given a DynAlloy variable x ∈ JV ar]JField, the abstract value for x at
this location represents the possible values it may take. Thus, this could be
written as an upper bound of (the Alloy relation) x and fed to the KodKod
input, leading to the removal of unnecessary propositional variables.

Recall that Corollary 1 states that the propagation analysis is a safe
approximation of the collecting semantics of the original program. We fed
the analysis with the TACO upper bounds UTACOx which also represents a
safe over approximation of the initial state. Therefore, applying the analysis
with these bounds we obtain a safe over approximation of how these initial
values are propagated through the control flow graph.

Since we applied the analysis over the SSA version of the DynAlloy
program, we know that each variable is assigned only once. Thus, it is
enough to consider the output of the analysis at the exit node in the CFG
since it will contain the values for all the variables. For cases where x’s
abstract value maps to an empty set, it means that no value was actually
propagated into that variable. However, a special measure has to be taken
in order to enforce Alloy’s relational constraints since at model creation it
needs to assign a value to each variable . Therefore, for those cases we assign
that variable a default value according to its type.
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Definition 10 Let aexit = în(exit) be the computed abstract value for the
exit node of the CFG.

UDFx =

{
aexit(x) if aexit(x) 6= ∅
defV al(x) otherwise

where defV al(x) returns the default Java values (e.g, 0 for Integer, false
for Bool, etc) in case x models a Java variable, and a total function whose
range contains default values in case x represents a Java field.

Let UTACOx be the upper bound supplied by TACO to KodKod when
no dataflow analysis is performed. Let UDFx be the bounds computed by
the dataflow analysis. The following theorem ensures that using the latter
bounds is safe (i.e., it does not miss failures).

Theorem 2 Let θ be the Alloy formula output by the DynAlloyToAlloy
translator. Given an Alloy instance I such that

M [θ ∧
∧
x

(x ⊆ UTACOx )]I = true,

there is an Alloy instance I ′ such that M [θ ∧
∧
x

(x ⊆ UDFx )]I′ = true.

Proof: Let I be an Alloy instance satisfying the hypothesis. Recall that M
takes a formula (in this case θ), a valuation (in this case I) and computes
its truth value. Formula θ codifies the verification condition of the program
and represents the possible variable assignments at every program point.
The Alloy instance I is a particular valuation of those variables constrained
by UTACOx that makes M to evaluate to true, and represents one of the
possible program traces.
We identify two cases:

1. Variable x ∈ JVar]JField is a parameter for the method under analysis,
the receiver object this, or a local variable that is declared (and perhaps
also assigned) in the trace determined by instance I.

2. Variable x ∈ JVar is a local variable that is not declared (and therefore
not assigned) in the trace determined by instance I.

For example, for the method m in Fig. 7, if we consider trace 1,2,4,5,6,
variables this, p1, p2 and x1 are comprised in the first case. Variable y1, on
the other hand, is characterized by the second case.

Recall that the variables in the Alloy representation match the variables
in the SSA version of the DynAlloy program. As mentioned before, due to
Corollary 1 and since we fed this analysis with a safe over approximation of
the initial state (i.e., UTACOx ) we know that UDFx is a safe over approxima-
tion of all possible variable assignments for all variables. Therefore, in the
first case we may safely define I ′(x) as I(x). Notice that since the first case
assigns values to all the variables that determine the execution trace, and
the values agree with the ones assigned by instance I, the theorem holds.
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m(A p1, B p2) {

1: A x1 = p1;

2: if(x.f>0)

3: B y1 = p2;

4: else

5: assert false;

7: return

}

Figure 7: The variable y1 is not assigned in the path 1,2,4,5,6.

Still, the definition for instance I is not complete, since it must assign val-
ues to all variables. The remaining variables, i.e., those characterized in the
second case, do not have any impact on the executed trace, and their value
can be assigned in any way that preserves their typing. We then define

I ′(x) =

{
I(x) if I(x) ⊆ UDFx ,
v ∈ UDFx otherwise.

It then clearly follows that

M [θ ∧
∧
x

(x ⊆ UTACOx )]I = true =⇒ M [θ ∧
∧
x

(x ⊆ UDF )
x )]I′ = true.

5.3 Loop Optimization

The Java while construct while B { P } can be expressed in DynAlloy as
(B?;P )∗; (¬B)?. Given a loop limit of k, the Unroll phase transforms the
loop into

((B?;P ) + skip); . . . ; ((B?;P ) + skip)︸ ︷︷ ︸
k−times

; (¬B)?.

Although semantically correct, this representation of the while construct
permits many permutations. For instance: the program trace B?;P ; skip is
equivalent to skip;B?;P . This apparently harmless symmetry has a tremen-
dous impact since our dataflow analysis is branch insensitive. Due to this,
the computed over approximation becomes too coarse.

This observation led us to modify the Unroll phase. The new nested
unrolling encodes while B do P od into Tk(B,P ); (¬B)?, where Tk is re-
cursively defined by the equations

T0(B,P ) = skip,
Tn(B,P ) = (((B?;P );Tn−1(B,P )) + skip).
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Method
Analysis Times (secs.) Variables

TACO T-Flow Dataflow Speed-up # TACO Reduction
SList.contains.s20 8.25 5.34 0.13 1.54 1743 2.70%
SList.insert.s20 9.91 11.30 0.14 0.88 3892 11%
SList.remove.s20 18.11 8.20 0.12 2.21 3749 15.92%
AList.contains.s20 29.20 8.43 0.19 3.46 3573 34.73
AList.insert.s20 10.66 9.04 0.14 1.18 4732 0.97%
AList.remove.s20 144.35 11.94 0.17 12.09 4580 11.55%
CList.contains.s20 109.7 47.53 0.16 2.31 2530 28.74%
CList.insert.s20 59.9 45.82 0.18 1.31 4512 30.78%
CList.remove.s20 1649.47 353.66 0.33 4.66 5365 11.39%
AvlTree.findMax.s20 25.82 25.28 0.14 1.02 1412 5.95%
AvlTree.find.s20 1439.32 119.03 1.96 12.09 2505 2.95%
AvlTree.insert.s17 32018.14 20744.99 98.78 1.54 204799 30.33%
BinHeap.findMin.s20 109.86 10.45 0.85 10.51 2224 9.80%
BinHeap.decK.s18 18216.79 335.42 2.63 54.31 9469 1.16%
BinHeap.insert.s17 25254.66 122.22 8.52 206.63 33477 28.89%
BinHeap.extMin.s20 1149.71 451.19 21.71 2.55 55188 27.55%
TreeSet.find.s20 14475.49 769.64 1.74 18.81 3032 2.51%
TreeSet.insert.s13 26447.76 719.78 35.12 36.74 38822 1.26%
BSTree.contains.s13 28602.33 9190.95 0.19 3.11 648 0.15%
BSTree.remove.s12 7251.39 14322.00 0.44 0.51 2396 13.28%
BSTree.insert.s09 18344.38 1214.49 1.79 15.10 13369 5.42%

Table 1: Analysis times (in seconds) for TACO and TacoFlow, speed-up and
variables in the obtained propositional formula.

6 Empirical Evaluation

In this section we present the experimental evaluation we performed in order
to validate our approach. We aim at answering the following two research
questions:

RQ1: Is our approach capable of outperforming the current SAT-based anal-
yses?

RQ2: Where do the performance gains come from?

In order to answer these questions we implemented TacoFlow. TacoFlow3

is an extension of TACO that implements the approach described in §5.
That is, a new encoding of loop unrolls, a generic dataflow framework for
DynAlloy programs, our value-propagation analysis as an instance of this
framework, and finally, its application as a means to remove propositional
variables in the Alloy intermediate representation.

We considered the benchmark presented in [17] and compare the anal-
ysis times of TACO and TacoFlow. We analized the following case studies:
LList: An implementation of sequences based on singly linked lists; AL-
ist: The implementation AbstractLinkedList of interface List from the
Apache package commons.collections, based on circular doubly-linked lists;
CList: The implementation NodeCachingLinkedList of interface List from
the Apache package commons.collections; BSTree: A binary search tree
implementation from Visser et al. [32]; TreeSet: The implementation of

3 TacoFlow and the benchmark are available at http://www.dc.uba.ar/

tacoflow.
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class TreeSet from package java.util, based on red-black trees; AVL-
Tree: An implementation of AVL trees obtained from the case study used
in [2]; BHeap: An implementation of binomial heaps used as part of a
benchmark in [32]; For each class we consider the most representative set of
methods featuring insertion, deletion, and look-up. All methods are correct
with respect to their contracts except for BHeap.extMin which contains an
actual fault discovered in [17].

Since we are interested in measuring the worst case scenario for bounded
verification (i.e., search space exhaustion), we focused mostly on the analysis
of correct implementations. We include the case of BHeap.extMin to show
that the analysis does not miss bugs.

Both TACO and TacoFlow were fed with an initial set of upper bounds.
These upper bounds were computed using a cluster of computers as reported
in our previous work [17]. TacoFlow uses these bounds to produce an entry
abstraction for the value-propagation analysis.

We were interested in assessing the impact of the techniques in terms
of analysis time and in seeing if the overhead introduced by the dataflow
analysis can be compensated by the obtained performance gains.

Hardware and Software platform: All experiments were run on an In-
tel Core i5-570 processor running at 2.67GHz and 8GB DDR3 total main
memory, on a Debian’s GNU/Linux v6 operating system. The SAT-Solver
minisat [14] version 2.20 was used for all the analysis tasks.

For every case study we checked that their class invariants are preserved
and their method contracts are satisfied. For each method we selected the
greatest scope that TACO could verify within a given time threshold (10
hours). The maximum scope is restricted to at most 20 node elements for
each experiment. This is due to the fact that this is the greatest scope
used for evaluating TACO in our most recent work. If loops are found,
they were unrolled up to 10 times. Table 1 shows the end-to-end analysis
times using both TACO and TacoFlow, the cost of the dataflow analysis
in TacoFlow and its speed-up (the ratio TACO/TacoFlow). The last two
columns show the number of propositional variables of the SAT-formula pro-
duced by TACO and the percentage of reduction introduced by TacoFlow.

Notice that the overall speed-up was very significant in almost all cases.
More specifically, it was approximately 20 times faster in average. Only two
methods exhibited a loss in performance. The required time to compute
the dataflow analysis was, in general, negligible and compensated by the
speed-up obtained in the end-to-end execution.

Our research was driven by the hypothesis that verification times were
sensitive to a decrease in the number of propositional variables. To validate
that hypothesis, we collected the number of propositional variables gener-
ated by both TACO and TacoFlow. TacoFlow indeed reduced the number
of propositional variables and the obtained performance gains appeared to
confirm the hypothesis. As the reduction percentage did not seem to be di-
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Method
TACO vs

TACO+

SList.contains 1.64
SList.insert 0.64
SList.remove 1.80
AList.contains 2.86
AList.insert 1.15
AList.remove 14.10
CList.contains 1.47
CList.insert 0.69
CList.remove 3.89
AvlTree.findMax 0.97
AvlTree.find 12.72
AvlTree.insert 1.09
BinHeap.findMin 13.99
BinHeap.decK 76.94
BinHeap.insert 178.49
BinHeap.extMin 2.35
TreeSet.find 13.05
TreeSet.insert 31.24
BSTree.contains 4.12
BSTree.remove 0.60
BSTree.insert 18.26

Table 2: TACO+ speed-up

Method
TACO+vs
TacoFlow

SList.contains 0.94
SList.insert 1.38
SList.remove 1.23
AList.contains 1.21
AList.insert 1.03
AList.remove 0.86
CList.contains 1.57
CList.insert 1.89
CList.remove 1.20
AvlTree.findMax 1.06
AvlTree.find 0.95
AvlTree.insert 1.42
BinHeap.findMin 0.75
BinHeap.decK 1.09
BinHeap.insert 1.15
BinHeap.extMin 1.08
TreeSet.find 1.44
TreeSet.insert 0.90
BSTree.contains 0.76
BSTree.remove 0.84
BSTree.insert 1.33

Table 3: TacoFlow speed-up

rectly related to the gain proportion, a further investigation of this matter
is necessary.

TacoFlow differs from TACO in the introduction of a new encoding
for loop unrollings (hereinafter denoted as TACO+) and the removal of
propositional variables based on the dataflow analysis output. We decided
to measure each contribution separately (Tables 2 and 3).

Surprisingly, TACO+ showed an impressive improvement in the analysis
time. We conjecture this is because the new encoding avoids a significant
number of paths in the CFG leading to isomorphic valuations in the SAT-
formula. For instance, for a CFG of only one loop, the application of n
loop unrollings in TACO leads to 2n paths whereas the same application in
TACO+ leads to 2(n−1) potential paths (see Fig. 8). Even tough this result
was not initially expected, it is actually a consequence of the introduction
of the dataflow analysis in TacoFlow which needs a better encoding of loop
unrolls to mitigate precision loss.

We now focus on Table 3. For every method we took the maximum
scope that TACO+ could analyze and ran TacoFlow on the same setting.
It is worth noticing that, even when the improvements are less impressive
than those shown in Table 2, this rather simple dataflow analysis is able to
obtain significant gains. For instance, in some cases it is about 90% with
approximately 16% on average.

Unfortunately, there are a few cases where some performance loss is
reported. At first glance, these cases contradict our initial hypothesis ac-
counting that a reduction in the number of propositional variables leads to
performance improvement.

Nevertheless, tighter upper bounds are not only used by KodKod to
remove propositional variables. KodKod also uses the provided lower and
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upper bounds to compute general purpose symmetry breaking predicates.
As we have already pointed out, these symmetry restrictions reduce many
(but often not all) isomorphic valuations. This led to a third research ques-
tion:

RQ3: Is the introduction of our tighter upper bounds degrading the sym-
metry breaking predicate that KodKod produces?

Up to this point, we fed upper bounds directly to the KodKod engine.
KodKod creates its symmetry breaking predicate using the provided lower
and upper bounds. In this setting, tighter upper bounds could lead not only
to removal of propositional variables. They may also lead to distinguishing
classes that could be seen as isomorphic with coarser bounds. We could avoid
this effect if TACO directly injects the tighter upper bounds at the SAT level
without affecting KodKod. In other words, we would like to modify the SAT
problem instead of the KodKod input.

In order to answer the research question, we modified our tool to leave
KodKod’s Alloy input model unchanged and, using the calculated bounds,
produce a new SAT-formula to be fed directly to the SAT-solver. For this,
we built a function that maps the tuples of every Alloy relation to the
propositional variable that models whether that tuple is contained in the
relation or not. For every tuple which is not contained in the upper bounds
of the relation, we add a clause to the resulting SAT-formula stating that
the value of the corresponding propositional variable, obtained through the
mapping, is false. The resulting SAT-formula is sent directly to the SAT-
solver. In order to effectively propagate the constant values, we simplify the
SAT-formula by applying the precosat solver 4 in simplification only mode.No foot-

note,
referencia.
Asi no
le estas
recono-
ciendo el
laburo a
la genrte
de precast
con una
cita

We avoid unfairness in our comparison by applying the same procedure
on the CNF formula produced by KodKod, and then measuring the SAT-
solving time for both SAT-problems.

In Table 4 we show a comparison between the two approaches. TACO-
KK stands for the version of TacoFlow that feeds upper bounds at the
KodKod level, and TACO-SAT stands for the new version of TacoFlow
that removes propositional variables by directly handling the SAT problem.
In both columns we aggregate the computation cost of simplifying the SAT
problem.

Although the speed-up on average was slightly positive, less than half
of the 21 cases showed performance gains. There seems to be no correla-
tion between the performance loss and the effect of the symmetry breaking
predicate built by KodKod.

Threats to validity: A first concern is related with the fact that we are
empirically comparing the proposed approach only against our own previous
work. Even though this concern is valid, we would like to point out that
TACO was recently compared against several state-of-the-art SAT-based,
model checkers and SMT-based verification tools [17].

4 http://fmv.jku.at/precosat/
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(b) New encoding of loop unrollings

Figure 8: Loop unroll encodings in TACO and TacoFlow.

Method
Analysis Times (secs.)

Speed-up
TACO-KK TACO-SAT

SList.contains.s20 2.34 1.49 1.57
SList.insert.s20 6.83 5.46 1.25
SList.remove.s20 5.98 7.53 0.79
AList.contains.s20 4.04 3.27 1.24
AList.insert.s20 4.9 5.33 0.92
AList.remove.s20 4.82 5.34 0.90
CList.contains.s20 42.94 50.24 0.85
CList.insert.s20 23.9 21.69 1.10
CList.remove.s20 223.58 267.85 0.83
AvlTree.findMax.s20 10.74 9.53 1.13
AvlTree.find.s20 41.05 45.12 0.91
AvlTree.insert.s17 4683 4649 1.01
BinHeap.findMin.s20 3.2 2.56 1.25
BinHeap.decK.s18 28.97 32.59 0.89
BinHeap.insert.s17 141.67 101.82 1.39
BinHeap.extMin.s20 36 144,68 0.25
TreeSet.find.s20 559.04 432.59 1.29
TreeSet.insert.s13 373.56 426.26 0.88
BSTree.contains.s13 4300.1 2312.5 1.86
BSTree.remove.s12 8076.1 10646 0.76
BSTree.insert.s09 244.42 286 0.85
Average 1.04

Table 4: Analysis times (in seconds) for TACO-KK and TACO-SAT

A second concern is about how representative the benchmarks are. In
this regard, the benchmarks we have chosen appear recurrently in case stud-
ies used by the bounded verification community [5,12,22,28,32]. In addition,
the algorithms found in the case studies are commonplace. They recurrently
appear in many applications [29] ranging from container classes to XML
parsers. Therefore, even if it is not possible to perform general claims about
all applications, they can be used as a relative measure of how well the
proposed approach performs compared with other tools aiming at verifying
heap manipulating algorithms.

Another threat to validity is the length of these benchmarks. They target
code manipulating rather complex data structures, working at the intrapro-
cedural level. In the presence of contracts for methods, modular SAT-based
analysis could be applied by replacing method calls by their corresponding
contracts and then analyzing the resulting code. This approach is followed
for instance in [12].
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Finally, TacoFlow relies on having a pre-computed set of initial upper
bounds. The distributed computation cost of this artifact is significant with
respect to the sequential analysis time. Nevertheless, as already mentioned,
this computational cost can be amortized along time.

7 Related work

There is plenty of work aiming at improving SAT-based program verification
and it is still a very active research topic. The most remarkable examples are
the approaches implemented in CBMC [7], SAT-ABS [8], F-Soft [19], Sat-
urn [33], Avinux [26] for the analysis of C code, and TACO [17], Miniatur [13]
and JForge [12] for the analysis of Java code. For a comprehensive discussion
of these tools please refer to [16].

Here we will focus the discussion only on related work concerning the
use of dataflow analysis to alleviate the task of the SAT-solver. We start by
discussing some tools that perform dataflow analyses on C programs [4,19].
Then, we comment about approaches that apply it for Java programs [12,
27, 30]. These papers use an approach similar to TACO in the sense they
use Alloy as back-end but use dataflow analyses for different optimization
purposes.

F-Soft [19] is a tool for verifying C source code. It can check C programs
for runtime errors (e.g, pointer access violations, buffer overflows) or user
provided contracts. Like TacoFlow it uses bounded model checking to prove
properties. In other to reduce the work given to the model checker, F-SOFT
tries to prove some properties beforehand by applying several dataflow anal-
yses. These analysis include intervals, octagons, symbolic ranges and poly-
hedra. Our analyses targets Java programs which mades intensive use of
heap data structures rather than numerical analysis. One aspect that is
similar is that some of the F-Soft’s analyses (e.g. range analysis) aim at
reducing the propositional representation of values. In essence, we also try
to reduce this representation by computing tight bounds on the possible
values a variable (or field) can refer to.

Scoot [4] is a tool for analyzing data races in System C programs us-
ing the model checker SAT-ABS [8]. Scoot uses dataflow analysis for over-
approximating the dependency relation during the analysis of concurrency.
TacoFlow currently targets single-thread Java programs and uses dataflow
in order to reduce the amount of propositional variables required to model
all possible heaps within the given scope.

Taghdiri et al. [30] proposed an analysis to infer syntactic method sum-
maries for heap-manipulating Java code. The aim is to use those specifica-
tions to enable modular verification. Abstract interpretation is used in order
to compute those summaries. This approach is orthogonal to ours since since
it is meant to work at the inter procedural level it can be combined with
ours which is designed to reduce the cost at the intraprocedural level.

JForge [12] is a Java front-end of Forge, a program analysis framework
that uses a bounded model checker (Alloy) to verify rich interface specifica-
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tions written in JFSL. Forge uses a simple dataflow analysis to determine
the potential target methods of an invocation and to find and eliminate
logically infeasible branches. TACO also targets Java program but used a
dataflow analysis to propagate a set of precomputed upper bounds and in
that way reduce the number of propositional variables in the final encoding.
In that, sense both tools may benefit from each other techniques as they
are mutually independent.

In [27] the authors propose a technique for optimizing an incremental
scope-based model checking using a divide-and-solve approach as a mean to
improve the scalability of bounded model checking approaches. To do that,
they rely on a dataflow analysis (variable-definitions) to split the SAT-
problem into several simpler sub-problems.

8 Conclusions and Further Work

In this article we presented a value-propagation analysis aiming at reducing
SAT-solving verification costs. Applying this technique required the imple-
mentation of a dataflow framework in TACO. As a means to mitigate pre-
cision loss we introduced a new encoding for loops. This had an unexpected
positive impact in the overall performance. We also analyzed the effect of
removing variables at the Alloy and SAT levels. Our findings were incon-
clusive over this topic. We were unable to establish a direct link between
the symmetry breaking predicate built by KodKod and the performance
degradations we experienced by removing propositional variables.

Nevertheless, the whole approach still led to an important increase of
performance for several case studies. We still need to perform more exper-
iments in order to assess with confidence whereas the approach is capable
of increasing the scope of analysis beyond the current state-of-the-art.

There is still room for reducing verification cost by relying on dataflow
analyses. For instance, an alias analysis can be used to rule-out infeasible
valuations. We are currently implementing this analysis using our frame-
work.

One of the main difficulties in bounded verification is figuring out which
are the right scopes to choose for each kind of objects. On the one hand,
if the scopes are too small the analysis ability to find counter-examples
might be drastically reduced. On the other hand, bigger scopes may exhaust
computing resources. We believe inference techniques relying on dataflow
analysis (e.g., points-to analysis) may be useful to assist developer in finding
the right scope for each different kind of object.
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